
LMC7111 Tiny CMOS Operational Amplifier With Rail-to-Rail Input and Output

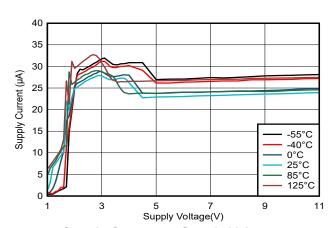
1 Features

- Tiny 5-pin SOT-23 package saves space
- Very wide common-mode input range
- Specified at 2.7V, 5V, and 10V
- Typical supply current 25µA at 5V
- 50kHz gain-bandwidth at 5V
- Similar to popular LMC6462
- Output to within 20mV of supply rail at $100k\Omega$ load
- Good capacitive load drive

2 Applications

- Mobile communications
- Portable computing
- Current sensing for battery chargers
- Voltage reference buffering
- Sensor interface
- Stable bias for GaAs RF amps

DBV Package, 5-Pin SOT-23 (Top View)


3 Description

The LMC7111 is a micropower CMOS operational amplifier available in the space-saving SOT-23 package. This package makes the LMC7111 an excellent choice for space- and weight-critical designs. The wide common-mode input range enables the design of battery-monitoring circuits that sense signals greater than the V+ supply. The main benefits of the tiny package are most apparent in small, portable, electronic devices, such as mobile phones, pagers, and portable computers. The tiny amplifiers can be placed on a board where needed, simplifying board layout.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
LM7111	DBV (SOT-23, 5)	2.9mm × 2.8mm

- For more information, see Section 10.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Supply Current vs Supply Voltage

Table of Contents

1 Features1	5.12 Typical Characteristics: 10V	13
2 Applications1	6 Detailed Description	15
3 Description1	6.1 Feature Description	15
4 Pin Configuration and Functions2	7 Application and Implementation	
5 Specifications 3	7.1 Application Information	16
5.1 Absolute Maximum Ratings3	7.2 Typical Application	
5.2 ESD Ratings3	8 Device and Documentation Support	19
5.3 Recommended Operating Conditions3	8.1 Device Support	19
5.4 Thermal Information3	8.2 Receiving Notification of Documentation Updates	19
5.5 Electrical Characteristics for V _S = 2.7V or ±1.35V 4	8.3 Support Resources	19
5.6 Electrical Characteristics for V _S = 5V or ±2.5V5	8.4 Trademarks	19
5.7 Electrical Characteristics for V _S = 10V or ±5V6	8.5 Electrostatic Discharge Caution	19
5.8 Typical Characteristics7	8.6 Glossary	
5.9 Typical Characteristics: 2.7V7	9 Revision History	
5.10 Typical Characteristics: 3V8	10 Mechanical, Packaging, and Orderable	
5.11 Typical Characteristics: 5V9	Information	20

4 Pin Configuration and Functions

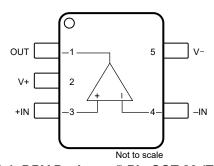


Figure 4-1. DBV Package, 5-Pin SOT-23 (Top View)

Table 4-1. Pin Functions

PIN		TYPE	DESCRIPTION	
NO.	NAME	1176	DESCRIPTION	
1	OUT	Output	Output	
2	V+	Power	Positive supply	
3	+IN	Input	Noninverting input	
4	-IN	Input	Inverting input	
5	V-	Power	Negative supply	

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

	, , , , , , , , , , , , , , , , , , , ,	MIN	MAX	UNIT
	Differential input voltage	±S	upply voltage	V
Vs	Supply voltage, V _S = (V+) – (V–)		11	V
	Voltage at input/output pin	(V-) - 0.3	(V+) + 0.3	V
	Current at input pin		±5	mA
I _{SC}	Output short circuit ⁽²⁾		±30	mA
	Supply pin current		30	mA
	Lead temperature (soldering, 10s)		260	°C
T _{stg}	Storage temperature	– 65	150	°C
TJ	Junction temperature ⁽³⁾		150	°C

- (1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) Applies to both single-supply and split-supply operation. Continuous short operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at 150°C.
- (3) The maximum power dissipation is a function of T_{J(MAX)}, R_{θ,JA} and T_A. The maximum allowable power dissipation at any ambient temperature is P_D = (T_J(_{MAX)} T_A) / R_{θ,JA}. All numbers apply for packages soldered directly into a printed circuit board (PCB).

5.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Vs	Supply voltage, V _S = (V+) – (V–)	2.5	11	V
TJ	Junction temperature	-40	85	°C

5.4 Thermal Information

Copyright © 2025 Texas Instruments Incorporated

			LMC7111	
	THERMAL METRIC ⁽¹⁾		DBV (SOT-23)	UNIT
			5 PINS	
F	$R_{ extsf{OJA}}$	Junction-to-ambient thermal resistance	325	°C/W

⁽¹⁾ For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.5 Electrical Characteristics for $V_S = 2.7V$ or $\pm 1.35V$

at T_A = +25°C, V+ = 2.7V, V- = 0V, V_{CM} = V_O = V+ / 2, and R_L > 1M Ω (unless otherwise noted)

	PARAMETER	TEST CON	IDITIONS	MIN	TYP	MAX	UNIT
OFFSET V	OLTAGE			1			
.,					±0.9	±7	
Vos	Input offset voltage	T _J = -40°C to +85°C				±9	mV
dV _{OS} /dT	Input offset voltage drift				±10		μV/°C
		Positive		55	60		
		2.7V < V+ < 5V, V- = 0V	T _{.l} = -40°C to +85°C	50			
PSRR	Power-supply rejection ratio	Negative	-	55	60		dB
		2.7V < V+ < 5V, V+ = 0V	T _{.1} = -40°C to +85°C	50			
INPUT BIA	AS CURRENT						
					±0.1	±1	
l _B	Input bias current (1)	T _{.I} = -40°C to +85°C				±20	pΑ
		3			±0.01	±0.5	
I _{OS}	Input offset current (1)	T _{.I} = -40°C to +85°C				±10	pA
INPUT VO	LTAGE						
		T		2.7	2.8		
		To positive rail CMRR ≥ 47dB	T _J = -40°C to +85°C	2.25	2.0		
			1, 40 0 10 100 0	2.23	-0.10	0.0	
		To negative rail CMRR ≥ 41dB	T _J = -40°C to +85°C		0.10	0.40	
			15 40 0 10 100 0	3.0	3.2	0.40	
V	Input common-mode voltage	To positive rail CMRR ≥ 47dB, V+ = 3V	T _J = -40°C to +85°C	2.8	J.Z		
V _{CM}	input common-mode voltage	To negative rail, CMRR > 47dB, V+ = 3\		2.0	-0.25	0.0	V
		-		3.4	3.5	0.0	
		To positive rail CMRR ≥ 47dB, V+ = 3.3V	T _J = -40°C to +85°C	3.4	3.5		
		To negative rail CMRR ≥ 47dB, V+ = 3.3V	1j = -40 C to +65 C	3.2	0.05	0.10	
			T = 40°C to 105°C		-0.25	-0.10 0.0	
INPUT IMF	DEDANCE		$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			0.0	
					> 10		ΤΩ
R _{IN}	Input resistance	Common mode					
CIN	Input capacitance	Common mode			3		pF
OPEN-LO	UP GAIN				400		
A _{OL}	Open-loop voltage gain	Sourcing			400		V/mV
	IOV DEODONOS	Sinking			150		
	ICY RESPONSE						
GBW	Gain bandwidth product				40		kHz
SR	Slew rate				0.015		V/µs
OUTPUT			T			Т	
		Positive rail		2.68	2.69		
		R _L = 100kΩ	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.40			
		Negative rail $R_L = 100k\Omega$			0.10	0.20	
V _o	Voltage output swing	RL = 100KΩ	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			0.08	v
Ü		Positive rail		2.60	2.65		
		$R_L = 10k\Omega$	$T_J = -40$ °C to +85°C	2.40			
		Negative rail			0.03	0.10	
		$R_L = 10k\Omega$	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			0.3	
I _{sc}	Short-circuit current	Sourcing (V _O = 0V) and sinking (V _O =		1	7		mA
-SC	S.IOIT OILOUIT OUTOIT	2.7V)	$T_J = -40^{\circ}C \text{ to } +85^{\circ}C$	0.7			111/5
POWER S	UPPLY						
Q	Outcoont ourset and are				20	50	,
	Quiescent current per amplifier					65	μA

⁽¹⁾ Input bias current specified by design and processing.

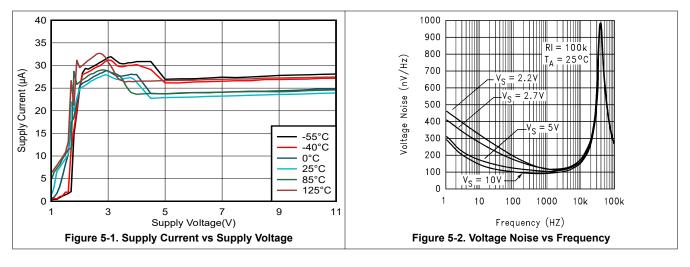
5.6 Electrical Characteristics for V_S = 5V or ±2.5V at T_A = +25°C, V+ = 5V, V- = 0V, V_{CM} = V_O = V_S / 2, and R_L > 1M Ω (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET	VOLTAGE						
V _{OS}	Input offset voltage				±0.9		mV
dV _{OS} /dT	Input offset voltage drift	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			2		μV/°C
		Positive, 5V < V+ < 10V, V-	= 0V	60	85		
PSRR	Power-supply rejection ratio	Negative, -5V < V- < -10V, '	V+ = 0V	60	85		dB
INPUT BI	AS CURRENT						
					±0.1	±1	
I _B	Input bias current (1)	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$				±20	pА
					±.01	±0.5	
los	Input offset current (1)	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$				±10	pА
NOISE							
INPUT VO	OLTAGE						
		To positive rail		5.20	5.25		
. ,	Common-mode voltage	CMRR ≥ 50dB	$T_{J} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	5.0			.,
V _{CM}	range	To negative rail			-0.3	-0.2	V
		CMRR ≥ 50dB	$T_{J} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			0.0	
CMRR	Common-mode rejection ratio	0V < V _{CM} < 5V		60	85		dB
INPUT IM	IPEDANCE						
R _{IN}	Input resistance				>10		ΤΩ
C _{IN}	Common mode input capacitance				3		pF
OPEN-LC	OOP GAIN					l	
		Sourcing			500		.,, .,
A _{OL}	Open-loop voltage gain	Sinking			200		V/mV
FREQUE	NCY RESPONSE					ı	
GBW	Gain bandwidth product				50		kHz
SR	Slew rate	Voltage follower with 1V step $R_L = 100k\Omega$ to 1.5V, $f = 1kHz$		0.010	0.027		V/µs
OUTPUT							
		D 4001.0	Positive rail	4.98	4.99		
. ,		$R_L = 100k\Omega$	Negative rail		0.01	0.02	.,
Vo	Voltage output swing	D 4010	Positive rail	4.9	4.98		V
		$R_L = 10k\Omega$	Negative rail		0.02	0.1	
		Sourcing		5	7		
	Ob and aircruit a	$V_O = 0V$	$T_{\rm J} = -40^{\circ}{\rm C} \text{ to } +85^{\circ}{\rm C}$	3.5			^
I _{SC}	Short-circuit current	Sinking		5	7		- mA
		V _O = 3V	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	3.5			
POWER S	SUPPLY	1	1			I	
IQ	Quiescent current per amplifier				25		μA

⁽¹⁾ Input bias current specified by design and processing.

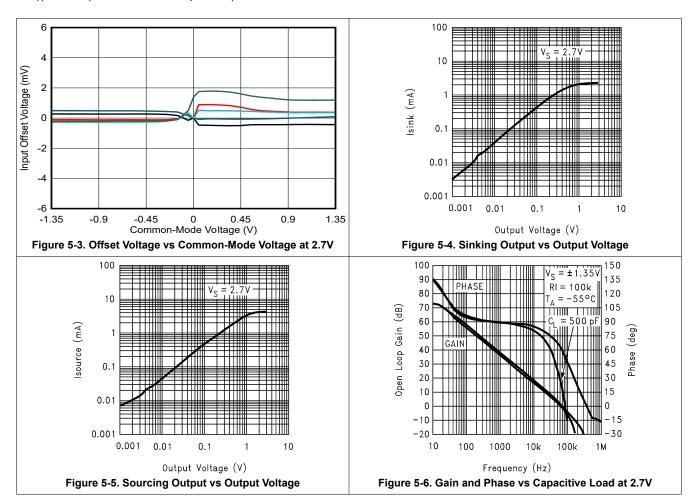
Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback


5.7 Electrical Characteristics for V_S = 10V or ±5V at T_A = +25°C, V+ = 10V, V- = 0V, V_{CM} = V_O = V+ / 2, and R_L > 1M Ω (unless otherwise noted)

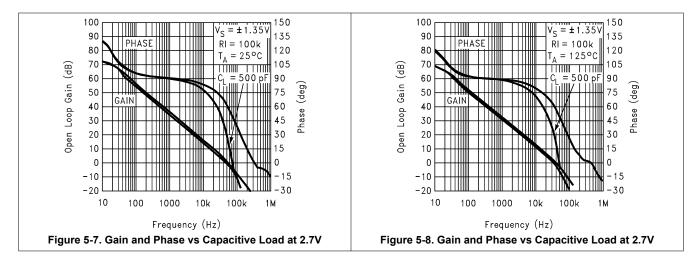
	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET	VOLTAGE						
					±0.9	±7	
Vos	Input offset voltage	T _J = -40°C to +85°C				±9	mV
dV _{OS} /dT	Input offset voltage drift	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			2		μV/°C
	<u> </u>	Positive					
PSRR	Power supply rejection ratio	5V < V _S < 10V, V- = 0V, V _O =	2.5V		80		dB
FORK	Power supply rejection ratio	Negative			80		uБ
		$-5V < V_S < -10V, V+ = 0V, V_C$) = 2.5V				
INPUT B	IAS CURRENT					. 1	
I _B	Input bias current (1)				±0.1	±1	pА
	·	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$				±20	
los	Input offset current (1)				±0.01	±0.5	pА
		$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$				±10	•
NOISE							
e _n	Input voltage noise density	f = 1kHz, V _{CM} = 1V			110		nV/√Hz
i _n	Input current noise density	f = 1kHz			0.03		pA/√Hz
INPUT V	OLTAGE						
		To positive rail		10.15	10.2		
V_{CM}	Common-mode voltage	CMRR ≥ 50dB	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	10.0			V
V CM	range	To negative rail			-0.2	-0.15	V
		CMRR ≥ 50dB	$T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			0.0	
INPUT IN	//PEDANCE					'	
R _{IN}	Input resistance				>10		ΤΩ
C _{IN}	Common mode input capacitance				3		pF
OPEN-LO	OOP GAIN		l			I	
		D 4001.0	Sourcing		500		
A _{OL}	Open-loop voltage gain	$R_L = 100k\Omega$	Sinking		200		V/mV
FREQUE	ENCY RESPONSE					l	
GBW	Gain bandwidth product				50		kHz
SR	Slew rate	Voltage follower with 1V step V _O = 2V _{PP}	input, $R_L = 100k\Omega$ to 5V, $f = 1kHz$,		0.03		V/µs
G _M	Gain margin				15		dB
θ_{m}	Phase margin				50		0
OUTPUT		1					
			Positive rail,	9.98	9.99		
		$R_L = 100k\Omega$	Negative rail		0.01	0.02	
Vo	Voltage output swing		Positive rail	9.90	9.98		V
		$R_L = 10k\Omega$	Negative rail		0.02	0.1	
		Sourcing	,	25	20		
		Sourcing V _O = 0V	T _J = -40°C to +85°C	7			
		Short-circuit current	1	,			mA
I _{sc}	Short-circuit current	0		30	20		1117 (
Isc	Short-circuit current	Sinking		30 7	20		111/1
		0	$T_J = -40$ °C to +85°C	30 7	20		
	Short-circuit current SUPPLY Quiescent current per	Sinking			20	60	μA

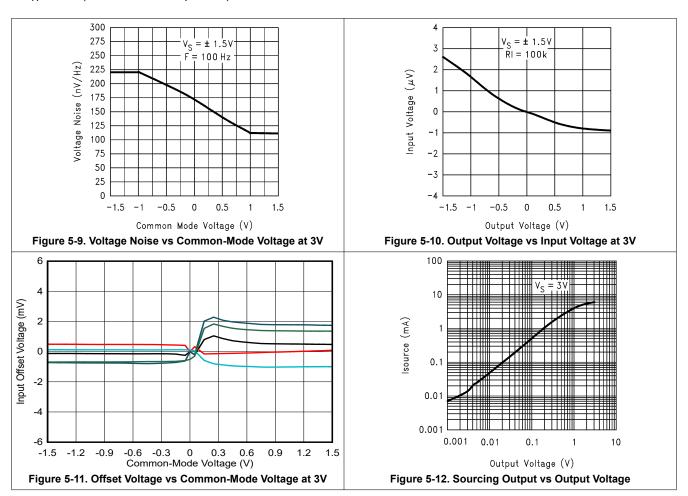
⁽¹⁾ Input bias current specified by design and processing.


5.8 Typical Characteristics

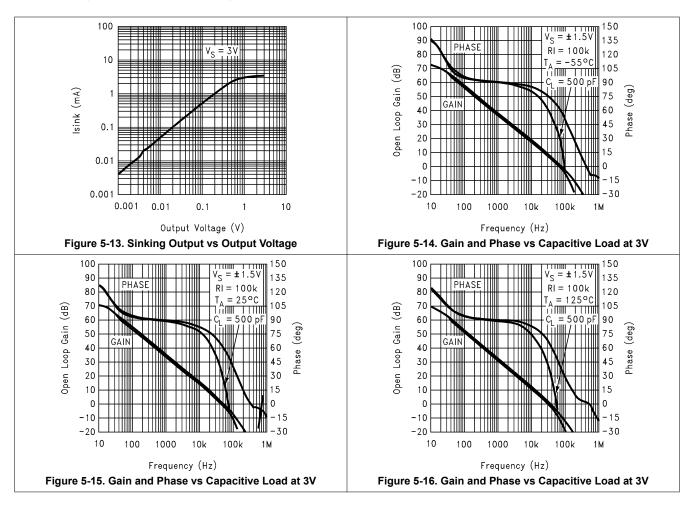
at T_A = 25°C (unless otherwise specified)

5.9 Typical Characteristics: 2.7V

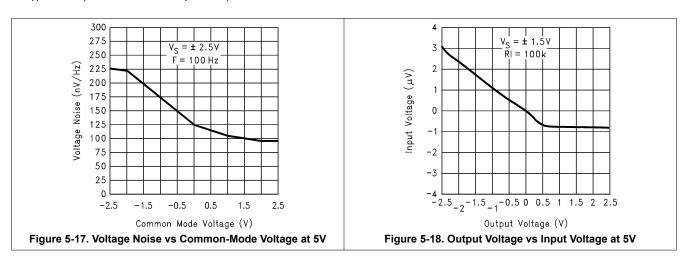

at T_A = 25°C (unless otherwise specified)


5.9 Typical Characteristics: 2.7V (continued)

at T_A = 25°C (unless otherwise specified)

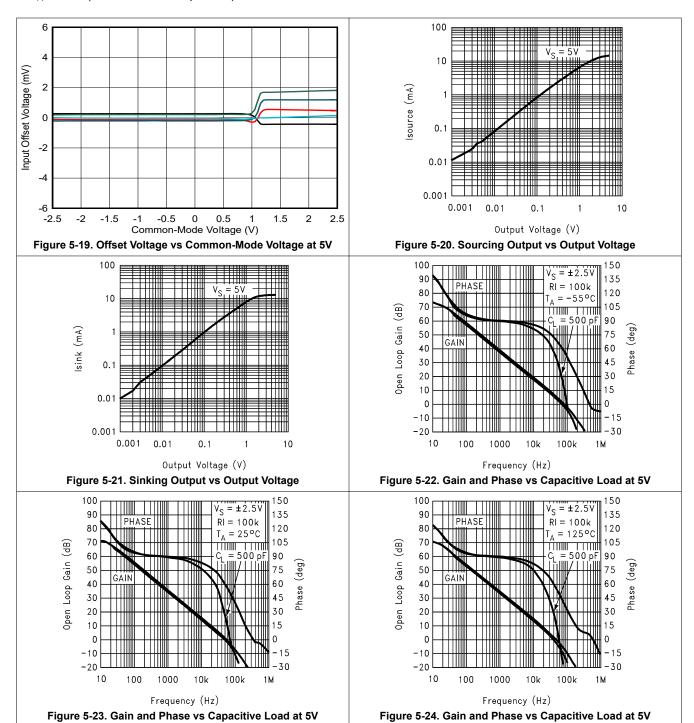

5.10 Typical Characteristics: 3V

at T_A = 25°C (unless otherwise specified)


5.10 Typical Characteristics: 3V (continued)

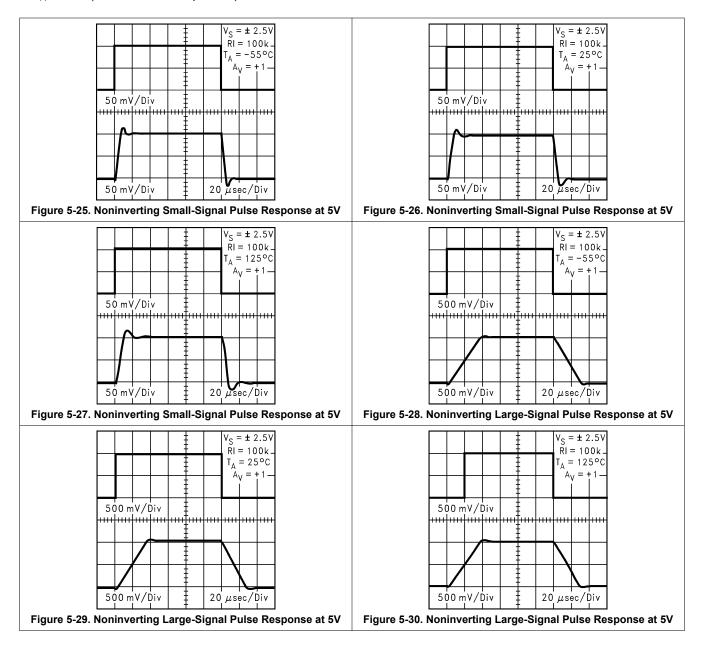
at T_A = 25°C (unless otherwise specified)

5.11 Typical Characteristics: 5V


at T_A = 25°C (unless otherwise specified)

5.11 Typical Characteristics: 5V (continued)

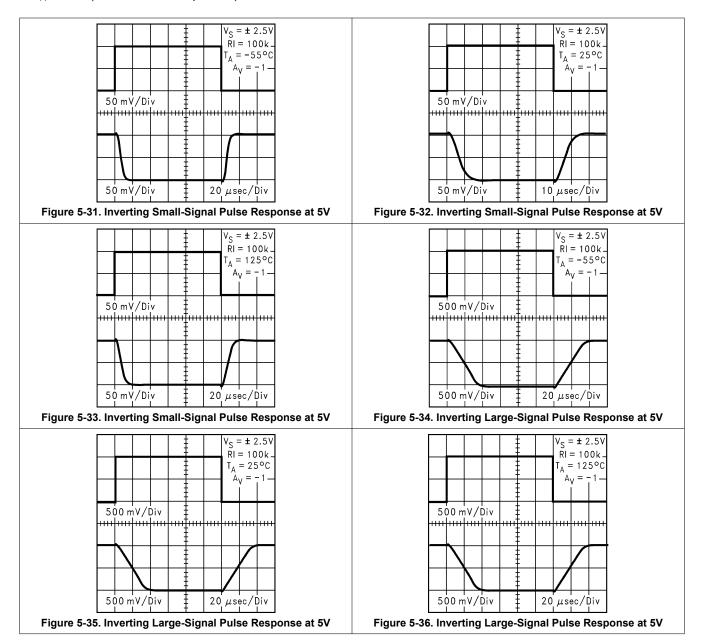
at T_A = 25°C (unless otherwise specified)



Submit Document Feedback

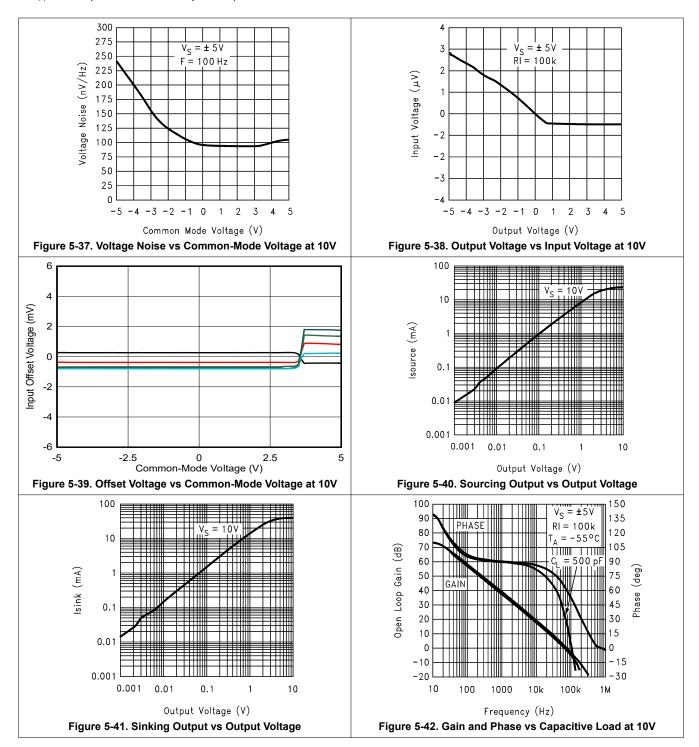
Copyright © 2025 Texas Instruments Incorporated

5.11 Typical Characteristics: 5V (continued)


at T_A = 25°C (unless otherwise specified)

5.11 Typical Characteristics: 5V (continued)

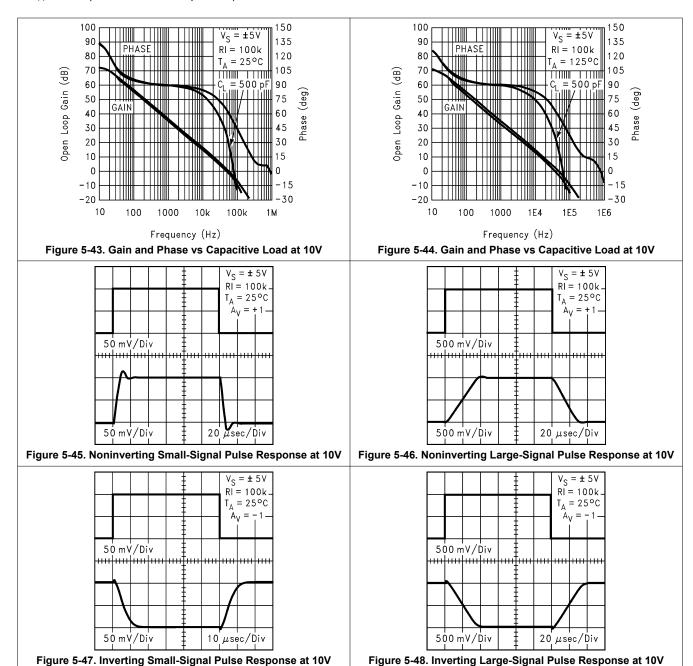
at T_A = 25°C (unless otherwise specified)



Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

5.12 Typical Characteristics: 10V


at T_A = 25°C (unless otherwise specified)

5.12 Typical Characteristics: 10V (continued)

at T_A = 25°C (unless otherwise specified)

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

6 Detailed Description

6.1 Feature Description

6.1.1 Benefits of the LMC7111 Tiny Amp

6.1.1.1 Size

The small footprint of the SOT-23-5 packaged tiny amplifier, (0.12in × 0.118in, 3.05mm × 3mm) saves space on printed circuit boards, and enable the design of smaller electronic products. Many customers prefer smaller and lighter products because the designs can contribute to overall weight reduction in applications.

6.1.1.2 Height

The height (0.056 inches, 1.43mm) of the tiny amplifier makes the device an excellent choice for use in a wide range of circuit boards in which a thin profile is required.

6.1.1.3 Signal Integrity

Signals can pick up noise between the signal source and the amplifier. By using a physically smaller amplifier package, the Tiny amp can be placed closer to the signal source, reducing noise pickup and increasing signal integrity. The Tiny amp can also be placed next to the signal destination, such as a buffer for the reference of an analog to digital converter.

6.1.1.4 Simplified Board Layout

The tiny amplifier can simplify board layout in several ways. Avoid long PCB traces by correctly placing amplifiers instead of routing signals to a dual or quad device. By using multiple tiny amplifiers instead of duals or quads, complex signal routing and possibly crosstalk can be reduced.

6.1.1.5 Low Supply Current

The typical 25µA supply current of the LMC7111 extends battery life in portable applications, and can allow for the reduction of battery size in some applications.

6.1.1.6 Wide Voltage Range

The LMC7111 is characterized at 2.7V, 3V, 3.3V, 5V and 10V. Performance data is provided at these popular voltages. This wide voltage range makes the LMC7111 a good choice for devices where the voltage can vary over the life of the batteries.

6.1.2 Input Common-Mode Voltage Range

The LMC7111 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage.

The absolute maximum input voltage is 300mV beyond either rail at room temperature. Voltages greatly exceeding this maximum rating can cause excessive current to flow in or out of the input pins, adversely affecting reliability.

Applications that exceed this rating must externally limit the maximum input current to ±5mA with an input resistor as shown in Figure 6-1.

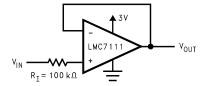


Figure 6-1. R_I Input Current Protection for Voltages Exceeding the Supply Voltage

6.1.3 Output Swing

The LMC71111 output goes to within 100mV of either power supply rail for a $10k\Omega$ load, and to 20mV of the rail for a $100k\Omega$ load. This feature makes the LMC7111 useful to drive transistors connected to the same power supply. By going very close to the supply, the LMC7111 can turn the transistors all the way on or off.

Copyright © 2025 Texas Instruments Incorporated

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

7.1.1 Capacitive Load Tolerance

The LMC7111 can typically directly drive a 300pF load with $V_S = 10V$ at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.

Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 7-1. This simple technique is useful for isolating the capacitive input of multiplexers and A/D converters.

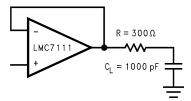


Figure 7-1. Resistive Isolation of a 330pF Capacitive Load

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *LMC7111*

7.1.2 Compensating for Input Capacitance When Using Large-Value Feedback Resistors

When using very large value feedback resistors, (usually > $500k\Omega$) the large feed back resistance can react with the input capacitance due to transducers, photodiodes, and circuit board parasitics to reduce phase margins.

The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 7-2), C_f is first estimated by:

$$\frac{1}{2\pi R_1 C_{IN}} \ge \frac{1}{2\pi R_2 C_f} \tag{1}$$

or

$$R_1 C_{IN} \le R_2 C_f \tag{2}$$

which typically provides significant overcompensation.

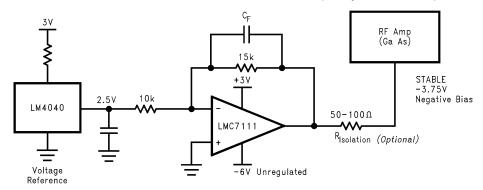
Printed circuit board stray capacitance can be larger or smaller than that of a breadboard, so the actual optimum value for C_F can be different. Check C_F values on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

Figure 7-2. Canceling the Effect of Input Capacitance

7.1.3 Dual and Quad Devices With Similar Performance

The dual LMC6462 and quad LMC6464 devices achieve performance similar to the LMC7111. Both devices are available in both conventional through-hole and surface-mount packaging. See also the LMC646x data sheet for details.

Copyright © 2025 Texas Instruments Incorporated


Submit Document Feedback

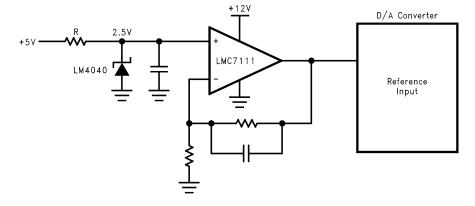
7.2 Typical Application

7.2.1 Biasing GaAs RF Amplifiers

The capacitive load capability, low current draw, and small size of the SOT-23 LMC7111 make this device a good choice for providing a stable negative bias to other integrated circuits.

The very small size of the LMC7111 and the LM4040 reference take up very little board space.

Note: C_F and R_{isolation} prevent oscillations when driving capacitive loads.


Figure 7-3. Stable Negative Bias

7.2.2 Reference Buffer for Analog-to-Digital Converters

The LMC7111 can be used as a voltage reference buffer for an analog-to-digital converter (ADC). This configuration works best for ADCs with the reference input is a static load, such as dual slope integrating ADCs. Converters with a reference input that is a dynamic load (the reference current changes with time) can require a faster device, such as the LMC7101 or the LMC7131.

The small size of the LMC7111 allows this device to be placed close to the reference input. The low supply current (25µA typical) saves power.

For ADC reference inputs that require higher accuracy and lower offset voltage, see the LMC646x data sheet. The LMC6462 has performance similar to the LMC7111. The LMC6462 is available in two grades with reduced input voltage offset.

8 Device and Documentation Support

8.1 Device Support

8.1.1 Spice Macromodel

A SPICE macromodel is available for the LMC7111. This model includes simulation of:

- Input common-mode voltage range
- · Frequency and transient response
- Quiescent and dynamic supply current
- Output swing dependence on loading conditions and many more characteristics as listed on the macro model disk. Visit the LMC7111 product page on http://www.ti.com for the spice model.

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision E (March 2013) to Revision F (January 2025)	Page
•	Updated pin diagram for SOT-23 and pin names in Pin Configurations and Functions	2
•	Deleted PDIP package information in Pin Configuration and Functions	<u>2</u>
	Updated parameter names and table format in all Electrical Characteristics	
•	Deleted reference to AI version in all Electrical Characteristics	4
•	Updated dV _{OS} /dT from 2μV/°C to 10μV/°C	4
•	Changed V _{CM} test condition from CMRR ≥ 50dB to CMRR ≥ 47dB	4
	Changed V _{CM} test condition for negative rail for V _S = 2.7V from CMRR ≥ 50dB to CMRR ≥ 41dB	
•	Changed I _{SC} MIN from 30mA to 25mA	6

Copyright © 2025 Texas Instruments Incorporated

Cł	hanges from Revision D (March 2013) to Revision E (March 2013)	Page
•	Changed layout of National Data Sheet to TI format	1

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 18-Sep-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMC7111BIM5/NOPB	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85	A01B	
LMC7111BIM5X/NOPB	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	A01B	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

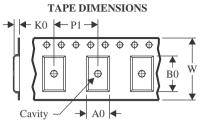
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

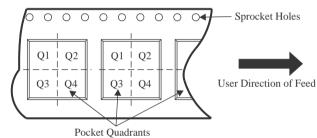
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

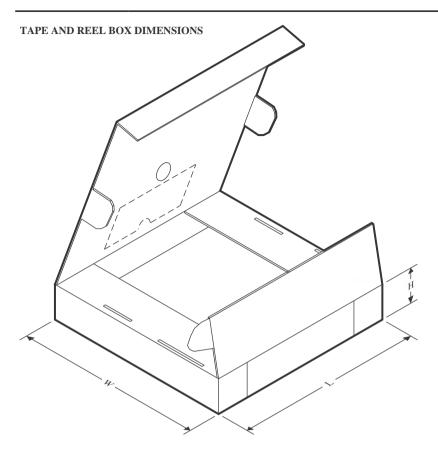
PACKAGE MATERIALS INFORMATION

www.ti.com 12-Jan-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

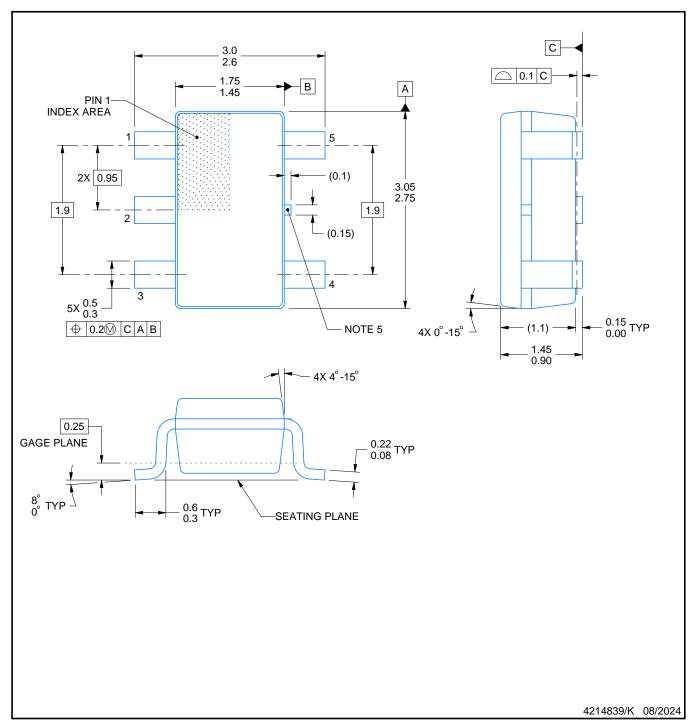


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMC7111BIM5X/NOPB	SOT-23	DBV	5	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMC7111BIM5X/NOPB	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

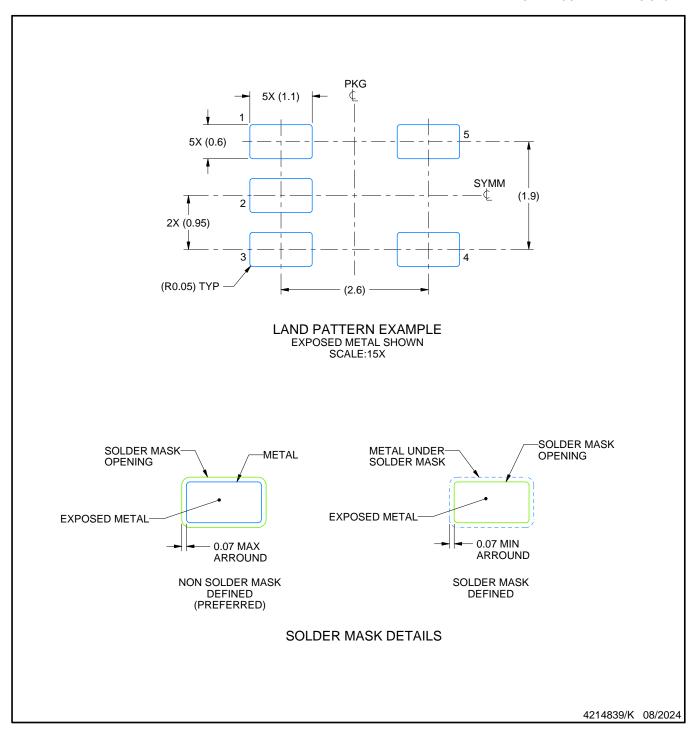
www.ti.com 12-Jan-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMC7111BIM5X/NOPB	SOT-23	DBV	5	3000	208.0	191.0	35.0
LMC7111BIM5X/NOPB	SOT-23	DBV	5	3000	210.0	185.0	35.0

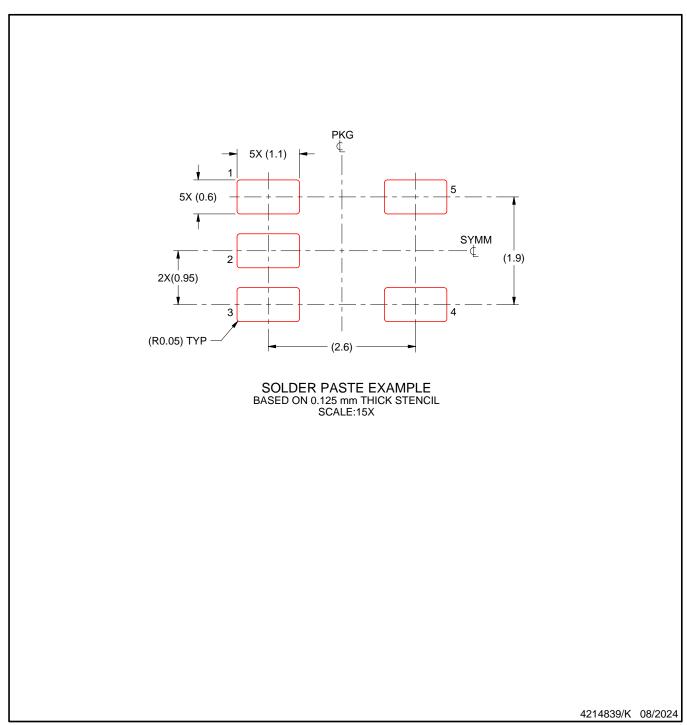
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated