

ZHCSEW9B-MARCH 2016-REVISED OCTOBER 2017

bq4050

用于 1-4 节串联锂离子电池组的 bq4050 CEDV 电量测量仪表和保护解决方案

特性

- 高侧保护 N 通道 FET 驱动器可在故障期间实现串 行总线通信
- 采用内部旁路的电池均衡功能可优化电池健康状况
- 用于故障分析的诊断使用寿命数据监控器和黑盒记 录器
- 全面的可编程保护 特性: 电压、电流和温度
- JEITA 充电算法支持智能充电
- 具有双路独立模数转换器 (ADC) 的模拟前端
 - 同步电流和电压采样
 - 高精度库伦计数器,输入偏移误差 < 1μV (典型 值)
- 支持电池跳变点 (BTP) 功能,用于 Windows®集成
- LED 显示屏用于充电状态和电池状态指示
- 适用于编程和数据访问的 100KHz SMBus 1.1 版通 信接口, 具有 400KHz 交替模式
- SHA-1 认证响应器,用于提高电池组安全性
- 紧凑型 32 引脚 VQFN 封装 (RSM)

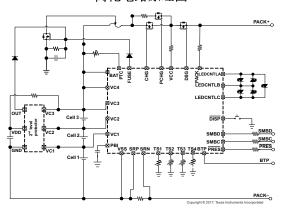
2 应用

- 笔记本电脑
- 医疗与测试设备
- 便携式仪表
- 无线真空吸尘器和扫地机器人

3 说明

德州仪器 (TI) 的 bq4050 器件采用补偿放电终止电压 (CEDV) 技术,是一款高度集成的高精度 1-4 节电池电 量测量仪表和保护解决方案,可实现自主的充电器控制 和电池平衡。

bq4050 器件提供一个基于电池组的完全集成式解决方 案,该解决方案具备闪存可编程的定制精简指令集 CPU (RISC)、安全保护以及身份验证,适用于锂离子 和锂聚合物电池组。


bq4050 电量测量仪表通过一个与 SMBus 兼容的接口 进行通信,并将超低功耗的高速 TI bqBMP 处理器、 高精度模拟测量功能、集成式闪存存储器、一组外设和 通信端口、N 通道 FET 驱动以及 SHA-1 身份验证变 换响应器,融合为一个完整的高性能电池管理解决方

器件信息⁽¹⁾

器件型号	封装	封装尺寸 (标称值)
bq4050	VQFN (32)	4.00mm x 4.00mm

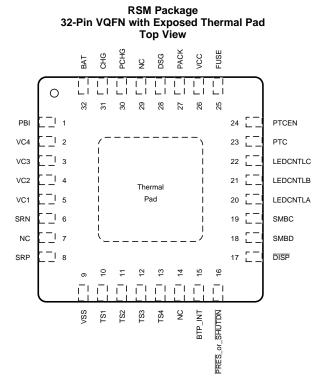
(1) 如需了解所有可用封装,请见产品说明书末尾的可订购产品附

简化电路原理图

	目表	录		
1	特性		6.24 Electrical Characteristics: Internal 1.8-V LDO	14
2	应用 1		6.25 Electrical Characteristics: High-Frequency	
3	说明 1		Oscillator	14
4	修订历史记录 2		6.26 Electrical Characteristics: Low-Frequency Oscillator	15
5	Pin Configuration and Functions3		6.27 Electrical Characteristics: Voltage Reference 1	
6	Specifications7		6.28 Electrical Characteristics: Voltage Reference 2	
	6.1 Absolute Maximum Ratings 7		6.29 Electrical Characteristics: Instruction Flash	
	6.2 ESD Ratings7		6.30 Electrical Characteristics: Data Flash	15
	6.3 Recommended Operating Conditions 8		6.31 Electrical Characteristics: OCD, SCC, SCD1, SC	CD2
	6.4 Thermal Information8		Current Protection Thresholds	
	6.5 Electrical Characteristics: Supply Current		6.32 Timing Requirements: OCD, SCC, SCD1, SCD2	
	6.6 Electrical Characteristics: Power Supply Control 9		Current Protection Timing	
	6.7 Electrical Characteristics: AFE Power-On Reset 9		6.33 Timing Requirements: SMBus	
	6.8 Electrical Characteristics: AFE Watchdog Reset and		6.34 Timing Requirements: SMBus XL	
	Wake Timer9	_	6.35 Typical Characteristics	
	6.9 Electrical Characteristics: Current Wake	7	Detailed Description	
	Comparator		7.1 Overview	
	BAT, PACK 10		7.2 Functional Block Diagram	
	6.11 Electrical Characteristics: SMBD, SMBC 10		7.3 Feature Description	
	6.12 Electrical Characteristics: PRES, BTP_INT, DISP	•	7.4 Device Functional Modes	
	10	8	Applications and Implementation	
	6.13 Electrical Characteristics: LEDCNTLA, LEDCNTLB,		8.1 Application Information	
	LEDCNTLC	•	8.2 Typical Applications	
	6.14 Electrical Characteristics: Coulomb Counter 11	9	Power Supply Recommendations	
	6.15 Electrical Characteristics: CC Digital Filter 11	10	Layout	
	6.16 Electrical Characteristics: ADC		10.1 Layout Guidelines	
	6.17 Electrical Characteristics: ADC Digital Filter 12		10.2 Layout Example	
	6.18 Electrical Characteristics: CHG, DSG FET Drive . 12	11	器件和文档支持	
	6.19 Electrical Characteristics: PCHG FET Drive 13		11.1 文档支持	
	6.20 Electrical Characteristics: FUSE Drive		11.2 社区资源	
	6.21 Electrical Characteristics: Internal Temperature Sensor		11.3 商标	
	6.22 Electrical Characteristics: TS1, TS2, TS3, TS4 14		11.4 静电放电警告	
	6.23 Electrical Characteristics: PTC, PTCEN	4.5	11.5 Glossary	
	5.25 2.00mod ondiadonolog. 1 10, 1 10211	12	机械、封装和可订购信息	46

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。


Changes from Revision A (April 2016) to Revision B

Page

• 口里改 应用

5 Pin Configuration and Functions

Pin Functions

PIN		TYPE	DESCRIPTION
NAME	NUMBER	ITPE	DESCRIPTION
PBI	1	P ⁽¹⁾	Power supply backup input pin
VC4	2	IA	Sense voltage input pin for the most positive cell, and balance current input for the most positive cell
VC3	3	IA	Sense voltage input pin for the second most positive cell, balance current input for the second most positive cell, and return balance current for the most positive cell
VC2	4	IA	Sense voltage input pin for the third most positive cell, balance current input for the third most positive cell, and return balance current for the second most positive cell
VC1	5	IA	Sense voltage input pin for the least positive cell, balance current input for the least positive cell, and return balance current for the third most positive cell
SRN	6	I	Analog input pin connected to the internal coulomb counter peripheral for integrating a small voltage between SRP and SRN where SRP is the top of the sense resistor.
NC	7	_	Not internally connected. Connect to V _{SS} .
SRP	8	I	Analog input pin connected to the internal coulomb counter peripheral for integrating a small voltage between SRP and SRN where SRP is the top of the sense resistor.
VSS	9	Р	Device ground
TS1	10	IA	Temperature sensor 1 thermistor input pin
TS2	11	IA	Temperature sensor 2 thermistor input pin
TS3	12	IA	Temperature sensor 3 thermistor input pin
TS4	13	IA	Temperature sensor 4 thermistor input pin
NC	14	_	Not internally connected. Connect to V _{SS} .
BTP_INT	15	0	Battery Trip Point (BTP) interrupt output
PRES or SHUTDN	16	I	Host system present input for removable battery pack or emergency system shutdown input for embedded packs

(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output

Pin Functions (continued)

PIN			DESCRIPTION
NAME	NUMBER	TYPE	DESCRIPTION
DISP	17	_	Display control for LEDs
SMBD	18	I/OD	SMBus data pin
SMBC	19	I/OD	SMBus clock pin
LEDCNTLA	20	_	LED display segment that drives the external LEDs depending on the firmware configuration
LEDCNTLB	21	_	LED display segment that drives the external LEDs depending on the firmware configuration
LEDCNTLC	22	_	LED display segment that drives the external LEDs depending on the firmware configuration
PTC	23	IA	Safety PTC thermistor input pin. To disable, connect PTC and PTCEN to V _{SS} .
PTCEN	24	IA	Safety PTC thermistor enable input pin. Connect to BAT. To disable, connect PTC and PTCEN to V _{SS} .
FUSE	25	0	Fuse drive output pin
VCC	26	Р	Secondary power supply input
PACK	27	IA	Pack sense input pin
DSG	28	0	NMOS Discharge FET drive output pin
NC	29	_	Not internally connected. Connect to V _{SS} .
PCHG	30	0	PMOS Precharge FET drive output pin
CHG	31	0	NMOS Charge FET drive output pin
BAT	32	Р	Primary power supply input pin

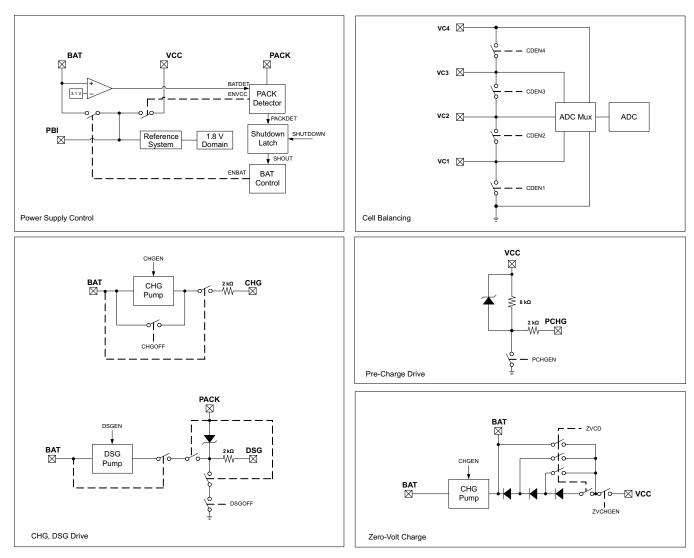


Figure 1. Pin Equivalent Diagram 1

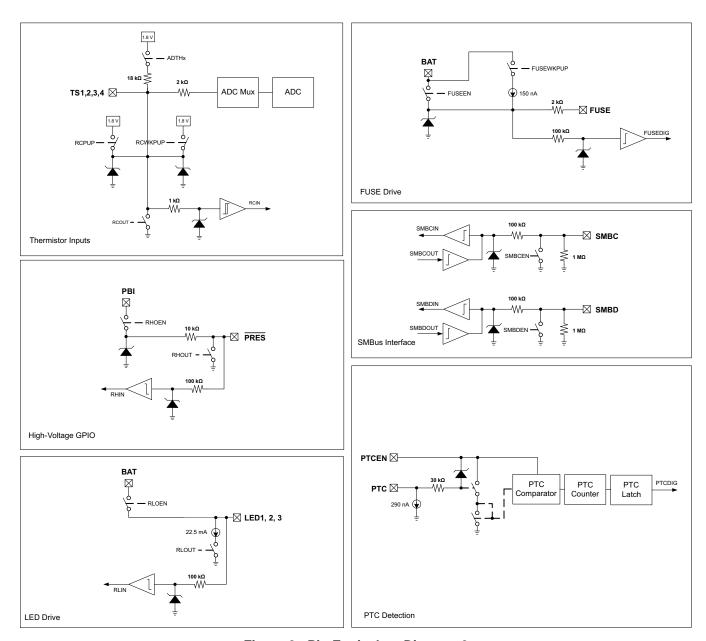
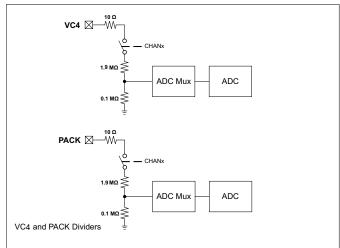



Figure 2. Pin Equivalent Diagram 2

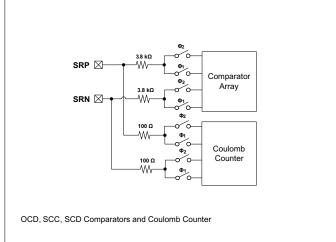


Figure 3. Pin Equivalent Diagram 3

6 Specifications

6.1 Absolute Maximum Ratings

Over-operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
Supply voltage range, V _{CC}	BAT, VCC, PBI	-0.3	30	V
	PACK, SMBC, SMBD, PRES or SHUTDN, BTP_INT, DISP	-0.3	30	V
	TS1, TS2, TS3, TS4	-0.3	$V_{REG} + 0.3$	V
	PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC	-0.3	$V_{BAT} + 0.3$	V
	SRP, SRN	-0.3	0.3	V
Input voltage range, V _{IN}	VC4	VC3 - 0.3	VC3 + 8.5 V, or VSS + 30	V
	VC3	VC2 - 0.3	VC2 + 8.5 V, or VSS + 30	V
	VC2	VC1 - 0.3	VC1 + 8.5 V, or VSS + 30	V
	VC1	VSS - 0.3	VSS + 8.5 V, or VSS + 30 V	V
Outrot valtage series V	CHG, DSG	-0.3	32	
Output voltage range, V _O	PCHG, FUSE	-0.3	30	V
Maximum VSS current, I _{SS}			50	mA
T _{STG}	Storage temperature	-65	150	°C
Lead temperature (soldering	, 10 s), T _{SOLDER}		300	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	BAT, VCC, PBI	2.2		26	V
V _{SHUTDOWN} -	Shutdown voltage	V _{PACK} < V _{SHUTDOWN} -	1.8	2.0	2.2	V
V _{SHUTDOWN+}	Start-up voltage	V _{PACK} > V _{SHUTDOWN} + V _{HYS}	2.05	2.25	2.45	V
V _{HYS}	Shutdown voltage hysteresis	V _{SHUTDOWN+} - V _{SHUTDOWN-}		250		mV
		PACK, SMBC, SMBD, PRES, BTP_IN, DISP			26	
		TS1, TS2, TS3, TS4			V_{REG}	
	Input voltage range	PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC			V_{BAT}	
V		SRP, SRN	-0.2		0.2	.,
V_{IN}		VC4	V _{VC3}		V _{VC3} + 5	V
		VC3	V_{VC2}		V _{VC2} + 5	
		VC2	V _{VC1}		V _{VC1} + 5	
		VC1	V _{VSS}		V _{VSS} + 5	
Vo	Output voltage range	CHG, DSG, PCHG, FUSE			26	V
C _{PBI}	External PBI capacitor		2.2			μF
T _{OPR}	Operating temperature		-40		85	°C

6.4 Thermal Information

		bq4050	
	THERMAL METRIC ⁽¹⁾	RSM (QFN)	UNIT
		32 PINS	
R _{θJA, High K}	Junction-to-ambient thermal resistance	47.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case(top) thermal resistance	40.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	14.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	14.4	°C/W
$R_{\theta JC(bottom)}$	Junction-to-case(bottom) thermal resistance	3.8	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: Supply Current

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{NORMAL}	NORMAL mode	CHG on. DSG on, no Flash write		336		μA
I _{SLEEP}	SLEEP mode	CHG off, DSG on, no SBS communication		75		
		CHG off, DSG off, no SBS communication		52		μΑ
I _{SHUTDOWN}	SHUTDOWN mode			1.6		μA

6.6 Electrical Characteristics: Power Supply Control

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PAR	AMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{SWITCHOVER} -	BAT to V _{CC} switchover voltage	V _{BAT} < V _{SWITCHOVER} -	1.95	2.1	2.2	V
V _{SWITCHOVER+}	V _{CC} to BAT switchover voltage	V _{BAT} > V _{SWITCHOVER} - + V _{HYS}	2.9	3.1	3.25	V
V _{HYS}	Switchover voltage hysteresis	V _{SWITCHOVER+} - V _{SWITCHOVER-}		1000		mV
		BAT pin, BAT = 0 V, VCC = 25 V, PACK = 25 V			1	
I _{LKG}	Input Leakage	PACK pin, BAT = 25 V, VCC = 0 V, PACK = 0 V			1	μA
ILKG	current	BAT and PACK terminals, BAT = 0 V, VCC = 0 V, PACK = 0 V, PBI = 25 V			1	μ
R _{PD}	Internal pulldown resistance	PACK	30	40	50	kΩ

6.7 Electrical Characteristics: AFE Power-On Reset

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REGIT}	Negative-going voltage input	V _{REG}	1.51	1.55	1.59	V
V _{HYS}	Power-on reset hysteresis	V _{REGIT+} - V _{REGIT-}	70	100	130	mV
t _{RST}	Power-on reset time		200	300	400	μs

6.8 Electrical Characteristics: AFE Watchdog Reset and Wake Timer

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		t _{WDT} = 500	372	500	628	
	AFE watchdog	t _{WDT} = 1000	744	1000	1256	ma
t _{WDT}	timeout	t _{WDT} = 2000	1488	2000	2512	ms
		t _{WDT} = 4000	2976	4000	5024	
		t _{WAKE} = 250	186	250	314	
	AFE wake timer	t _{WAKE} = 500	372	500	628	
t _{WAKE}	Are wake timer	t _{WAKE} = 1000	744	1000	1256	ms
		t _{WAKE} = 512	1488	2000	2512	
t _{FETOFF}	FET off delay after reset	$t_{\text{FETOFF}} = 512$	409	512	614	ms

6.9 Electrical Characteristics: Current Wake Comparator

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{WAKE}		$V_{WAKE} = \pm 0.625 \text{ mV}$	±0.3	±0.625	±0.9	
	Wake voltage	$V_{WAKE} = \pm 1.25 \text{ mV}$	±0.6	±1.25	±1.8	m) /
	threshold	$V_{WAKE} = \pm 2.5 \text{ mV}$	±1.2	±2.5	±3.6	mV
		$V_{WAKE} = \pm 5 \text{ mV}$	±2.4	±5.0	±7.2	

Electrical Characteristics: Current Wake Comparator (continued)

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{WAKE(DRIFT)}	Temperature drift of V _{WAKE} accuracy			0.5%		°C
t _{WAKE}	Time from application of current to wake interrupt				700	μs
t _{WAKE(SU)}	Wake comparator startup time			500	1000	μs

6.10 Electrical Characteristics: VC1, VC2, VC3, VC4, BAT, PACK

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		VC1-VSS, VC2-VC1, VC3-VC2, VC4-VC3	0.1980	0.2000	0.2020	
K	Scaling factor	BAT-VSS, PACK-VSS	0.049	0.050	0.051	_
		V _{REF2}	0.490	0.500	0.510	
\/ Input valtage v	land to alternation	VC1-VSS, VC2-VC1, VC3-VC2, VC4-VC3	-0.2		5 20	1/
V _{IN}	Input voltage range	BAT-VSS, PACK-VSS	-0.2		20	V
I _{LKG}	Input leakage current	VC1, VC2, VC3, VC4, cell balancing off, cell detach detection off, ADC multiplexer off			1	μΑ
R _{CB}	Internal cell balance resistance	R _{DS(ON)} for internal FET switch at 2 V < V _{DS} < 4 V			200	Ω
I _{CD}	Internal cell detach check current	VCx > VSS + 0.8 V	30	50	70	μA

6.11 Electrical Characteristics: SMBD, SMBC

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IH}	Input voltage high	SMBC, SMBD, V _{REG} = 1.8 V	1.3			V
V_{IL}	Input voltage low	SMBC, SMBD, V _{REG} = 1.8 V			8.0	V
V _{OL}	Output low voltage	SMBC, SMBD, $V_{REG} = 1.8 \text{ V}$, $I_{OL} = 1.5 \text{ mA}$			0.4	V
C _{IN}	Input capacitance			5		pF
I _{LKG}	Input leakage current				1	μΑ
R _{PD}	Pulldown resistance		0.7	1.0	1.3	$M\Omega$

6.12 Electrical Characteristics: PRES, BTP_INT, DISP

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IH}	High-level input		1.3			V
V _{IL}	Low-level input				0.55	V
.,	Output valtage high	$V_{BAT} > 5.5 \text{ V}, I_{OH} = -0 \mu A$	3.5			V
V _{OH}	Output voltage high	$V_{BAT} > 5.5 \text{ V}, I_{OH} = -10 \mu\text{A}$	1.8			V
V_{OL}	Output voltage low	I _{OL} = 1.5 mA			0.4	V
C _{IN}	Input capacitance			5		рF
I _{LKG}	Input leakage current				1	μΑ

Electrical Characteristics: PRES, BTP_INT, DISP (continued)

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _O	Output reverse resistance	Between PRES or BTP_INT or DISP and PBI	8			kΩ

6.13 Electrical Characteristics: LEDCNTLA, LEDCNTLB, LEDCNTLC

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IH}	High-level input		1.45			V
V _{IL}	Low-level input				0.55	V
V_{OH}	Output voltage high	$V_{BAT} > 3.0 \text{ V}, I_{OH} = -22.5 \text{ mA}$	V _{BAT} – 1.6			V
V _{OL}	Output voltage low	I _{OL} = 1.5 mA			0.4	V
I _{SC}	High level output current protection		-30	-45	-6 0	mA
I _{OL}	Low level output current	V _{BAT} > 3.0 V, V _{OH} = 0.4 V	15.75	22.5	29.25	mA
I _{LEDCNTLx}	Current matching between LEDCNTLx	V _{BAT} = V _{LEDCNTLx} + 2.5 V		±1%		
C _{IN}	Input capacitance			20		pF
I _{LKG}	Input leakage current				1	μΑ
f _{LEDCNTLx}	Frequency of LED pattern			124		Hz

6.14 Electrical Characteristics: Coulomb Counter

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input voltage range		-0.1		0.1	V
Full scale range		-V _{REF1} /10		V _{REF1} /10	V
Integral nonlinearity ⁽¹⁾	16-bit, best fit over input voltage range		±5.2	±22.3	LSB
Offset error	16-bit, Post-calibration		±5	±10	μV
Offset error drift	15-bit + sign, Post-calibration		0.2	0.3	μV/°C
Gain error	15-bit + sign, over input voltage range		±0.2%	±0.8%	FSR
Gain error drift	15-bit + sign, over input voltage range			150	PPM/°C
Effective input resistance		2.5			$M\Omega$

^{(1) 1} LSB = $V_{REF1}/(10 \times 2^N) = 1.215/(10 \times 2^{15}) = 3.71 \,\mu\text{V}$

6.15 Electrical Characteristics: CC Digital Filter

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
Conversion time	Single conversion		250	ms
Effective resolution	Single conversion	15		Bits

6.16 Electrical Characteristics: ADC

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and $95^{\circ}C$ a 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
land to alta an annua	Internal reference (V _{REF1})	-0.2		1	V
Input voltage range	External reference (V _{REG})	-0.2		0.8 × V _{REG}	V
Full scale range	$V_{FS} = V_{REF1}$ or V_{REG}	-V _{FS}		V_{FS}	V
Integral nonlinearity ⁽¹⁾	16-bit, best fit, -0.1 V to $0.8 \times \text{V}_{\text{REF1}}$			±6.6	LSB
	16-bit, best fit, -0.2 V to -0.1 V			±13.1	LOD
Offset error ⁽²⁾	16-bit, Post-calibration, V _{FS} = V _{REF1}		±67	±157	μV
Offset error drift	16-bit, Post-calibration, $V_{FS} = V_{REF1}$		0.6	3	μV/°C
Gain error	16-bit, -0.1 V to $0.8 \times V_{FS}$		±0.2%	±0.8%	FSR
Gain error drift	16-bit, -0.1 V to 0.8 × V _{FS}			150	PPM/°C
Effective input resistance		8			$M\Omega$

6.17 Electrical Characteristics: ADC Digital Filter

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Single conversion		31.25		
Conversion time	Single conversion		15.63		
	Single conversion		7.81		ms
	Single conversion		1.95		
Resolution	No missing codes	16			Bits
	With sign, $t_{CONV} = 31.25 \text{ ms}$	14	15		
C#cative recelution	With sign, $t_{CONV} = 15.63 \text{ ms}$	13	14		D:4-
Effective resolution	With sign, t _{CONV} = 7.81 ms	11	12		Bits
	With sign, t _{CONV} = 1.95 ms	9	10		

6.18 Electrical Characteristics: CHG, DSG FET Drive

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Output voltage	Ratio_DSG = (V_DSG - V_BAT)/V_BAT, 2.2 V < V_BAT < 4.92 V, 10 M Ω between PACK and DSG	2.133	2.333	2.433	
	ratio	Ratio _{CHG} = (V _{CHG} – V _{BAT})/V _{BAT} , 2.2 V < V _{BAT} < 4.92 V, 10 M Ω between BAT and CHG	2.133	2.333	2.433	_
V/	Output voltage,	$V_{\rm DSG(ON)} = V_{\rm DSG} - V_{\rm BAT}, 4.92 \; {\rm V} \le {\rm V_{BAT}} \le 18 \; {\rm V}, 10 \; {\rm M}\Omega$ between PACK and DSG	10.5	11.5	12	V
V _(FETON)	CHG and DSG on	$V_{\rm CHG(ON)} = V_{\rm CHG} - V_{\rm BAT}, 4.92 \ {\rm V} \le {\rm V}_{\rm BAT} \le 18 \ {\rm V}, \ 10 \ {\rm M}\Omega$ between BAT and CHG	10.5	11.5	12	V
V _(FETOFF)	Output voltage,	$V_{DSG(OFF)}$ = V_{DSG} – $V_{PACK},~10~M\Omega$ between PACK and DSG	-0.4		0.4	V
, ,	CHG and DSG off	$V_{CHG(OFF)} = V_{CHG} - V_{BAT}$, 10 M Ω between BAT and CHG	-0.4		0.4	
t _R	Rise time	V_{DSG} from 0% to 35% $V_{DSG(ON)(TYP)}$, V_{BAT} ≥ 2.2 V, C_L = 4.7 nF between DSG and PACK, 5.1 kΩ between DSG and C_L , 10 MΩ between PACK and DSG		200	500	
		V_{CHG} from 0% to 35% $V_{CHG(ON)(TYP)}$, V_{BAT} ≥ 2.2 V, C_L = 4.7 nF between CHG and BAT, 5.1 kΩ between CHG and C_L , 10 MΩ between BAT and CHG		200	500	μs

⁽¹⁾ $1 LSB = V_{REF1}/(2^N) = 1.225/(2^{15}) = 37.4 \,\mu\text{V}$ (when $t_{CONV} = 31.25 \,\text{ms}$) (2) For VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3, VC4–VSS, PACK–VSS, and $V_{REF1}/2$, the offset error is multiplied by (1/ADC multiplexer scaling factor (K)).

Electrical Characteristics: CHG, DSG FET Drive (continued)

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _F	be 10	V_{DSG} from $V_{DSG(ON)(TYP)}$ to 1 V, $V_{BAT} \geq 2.2$ V, C_L = 4.7 nF between DSG and PACK, 5.1 $k\Omega$ between DSG and C_L , 10 $M\Omega$ between PACK and DSG		40	0 300	
	Fall time	V_{CHG} from $V_{CHG(ON)(TYP)}$ to 1 V, V_{BAT} ≥ 2.2 V, C_L = 4.7 nF between CHG and BAT, 5.1 kΩ between CHG and C_L , 10 MΩ between BAT and CHG		40	200	μs

6.19 Electrical Characteristics: PCHG FET Drive

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

P#	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(FETON)	Output voltage, PCHG on	$V_{PCHG(ON)}$ = $VV_{CC} - V_{PCHG}$, 10 MΩ between V_{CC} and PCHG	6	7	8	V
V _(FETOFF)	Output voltage, PCHG off	$V_{PCHG(OFF)}$ = $VV_{CC} - V_{PCHG}$, 10 M Ω between V_{CC} and PCHG	-0.4		0.4	V
t _R	Rise time	V_{PCHG} from 10% to 90% $V_{PCHG(ON)(TYP)}$, $VV_{CC} \ge 8$ V, $C_L = 4.7$ nF between PCHG and V_{CC} , 5.1 kΩ between PCHG and C_L , 10 MΩ between V_{CC} and CHG		40	200	μs
t _F	Fall time	V_{PCHG} from 90% to 10% $V_{PCHG(ON)(TYP)}$, V_{CC} ≥ 8 V, C_L = 4.7 nF between PCHG and V_{CC} , 5.1 kΩ between PCHG and C_L , 10 MΩ between V_{CC} and CHG		40	200	μs

6.20 Electrical Characteristics: FUSE Drive

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

DΛ	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
FA	RAIVIETER	TEST CONDITIONS	IVIIIN	IIF	IVIAA	UNIT
\/	Output voltage	$V_{BAT} \ge 8 \text{ V, } C_L = 1 \text{ nF, } I_{AFEFUSE} = 0 \mu\text{A}$	6	7	8.65	V
V _{OH}	high	V_{BAT} < 8 V, C_L = 1 nF, $I_{AFEFUSE}$ = 0 μA	V _{BAT} – 0.1		V_{BAT}	V
V_{IH}	High-level input		1.5	2.0	2.5	V
I _{AFEFUSE(PU)}	Internal pullup current	V _{BAT} ≥ 8 V, V _{AFEFUSE} = VSS		150	330	nA
R _{AFEFUSE}	Output impedance		2	2.6	3.2	kΩ
C _{IN}	Input capacitance			5		pF
t _{DELAY}	Fuse trip detection delay		128		256	μs
t _{RISE}	Fuse output rise time	V _{BAT} ≥ 8 V, C _L = 1 nF, V _{OH} = 0 V to 5 V		5	20	μs

6.21 Electrical Characteristics: Internal Temperature Sensor

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{TEMP}	Internal temperature	V_{TEMPP}	-1.9	-2.0	-2.1	1400
	sensor voltage drift	V _{TEMPP} – V _{TEMPN} , assured by design	0.177	0.178	0.179	mV/°C

6.22 Electrical Characteristics: TS1, TS2, TS3, TS4

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage	TS1, TS2, TS3, TS4, V _{BIAS} = V _{REF1}	-0.2		0.8 x V _{REF1}	\/
	range	TS1, TS2, TS3, TS4, $V_{BIAS} = V_{REG}$	-0.2		$0.8 \times V_{REG}$	V
R _{NTC(PU)}	Internal pullup resistance	TS1, TS2, TS3, TS4	14.4	18	21.6	kΩ
R _{NTC(DRIFT)}	Resistance drift over temperature	TS1, TS2, TS3, TS4	-360	-280	-200	PPM/°C

6.23 Electrical Characteristics: PTC, PTCEN

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{PTC(TRIP)}	PTC trip resistance		1.2	2.5	3.95	$M\Omega$
V _{PTC(TRIP)}	PTC trip voltage	$V_{PTC(TRIP)} = V_{PTCEN} - V_{PTC}$	200	500	890	mV
I _{PTC}	Internal PTC current bias	$T_A = -40^{\circ}C$ to 110°C	200	290	350	nA
t _{PTC(DELAY)}	PTC delay time	$T_A = -40^{\circ}C \text{ to } 110^{\circ}C$	40	80	145	ms

6.24 Electrical Characteristics: Internal 1.8-V LDO

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{REG}	Regulator voltage		1.6	1.8	2.0	V
$\Delta V_{O(TEMP)}$	Regulator output over temperature	$\Delta V_{REG}/\Delta T_A$, $I_{REG} = 10 \text{ mA}$		±0.25%		
$\Delta V_{O(LINE)}$	Line regulation	$\Delta V_{REG}/\Delta V_{BAT}$, $V_{BAT} = 10 \text{ mA}$	-0 .6%		0.5%	
$\Delta V_{O(LOAD)}$	Load regulation	$\Delta V_{REG}/\Delta I_{REG}$, $I_{REG} = 0$ mA to 10 mA	-1.5%		1.5%	
I _{REG}	Regulator output current limit	$V_{REG} = 0.9 \times V_{REG(NOM)}, V_{IN} > 2.2 V$	20			mA
I _{SC}	Regulator short- circuit current limit	$V_{REG} = 0 \times V_{REG(NOM)}$	25	40	55	mA
PSRR _{REG}	Power supply rejection ratio	$\Delta V_{BAT}/\Delta V_{REG}$, I _{REG} = 10 mA ,V _{IN} > 2.5 V, f = 10 Hz		40		dB
V _{SLEW}	Slew rate enhancement voltage threshold	V _{REG}	1.58	1.65		V

6.25 Electrical Characteristics: High-Frequency Oscillator

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{HFO}	Operating frequency			16.78		MHz
f _{HFO(ERR)} Frequency error	Fraguesa, arrar	$T_A = -20$ °C to 70°C, includes frequency drift	-2.5%	±0.25%	2.5%	
	Frequency error	$T_A = -40$ °C to 85°C, includes frequency drift	-3.5%	±0.25%	3.5%	
t _{HFO(SU)}	Start-up time	$T_A = -20$ °C to 85°C, oscillator frequency within +/-3% of nominal			4	ms
111 0(30)	•	oscillator frequency within +/-3% of nominal			100	μs

6.26 Electrical Characteristics: Low-Frequency Oscillator

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

Р	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{LFO}	Operating frequency			262.144		kHz
,	F	$T_A = -20$ °C to 70°C, includes frequency drift	-1.5%	±0.25%	1.5%	
TLFO(ERR)	Frequency error	$T_A = -40$ °C to 85°C, includes frequency drift	-2.5	±0.25	2.5	
f _{LFO(FAIL)}	Failure detection frequency		30	80	100	kHz

6.27 Electrical Characteristics: Voltage Reference 1

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REF1}	Internal reference voltage	T _A = 25°C, after trim	1.21	1.215	1.22	V
M	Internal reference	$T_A = 0$ °C to 60°C, after trim		±50		DDM/9C
V _{REF1} (DRIFT)	voltage drift	$T_A = -40$ °C to 85°C, after trim		±80		PPM/°C

6.28 Electrical Characteristics: Voltage Reference 2

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REF2}	Internal reference voltage	T _A = 25°C, after trim	1.22	1.225	1.23	٧
V	Internal reference	$T_A = 0$ °C to 60°C, after trim		±50		PPM/°C
VREF2(DRIFT)	voltage drift	$T_A = -40$ °C to 85°C, after trim		±80		PPIVI/ C

6.29 Electrical Characteristics: Instruction Flash

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Data retention		10			Years
	Flash programming write cycles		1000			Cycles
t _{PROGWORD}	Word programming time	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$			40	μs
t _{MASSERASE}	Mass-erase time	$T_A = -40$ °C to 85°C			40	ms
t _{PAGEERASE}	Page-erase time	$T_A = -40$ °C to 85°C			40	ms
I _{FLASHREAD}	Flash-read current	$T_A = -40$ °C to 85°C			2	mA
I _{FLASHWRITE}	Flash-write current	$T_A = -40$ °C to 85°C			5	mA
I _{FLASHERASE}	Flash-erase current	$T_A = -40$ °C to 85°C			15	mA

6.30 Electrical Characteristics: Data Flash

P	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Data retention		10			Years
	Flash programming write cycles		20000			Cycles
t _{PROGWORD}	Word programming time	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$			40	μs

Electrical Characteristics: Data Flash (continued)

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{MASSERASE}	Mass-erase time	$T_A = -40$ °C to 85°C			40	ms
t _{PAGEERASE}	Page-erase time	$T_A = -40$ °C to 85°C			40	ms
I _{FLASHREAD}	Flash-read current	$T_A = -40$ °C to 85°C			1	mA
I _{FLASHWRITE}	Flash-write current	$T_A = -40$ °C to 85°C			5	mA
I _{FLASHERASE}	Flash-erase current	$T_A = -40$ °C to 85°C			15	mA

6.31 Electrical Characteristics: OCD, SCC, SCD1, SCD2 Current Protection Thresholds

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	OCD detection	V _{OCD} = V _{SRP} - V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 1	-16.6		-100	m)/
	threshold voltage range	$V_{OCD} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0	-8.3		-50	mV
A)/	OCD detection	V _{OCD} = V _{SRP} - V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 1		-5.56		\/
ΔV _{OCD}	threshold voltage program step	$V_{OCD} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0		-2.78		mV
.,	SCC detection	V _{SCC} = V _{SRP} - V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 1	44.4		200	\/
V _{SCC}	threshold voltage range	V _{SCC} = V _{SRP} - V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 0	22.2		100	mV
	SCC detection	V _{SCC} = V _{SRP} - V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 1		22.2		.,
ΔV _{SCC}	ΔV _{SCC} threshold voltage program step	V _{SCC} = V _{SRP} - V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 0		11.1		mV
V _{SCD1} SCD1 detection threshold voltage	SCD1 detection	V _{SCD1} = V _{SRP} – V _{SRN,} AFE PROTECTION CONTROL[RSNS] = 1	-44.4		-200	.,
	threshold voltage range	V _{SCD1} = V _{SRP} – V _{SRN,} AFE PROTECTION CONTROL[RSNS] = 0	-22.2		-100	mV
	SCD1 detection	V _{SCD1} = V _{SRP} – V _{SRN,} AFE PROTECTION CONTROL[RSNS] = 1		-22.2		.,,
∆V _{SCD1}	threshold voltage program step	V _{SCD1} = V _{SRP} – V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 0		-11.1		mV
.,	SCD2 detection	V _{SCD2} = V _{SRP} – V _{SRN,} AFE PROTECTION CONTROL[RSNS] = 1	-44.4		-200	.,
V _{SCD2}	threshold voltage range	V _{SCD2} = V _{SRP} – V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 0	-22.2		-100	mV
	SCD2 detection	V _{SCD2} = V _{SRP} – V _{SRN,} AFE PROTECTION CONTROL[RSNS] = 1		-22.2		
ΔV _{SCD2} threshold voltage program step		V _{SCD2} = V _{SRP} – V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 0		-11.1		mV
V _{OFFSET}	OCD, SCC, and SCDx offset error	Post-trim	-2.5		2.5	mV
	OCD, SCC, and SCDx	No trim	-10%		10%	
V _{SCALE}	scale error	Post-trim	-5%		5%	

6.32 Timing Requirements: OCD, SCC, SCD1, SCD2 Current Protection Timing

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

			MIN	NOM	MAX	UNIT
t _{OCD}	OCD detection delay time		1		31	ms
Δt_{OCD}	OCD detection delay time program step			2		ms
t _{SCC}	SCC detection delay time		0		915	μs
Δt_{SCC}	SCC detection delay time program step			61		μs
t _{SCD1}	SCD1 detection delay time	AFE PROTECTION CONTROL[SCDDx2] = 0	0		915	us
		AFE PROTECTION CONTROL[SCDDx2] = 1	0		1850	
Δt_{SCD1} delay time	SCD1 detection	AFE PROTECTION CONTROL[SCDDx2] = 0		61		
	delay time program step	AFE PROTECTION CONTROL[SCDDx2] = 1		121		μs
	SCD2 detection	AFE PROTECTION CONTROL[SCDDx2] = 0	0		458	
t _{SCD2}	delay time	AFE PROTECTION CONTROL[SCDDx2] = 1	0		915	μs
	SCD2 detection	AFE PROTECTION CONTROL[SCDDx2] = 0		30.5		
Δt_{SCD2}	delay time program step	AFE PROTECTION CONTROL[SCDDx2] = 1		61		μs
t _{DETECT}	Current fault detect time	$V_{SRP} - V_{SRN} = V_T - 3$ mV for OCD, SCD1, and SC2, $V_{SRP} - V_{SRN} = V_T + 3$ mV for SCC			160	μs
t _{ACC}	Current fault delay time accuracy	Max delay setting	-10%		10%	

6.33 Timing Requirements: SMBus

			MIN	NOM	MAX	UNIT
f _{SMB}	SMBus operating frequency	SLAVE mode, SMBC 50% duty cycle	10		100	kHz
f _{MAS}	SMBus master clock frequency	MASTER mode, no clock low slave extend		51.2		kHz
t _{BUF}	Bus free time between start and stop		4.7			μs
t _{HD(START)}	Hold time after (repeated) start		4.0			μs
t _{SU(START)}	Repeated start setup time		4.7			μs
t _{SU(STOP)}	Stop setup time		4.0			μs
t _{HD(DATA)}	Data hold time		300			ns
t _{SU(DATA)}	Data setup time		250			ns
t _{TIMEOUT}	Error signal detect time		25		35	ms
t_{LOW}	Clock low period		4.7			μs
t _{HIGH}	Clock high period		4.0		50	μs
t _R	Clock rise time	10% to 90%			1000	ns
t _F	Clock fall time	90% to 10%			300	ns
t _{LOW(SEXT)}	Cumulative clock low slave extend time				25	ms
t _{LOW(MEXT)}	Cumulative clock low master extend time				10	ms

6.34 Timing Requirements: SMBus XL

			MIN NO	M MAX	UNIT
f _{SMBXL}	SMBus XL operating frequency	SLAVE mode	40	400	kHz
t _{BUF}	Bus free time between start and stop		4.7		μs
t _{HD(START)}	Hold time after (repeated) start		4.0		μs
t _{SU(START)}	Repeated start setup time		4.7		μs
t _{SU(STOP)}	Stop setup time		4.0		μs
t _{TIMEOUT}	Error signal detect time		5	20	ms
t _{LOW}	Clock low period			20	μs
t _{HIGH}	Clock high period			20	μs

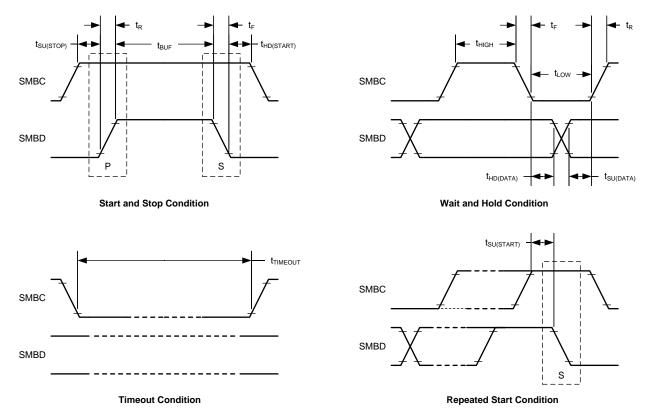
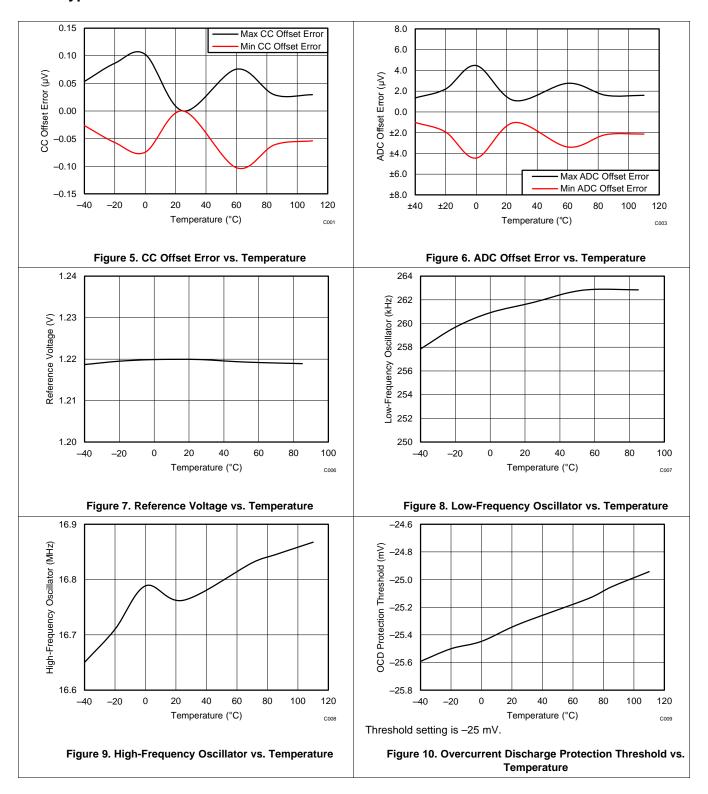
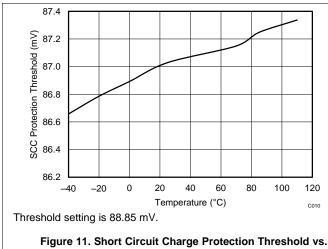
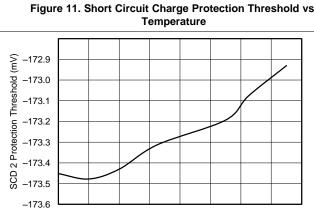



Figure 4. SMBus Timing Diagram




6.35 Typical Characteristics

TEXAS INSTRUMENTS

Typical Characteristics (continued)

20

Threshold setting is -177.7 mV.

-20

-40

Figure 13. Short Circuit Discharge 2 Protection Threshold vs. Temperature

40

Temperature (°C)

60

80

100

120

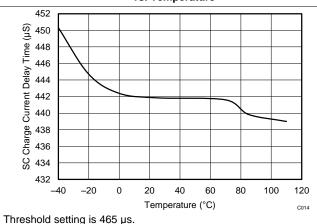


Figure 15. Short Circuit Charge Current Delay Time vs.
Temperature

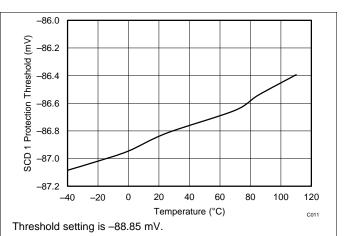
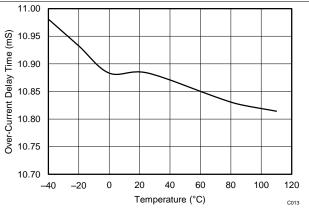
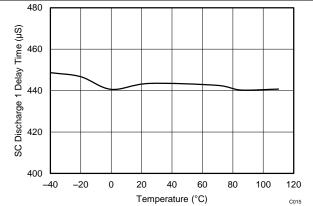
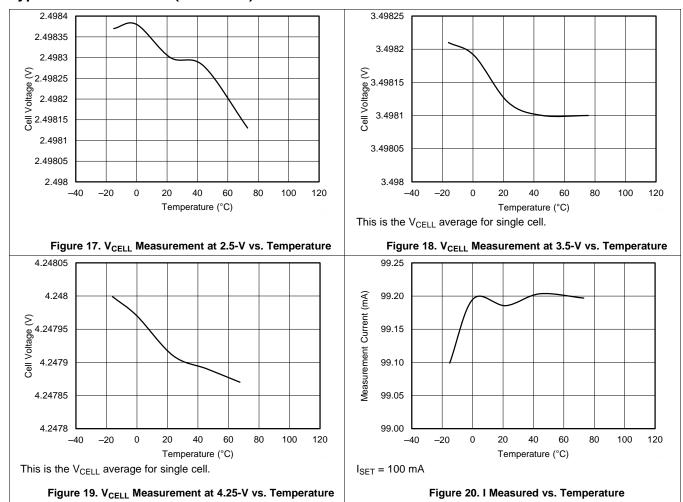




Figure 12. Short Circuit Discharge 1 Protection Threshold vs. Temperature

Threshold setting is 11 ms.

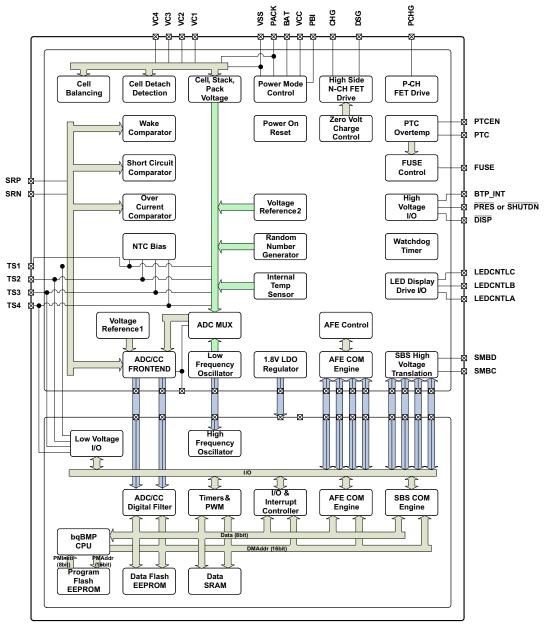
Figure 14. Overcurrent Delay Time vs. Temperature



Threshold setting is 465 µs (including internal delay).

Figure 16. Short Circuit Discharge 1 Delay Time vs. Temperature

Typical Characteristics (continued)



7 Detailed Description

7.1 Overview

The bq4050 device, incorporating Compensated End-of-Discharge Voltage (CEDV) technology, provides cell balancing while charging or at rest. This fully integrated, single-chip, pack-based solution, including a diagnostic lifetime data monitor and black box recorder, provides a rich array of features for gas gauging, protection, and authentication for 1-series, 2-series, 3-series, and 4-series cell Li-lon and Li-Polymer battery packs.

7.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

7.3 Feature Description

7.3.1 Primary (1st Level) Safety Features

The bq4050 gas gauge supports a wide range of battery and system protection features that can easily be configured. See the *bq4050 Technical Reference Manual* (SLUUAQ3) for detailed descriptions of each protection function.

The primary safety features include:

- Cell Overvoltage Protection
- Cell Undervoltage Protection
- Overcurrent in Charge Protection
- Overcurrent in Discharge Protection
- Overload in Discharge Protection
- · Short Circuit in Charge Protection
- Short Circuit in Discharge Protection
- Overtemperature in Charge Protection
- Overtemperature in Discharge Protection
- Undertemperature in Charge Protection
- Undertemperature in Discharge Protection
- Overtemperature FET protection
- Precharge Timeout Protection
- · Host Watchdog Timeout Protection
- Overcharge Protection
- Overcharging Voltage Protection
- Overcharging Current Protection
- Over Precharge Current Protection

7.3.2 Secondary (2nd Level) Safety Features

The secondary safety features of the bq4050 gas gauge can be used to indicate more serious faults via the FUSE pin. This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. See the *bq4050 Technical Reference Manual* (SLUUAQ3) for detailed descriptions of each protection function.

The secondary safety features provide protection against:

- Safety Overvoltage Permanent Failure
- Safety Undervoltage Permanent Failure
- Safety Overtemperature Permanent Failure
- Safety FET Overtemperature Permanent Failure
- Fuse Failure Permanent Failure
- PTC Permanent Failure
- Voltage Imbalance at Rest (VIMR) Permanent Failure
- Voltage Imbalance Active (VIMA) Permanent Failure
- Charge FET Permanent Failure
- Discharge FET Permanent Failure
- AFE Register Permanent Failure
- AFE Communication Permanent Failure
- Second Level Protector Permanent Failure
- Instruction Flash Checksum Permanent Failure
- Open Cell Connection Permanent Failure
- Data Flash Permanent Failure
- Open Thermistor Permanent Failure

Feature Description (continued)

7.3.3 Charge Control Features

The bq4050 gas gauge charge control features include:

- Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active temperature range
- Handles more complex charging profiles. Allows for splitting the standard temperature range into two subranges and allows for varying the charging current according to the cell voltage
- Reports the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts
- Reduces the charge difference of the battery cells in fully charged state of the battery pack gradually using a
 voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing to
 be active. This prevents fully charged cells from overcharging and causing excessive degradation and also
 increases the usable pack energy by preventing premature charge termination.
- Supports precharging/0-volt charging
- Supports charge inhibit and charge suspend if the battery pack temperature is out of temperature range
- Reports charging fault and also indicates charge status via charge and discharge alarms

7.3.4 Gas Gauging

The bq4050 gas gauge uses the Compensated End-of-Discharge Voltage (CEDV) algorithm to measure and calculate the available capacity in battery cells. The bq4050 device accumulates a measure of charge and discharge currents, estimates self-discharge of the battery, and adjusts the self-discharge estimation based on temperature. See the *bq4050 Technical Reference Manual* (SLUUAQ3) for further details.

7.3.5 Configuration

7.3.5.1 Oscillator Function

The bq4050 gas gauge fully integrates the system oscillators and does not require any external components to support this feature.

7.3.5.2 System Present Operation

The bq4050 gas gauge checks the $\overline{\text{PRES}}$ pin periodically (1 s). If $\overline{\text{PRES}}$ input is pulled to ground by the external system, the bq4050 device detects this as system present.

7.3.5.3 Emergency Shutdown

For battery maintenance, the emergency shutdown feature enables a push button action connecting the SHUTDN pin to shut down an embedded battery pack system before removing the battery. A high-to-low transition of the SHUTDN pin signals the bq4050 gas gauge to turn off the CHG and DSG FETs, disconnecting the power from the system to safely remove the battery pack. The CHG and DSG FETs can be turned on again by another high-to-low transition detected by the SHUTDN pin or when a data flash configurable timeout is reached.

7.3.5.4 1-Series, 2-Series, 3-Series, or 4-Series Cell Configuration

In a 1-series cell configuration, VC4 is shorted to VC, VC2, and VC1. In a 2-series cell configuration, VC4 is shorted to VC3 and VC2. In a 3-series cell configuration, VC4 is shorted to VC3.

7.3.5.5 Cell Balancing

The device reduces the charge difference of the battery cells in a fully charged state of the battery pack by gradually using a voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing to be active. This prevents fully charged cells from overcharging and causing excessive degradation, and increases the usable pack energy by preventing premature charge termination.

Feature Description (continued)

7.3.6 Battery Parameter Measurements

7.3.6.1 Charge and Discharge Counting

The bq4050 gas gauge uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage and temperature measurement.

The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SRP and SRN terminals. The integrating ADC measures bipolar signals from -0.1~V to 0.1~V. The bq4050 gauge detects charge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is positive, and discharge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is negative. The bq4050 gas gauge continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is $0.26~V_{CRN}$

7.3.7 Battery Trip Point (BTP)

Required for WIN8 OS, the battery trip point (BTP) feature indicates when the RSOC of a battery pack has depleted to a certain value set in a DF register. This feature enables a host to program two capacity-based thresholds that govern the triggering of a BTP interrupt on the BTP_INT pin and the setting or clearing of the OperationStatus[BTP_INT] on the basis of RemainingCapacity().

An internal weak pullup is applied when the BTP feature is active. Depending on the <u>system</u> design, an <u>external</u> pullup may be required to put on the BTP_INT pin. See <u>Electrical Characteristics</u>: <u>PRES</u>, <u>BTP_INT</u>, <u>DISP</u> for details.

7.3.8 Lifetime Data Logging Features

The bq4050 gas gauge offers lifetime data logging for several critical battery parameters. The following parameters are updated every 10 hours if a difference is detected between values in RAM and data flash:

- Maximum and Minimum Cell Voltages
- Maximum Delta Cell Voltage
- Maximum Charge Current
- Maximum Discharge Current
- Maximum Average Discharge Current
- Maximum Average Discharge Power
- Maximum and Minimum Cell Temperature
- Maximum Delta Cell Temperature
- Maximum and Minimum Internal Sensor Temperature
- Maximum FET Temperature
- Number of Safety Events Occurrences and the Last Cycle of the Occurrence
- Number of Valid Charge Termination and the Last Cycle of the Valid Charge Termination
- · Number of Shutdown Events
- · Cell Balancing Time for Each Cell
 - (This data is updated every 2 hours if a difference is detected.)
- Total FW Runtime and Time Spent in Each Temperature Range (This data is updated every 2 hours if a difference is detected.)

7.3.9 Authentication

The bq4050 gas gauge supports authentication by the host using SHA-1.

7.3.10 LED Display

The bq4050 gas gauge can drive a 3-, 4-, or 5- segment LED display for remaining capacity indication and/or a permanent fail (PF) error code indication.

Feature Description (continued)

7.3.11 Voltage

The bq4050 gas gauge updates the individual series cell voltages at 0.25-s intervals. The internal ADC of the bq4050 device measures the voltage, and scales and calibrates it appropriately. This data is also used to calculate the impedance of the cell for the CEDV gas gauging.

7.3.12 Current

The bq4050 gas gauge uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 1-m Ω to 3-m Ω typ. sense resistor.

7.3.13 Temperature

The bq4050 gas gauge has an internal temperature sensor and inputs for four external temperature sensors. All five temperature sensor options can be individually enabled and configured for cell or FET temperature usage. Two configurable thermistor models are provided to enable monitoring of the cell temperature in addition to the FET temperature, which use a different thermistor profile.

7.3.14 Communications

The bq4050 gas gauge uses SMBus v1.1 with MASTER mode and packet error checking (PEC) options per the SBS specification.

7.3.14.1 SMBus On and Off State

The bq4050 gas gauge detects an SMBus off state when SMBC and SMBD are low for two or more seconds. Clearing this state requires that either SMBC or SMBD transition high. The communication bus will resume activity within 1 ms.

7.3.14.2 SBS Commands

See the bq4050 Technical Reference Manual (SLUUAQ3) for further details.

7.4 Device Functional Modes

The bq4050 gas gauge supports three power modes to reduce power consumption:

- In NORMAL mode, the bq4050 gauge performs measurements, calculations, protection decisions, and data updates in 250-ms intervals. Between these intervals, the bq4050 gauge is in a reduced power stage.
- In SLEEP mode, the bq4050 gauge performs measurements, calculations, protection decisions, and data updates in adjustable time intervals. Between these intervals, the bq4050 gauge is in a reduced power stage. The bq4050 gauge has a wake function that enables exit from SLEEP mode when current flow or failure is detected.
- In SHUTDOWN mode, the bq4050 gauge is completely disabled.

8 Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The bq4050 gas gauge has primary protection support to be used with a 1-series to 4-series Li-lon/Li Polymer battery pack. To implement and design a comprehensive set of parameters for a specific battery pack, users need the Battery Management Studio (bqStudio) graphical user-interface tool installed on a PC during development. The firmware installed on the bqStudio tool has default values for this product, which are summarized in the bq4050 Technical Reference Manual (SLUUAQ3). Using the bqStudio tool, these default values can be changed to cater to specific application requirements during development once the system parameters, such as fault trigger thresholds for protection, enable/disable of certain features for operation, configuration of cells, chemistry that best matches the cell used, and more are known. This data is referred to as the "golden image."

TEXAS INSTRUMENTS

8.2 Typical Applications

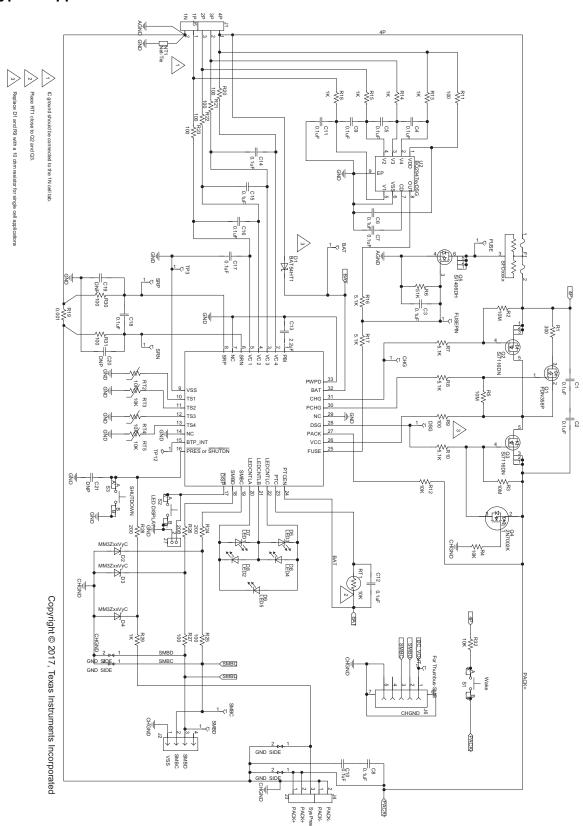


Figure 21. Application Schematic

Typical Applications (continued)

8.2.1 Design Requirements

Table 1 shows the default settings for the main parameters. Use the bqStudio tool to update the settings to meet the specific application or battery pack configuration requirements.

The device should be calibrated before any gauging test. Follow the information in the bqStudio **Calibration** page to calibrate the device, and use the bqStudio **Chemistry** page to update the match chemistry profile to the device.

EXAMPLE
3s1p (3-series with 1 Parallel) (1)
4400 mAh
1210 (LiCoO2/graphitized carbon)
4300 mV
2500 mV
2300 mV
6000 mA
-6000 mA
0.1 V/Rsense across SRP, SRN
0.1 V/Rsense across SRP, SRN
4500 mV
Disabled
External Temperature Sensors are used.
0°C
0°C
Disabled
Disabled

⁽¹⁾ When using the device the first time, if the a 1-s or 2-s battery pack is used, then a charger or power supply should be connected to the PACK+ terminal to prevent device shutdown. Then update the cell configuration (see the bq4050 Technical Reference Manual (SLUUAQ3) for details) before removing the charger connection.

8.2.2 Detailed Design Procedure

8.2.2.1 High-Current Path

The high-current path begins at the PACK+ terminal of the battery pack. As charge current travels through the pack, it finds its way through protection FETs, a chemical fuse, the lithium-ion cells and cell connections, and the sense resistor, and then returns to the PACK- terminal (see Figure 22). In addition, some components are placed across the PACK+ and PACK- terminals to reduce effects from electrostatic discharge.

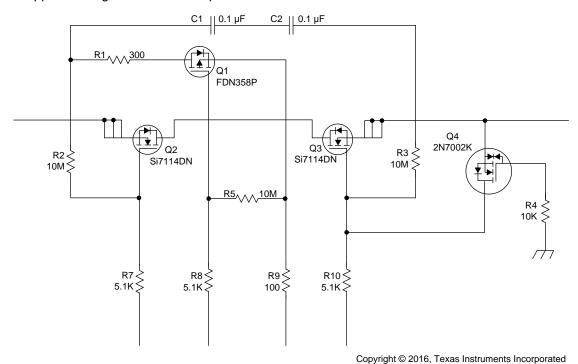
8.2.2.1.1 Protection FETs

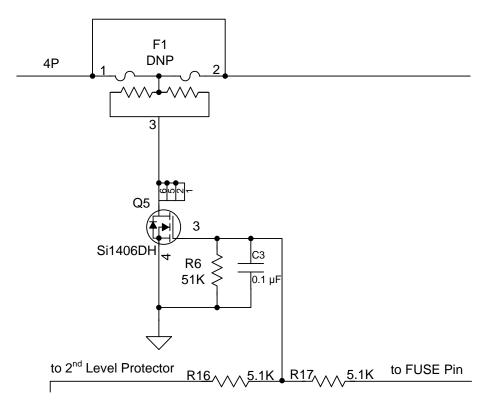
Select the N-CH charge and discharge FETs for a given application. Most portable battery applications are a good match for the CSD17308Q3. The TI CSD17308Q3 is a 47A, 30-V device with Rds(on) of 8.2 m Ω when the gate drive voltage is 8 V.

If a precharge FET is used, R1 is calculated to limit the precharge current to the desired rate. Be sure to account for the power dissipation of the series resistor. The precharge current is limited to $(V_{CHARGER} - V_{BAT})/R1$ and maximum power dissipation is $(V_{CHARGER} - V_{bat})^2/R1$.

The gates of all protection FETs are pulled to the source with a high-value resistor between the gate and source to ensure they are turned off if the gate drive is open.

Capacitors C1 and C2 help protect the FETs during an ESD event. Using two devices ensures normal operation if one becomes shorted. To have good ESD protection, the copper trace inductance of the capacitor leads must be designed to be as short and wide as possible. Ensure that the voltage ratings of C1 and C2 are adequate to hold off the applied voltage if one of the capacitors becomes shorted.




Figure 22. bq4050 Protection FETs

8.2.2.1.2 Chemical Fuse

The chemical fuse (Dexerials, Uchihashi, and so on) is ignited under command from either the bq294700 secondary voltage protection IC or from the FUSE pin of the gas gauge. Either of these events applies a positive voltage to the gate of Q5, shown in Figure 23, which then sinks current from the third terminal of the fuse, causing it to ignite and open permanently.

It is important to carefully review the fuse specifications and match the required ignition current to that available from the N-CH FET. Ensure that the proper voltage, current, and Rds(on) ratings are used for this device. The fuse control circuit is discussed in detail in *FUSE Circuitry*.

Copyright © 2016, Texas Instruments Incorporated

Figure 23. FUSE Circuit

8.2.2.1.3 Lithium-Ion Cell Connections

The important part to remember about the cell connections is that high current flows through the top and bottom connections; therefore, the voltage sense leads at these points must be made with a Kelvin connection to avoid any errors due to a drop in the high-current copper trace. The location marked 4P in Figure 24 indicates the Kelvin connection of the most positive battery node. The connection marked 1N is equally important. The VC5 pin (a ground reference for cell voltage measurement), which is in the older generation devices, is not in the bq4050 device. Therefore, the single-point connection at 1N to the low-current ground is needed to avoid an undesired voltage drop through long traces while the gas gauge is measuring the bottom cell voltage.

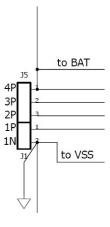
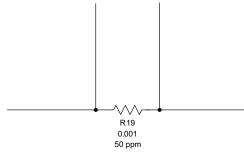



Figure 24. Lithium-Ion Cell Connections

8.2.2.1.4 Sense Resistor

As with the cell connections, the quality of the Kelvin connections at the sense resistor is critical. The sense resistor must have a temperature coefficient no greater than 50 ppm in order to minimize current measurement drift with temperature. Choose the value of the sense resistor to correspond to the available overcurrent and short-circuit ranges of the bq4050 gauge. Select the smallest value possible to minimize the negative voltage generated on the bq4050 V_{SS} node(s) during a short circuit. This pin has an absolute minimum of -0.3 V. Parallel resistors can be used as long as good Kelvin sensing is ensured. The device is designed to support a 1-m Ω to 3-m Ω sense resistor.

The ground scheme of bq4050 gauge is different from the older generation devices. In previous devices, the device ground (or low current ground) is connected to the SRN side of the Rsense resistor pad. The bq4050 gauge, however, it connects the low-current ground on the SRP side of the Rsense resistor pad close to the battery 1N terminal (see *Lithium-lon Cell Connections*). This is because the bq4050 gauge has one less VC pin (a ground reference pin VC5) compared to the previous devices. The pin was removed and was internally combined to SRP.

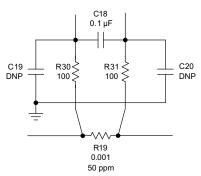
Copyright © 2016, Texas Instruments Incorporated

Figure 25. Sense Resistor

8.2.2.1.5 ESD Mitigation

A pair of series 0.1- μF ceramic capacitors is placed across the PACK+ and PACK- terminals to help in the mitigation of external electrostatic discharges. The two devices in series ensure continued operation of the pack if one of the capacitors becomes shorted.

Optionally, a tranzorb such as the SMBJ2A can be placed across the terminals to further improve ESD immunity.


8.2.2.2 Gas Gauge Circuit

The gas gauge circuit includes the bq4050 gauge and its peripheral components. These components are divided into the following groups: Differential Low-Pass Filter, PBI, system present, SMBus Communication, FUSE circuit, and LED.

8.2.2.2.1 Coulomb-Counting Interface

The bq4050 gauge uses an integrating delta-sigma ADC for current measurements. Add a $100-\Omega$ resistor from the sense resistor to the SRP and SRN inputs of the device. Place a $0.1-\mu F$ (C18) filter capacitor across the SRP and SRN inputs. Optional $0.1-\mu F$ filter capacitors (C19 and C20) can be added for additional noise filtering if required for a circuit.

Copyright © 2016, Texas Instruments Incorporated

Figure 26. Differential Filter

8.2.2.2.2 Power Supply Decoupling and PBI

The bq4050 gauge has an internal LDO that is internally compensated and does not require an external decoupling capacitor.

The PBI pin is used as a power supply backup input pin providing power during brief transient power outages. A standard 2.2-µF ceramic capacitor is connected from the PBI pin to ground as shown in Figure 27.

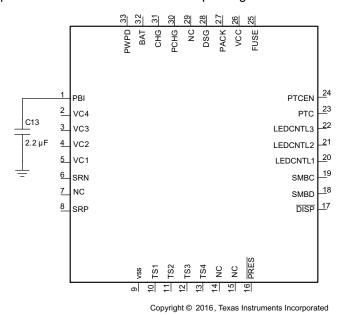


Figure 27. Power Supply Decoupling

8.2.2.2.3 System Present

The system present signal is used to inform the gas gauge whether the pack is installed into or removed from the system. In the host system, this pin is grounded. The PRES pin of the bq4050 gauge is occasionally sampled to test for system present. To save power, an internal pullup is provided by the gas gauge during a brief 4- μ s sampling pulse once per second. A resistor can be used to pull the signal low and the resistance must be 20 k Ω or lower to ensure that the test pulse is lower than the VIL limit. The pullup current source is typically 10 μ A to 20 μ A.

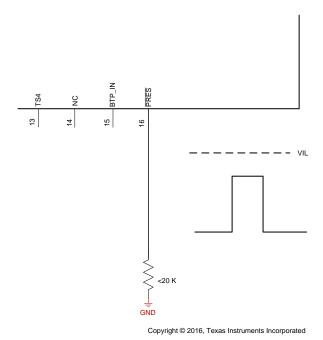
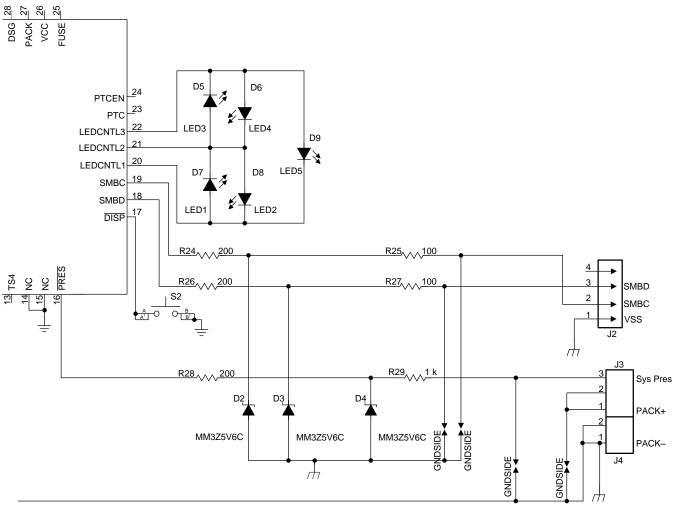



Figure 28. System Present Pull-Down Resistor

Because the system present signal is part of the pack connector interface to the outside <u>world</u>, it must be protected from external electrostatic discharge events. An integrated ESD protection on the PRES device pin reduces the external protection requirement to just R29 for an 8-kV ESD contact rating. However, if it is possible that the system present signal may short to PACK+, then R28 and D4 must be included for high-voltage protection.

Copyright © 2016, Texas Instruments Incorporated

Figure 29. System Present ESD and Short Protection

8.2.2.2.4 SMBus Communication

The SMBus clock and data pins have integrated high-voltage ESD protection circuits; however, adding a Zener diode (D2 and D3) and series resistor (R24 and R26) provides more robust ESD performance.

The SMBus clock and data lines have internal pulldown. When the gas gauge senses that both lines are low (such as during removal of the pack), the device performs auto-offset calibration and then goes into SLEEP mode to conserve power.

35

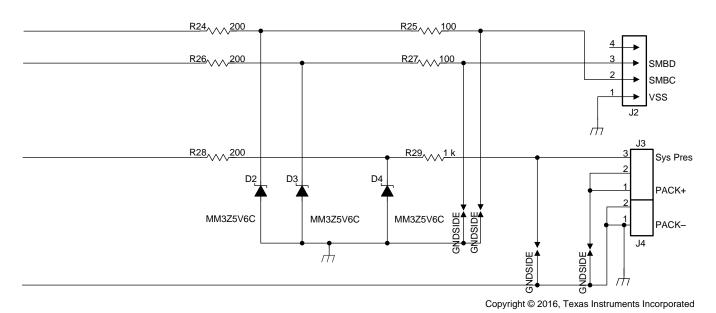


Figure 30. ESD Protection for SMB Communication

8.2.2.2.5 FUSE Circuitry

The FUSE pin of the bq4050 gauge is designed to ignite the chemical fuse if one of the various safety criteria is violated. The FUSE pin also monitors the state of the secondary-voltage protection IC. Q5 ignites the chemical fuse when its gate is high. The 7-V output of the bq294700 is divided by R16 and R6, which provides adequate gate drive for Q5 while guarding against excessive back current into the bq294700 if the FUSE signal is high.

Using C3 is generally a good practice, especially for RFI immunity. C3 may be removed, if desired, because the chemical fuse is a comparatively slow device and is not affected by any submicrosecond glitches that come from the FUSE output during the cell connection process.

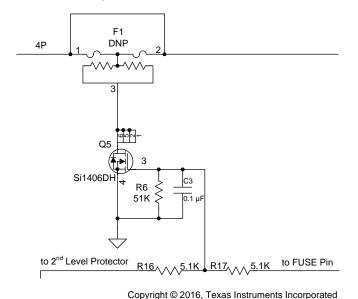
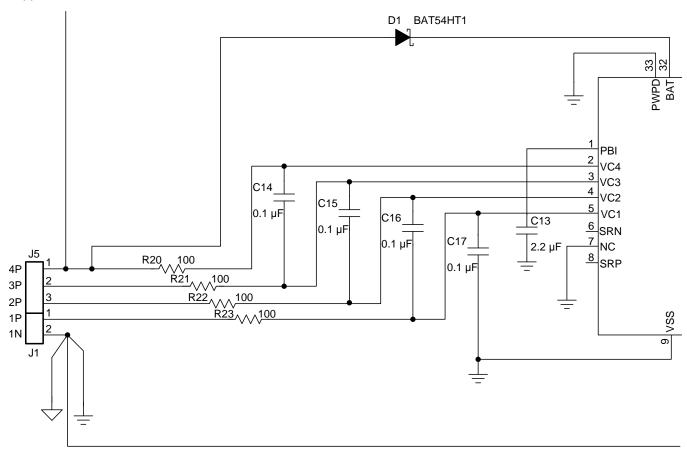


Figure 31. FUSE Circuit

When the bq4050 gauge is commanded to ignite the chemical fuse, the FUSE pin activates to give a typical 8-V output. The new design makes it possible to use a higher Vgs FET for Q5. This improves the robustness of the system, as well as widens the choices for Q5.

8.2.2.3 Secondary-Current Protection

The bq4050 gauge provides secondary overcurrent and short-circuit protection, cell balancing, cell voltage multiplexing, and voltage translation. The following discussion examines cell and battery inputs, pack and FET control, temperature output, and cell balancing.


8.2.2.3.1 Cell and Battery Inputs

Each cell input is conditioned with a simple RC filter, which provides ESD protection during cell connect and acts to filter unwanted voltage transients. The resistor value allows some trade-off for cell balancing versus safety protection.

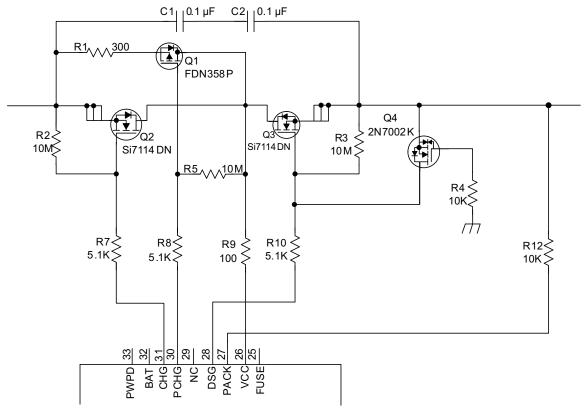
The integrated cell balancing FETs allow the AFE to bypass cell current around a given cell or numerous cells, effectively balancing the entire battery stack. External series resistors placed between the cell connections and the VCx I/O pins set the balancing current magnitude. The internal FETs provide a 200- Ω resistance (2 V < VDS < 4 V). Series input resistors between 100 Ω and 1 k Ω are recommended for effective cell balancing.

The BAT input uses a diode (D1) to isolate and decouple it from the cells in the event of a transient dip in voltage caused by a short-circuit event.

Also, as described in *High-Current Path*, the top and bottom nodes of the cells must be sensed at the battery connections with a Kelvin connection to prevent voltage sensing errors caused by a drop in the high-current PCB copper.

Copyright © 2016, Texas Instruments Incorporated

Figure 32. Cell and BAT Inputs


8.2.2.3.2 External Cell Balancing

Internal cell balancing can only support up to 10 mA. External cell balancing is provided as another option for faster cell balancing. For details, refer to the application note, *Fast Cell Balancing Using External MOSFET* (SLUA420).

8.2.2.3.3 PACK and FET Control

The PACK and V_{CC} inputs provide power to the bq4050 gauge from the charger. The PACK input also provides a method to measure and detect the presence of a charger. The PACK input uses a 100- Ω resistor; whereas, the V_{CC} input uses a diode to guard against input transients and prevents misoperation of the date driver during short-circuit events.

Copyright © 2016, Texas Instruments Incorporated

Figure 33. bq4050 PACK and FET Control

The N-CH charge and discharge FETs are controlled with 5.1-k Ω series gate resistors, which provide a switching time constant of a few microseconds. The 10-M Ω resistors ensure that the FETs are off in the event of an open connection to the FET drivers. Q4 is provided to protect the discharge FET (Q3) in the event of a reverse-connected charger. Without Q4, Q3 can be driven into its linear region and suffer severe damage if the PACK+input becomes slightly negative.

Q4 turns on in that case to protect Q3 by shorting its gate to source. To use the simple ground gate circuit, the FET must have a low gate turn-on threshold. If it is desired to use a more standard device, such as the 2N7002 as the reference schematic, the gate should be biased up to 3.3 V with a high-value resistor. The bq4050 device has the capability to provide a current-limited charging path typically used for low battery voltage or low temperature charging. The bq4050 device uses an external P-channel, precharge FET controlled by PCHG.

8.2.2.3.4 Temperature Output

For the bq4050 device, TS1, TS2, TS3, and TS4 provide thermistor drive-under program control. Each pin can be enabled with an integrated 18-k Ω (typical) linearization pullup resistor to support the use of a 10-k Ω at 25°C (103) NTC external thermistor, such as a Mitsubishi BN35-3H103. The reference design includes four 10-k Ω thermistors: RT1, RT2, RT3, and RT4. The bq4050 device supports up to four external thermistors. Connect unused thermistor pins to V_{SS}.

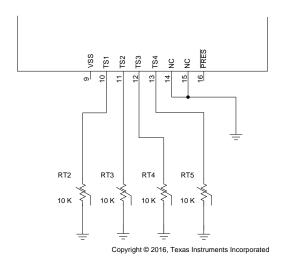
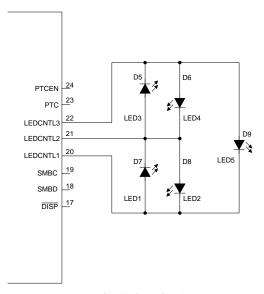
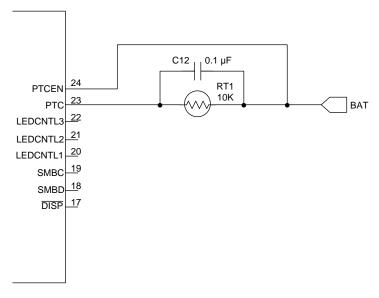



Figure 34. Thermistor Drive

8.2.2.3.5 LEDs

Three LED control outputs provide constant current sinks for the driving external LEDs. These outputs are configured to provide voltage and control for up to 5 LEDs. No external bias voltage is required. Unused LEDCNTL pins can remain open or they can be connected to V_{SS} . The DISP pin should be connected to V_{SS} , if the LED feature is not used.

Copyright © 2016, Texas Instruments Incorporated


Figure 35. LEDs

8.2.2.3.6 Safety PTC Thermistor

The bq4050 device provides support for a safety PTC thermistor. The PTC thermistor is connected between PTC and PTCEN, and PTCEN is connected to BAT. It can be placed close to the CHG/DSG FETs to monitor the temperature. A PTC fault is one of the permanent failure modes. It can only be cleared by a POR.

To disable, connect PTC and PTCEN to V_{SS}.

Copyright © 2016, Texas Instruments Incorporated

Figure 36. PTC Thermistor

8.2.3 Application Curves

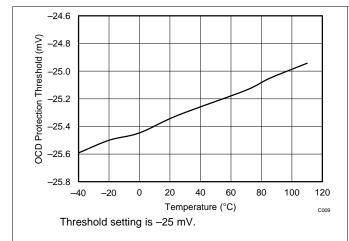


Figure 37. Overcurrent Discharge Protection Threshold Vs. Temperature

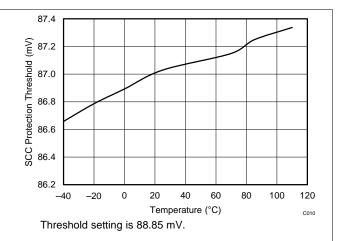


Figure 38. Short Circuit Charge Protection Threshold Vs.
Temperature

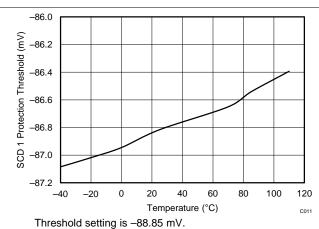


Figure 39. Short Circuit Discharge 1 Protection Threshold Vs. Temperature

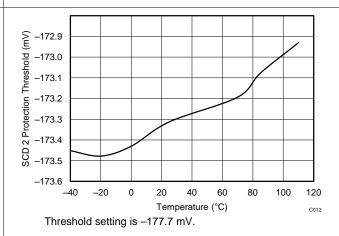


Figure 40. Short Circuit Discharge 2 Protection Threshold Vs. Temperature

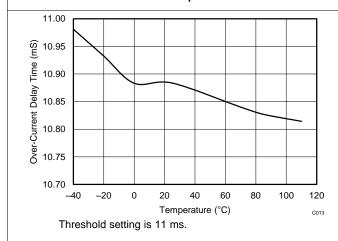


Figure 41. Overcurrent Delay Time Vs. Temperature

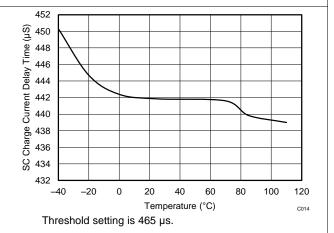


Figure 42. Short Circuit Charge Current Delay Time Vs.
Temperature

9 Power Supply Recommendations

The device manages its supply voltage dynamically according to the operation conditions. Normally, the BAT input is the primary power source to the device. The BAT pin should be connected to the positive termination of the battery stack. The input voltage for the BAT pin ranges from 2.2 V to 26 V.

The VCC pin is the secondary power input, which activates when the BAT voltage falls below minimum V_{CC} . This allows the device to source power from a charger (if present) connected to the PACK pin. The VCC pin should be connected to the common drain of the CHG and DSG FETs. The charger input should be connected to the PACK pin.

10 Layout

10.1 Layout Guidelines

A battery fuel gauge circuit board is a challenging environment due to the fundamental incompatibility of high-current traces and ultra-low current semiconductor devices. The best way to protect against unwanted trace-to-trace coupling is with a component placement, such as that shown in Figure 43, where the high-current section is on the opposite side of the board from the electronic devices. Clearly, this is not possible in many situations due to mechanical constraints. Still, every attempt should be made to route high-current traces away from signal traces, which enter the bq4050 gauge directly. IC references and registers can be disturbed and in rare cases damaged due to magnetic and capacitive coupling from the high-current path.

NOTE

During surge current and ESD events, the high-current traces appear inductive and can couple unwanted noise into sensitive nodes of the gas gauge electronics, as illustrated in Figure 44.

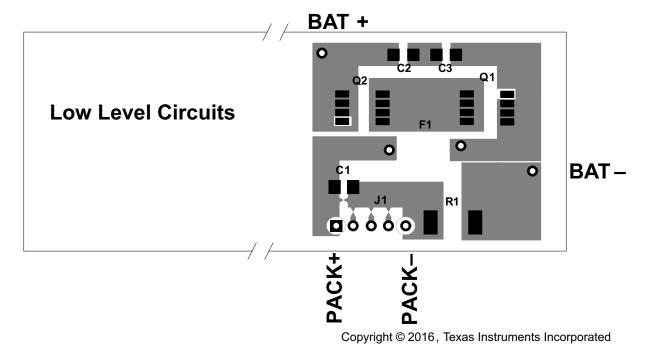


Figure 43. Separating High- and Low-Current Sections Provides an Advantage in Noise Immunity

Layout Guidelines (continued)

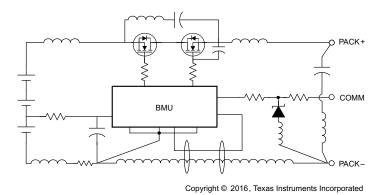


Figure 44. Avoid Close Spacing Between High-Current and Low-Level Signal Lines

Kelvin voltage sensing is important to accurately measure current and top and bottom cell voltages. Place all filter components as close as possible to the device. Route the traces from the sense resistor in parallel to the filter circuit. Adding a ground plane around the filter network can add additional noise immunity. Figure 45 and Figure 46 demonstrate correct kelvin current sensing.

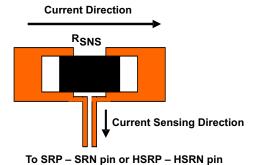
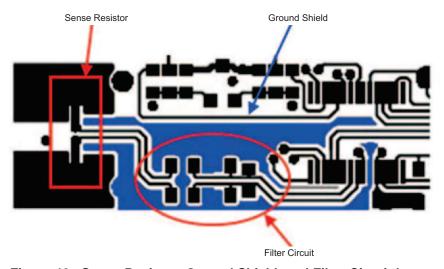
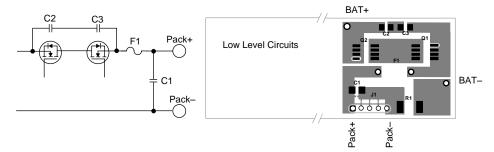


Figure 45. Sensing Resistor PCB Layout




Figure 46. Sense Resistor, Ground Shield, and Filter Circuit Layout

Layout Guidelines (continued)

10.1.1 Protector FET Bypass and Pack Terminal Bypass Capacitors

Use wide copper traces to lower the inductance of the bypass capacitor circuit. In Figure 47, an example layout demonstrates this technique.

Copyright © 2016, Texas Instruments Incorporated

Figure 47. Use Wide Copper Traces to Lower the Inductance of Bypass Capacitors C1, C2, and C3

10.1.2 ESD Spark Gap

Protect the SMBus clock, data, and other communication lines from ESD with a spark gap at the connector. The pattern in Figure 48 is recommended, with 0.2-mm spacing between the points.

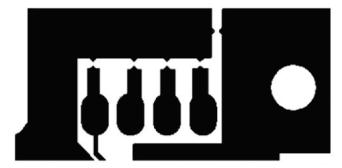


Figure 48. Recommended Spark-Gap Pattern Helps Protect Communication Lines from ESD

10.2 Layout Example

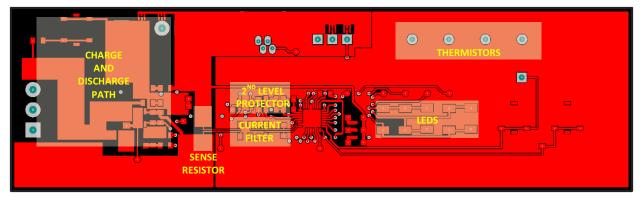


Figure 49. Top Layer

Layout Example (continued)

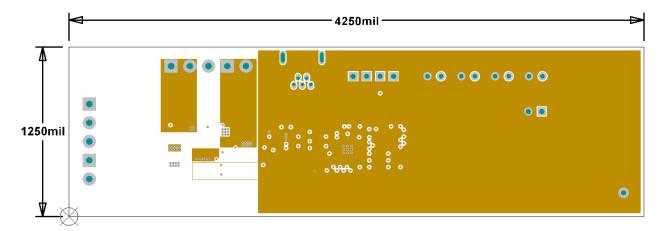


Figure 50. Internal Layer 1

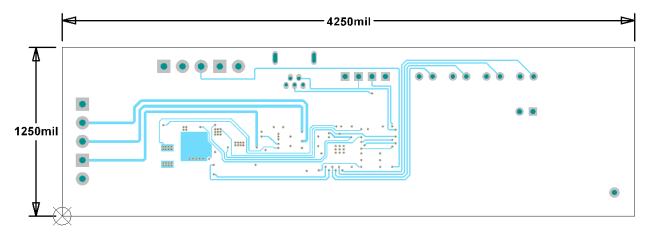


Figure 51. Internal Layer 2

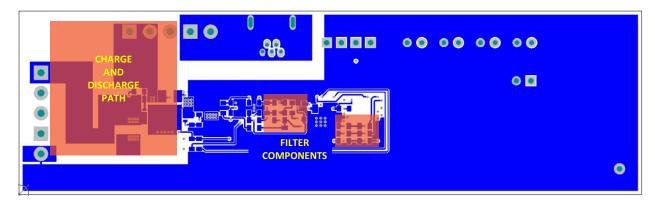


Figure 52. Bottom Layer

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

如需相关文档,请参阅《bq4050 技术参考手册》(SLUUAQ3)。

11.2 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

11.3 商标

E2E is a trademark of Texas Instruments.

Windows is a registered trademark of Microsoft.

All other trademarks are the property of their respective owners.

11.4 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。

www.ti.com 28-Oct-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
BQ4050RSMR	ACTIVE	VQFN	RSM	32	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	BQ4050	Samples
BQ4050RSMT	ACTIVE	VQFN	RSM	32	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	BQ4050	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

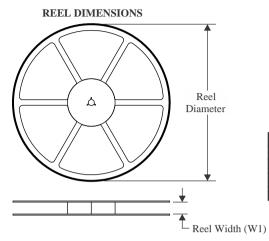
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

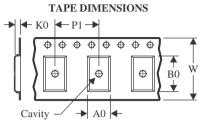
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

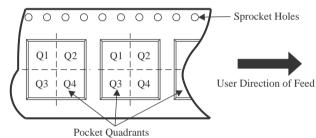
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE OPTION ADDENDUM

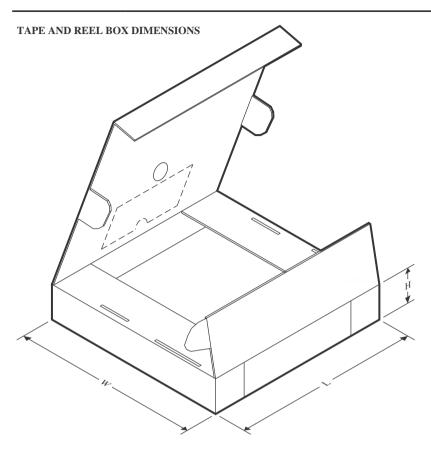

www.ti.com 28-Oct-2023

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2024


TAPE AND REEL INFORMATION

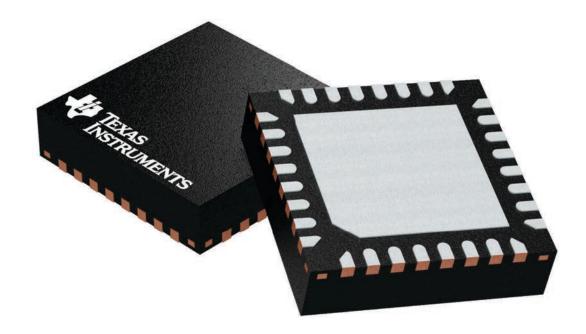
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

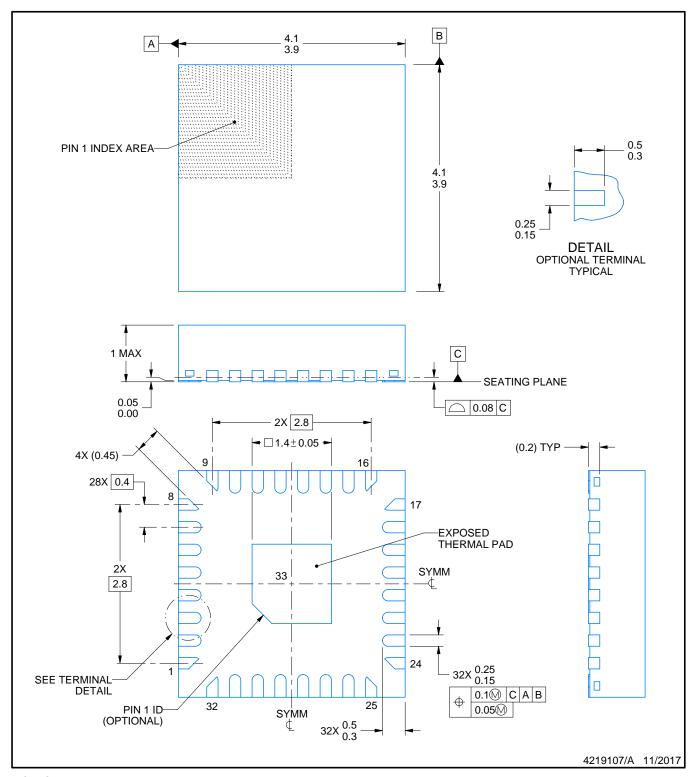
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ4050RSMR	VQFN	RSM	32	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
BQ4050RSMT	VQFN	RSM	32	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

www.ti.com 25-Sep-2024


*All dimensions are nominal

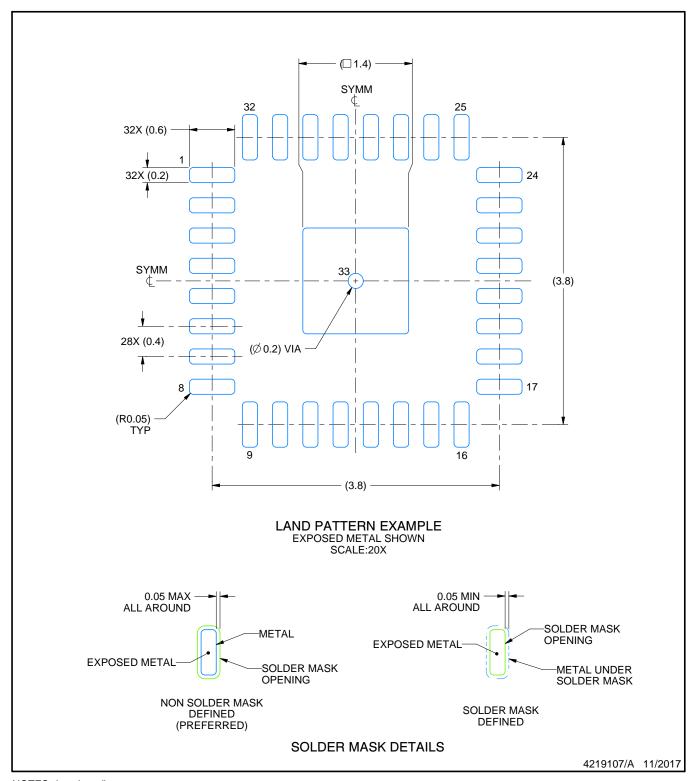
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ4050RSMR	VQFN	RSM	32	3000	367.0	367.0	35.0
BQ4050RSMT	VQFN	RSM	32	250	210.0	185.0	35.0

4 x 4, 0.4 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

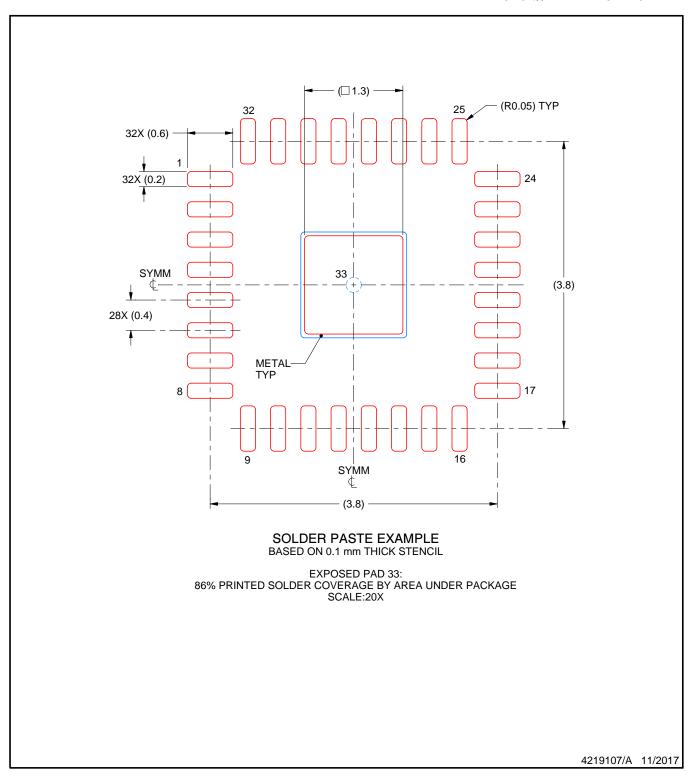
PLASTIC QUAD FLATPACK - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司