

🕳 Order

Now





ZHCSKL7-DECEMBER 2019-REVISED DECEMBER 2019

Support &

Community

22

# 具有待机模式和 1.8V IO 支持的 TCAN1044V 故障保护 CAN FD 收发器

Technical

Documents

# 1 特性

- 符合 ISO 11898-2:2016 和 ISO 11898-5:2007 物 理层标准的要求
- 支持传统 CAN 和经优化的 CAN FD 性能(数据速 率为 2、5 和 8Mbps)
  - 具有较短的对称传播延迟时间和快速循环次数, 可增加时序裕量
  - 在有负载 CAN 网络中实现更快的数据速率
- IO 电压范围支持 1.7V 至 5.5V
  - 支持 1.8V、2.5V、3.3V 和 5V 应用
- 总环路延迟 ≤ 210ns
- 小尺寸 SOT-23 封装 (2.9mm x 1.60mm)
- 接收器共模输入电压: ±12V
- 保护 功能:
  - 总线故障保护: ±58V
  - 欠压保护
  - 总线引脚限流
  - TXD 显性超时 (DTO)
    - 数据速率低至 9.2kbps
  - 热关断保护 (TSD)
- 工作模式:
  - 正常模式
  - 支持远程唤醒请求功能的低功耗待机模式
- 优化了未上电时的性能
  - 总线和逻辑引脚为高阻抗(运行总线或应用上无 负载)
  - 支持热插拔: 在总线和 RXD 输出上可实现上电/ 断电无干扰运行
- 结温范围: -40°C 至 150°C

# 2 应用

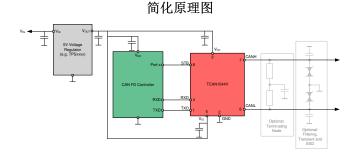
- 电网基础设施
- 工业运输(非汽车和非轻型卡车)
- 工厂自动化与控制

🥭 Tools &

Software

电器

# 3 说明


TCAN1044V 是一款符合 ISO 11898-2:2016 高速 CAN 规范物理层要求的高速控制器局域网 (CAN) 收发 器。

TCAN1044V 收发器支持传统 CAN 和 CAN FD 网络 (数据速率高达 8 兆位/秒 (Mbps))。TCAN1044V 包 括通过 V<sub>IO</sub> 端子实现的内部逻辑电平转换功能,允许 将收发器 IO 直接连接到 1.8V、2.5V、3.3V 或 5V 逻 辑 IO。该收发器具有低功耗待机模式,可通过 ISO 11898-2:2016 定义的唤醒模式 (WUP) 实现远程唤 醒。TCAN1044V 收发器还包括许多保护和诊断 功 能,其中包括热关断 (TSD)、TXD 显性超时 (DTO)、 电源欠压检测和高达 ±58V 的总线故障保护。

器件信息<sup>(1)</sup>

| 器件型号      | 封装      | 封装尺寸(标称值)       |
|-----------|---------|-----------------|
| TCAN1044V | SOT (8) | 2.90mm x 1.60mm |

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。



## TCAN1044V

## ZHCSKL7-DECEMBER 2019-REVISED DECEMBER 2019



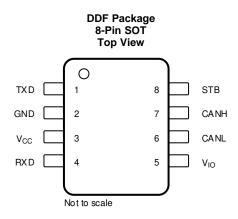
| 1 | 特性   |                                    |
|---|------|------------------------------------|
| 2 | 应用   |                                    |
| 3 | 说明   |                                    |
| 4 | 修订   | 历史记录 2                             |
| 5 | Pin  | Configuration and Functions 3      |
| 6 | Spe  | cifications 4                      |
|   | 6.1  | Absolute Maximum Ratings 4         |
|   | 6.2  | ESD Ratings 4                      |
|   | 6.3  | ESD Ratings 4                      |
|   | 6.4  | Recommended Operating Conditions 4 |
|   | 6.5  | Thermal Characteristics 5          |
|   | 6.6  | Supply Characteristics 5           |
|   | 6.7  | Dissipation Ratings 5              |
|   | 6.8  | Electrical Characteristics 5       |
|   | 6.9  | Switching Characteristics 7        |
|   | 6.10 | Typical Characteristics 9          |
| 7 | Para | ameter Measurement Information 10  |
| 8 | Deta | ailed Description 14               |
|   | 8.1  | Overview 14                        |

# 4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

| 日期          | 修订版本 | 说明   |
|-------------|------|------|
| 2019 年 12 月 | *    | 高级信息 |

|    | 8.2  | Functional Block Diagram   | 14 |
|----|------|----------------------------|----|
|    | 8.3  | Feature Description        | 15 |
|    | 8.4  | Device Functional Modes    | 19 |
| 9  | Appl | ication and Implementation | 22 |
|    | 9.1  | Application Information    | 22 |
|    | 9.2  | Typical Application        | 22 |
|    | 9.3  | System Examples            | 25 |
| 10 | Pow  | er Supply Recommendations  | 25 |
| 11 | Layo | out                        | 26 |
|    | -    | Layout Guidelines          |    |
|    | 11.2 | Layout Example             | 26 |
| 12 | 器件   | 和文档支持                      | 27 |
|    | 12.1 |                            |    |
|    | 12.2 | 接收文档更新通知                   | 27 |
|    | 12.3 | 支持资源                       | 27 |
|    | 12.4 | 商标                         | 27 |
|    | 12.5 | 静电放电警告                     | 27 |
|    | 12.6 | Glossary                   | 27 |
| 13 | 机械   | 、封装和可订购信息                  | 27 |




www.ti.com.cn



ZHCSKL7-DECEMBER 2019-REVISED DECEMBER 2019

# 5 Pin Configuration and Functions



## **Pin Functions**

|                 | Pins | Tuno           | Description                                         |  |
|-----------------|------|----------------|-----------------------------------------------------|--|
| Name            | No.  | Туре           | Description                                         |  |
| TXD             | 1    | Digital Input  | CAN transmit data input, integrated pull-up         |  |
| GND             | 2    | GND            | Ground connection                                   |  |
| V <sub>CC</sub> | 3    | Supply         | 5-V supply voltage                                  |  |
| RXD             | 4    | Digital Output | CAN receive data output, tri-state when powered off |  |
| V <sub>IO</sub> | 5    | Supply         | IO supply voltage                                   |  |
| CANL            | 6    | Bus IO         | Low-level CAN bus input/output line                 |  |
| CANH            | 7    | Bus IO         | High-level CAN bus input/output line                |  |
| STB             | 8    | Digital Input  | Standby input for mode control, integrated pull-up  |  |

# 6 Specifications

## 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)(2)</sup>

|                          |                                                | MIN  | MAX | UNIT |
|--------------------------|------------------------------------------------|------|-----|------|
| V <sub>CC</sub>          | Supply voltage                                 | -0.3 | 6   | V    |
| V <sub>IO</sub>          | Supply voltage IO level shifter                | -0.3 | 6   | V    |
| V <sub>BUS</sub>         | CAN Bus IO voltage CANH and CANL               | -58  | 58  | V    |
| V <sub>DIFF</sub>        | Max differential voltage between CANH and CANL | -45  | 45  | V    |
| V <sub>Logic_Input</sub> | Logic input terminal voltage                   | -0.3 | 6   | V    |
| V <sub>RXD</sub>         | RXD output terminal voltage range              | -0.3 | 6   | V    |
| I <sub>O(RXD)</sub>      | RXD output current                             | -8   | 8   | mA   |
| TJ                       | Operating virtual junction temperature range   | -40  | 150 | °C   |
| T <sub>STG</sub>         | Storage temperature                            | -65  | 150 | °C   |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential IO bus voltages, are with respect to ground terminal.

# 6.2 ESD Ratings

|                                             |                                                                                          |                                                         | VALUE  | UNIT |
|---------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------|--------|------|
|                                             | Human-body model (HBM), per AEC Q100-002 <sup>(1)</sup>                                  | HBM classification level 3A for all pins                | ±3000  | V    |
| V <sub>ESD</sub> Electrostatic<br>discharge |                                                                                          | HBM classififation level 3B for global pins CANH & CANL | ±10000 | V    |
|                                             | Charged-device model (CDM), per AEC Q100-011<br>CDM classification level C5 for all pins |                                                         | ±750   | V    |

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

## 6.3 ESD Ratings

|                      |                                               |                                       |                                                        | VALUE  | UNIT |
|----------------------|-----------------------------------------------|---------------------------------------|--------------------------------------------------------|--------|------|
| V                    | System Level Electro-Static Discharge         | CAN bus terminals (CANH, CANL) to GND | SAE J2962-2 per ISO 10650<br>Powered Contact Discharge | ±8000  | V    |
| V <sub>ESD</sub>     | VESD (ESD) <sup>(1)</sup>                     | CAN bus leminais (CANH, CANL) to GND  | SAE J2962-2 per ISO 10650<br>Powered Air Discharge     | ±15000 | V    |
|                      |                                               |                                       | Pulse 1                                                | -100   | V    |
| V <sub>Tran</sub> IS | ISO 7637 ISO Pulse Transients <sup>(2)</sup>  |                                       | Pulse 2a                                               | 75     | V    |
|                      |                                               | CAN bus terminals (CANH, CANL)        | Pulse 3a                                               | -150   | V    |
|                      |                                               |                                       | Pulse 3b                                               | 100    | V    |
|                      | ISO 7637 Slow transients pulse <sup>(3)</sup> | CAN bus terminals (CANH, CANL) to GND | DCC slow transient pulse                               | ±85    | V    |

 Results given here are specific to the SAE J2962-2 Communication Transceivers Qualification Requirements - CAN. Testing performed by OEM approved independent 3<sup>rd</sup> party, EMC report available upon request.

(2) Tested according to IEC 62228-3:2019 CAN Transcievers, Section 6.3; standard pulses parameters defined in ISO 7637-2 (2011)

(3) Tested according to ISO 7637-3 (2017); Electrical transient transmission by capacitive and inductive coupling via lines other than supply lines

## 6.4 Recommended Operating Conditions

|                      |                                        | MIN | NOM | MAX | UNIT |
|----------------------|----------------------------------------|-----|-----|-----|------|
| V <sub>CC</sub>      | Supply voltage                         | 4.5 | 5   | 5.5 | V    |
| V <sub>IO</sub>      | Supply voltage for IO level shifter    | 1.7 |     | 5.5 | V    |
| I <sub>OH(RXD)</sub> | RXD terminal high level output current | -2  |     |     | mA   |
| I <sub>OL(RXD)</sub> | RXD terminal low level output current  |     |     | 2   | mA   |
| T <sub>A</sub>       | Operating ambient temperature          | -40 |     | 125 | °C   |

# www.ti.com.cn

# 6.5 Thermal Characteristics

|                       | THERMAL METRIC                               | TCAN1044V | UNIT |
|-----------------------|----------------------------------------------|-----------|------|
|                       |                                              | DDF (SOT) | UNIT |
| $R_{\theta JA}$       | Junction-to-ambient thermal resistance       | 128.1     | °C/W |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance    | 68.3      | °C/W |
| $R_{\theta JB}$       | Junction-to-board thermal resistance         | 71.6      | °C/W |
| $\Psi_{\text{JT}}$    | Junction-to-top characterization parameter   | 19.7      | °C/W |
| $\Psi_{JB}$           | Junction-to-board characterization parameter | 70.8      | °C/W |
| R <sub>0JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | -         | °C/W |

# 6.6 Supply Characteristics

| Over recommended operating conditions with $T_A = -40^{\circ}C$ to 125°C (unless otherwise noted) | Over recommended or | perating conditions with | $T_A = -40^{\circ}C$ to $125^{\circ}C$ | (unless otherwise noted) |
|---------------------------------------------------------------------------------------------------|---------------------|--------------------------|----------------------------------------|--------------------------|
|---------------------------------------------------------------------------------------------------|---------------------|--------------------------|----------------------------------------|--------------------------|

|                   | PARAMETER                                                             |                            | TEST CONDITIONS                                                                                                                                   | MIN | TYP  | MAX  | UNIT |
|-------------------|-----------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|
|                   |                                                                       | Dominant                   | See $\mathbb{E}$ 5,TXD = 0 V, STB = 0 V, R <sub>L</sub> = 60<br>$\Omega$ , C <sub>L</sub> = open                                                  |     | 45   | 70   | mA   |
|                   | Supply current normal                                                 | Dominant                   | See $\textcircled{B}$ 5, TXD = 0 V, STB = 0 V, R <sub>L</sub> = 50<br>$\Omega$ , C <sub>L</sub> = open                                            |     | 49   | 80   | mA   |
| I <sub>CC</sub>   | mode                                                                  | Recessive                  | See ${\ensuremath{\overline{\mathbb{S}}}}$ 5, TXD = V <sub>CC</sub> , STB = 0 V, R <sub>L</sub> = 50 $\Omega$ , C <sub>L</sub> = open, RCM = open |     | 4.5  | 7.5  | mA   |
|                   |                                                                       | Dominant with<br>bus fault | See $\boxed{8}$ 5, TXD = 0 V, STB = 0 V, CANH<br>= CANL = ±25 V, R <sub>L</sub> = open, C <sub>L</sub> = open                                     |     |      | 130  | mA   |
| I <sub>cc</sub>   | Supply current standby mode                                           |                            | $\begin{array}{l} TXD = STB = V_{IO} \\ R_{L} = 50 \ \Omega, \ C_{L} = open \\ See \ \fbox{5} \end{array}$                                        |     | 0.2  | 1    | μΑ   |
| I <sub>IO</sub>   | IO supply current normal<br>mode Dominant                             |                            | TXD = 0 V, STB= 0 V<br>RXD floating                                                                                                               |     | 125  | 300  | μA   |
| I <sub>IO</sub>   | IO supply current normal mode                                         | Recessive                  | TXD = 0 V, STB = 0 V<br>RXD floating                                                                                                              |     | 25   | 48   | μA   |
| I <sub>IO</sub>   | IO supply current standby mode                                        |                            | TXD = 0 V, STB = V <sub>IO</sub><br>RXD floating                                                                                                  |     | 8.5  | 13.5 | μA   |
| UV <sub>VCC</sub> | Rising under voltage detection on V <sub>CC</sub> for protected mode  |                            |                                                                                                                                                   | 4.2 | 4.4  | V    |      |
| UV <sub>VCC</sub> | Falling under voltage detection on V <sub>CC</sub> for protected mode |                            | 3.5                                                                                                                                               | 4   | 4.25 | V    |      |
| UV <sub>VIO</sub> | Rising under voltage detect                                           | tion on V <sub>IO</sub>    |                                                                                                                                                   |     | 1.56 | 1.65 | V    |
| UV <sub>VIO</sub> | Falling under voltage detec                                           | tion on V <sub>IO</sub>    |                                                                                                                                                   | 1.4 | 1.51 | 1.59 | V    |

# 6.7 Dissipation Ratings

|                      | PARAMETER                                | TEST CONDITIONS                                                                                                                                                                                                                                                      | MIN | TYP | MAX | UNIT |
|----------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
|                      |                                          | $\label{eq:VCC} \begin{array}{l} V_{CC} = 5 \ V, \ V_{IO} = 1.8 \ V, \ T_{J} = 27^{\circ} C, \ R_L = 60 \Omega, \\ TXD \ input = 250 \ kHz \ 50\% \ duty \ cycle \\ squarewave, \ C_{L_RXD} = 15 \ pF \end{array}$                                                   |     | 110 |     | mW   |
| Po                   |                                          | $\label{eq:VCC} \begin{array}{l} V_{CC} = 5 \ V, \ V_{IO} = 3.3 \ V, \ T_{J} = 27^{\circ} C, \ R_L = 60 \Omega, \\ TXD \ input = 250 \ kHz \ 50\% \ duty \ cycle \\ squarewave, \ C_{L_{RXD}} = 15 \ pF \end{array}$                                                 |     | 110 |     | mW   |
|                      | Average power dissipation<br>Normal mode | $\label{eq:V_CC} \begin{array}{l} V_{CC} = 5 \ V, \ V_{IO} = 5 \ V, \ T_J = 27^\circ C, \ R_L = 60 \Omega, \ TXD \\ \text{input} = 250 \ \text{kHz} \ 50\% \ \text{duty} \ \text{cycle squarewave}, \\ C_{L\_RXD} = 15 \ \text{pF} \end{array}$                      | 110 |     |     | mW   |
|                      |                                          | $ \begin{array}{l} V_{CC} = 5.5 \text{ V},  V_{IO} = 1.8 \text{ V},  T_{A} = 125^{\circ}\text{C},  R_{L} = \\ 60\Omega, \text{ TXD input} = 2.5 \text{ MHz} 50\% \text{ duty cycle} \\ \text{squarewave},  C_{L_{RXD}} = 15 \text{ pF} \end{array} $                 |     | 120 |     | mW   |
|                      |                                          | $ \begin{array}{l} V_{CC} = 5.5 \text{ V},  V_{IO} = 3.3 \text{ V},  T_{A} = 125^{\circ}\text{C},  \text{R}_{L} = \\ 60\Omega, \text{ TXD input } = 2.5 \text{ MHz } 50\% \text{ duty cycle} \\ \text{squarewave, } \text{C}_{L_{RXD}} = 15 \text{ pF} \end{array} $ |     | 120 |     | mW   |
| T <sub>TSD</sub>     | Thermal shutdown temperature             |                                                                                                                                                                                                                                                                      |     | 192 |     | °C   |
| T <sub>TSD_HYS</sub> | Thermal shutdown hysteresis              |                                                                                                                                                                                                                                                                      |     | 10  |     | ΞU.  |

# 6.8 Electrical Characteristics

Over recomended operating conditions with  $T_A = -40^{\circ}C$  to 125°C (unless otherwise noted)

| PARAMETER                         | TEST CONDITIONS | MIN | TYP | MAX UNIT |
|-----------------------------------|-----------------|-----|-----|----------|
| Driver Electrical Characteristics |                 |     |     |          |

STRUMENTS

**F**EXAS

# **Electrical Characteristics (continued)**

## Over recomended operating conditions with $T_A = -40^{\circ}C$ to 125°C (unless otherwise noted)

|                                                                             | PARAMETER                                                                                                            |                                                                                                                               | TEST CONDITIONS                                                                                                                                                                                                                                                                                                                         | MIN                 | ТҮР                 | MAX    | UNIT |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--------|------|
|                                                                             | Dominant output voltage                                                                                              | CANH                                                                                                                          | See 🖺 6 and 🖺 13, TXD = 0 V, STB = 0                                                                                                                                                                                                                                                                                                    | 2.75                |                     | 4.5    | V    |
| V <sub>O(DOM)</sub>                                                         | normal mode                                                                                                          | CANL                                                                                                                          | V, 50 $\Omega \le R_L \le 65 \Omega$ , $C_L$ = open, $R_{CM}$ = open                                                                                                                                                                                                                                                                    | 0.5                 |                     | 2.25   | V    |
| V <sub>O(REC)</sub>                                                         | Recessive output voltage normal mode                                                                                 | CANH and CANL                                                                                                                 | See $\textcircled{B}$ 6 and $\textcircled{B}$ 13, TXD = V <sub>IO</sub> , STB = 0<br>V, R <sub>L</sub> = open (no load), R <sub>CM</sub> = open                                                                                                                                                                                         | 2                   | 0.5 V <sub>CC</sub> | 3      | V    |
| V <sub>SYM</sub>                                                            | Driver symmetry<br>(V <sub>O(CANH)</sub> + V <sub>O(CANL)</sub> )/V <sub>CC</sub>                                    |                                                                                                                               | $\begin{array}{l} \text{See} \fbox{1}{8} \ 6 \ \text{and} \ \fbox{17}, \ \text{STB} = 0 \ \text{V}, \ \text{R}_{L} = 60 \ \Omega, \\ \text{C}_{\text{SPLIT}} = 4.7 \ \text{nF}, \ \text{C}_{L} = \text{open}, \ \text{R}_{\text{CM}} = \text{open}, \\ \text{TXD} = 250 \ \text{kHz}, \ 1 \ \text{MHz}, \ 2.5 \ \text{MHz} \end{array}$ | 0.9                 |                     | 1.1    | V/V  |
| V <sub>SYM_DC</sub>                                                         | DC output symmetry<br>(V <sub>CC</sub> - V <sub>O(CANH)</sub> - V <sub>O(CANL)</sub> )                               |                                                                                                                               | See $\[ \] 6 \]$ and $\[ \] 13, \]$ STB = 0 V, $\[ R_L = 60 \] \Omega, \]$<br>C <sub>L</sub> = open                                                                                                                                                                                                                                     | -400                |                     | 400    | mV   |
|                                                                             |                                                                                                                      |                                                                                                                               | See $\textcircled{8}$ 6 and $\textcircled{8}$ 13, TXD = 0 V, STB = 0<br>V, 50 $\Omega \leq R_L \leq 65 \Omega$ , $C_L$ = open                                                                                                                                                                                                           | 1.5                 |                     | 3      | V    |
| / <sub>OD(DOM)</sub> Differential output voltage<br>normal mode<br>Dominant | CANH - CANL                                                                                                          | See $\[ \] 6 \]$ 6 and $\[ \] 13, TXD = 0 \]$ V, STB = 0 V, 45 $\[ \] \Omega \le R_L \le 70 \]$ $\[ \] \Omega, C_L = \]$ open | 1.4                                                                                                                                                                                                                                                                                                                                     |                     | 3.3                 | V      |      |
|                                                                             |                                                                                                                      | See $\[ \] 6$ and $\[ \] 13$ , TXD = 0 V, STB = 0 V, R <sub>L</sub> = 2240 $\Omega$ , C <sub>L</sub> = open                   | 1.5                                                                                                                                                                                                                                                                                                                                     |                     | 5                   | V      |      |
| V <sub>OD(REC)</sub>                                                        | Differential output voltage normal mode                                                                              | CANH - CANL                                                                                                                   | See $\[ \] 6$ and $\[ \] 13$ , TXD = V <sub>IO</sub> , STB = 0<br>V, R <sub>L</sub> = 60 $\Omega$ , C <sub>L</sub> = open                                                                                                                                                                                                               | -120                |                     | 12     | mV   |
| OD(REC)                                                                     | Recessive                                                                                                            |                                                                                                                               | See $\textcircled{R}$ 6 and $\textcircled{R}$ 13, TXD = V <sub>IO</sub> , STB = 0<br>V, R <sub>L</sub> = open, C <sub>L</sub> = open                                                                                                                                                                                                    | -50                 |                     | 50     | mV   |
|                                                                             | Bus output voltage                                                                                                   | CANH                                                                                                                          | See 图 6 and 图 13, STB = V <sub>IO</sub> , R <sub>L</sub> = open                                                                                                                                                                                                                                                                         | -0.1                |                     | 0.1    | V    |
| V <sub>O(STB)</sub>                                                         | standby mode                                                                                                         | CANL                                                                                                                          | (no load), $R_{CM}$ = open                                                                                                                                                                                                                                                                                                              | -0.1                |                     | 0.1    | V    |
|                                                                             | -                                                                                                                    | CANH - CANL                                                                                                                   |                                                                                                                                                                                                                                                                                                                                         | -0.2                |                     | 0.2    | V    |
|                                                                             | Short-circuit steady-state ou                                                                                        | Itput current,                                                                                                                | See                                                                                                                                                                                                                                                                                                                                     | -115                |                     |        | mA   |
| OS(SS_DOM)                                                                  | dominant, normal mode                                                                                                |                                                                                                                               | See                                                                                                                                                                                                                                                                                                                                     |                     |                     | 115    | mA   |
| I <sub>OS(SS_REC)</sub>                                                     | Short-circuit steady-state output current, recessive, normal mode                                                    |                                                                                                                               | $\label{eq:seesaw} \begin{array}{l} \mbox{See $\ensuremath{\mathbb{R}}$} 11 \mbox{ and $\ensuremath{\mathbb{R}}$} 13, \mbox{STB} = 0 \ \mbox{V}, -27 \ \mbox{V} \leq \\ \mbox{V}_{\text{BUS}} \leq 32 \ \mbox{V}, \\ \mbox{Where $V_{\text{BUS}}$} = \mbox{CANH} = \mbox{CANL}, \ \mbox{TXD} = \mbox{V}_{\text{IO}} \end{array}$        | -6                  |                     | 6      | mA   |
| Receiver Ele                                                                | ectrical Characteristics                                                                                             |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         |                     |                     |        |      |
| V <sub>IT</sub>                                                             | Input threshold voltage norm                                                                                         | nal mode                                                                                                                      | See 图 7, 表 1, and 表 6<br>STB = 0 V, -12 V ≤ V <sub>CM</sub> ≤ 12 V                                                                                                                                                                                                                                                                      | 500                 |                     | 900    | mV   |
| V <sub>IT(STB)</sub>                                                        | Input threshold standby mod                                                                                          | de                                                                                                                            | See 图 7, 表 1, and 表 6<br>STB = V <sub>IO</sub> , -12 V ≤ V <sub>CM</sub> ≤ 12 V                                                                                                                                                                                                                                                         | 400                 |                     | 1150   | mV   |
| V <sub>DOM</sub>                                                            | Normal mode dominant stat voltage range                                                                              | e differential input                                                                                                          | See 图 7, 表 1, and 表 6<br>STB = 0 V, -12 V ≤ V <sub>CM</sub> ≤ 12 V                                                                                                                                                                                                                                                                      | 0.9                 |                     | 9      | V    |
| V <sub>REC</sub>                                                            | Normal mode recessive stat<br>voltage range                                                                          | te differential input                                                                                                         | See 图 7, 表 1, and 表 6<br>STB = 0 V, -12 V ≤ V <sub>CM</sub> ≤ 12 V                                                                                                                                                                                                                                                                      | -4                  |                     | 0.5    | V    |
| V <sub>DOM(STB)</sub>                                                       | Standby mode dominant sta<br>voltage range                                                                           | ate differential input                                                                                                        | See 图 7, 表 1, and 表 6<br>STB = V <sub>IO</sub> , -12 V ≤ V <sub>CM</sub> ≤ 12 V                                                                                                                                                                                                                                                         | 1.15                |                     | 9      | V    |
| V <sub>REC(STB)</sub>                                                       | Standby mode recessive sta voltage range                                                                             | ate differential input                                                                                                        | See 图 7, 表 1, and 表 6<br>STB = V <sub>IO</sub> , -12 V ≤ V <sub>CM</sub> ≤ 12 V                                                                                                                                                                                                                                                         | -4                  |                     | 0.4    | V    |
| V <sub>HYS</sub>                                                            | Hysteresis voltage for input mode                                                                                    | threshold normal                                                                                                              | See 图 7, 表 1, and 表 6<br>STB = 0 V, -12 V ≤ V <sub>CM</sub> ≤ 12 V                                                                                                                                                                                                                                                                      |                     | 100                 |        | mV   |
| V <sub>CM</sub>                                                             | Common mode range norm modes                                                                                         | al and standby                                                                                                                | See 图 7 and 表 6                                                                                                                                                                                                                                                                                                                         | -12                 |                     | 12     | V    |
| I <sub>LKG(IOFF)</sub>                                                      | Unpowered bus input leakage                                                                                          | ge current                                                                                                                    | $CANH = CANL = 5 \; V, \; V_CC = V_IO = GND$                                                                                                                                                                                                                                                                                            |                     |                     | 5      | μA   |
| CI                                                                          | Input capacitance to ground                                                                                          | (CANH or CANL)                                                                                                                | TXD = V <sub>IO</sub>                                                                                                                                                                                                                                                                                                                   |                     |                     | 20     | pF   |
| C <sub>ID</sub>                                                             | Differential input capacitance                                                                                       | e                                                                                                                             | ··· • IU                                                                                                                                                                                                                                                                                                                                |                     |                     | 10     | pF   |
| R <sub>ID</sub>                                                             | Differential input resistance                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         | 40                  |                     | 90     | kΩ   |
|                                                                             | Single ended input resistant<br>(CANH or CANL)                                                                       | ce                                                                                                                            | TXD = V <sub>IO</sub><br>STB = 0 V, -12 V ≤ V <sub>CM</sub> ≤ 12 V                                                                                                                                                                                                                                                                      | 20                  |                     | 45     | kΩ   |
| R <sub>IN</sub>                                                             | Input resistance matching                                                                                            |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         | -1                  |                     |        | %    |
|                                                                             |                                                                                                                      | : 100 %                                                                                                                       | $V_{(CAN_H)} = V_{(CAN_L)} = 5 V$                                                                                                                                                                                                                                                                                                       | -1                  |                     | 1      |      |
| R <sub>IN(M)</sub>                                                          | Input resistance matching<br>[1 – (R <sub>IN(CANH)</sub> / R <sub>IN(CANL)</sub> )] ×<br>al (CAN Transmit Data Input |                                                                                                                               | $V_{(CAN_H)} = V_{(CAN_L)} = 5 V$                                                                                                                                                                                                                                                                                                       | -1                  |                     | 1      |      |
| R <sub>IN</sub><br>R <sub>IN(M)</sub><br>TXD Termin<br>V <sub>IH</sub>      | $[1 - (R_{IN(CANH)} / R_{IN(CANL)})] \times$                                                                         |                                                                                                                               | $V_{(CAN_H)} = V_{(CAN_L)} = 5 V$                                                                                                                                                                                                                                                                                                       | 0.7 V <sub>IO</sub> |                     | 1<br>] | V    |



#### ZHCSKL7-DECEMBER 2019-REVISED DECEMBER 2019

# **Electrical Characteristics (continued)**

Over recomended operating conditions with  $T_A = -40^{\circ}C$  to  $125^{\circ}C$  (unless otherwise noted)

|                       | PARAMETER                            | TEST CONDITIONS                                                                        | MIN                 | TYP  | MAX                 | UNIT |
|-----------------------|--------------------------------------|----------------------------------------------------------------------------------------|---------------------|------|---------------------|------|
| I <sub>IH</sub>       | High-level input leakage current     | $TXD = V_{CC} = V_{IO} = 5.5 V$                                                        | -2.5                | 0    | 1                   | μA   |
| IIL                   | Low-level input leakage current      | $TXD = 0 V, V_{CC} = V_{IO} = 5.5 V$                                                   | -200                | -100 | -20                 | μA   |
| I <sub>LKG(OFF)</sub> | Unpowered leakage current            | $TXD = 5.5 V, V_{CC} = V_{IO} = 0 V$                                                   | -1                  | 0    | 1                   | μA   |
| CI                    | Input Capacitance                    | $V_{IN} = 0.4 \times \sin(2 \times \pi \times 2 \times 10^6 \times t) + 2.5 \text{ V}$ |                     | 5    |                     | pF   |
| RXD Term              | inal (CAN Receive Data Output)       |                                                                                        | i.                  |      |                     |      |
| V <sub>OH</sub>       | High-level input voltage             | See 图 7, I <sub>O</sub> = −2 mA                                                        | 0.8 V <sub>IO</sub> |      |                     | V    |
| V <sub>OL</sub>       | Low-level input voltage              | See 图 7, I <sub>O</sub> = 2 mA                                                         |                     |      | 0.2 V <sub>IO</sub> | V    |
| I <sub>LKG(OFF)</sub> | Unpowered leakage current            | $RXD = 5.5 V, V_{CC} = V_{IO} = 0 V$                                                   | -1                  | 0    | 1                   | μA   |
| STB Term              | inal (Standby Mode Input)            |                                                                                        |                     |      |                     |      |
| V <sub>IH</sub>       | High-level input voltage             |                                                                                        | 0.7 V <sub>IO</sub> |      |                     | V    |
| V <sub>IL</sub>       | Low-level input voltage              |                                                                                        |                     |      | 0.3 V <sub>IO</sub> | V    |
| I <sub>IH</sub>       | High-level input leakage current STB | $V_{CC} = V_{IO} = STB = 5.5 V$                                                        | -2                  |      | 2                   | μA   |
| IIL                   | Low-level input leakage current STB  | $V_{CC} = V_{IO} = 5.5 \text{ V}, \text{ STB} = 0 \text{ V}$                           | -20                 |      | -2                  | μA   |
| I <sub>LKG(OFF)</sub> | Unpowered leakage current            | $STB = 5.5V, V_{CC} = V_{IO} = 0 V$                                                    | -1                  | 0    | 1                   | μA   |

# 6.9 Switching Characteristics

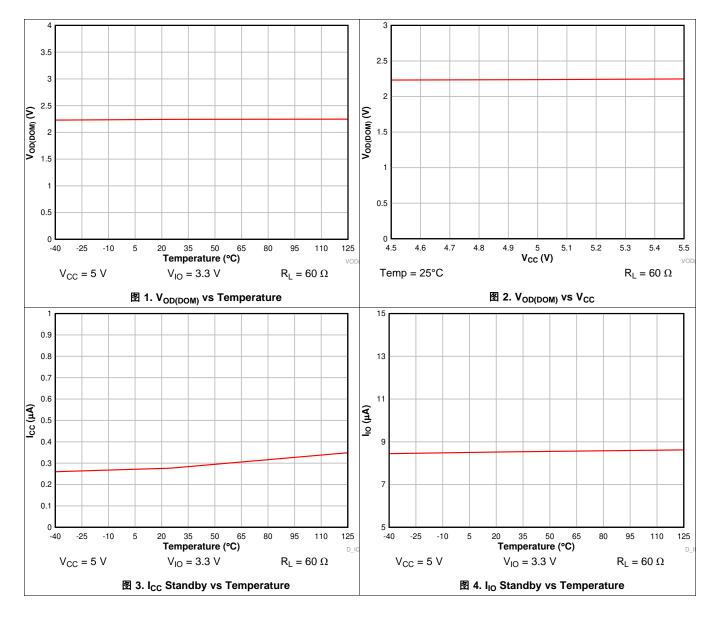
| Over recomended operating conditions with | $T_A = -40^{\circ}C$ to $125^{\circ}C$ | (unless otherwise noted) |
|-------------------------------------------|----------------------------------------|--------------------------|
|-------------------------------------------|----------------------------------------|--------------------------|

|                          | PARAMETER                                                                            | TEST CONDITIONS                                                                                                                                           | MIN | TYP | MAX | UNIT |
|--------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Device Switchi           | ng Characteristics                                                                   |                                                                                                                                                           |     |     |     |      |
| t <sub>PROP(LOOP1)</sub> | Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant | See ${\color{black}\textcircled{\sc lineskip}{2.5}}$ 8, normal mode, $V_{IO}$ = 2.8 V to 5.5 V, $R_L$ = 60 $\Omega,$ $C_L$ = 100 pF, $C_{L(RXD)}$ = 15 pF |     | 125 | 210 | ns   |
|                          | output (RAD), recessive to dominant                                                  | See $\[ \] 8, normal mode, V_{IO} = 1.7 V, R_L \] = 60 \Omega, C_L = 100 pF, C_{L(RXD)} = 15 pF \]$                                                       |     | 165 | 255 | ns   |
| t <sub>PROP(LOOP2)</sub> | Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive | See $\textcircled{\sc 8}$ 8, normal mode, $V_{IO}$ = 2.8 V to 5.5 V, $R_L$ = 60 $\Omega,$ $C_L$ = 100 pF, $C_{L(RXD)}$ = 15 pF                            |     | 150 | 210 | ns   |
|                          | output (RAD), dominant to recessive                                                  | See $\[ \] 8, normal mode, V_{IO} = 1.7 V, R_L \] = 60 \Omega, C_L = 100 \text{ pF}, C_{L(RXD)} = 15 \text{ pF} \]$                                       |     | 180 | 255 | ns   |
| t <sub>MODE</sub>        | Mode change time, from normal to standby or from standby to normal                   | See 图 9                                                                                                                                                   |     |     | 20  | μs   |
| t <sub>WK_FILTER</sub>   | Filter time for a valid wake-up pattern                                              | See 图 15                                                                                                                                                  | 0.5 |     | 1.8 | μs   |
| t <sub>WK_TIMEOUT</sub>  | Bus wake-up timeout value                                                            | See   15                                                                                                                                                  | 0.8 |     | 6   | ms   |
| Driver Switchin          | ng Characteristics                                                                   |                                                                                                                                                           |     |     |     |      |
| t <sub>pHR</sub>         | Propagation delay time, high TXD to driver recessive (dominant to recessive)         |                                                                                                                                                           |     | 80  |     | ns   |
| t <sub>pLD</sub>         | Propagation delay time, low TXD to driver dominant (recessive to dominant)           | See   6, STB = 0 V, R <sub>L</sub> = 60 Ω, C <sub>L</sub> =                                                                                               |     | 70  |     | ns   |
| t <sub>sk(p)</sub>       | Pulse skew ( tpHR - tpLD )                                                           | 100 pF, R <sub>CM</sub> = open                                                                                                                            |     | 20  |     | ns   |
| t <sub>R</sub>           | Differential output signal rise time                                                 |                                                                                                                                                           |     | 30  |     | ns   |
| t <sub>F</sub>           | Differential output signal fall time                                                 |                                                                                                                                                           |     | 50  |     | ns   |
| t <sub>TXD_DTO</sub>     | Dominant timeout                                                                     | See 🖺 10, R <sub>L</sub> = 60 Ω, C <sub>L</sub> = 100 pF, STB<br>= 0 V                                                                                    | 1.2 |     | 4.0 | ms   |
| Receiver Switc           | hing Characteristics                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                     |     |     |     |      |
| t <sub>pRH</sub>         | Propagation delay time, bus recessive input to high output (dominant to recessive)   |                                                                                                                                                           |     | 90  |     | ns   |
| t <sub>pDL</sub>         | Propagation delay time, bus dominant input to low output (recessive to dominant)     | See 图 7<br>STB = 0 V,                                                                                                                                     |     | 65  |     | ns   |
| t <sub>R</sub>           | RXD output signal rise time                                                          | $C_{L(RXD)} = 15 \text{ pF}$                                                                                                                              |     | 10  |     | ns   |
| t <sub>F</sub>           | RXD output signal fall time                                                          |                                                                                                                                                           |     | 10  |     | ns   |
| FD Timing Cha            | racteristics                                                                         | · · ·                                                                                                                                                     |     |     |     |      |

TEXAS INSTRUMENTS

www.ti.com.cn

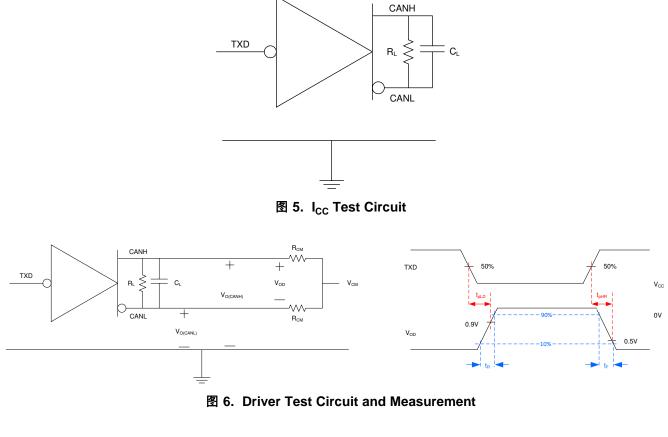
# **Switching Characteristics (continued)**


Over recomended operating conditions with  $T_A = -40^{\circ}C$  to  $125^{\circ}C$  (unless otherwise noted)

|                       | PARAMETER                                                            | TEST CONDITIONS                                                                                                 | MIN | TYP I | ЛАХ | UNIT |
|-----------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|-------|-----|------|
| t <sub>BIT(BUS)</sub> | Bit time on CAN bus output pins with $t_{BIT(TXD)} = 500 \text{ ns}$ |                                                                                                                 | 450 |       | 530 | ns   |
| t <sub>BIT(BUS)</sub> | Bit time on CAN bus output pins with $t_{BIT(TXD)} = 200 \text{ ns}$ | See 🔀 8, STB = 0 V, R <sub>L</sub> = 60 Ω, C <sub>L</sub> =<br>100 pF, C <sub>L(RXD)</sub> = 15 pF<br>STB = 0 V | 155 |       | 210 | ns   |
| t <sub>BIT(RXD)</sub> | Bit time on RXD output pins with $t_{BIT(TXD)} = 500 \text{ ns}$     | STB = 0 V                                                                                                       | 400 |       | 550 | ns   |
| t <sub>BIT(RXD)</sub> | Bit time on RXD output pins with $t_{BIT(TXD)} = 200 \text{ ns}$     |                                                                                                                 | 120 |       | 220 | ns   |
| t <sub>REC</sub>      | Receiver timing symmetry with $t_{BIT(TXD)} = 500 \text{ ns}$        | $R_L$ = 60 Ω, $C_L$ = 100 pF, $C_{L(RXD)}$ = 15 pF                                                              | -50 |       | 20  | ns   |
| t <sub>REC</sub>      | Receiver timing symmetry with t <sub>BIT(TXD)</sub> = 200 ns         | $\Delta t_{\text{REC}} = t_{\text{BIT}(\text{RXD})} - t_{\text{BIT}(\text{BUS})}$                               | -45 |       | 15  | ns   |



## www.ti.com.cn


# 6.10 Typical Characteristics



TEXAS INSTRUMENTS

www.ti.com.cn

## 7 Parameter Measurement Information



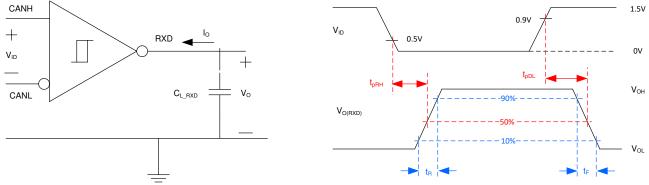



图 7. Receiver Test Circuit and Measurement



www.ti.com.cn

ÈXAS

**INSTRUMENTS** 

## Parameter Measurement Information (接下页) 表 1. Receiver Differential Input Voltage Threshold Test (See 图 7)

|                   | Input             |                 | Οι | itput           |
|-------------------|-------------------|-----------------|----|-----------------|
| V <sub>CANH</sub> | V <sub>CANL</sub> | V <sub>ID</sub> | R  | XD              |
| -11.5 V           | -12.5 V           | 1000 mV         |    |                 |
| 12.5 V            | 11.5 V            | 1000 mV         | L  |                 |
| -8.55 V           | -9.45 V           | 900 mV          |    | V <sub>OL</sub> |
| 9.45 V            | 8.55 V            | 900 mV          |    |                 |
| -8.25 V           | -9.25 V           | 500 mV          |    |                 |
| 9.25 V            | 8.25 V            | 500 mV          |    |                 |
| -11.8 V           | -12.2 V           | 400 mV          | Н  | V <sub>OH</sub> |
| 12.2 V            | 11.8 V            | 400 mV          |    |                 |
| Open              | Open              | Х               |    |                 |

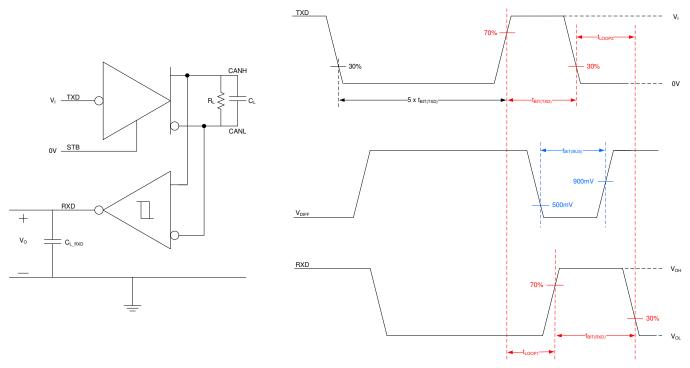
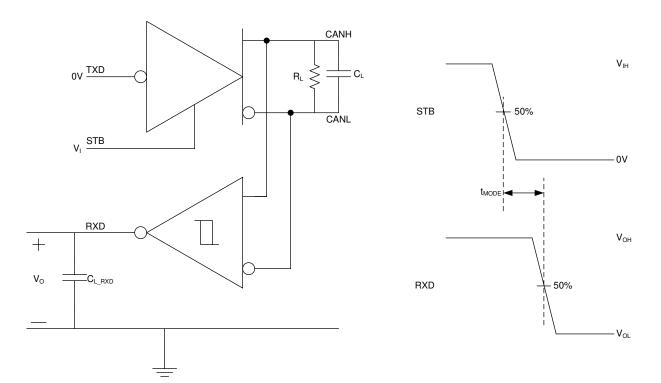




图 8. Transmitter and Receiver Timing Test Circuit and Measurement



# 图 9. t<sub>MODE</sub> Test Circuit and Measurement

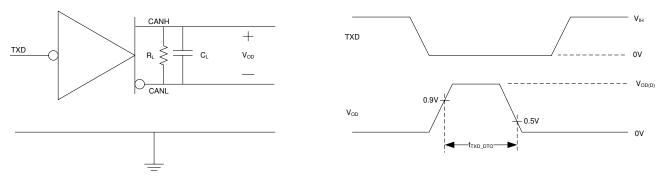



图 10. TXD Dominant Timeout Test Circuit and Measurement



www.ti.com.cn



ZHCSKL7 - DECEMBER 2019 - REVISED DECEMBER 2019

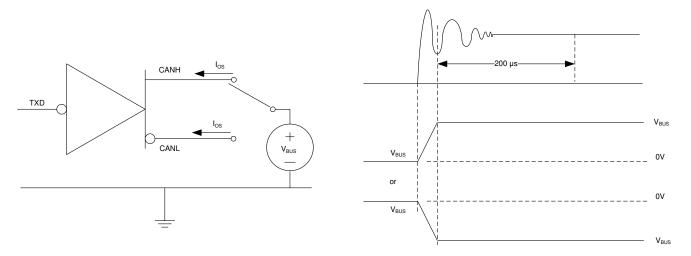
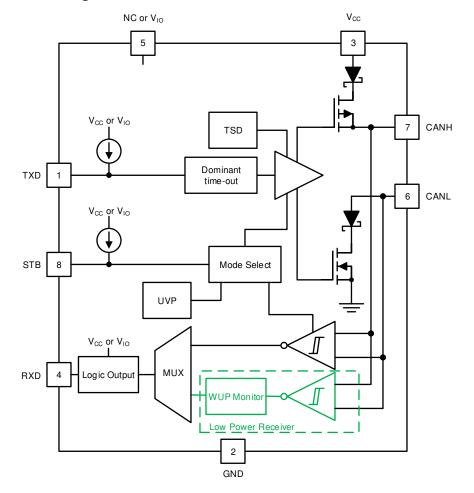



图 11. Driver Short-Circuit Current Test and Measurement

TEXAS INSTRUMENTS


www.ti.com.cn

## 8 Detailed Description

## 8.1 Overview

The TCAN1044V meets or exceeds the specifications of the ISO 11898-2:2016 high speed CAN (Controller Area Network) physical layer standard. The device has been certified to the requirements of ISO 11898-2:2016 and ISO 11898-5:2007 physical layer requirements according to the GIFT/ICT high speed CAN test specification. The transceiver provides a number of different protection features making it ideal for the stringent industrial system requirements while also supporting CAN FD data rates up to 8 Mbps.

## 8.2 Functional Block Diagram





www.ti.com.cn

#### 8.3 Feature Description

#### 8.3.1 Pin Description

## 8.3.1.1 TXD

TXD is the logic-level signal, referenced to from a CAN controller to the device.

## 8.3.1.2 GND

GND is the ground pin of the transceiver, it must be connected to the PCB ground.

## 8.3.1.3 V<sub>CC</sub>

V<sub>CC</sub> provides the 5-V nominal power supply to the CAN transceiver.

## 8.3.1.4 RXD

RXD is the logic-level signal, referenced to , from the TCAN1044V to a CAN controller. This pin is only driven once  $V_{IO}$  is present.

## 8.3.1.5 V<sub>IO</sub>

The  $V_{IO}$  pin provides the digital IO voltage to match the CAN controller voltage thus avoiding the requirement for a level shifter. It supports voltages from 1.7 V to 5.5 V providing the widest range of controller support.

#### 8.3.1.6 CANH and CANL

These are the CAN high and CAN low differential bus pins. These pins are connected to the CAN transceiver and the low-voltage WUP CAN receiver.

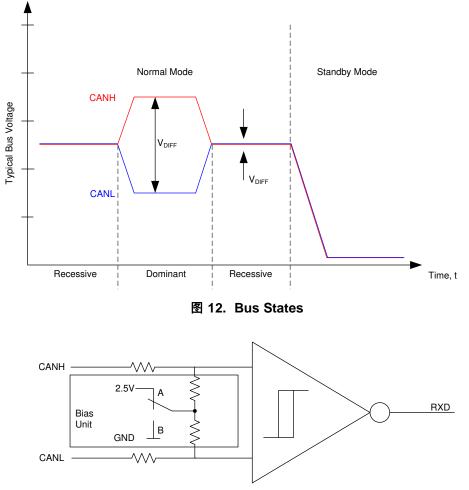
#### 8.3.1.7 STB (Standby)

The STB pin is an input pin used for mode control of the transceiver. The STB pin can be supplied from either the system processor or from a static system voltage source. If normal mode is the only intended mode of operation than the STB pin can be tied directly to GND.

#### 8.3.2 CAN Bus States

The CAN bus has two logical states during operation: recessive and dominant. See 🛽 12 and 🔄 13.

A dominant bus state occurs when the bus is driven differentially and corresponds to a logic low on the TXD and RXD pins. A recessive bus state occurs when the bus is biased to  $V_{CC}/2$  via the high-resistance internal input resistors ( $R_{IN}$ ) of the receiver and corresponds to a logic high on the TXD and RXD pins.


A dominant state overwrites the recessive state during arbitration. Multiple CAN nodes may be transmitting a dominant bit at the same time during arbitration, and in this case the differential voltage of the bus is greater than the differential voltage of a single driver.

The TCAN1044V transceiver implements a low-power standby (STB) mode which enables a third bus state where the bus pins are weakly biased to ground via the high resistance internal resistors of the receiver. See  $\mathbb{R}$  12 and  $\mathbb{R}$  13.

TEXAS INSTRUMENTS

www.ti.com.cn

# Feature Description (接下页)



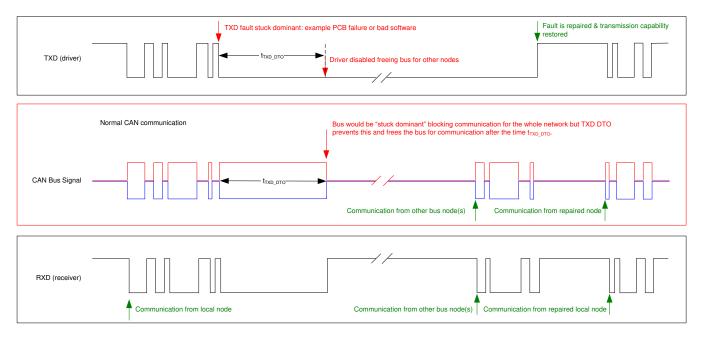
- A. Normal Mode
- B. Standby Mode

#### 图 13. Simplified Recessive Common Mode Bias Unit and Receiver

#### 8.3.3 TXD Dominant Timeout (DTO)

During normal mode, the only mode where the CAN driver is active, the TXD DTO circuit prevents the local node from blocking network communication in the event of a hardware or software failure where TXD is held dominant longer than the timeout period  $t_{TXD_DTO}$ . The TXD DTO circuit is triggered by a falling edge on TXD. If no rising edge is seen before the timeout period of the circuit,  $t_{TXD_DTO}$ , the CAN driver is disabled. This frees the bus for communication between other nodes on the network. The CAN driver is reactivated when a recessive signal is seen on the TXD pin, thus clearing the dominant time out. The receiver remains active and biased to  $V_{CC}/2$  and the RXD output reflects the activity on the CAN bus during the TXD DTO fault.

The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. The minimum transmitted data rate may be calculated using 公式 1.


Minimum Data Rate = 11 bits /  $t_{TXD_DTO}$  = 11 bits / 1.2 ms = 9.2 kbps

(1)



ZHCSKL7 – DECEMBER 2019 – REVISED DECEMBER 2019

# Feature Description (接下页)



## 图 14. Example Timing Diagram for TXD Dominant Timeout

## 8.3.4 CAN Bus Short Circuit Current Limiting

The TCAN1044V has several protection features that limit the short circuit current when a CAN bus line is shorted. These include CAN driver current limiting in the dominant and recessive states and TXD dominant state timeout which prevents permanently having the higher short circuit current of a dominant state in case of a system fault. During CAN communication the bus switches between the dominant and recessive states, thus the short circuit current may be viewed as either the current during each bus state or as a DC average current. When selecting termination resistors or a common mode choke for the CAN design the average power rating,  $I_{OS(AVG)}$ , should be used. The percentage dominant is limited by the TXD DTO and the CAN protocol which has forced state changes and recessive bits due to bit stuffing, control fields, and interframe space. These ensure there is a minimum amount of recessive time on the bus even if the data field contains a high percentage of dominant bits.

The average short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short circuit currents. The average short circuit current may be calculated using  $\Delta \pm 2$ .

 $I_{OS(AVG)} = \% \text{ Transmit } x \left[ (\% \text{ REC}_\text{Bits } x I_{OS(SS)_\text{REC}}) + (\% \text{ DOM}_\text{Bits } x I_{OS(SS)_\text{DOM}}) \right] + \left[\% \text{ Receive } x I_{OS(SS)_\text{REC}} \right]$ (2)

Where:

- I<sub>OS(AVG)</sub> is the average short circuit current
- % Transmit is the percentage the node is transmitting CAN messages
- % Receive is the percentage the node is receiving CAN messages
- % REC\_Bits is the percentage of recessive bits in the transmitted CAN messages
- % DOM\_Bits is the percentage of dominant bits in the transmitted CAN messages
- I<sub>OS(SS)\_REC</sub> is the recessive steady state short circuit current
- I<sub>OS(SS) DOM</sub> is the dominant steady state short circuit current

This short circuit current and the possible fault cases of the network should be taken into consideration when sizing the power supply used to generate the transceivers  $V_{CC}$  supply.



## Feature Description (接下页)

## 8.3.5 Thermal Shutdown (TSD)

If the junction temperature of the TCAN1044V exceeds the thermal shutdown threshold,  $T_{TSD}$ , the device turns off the CAN driver circuitry and blocks the TXD to bus transmission path. The shutdown condition is cleared when the junction temperature of the device drops below  $T_{TSD}$ . The CAN bus pins are biased to  $V_{CC}/2$  during a TSD fault and the receiver to RXD path remains operational. If the fault condition that caused the TSD fault is still present, the junction temperature may rise again and the device enters a TSD fault again. The TCAN1044V TSD circuit includes hysteresis which prevents the CAN driver output from oscillating during a TSD fault. If there is prolonged exposure to a TSD fault condition the device reliability could be affected.

#### 8.3.6 Undervoltage Lockout

The supply pins,  $V_{CC}$  and  $V_{IO}$ , have undervoltage detection that places the device into a protected state. This protects the bus during an undervoltage event on either supply pin.

| V <sub>cc</sub>     | V <sub>IO</sub>     | Device State                         | Bus            | RXD Pin                                              |  |  |  |
|---------------------|---------------------|--------------------------------------|----------------|------------------------------------------------------|--|--|--|
| $> UV_{VCC}$        | > UV <sub>VIO</sub> | Normal                               | Per TXD        | Mirrors bus                                          |  |  |  |
| < UV                | . 111/              | STB = V <sub>IO</sub> : Standby mode | Biased to GND  | V <sub>IO</sub> : Remote wake request <sup>(1)</sup> |  |  |  |
| < UV <sub>VCC</sub> | > UV <sub>VIO</sub> | STB = GND: Protected mode            | High impedance | Recessive                                            |  |  |  |
| $> UV_{VCC}$        | < UV <sub>VIO</sub> | Protected                            | High impedance | High impedance                                       |  |  |  |
| < UV <sub>VCC</sub> | < UV <sub>VIO</sub> | Protected                            | High impedance | High impedance                                       |  |  |  |

#### 表 2. Undervoltage Lockout - TCAN1044V

(1) See Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode

Once an undervoltage condition is cleared and the supply has returned to a valid level the TCAN1044V transitions to normal mode after the  $t_{MODE}$  time has expired. The host controller should not attempt to send or receive messages until the  $t_{MODE}$  time has expired.

#### 8.3.7 Unpowered Device

The TCAN1044V is designed to be an ideal passive or no load to the CAN bus if the device is unpowered. The bus pins were designed to have low leakage currents when the device is unpowered, so they do not load the bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains operational.

The logic pins also have low leakage currents when the device is unpowered, so they do not load other circuits which may remain powered.

#### 8.3.8 Floating pins

The TCAN1044V has internal pull-ups on critical pins which place the device into known states if the pin floats. This internal bias should not be relied upon by design though, especially in noisy environments, but instead should be considered a failsafe protection feature.

When a CAN controller supporting open drain outputs are used an adequate external pull-up resistor must be used to ensure that the TXD output of the CAN controller maintains adequate bit timing to the input of the CAN transceiver. See  $\frac{1}{5}$  3 for details on pin bias conditions.

## 表 3. Pin Bias

| Pin | Pull-up or Pull-down | Comment                                                                            |
|-----|----------------------|------------------------------------------------------------------------------------|
| TXD | Pull-up              | Weakly biases TXD towards recessive to prevent bus blockage or TXD DTO triggering  |
| STB | Pull-up              | Weakly biases STB towards low-power standby mode to prevent excessive system power |

#### 8.4 Device Functional Modes

#### 8.4.1 Operating Modes

The TCAN1044V has two main operating modes; normal mode and standby mode. Operating mode selection is made by applying a high or low level to the STB pin on the TCAN1044 device.

| STB  | Device Mode                                  | Driver   | Receiver                                  | RXD Pin                                                                |
|------|----------------------------------------------|----------|-------------------------------------------|------------------------------------------------------------------------|
| High | Low current standby mode with<br>bus wake-up | Disabled | Low-power receiver and bus monitor enable | High (recessive) until valid WUP<br>is received<br>See section 8.3.3.1 |
| Low  | Normal Mode                                  | Enabled  | Enabled                                   | Mirrors bus state                                                      |

#### 8.4.2 Normal Mode

This is the normal operating mode of the TCAN1044V. The CAN driver and receiver are fully operational and CAN communication is bi-directional. The driver is translating a digital input on the TXD input to a differential output on the bus pins. The receiver is translating the differential signal from to a digital output on the RXD output.

#### 8.4.3 Standby Mode

This is the low-power mode of the TCAN1044V. The CAN driver and main receiver are switched off and bidirectional CAN communication is not possible. The low-power receiver and bus monitor circuits are enabled to allow for RXD wake-up requests via the CAN bus. A wake-up request is output to RXD as shown in 图 15. The local CAN protocol controller should monitor RXD for transitions (high-to-low) and reactivate the device to normal mode by pulling the STB pin low. The CAN bus pins are weakly pulled to GND in this mode; see 图 12 and 图 13.

In standby mode, only the  $V_{IO}$  supply is required therefore the  $V_{CC}$  may be switched off for additional system level current savings.

#### 8.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode

The TCAN1044V supports a remote wake-up request that is used to indicate to the host controller that the bus is active and the node should return to normal operation.

The device uses the multiple filtered dominant wake-up pattern (WUP) from the ISO 11898-2:2016 standard to qualify bus activity. Once a valid WUP has been received, the wake request is indicated to the controller by a falling edge and low period corresponding to a filtered dominant on the RXD output of the TCAN1044V.



The WUP consists of a filtered dominant pulse, followed by a filtered recessive pulse, and finally by a second filtered dominant pulse. The first filtered dominant initiates the WUP, and the bus monitor then waits on a filtered recessive; other bus traffic does not reset the bus monitor. Once a filtered recessive is received the bus monitor is waiting for a filtered dominant and again, other bus traffic does not reset the bus monitor. Immediately upon reception of the second filtered dominant the bus monitor recognizes the WUP and drives the RXD output low every time an additional filtered dominant signal is received from the bus.

For a dominant or recessive to be considered filtered, the bus must be in that state for more than the  $t_{WK\_FILTER}$  time. Due to variability in  $t_{WK\_FILTER}$  the following scenarios are applicable. Bus state times less than  $t_{WK\_FILTER(MIN)}$  are never detected as part of a WUP and thus no wake request is generated. Bus state times between  $t_{WK\_FILTER(MIN)}$  and  $t_{WK\_FILTER(MAX)}$  may be detected as part of a WUP and a wake-up request may be generated. Bus state times greater than  $t_{WK\_FILTER(MAX)}$  are always detected as part of a WUP, and thus a wake request is always generated. See  $\mathbb{E}$  15 for the timing diagram of the wake-up pattern.

The pattern and t<sub>WK\_FILTER</sub> time used for the WUP prevents noise and bus stuck dominant faults from causing false wake-up requests while allowing any valid message to initiate a wake-up request.

The ISO 11898-2:2016 standard has defined times for a short and long wake up filter time. The  $t_{WK\_FILTER}$  timing for the device has been picked to be within the minimum and maximum values of both filter ranges. This timing has been chosen such that a single bit time at 500 kbps, or two back to back bit times at 1 Mbps triggers the filter in either bus state. Any CAN frame at 500 kbps or less would contain a valid WUP.

For an additional layer of robustness and to prevent false wake-ups, the device implement a wake-up timeout feature. For a remote wake-up event to successfully occur, the entire WUP must be received within the timeout value  $t \le t_{WK\_TIMEOUT}$ . If not, the internal logic is reset and the transceiver remains in its current state without waking up. The full pattern must then be transmitted again, conforming to the constraints mentioned in this section. See  $\[B]$  15 for the timing diagram of the wake up pattern with wake timeout feature.

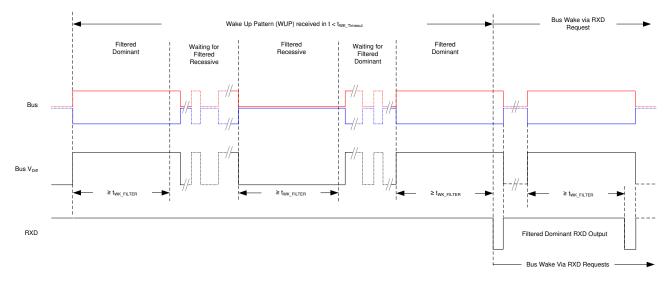



图 15. Wake-Up Pattern (WUP) with t<sub>WK TIMEOUT</sub>



**Biased recessive** 

Weak pull-down to

ground

Hi-Z

Hi-Z

#### www.ti.com.cn

#### 8.4.4 Driver and Receiver Function

High or open

Х

The digital logic input and output levels for the TCAN1044V are CMOS levels with respect to  $V_{\rm IO}$  for compatibility with protocol controllers having 1.8 V, 2.5 V, 3.3 V, or 5 V IO levels.

| Device Mode | TXD Input <sup>(1)</sup> | Bus  | Driven Bus State <sup>(2)</sup> |                  |  |  |  |  |  |  |  |
|-------------|--------------------------|------|---------------------------------|------------------|--|--|--|--|--|--|--|
|             |                          | CANH | CANL                            | Driven bus State |  |  |  |  |  |  |  |
|             | Low                      | High | Low                             | Dominant         |  |  |  |  |  |  |  |

Hi-Z

Hi-Z

#### 表 5. Driver Function Table

(1) X = irrelevant

Normal

Standby

(2) For bus state and bias see 12

#### 表 6. Receiver Function Table Normal and Standby Mode

| Device Mode | CAN Differential Inputs<br>V <sub>ID</sub> = V <sub>CANH</sub> - V <sub>CANL</sub> | Bus State | RXD Pin                                |
|-------------|------------------------------------------------------------------------------------|-----------|----------------------------------------|
|             | $V_{ID} \ge 0.9 V$                                                                 | Dominant  | Low                                    |
| Normal      | 0.5 V < V <sub>ID</sub> < 0.9 V                                                    | Undefined | Undefined                              |
|             | $V_{ID} \le 0.5 V$                                                                 | Recessive | High                                   |
|             | V <sub>ID</sub> ≥ 1.15 V                                                           | Dominant  | High                                   |
| Standby     | 0.4 V < V <sub>ID</sub> < 1.15 V                                                   | Undefined | Low if a remote wake event<br>occurred |
|             | $V_{ID} \le 0.4 V$                                                                 | Recessive | See 图 15                               |
| Any         | Open (V <sub>ID</sub> ≈ 0 V)                                                       | Open      | High                                   |



## 9 Application and Implementation

#### 注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

## 9.1 Application Information

## 9.2 Typical Application

The TCAN1044V transceiver can be used in applications with a host controller or FPGA that includes the link layer portion of the CAN protocol. shows a typical application configuration for 5 V controller applications. The bus termination is shown for illustrative purposes.

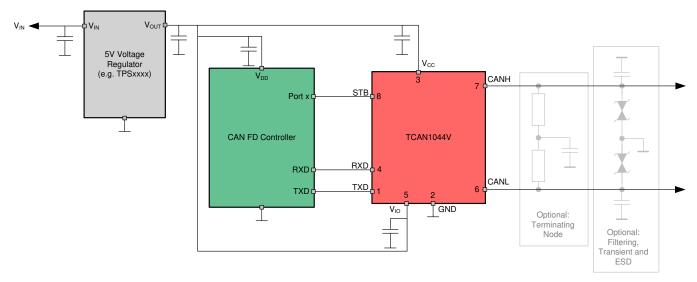
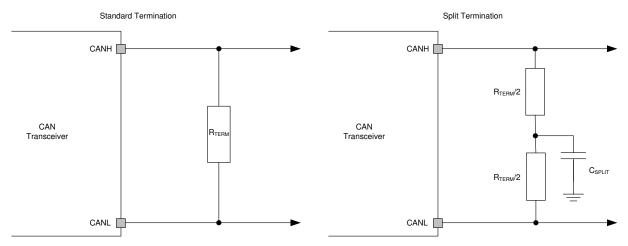



图 16. Transceiver Application Using 5 V IO Connections

## 9.2.1 Design Requirements


### 9.2.1.1 CAN Termination

Termination may be a single  $120-\Omega$  resistor at each end of the bus, either on the cable or in a terminating node. If filtering and stabilization of the common mode voltage of the bus is desired then split termination may be used, see  $\mathbb{R}$  17. Split termination improves the electromagnetic emissions behavior of the network by filtering higher-frequency common-mode noise that may be present on the differential signal lines.



ZHCSKL7 – DECEMBER 2019 – REVISED DECEMBER 2019

# Typical Application (接下页)





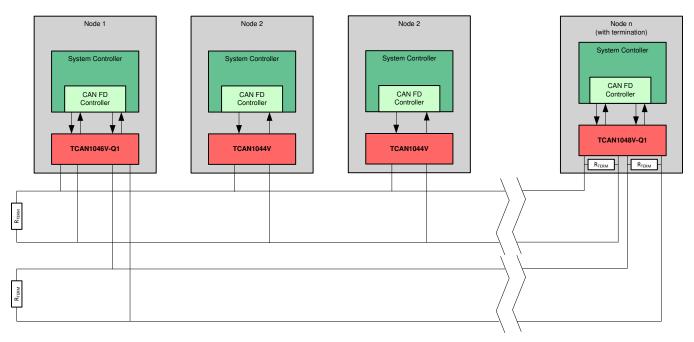
## 9.2.2 Detailed Design Procedures

#### 9.2.2.1 Bus Loading, Length and Number of Nodes

A typical CAN application may have a maximum bus length of 40 meters and maximum stub length of 0.3 m. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A high number of nodes requires a transceiver with high input impedance such as the TCAN1044V.

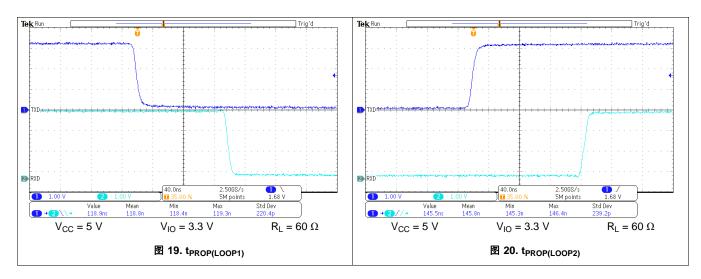
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO 11898-2 standard. They made system level trade off decisions for data rate, cable length, and parasitic loading of the bus. Examples of these CAN systems level specifications are ARINC 825, CANopen, DeviceNet, and NMEA 2000.

A CAN network system design is a series of tradeoffs. In the ISO 11898-2:2016 specification the driver differential output is specified with a bus load that can range from 50  $\Omega$  to 65  $\Omega$  where the differential output must be greater than 1.5 V. The TCAN1044V is specified to meet the 1.5-V requirement down to 50  $\Omega$  and is specified to meet 1.4-V differential output at 45 $\Omega$  bus load. The differential input resistance of the TCAN1044V is a minimum of 40 k $\Omega$ . If 100 TCAN1044V transceivers are in parallel on a bus, this is equivalent to a 400- $\Omega$  differential load in parallel with the nominal 60  $\Omega$  bus termination which gives a total bus load of approximately 52  $\Omega$ . Therefore, the TCAN1044V theoretically supports over 100 transceivers on a single bus segment. However, for CAN network design margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum number of nodes is often lower. Bus length may also be extended beyond 40 meters by careful system design and data rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.


This flexibility in CAN network design is one of the key strengths of the various extensions and additional standards that have been built on the original ISO 11898-2 CAN standard. However, when using this flexibility the CAN network system designer must take the responsibility of good network design to ensure robust network operation.

www.ti.com.cn

INSTRUMENTS


Texas

# Typical Application (接下页)





# 9.2.3 Application Curves





## 9.3 System Examples

The TCAN1044V CAN transceiver is typically used in applications with a host controller or FPGA that includes the link layer portion of the CAN protocol. A 1.8 V, 2.5 V, or 3.3 V application is shown in . The bus termination is shown for illustrative purposes.

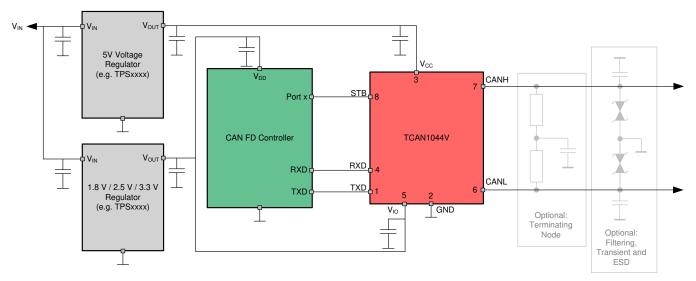
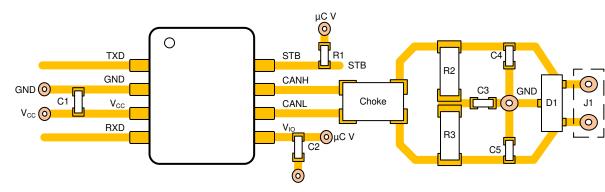



图 21. Typical Transceiver Application Using 1.8 V, 2.5 V, 3.3 V IO Connections

# 10 Power Supply Recommendations

The TCAN1044V transceiver is designed to operate with a main V<sub>CC</sub> input voltage supply range between 4.5 V and 5.5 V. The TCAN1044V implements an IO level shifting supply input, V<sub>IO</sub>, designed for a range between 1.8 V and 5.5 V. Both supply inputs must be well regulated. A decoupling capacitance, typically 100 nF, should be placed near the CAN transceiver's main V<sub>CC</sub> supply pin in addition to bypass capacitors. A decoupling capacitor, typically 100 nF, should be placed near the CAN transceiver's V<sub>IO</sub> supply pin in addition to bypass capacitors.




## 11 Layout

Robust and reliable CAN node design may require special layout techniques depending on the application and industrial design requirements. Since transient disturbances have high frequency content and a wide bandwidth, high-frequency layout techniques should be applied during PCB design.

## 11.1 Layout Guidelines

- Place the protection and filtering circuitry close to the bus connector, J1, to prevent transients, ESD, and noise from propagating onto the board. This layout example shows a optional transient voltage suppression (TVS) diode, D1, which may be implemented if the system-level requirements exceed the specified rating of the transceiver. This example also shows optional bus filter capacitors C4 and C5.
- Design the bus protection components in the direction of the signal path. Do not force the transient current to divert from the signal path to reach the protection device.
- Use V<sub>CC</sub> and GND planes to provide low inductance. Note that high frequency current follows the path of least impedance and not the path of least resistance.
- Decoupling capacitors should be placed as close as possible to the supply pins V<sub>CC</sub> and V<sub>IO</sub> of transceiver.
- Use at least two vias for V<sub>CC</sub> and ground connections of decoupling capacitors and protection devices to minimize trace and via inductance.
- This layout example shows how split termination could be implemented on the CAN node. The termination is split into two resistors, R2 and R3, with the center or split tap of the termination connected to ground via capacitor C3. Split termination provides common mode filtering for the bus. See CAN Termination, CAN Bus Short Circuit Current Limiting, and 公式 2 for information on termination concepts and power ratings needed for the termination resistor(s).



## 11.2 Layout Example

图 22. Layout Example



www.ti.com.cn

### 12 器件和文档支持

## 12.1 文档支持

#### 12.1.1 相关链接

下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。

#### 表 7. 相关链接

| 器件        | 产品文件夹 | 立即订购 | 技术文档 | 工具与软件 | 支持和社区 |
|-----------|-------|------|------|-------|-------|
| TCAN1044V | 单击此处  | 单击此处 | 单击此处 | 单击此处  | 单击此处  |

#### 12.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品 信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

#### 12.3 支持资源

TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

#### 12.4 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

#### 12.5 静电放电警告



ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

**ESD** 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

### 12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

# 13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更, 恕不另行通知, 且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航栏。



10-Dec-2020

# PACKAGING INFORMATION

| Orderab | le Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2) | Lead finish/<br>Ball material | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|---------|-----------|---------------|--------------|--------------------|------|----------------|-----------------|-------------------------------|----------------------|--------------|-------------------------|---------|
| TCAN10  | 44VDDFR   | ACTIVE        | SOT-23-THIN  | DDF                | 8    | 3000           | RoHS & Green    | NIPDAU                        | Level-1-260C-UNLIM   | -40 to 125   | 27RF                    | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

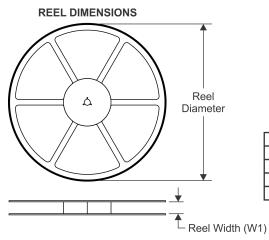
<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

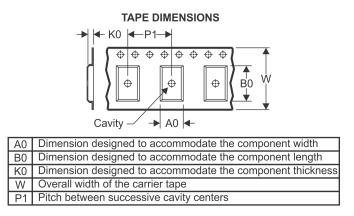
<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(<sup>6)</sup> Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


# PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

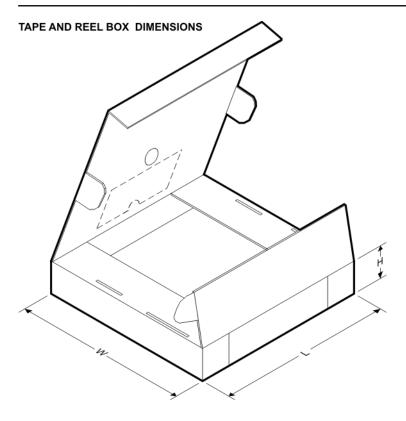
# TAPE AND REEL INFORMATION





# QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| Device        | -               | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TCAN1044VDDFR | SOT-<br>23-THIN | DDF                | 8 | 3000 | 180.0                    | 8.4                      | 3.2        | 3.2        | 1.4        | 4.0        | 8.0       | Q3               |

TEXAS INSTRUMENTS

www.ti.com

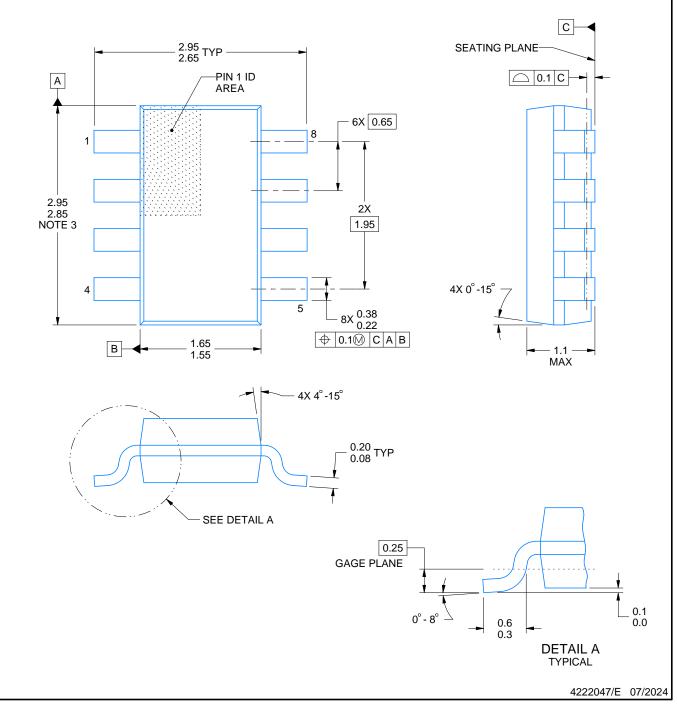
# PACKAGE MATERIALS INFORMATION

3-Jan-2020



\*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TCAN1044VDDFR | SOT-23-THIN  | DDF             | 8    | 3000 | 210.0       | 185.0      | 35.0        |


# **DDF0008A**



# **PACKAGE OUTLINE**

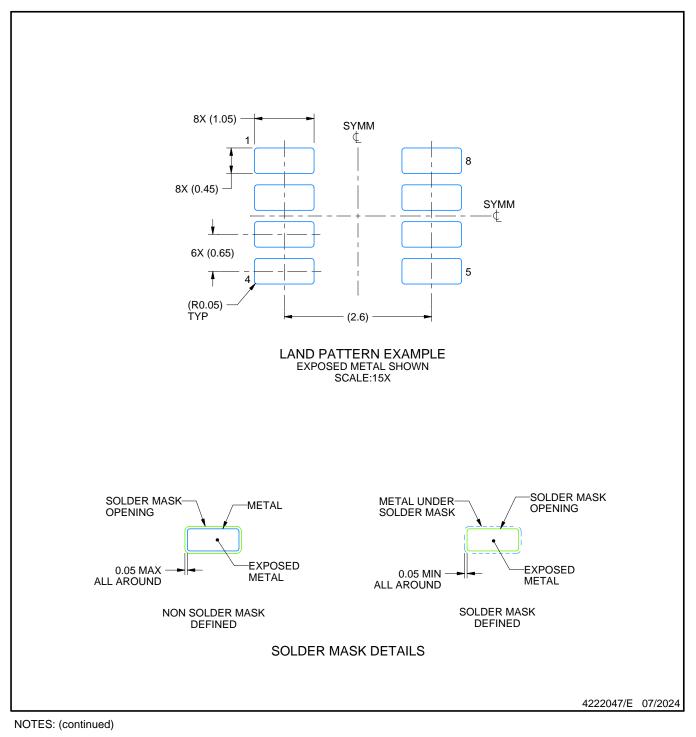
# SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.




# **DDF0008A**

# **EXAMPLE BOARD LAYOUT**

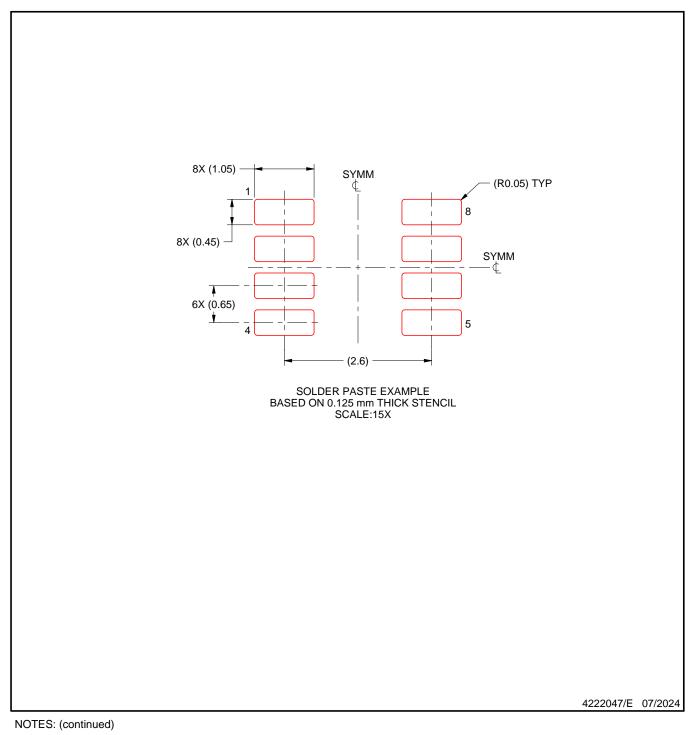
# SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE



4. Publication IPC-7351 may have alternate designs.

5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# **DDF0008A**

# **EXAMPLE STENCIL DESIGN**

# SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE



<sup>6.</sup> Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



<sup>7.</sup> Board assembly site may have different recommendations for stencil design.

## 重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司