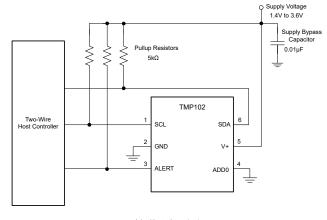


TMP102

ZHCSIX4I - AUGUST 2007 - REVISED JUNE 2024


采用 SOT563 封装、具有 SMBus 和双线制串行接口的 TMP102 低功耗数字温度 传感器

1 特性

- SOT563 封装 (1.6mm × 1.6mm) 尺寸较 SOT-23 减 小 68%
- 精度无需校准:
 - -25°C 至 85°C 范围内为 2.0°C (最大值)
 - -40°C 至 125°C 范围内为 3.0°C (最大值)
- 低静态电流:
 - 工作时 7.5 µA(最大值)
 - 关断时 0.35 μA(最大值)
- 电源电压范围: 1.4V 至 3.6V
- 分辨率:12 位
- 数字输出:与 SMBus、两线制和 I²C 接口兼容
- NIST 可追溯

2 应用

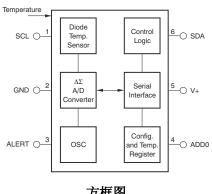
- 便携式电子产品
- 电源温度监控
- 联网外设和打印机
- PC 和笔记本电脑
- 电池管理
- 企业机器
- 恒温器
- 机电设备温度
- 通用温度测量:
 - 工厂自动化与控制
 - 测试与测量
 - 医疗和保健

简化原理图

3 说明

TMP102 器件是一款数字温度传感器,旨在要求高精 度的应用中替代 NTC/PTC 热敏电阻。该器件在未经校 准或无外部组件信号调节的情况下可提供的精度为 ±0.5°C。器件温度传感器为高度线性化产品,无需复 杂计算或查表即可得知温度。片上 12 位 ADC 具备最 低 0.0625°C 的分辨率。

1.6mm × 1.6mm SOT563 封装尺寸较 SOT-23 封装减 小 68%。TMP102 器件与 SMBus™、两线制和 I²C 接 口兼容,可与多达四个器件共用一根总线。该器件还具 有 SMBus 警报功能。器件的额定工作电压范围是 1.4V 至 3.6V,整个工作范围内最大静态电流为 7.5µA。


TMP102 器件适用于在各种通信、计算机、消费类产 品、环境、工业和仪表等各种应用中进行工作温度测 量。器件的额定工作温度范围为 -40°C 至 125°C。

TMP102 生产单元已完全通过可追溯 NIST 的传感器测 试,并且已借助可追溯 NIST 的设备使用 ISO/IEC 17025 标准认可的校准进行验证。

封装信息

器件型号	封装 ⁽¹⁾	封装尺寸 ⁽²⁾
TMP102	SOT563 (6)	1.60mm × 1.60mm

- 有关更多信息,请参阅节10。
- 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。

方框图

Table of Contents

1 特性	1
2 应用	1
3 说明	1
4 Pin Configuration and Functions	
5 Specifications	
5.1 Absolute Maximum Ratings	
5.2 ESD Ratings	4
5.3 Recommended Operating Conditions	4
5.4 Thermal Information	4
5.5 Electrical Characteristics	5
5.6 Timing Requirements	6
5.7 Typical Characteristics	<mark>7</mark>
6 Detailed Description	8
6.1 Overview	8
6.2 Functional Block Diagram	
6.3 Feature Description	8
6.4 Device Functional Modes	14

	6.5 Flogramming	10
7	Application and Implementation	20
	7.1 Application Information	20
	7.2 Typical Application	20
	7.3 Power Supply Recommendations	22
	7.4 Layout	22
8	Device and Documentation Support	23
	8.1 Documentation Support	23
	8.2 接收文档更新通知	23
	8.3 支持资源	23
	8.4 Trademarks	23
	8.5 静电放电警告	23
	8.6 术语表	23
9	Revision History	23
1	0 Mechanical, Packaging, and Orderable	
	Information	25

4 Pin Configuration and Functions

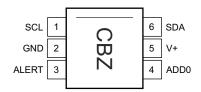


图 4-1. DRL Package 6-Pin SOT563 Top View

表 4-1. Pin Functions

PIN		TYPE(1)	DESCRIPTION		
NO.	NAME	ITPE\"	DESCRIPTION		
1	SCL	I	Serial clock		
2	GND	_	Ground		
3	ALERT	0	Overtemperature alert. Open-drain output; requires a pullup resistor.		
4	ADD0	I	Address select. Connect to GND or V+		
5	V+	I	Supply voltage, 1.4 V to 3.6 V		
6	SDA	I/O	Serial data. Open-drain output; requires a pullup resistor.		

Product Folder Links: TMP102

提交文档反馈

3

⁽¹⁾ I = Input, O = Output, I/O = Input or Output

5 Specifications

5.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)

	MIN	MAX	UNIT
Supply voltage		4	V
Voltage at SCL, SDA and ADD0 ⁽²⁾	- 0.5	4	V
Voltage at ALERT		((V+) + 0.3) and ≤ 4	V
Operating temperature	- 55	150	°C
Junction temperature		150	°C
Storage temperature, T _{stg}	- 60	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V+	Supply voltage	1.4	3.3	3.6	V
T _A	Operating free-air temperature	- 40		125	°C

5.4 Thermal Information

THERMAL METRIC ⁽¹⁾		DRL (SOT563)	UNIT
		6 PINS	
R _{θ JA}	Junction-to-ambient thermal resistance	240.2	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	96.4	°C/W
R ₀ JB	Junction-to-board thermal resistance	124.3	°C/W
ψJT	Junction-to-top characterization parameter	4.0	°C/W
ψ JB	Junction-to-board characterization parameter	123.1	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

Product Folder Links: TMP102 English Data Sheet: SBOS397

Copyright © 2024 Texas Instruments Incorporated

⁽²⁾ Input voltage rating applies to all TMP102 input voltages.

Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process

5.5 Electrical Characteristics

At $T_{\Delta} = 25^{\circ}$ C and V+ = 1.4 to 3.6 V. unless otherwise noted.

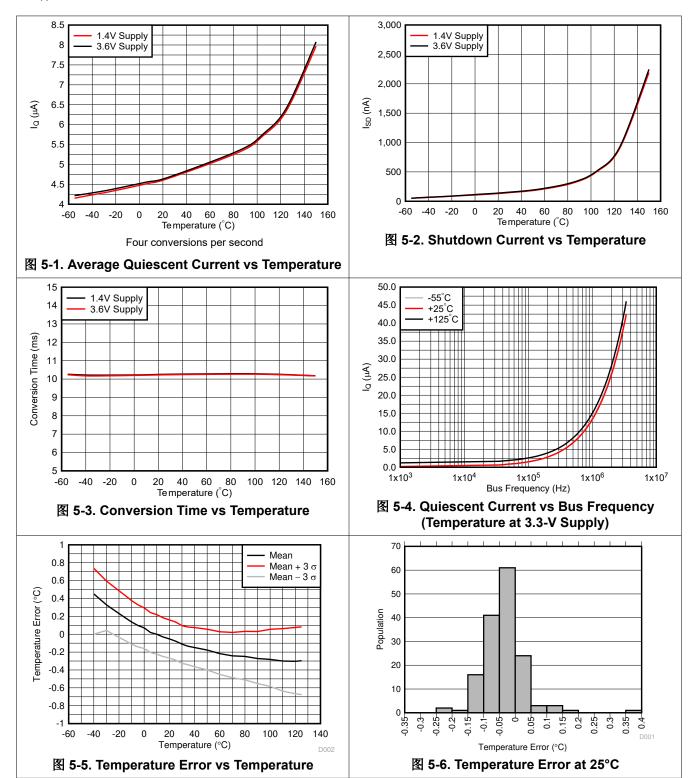
	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
TEMPI	ERATURE SENSOR						
	Range			- 40		125	°C
			-25°C to 85°C		± 0.5	± 2	
	Accuracy (temperature error)		-40°C to 125°C		± 1	± 3	°C
	vs supply				0.2	0.5	°C/V
	Resolution				0.0625		°C
DIGITA	AL INPUT/OUTPUT					I	
	Input capacitance				3		pF
V _{IH}	Input logic high			0.7 × (V+)		3.6	V
V _{IL}	Input logic low			- 0.5		0.3 × (V+)	V
I _{IN}	Input current		0 < V _{IN} < 3.6V			1	μA
		00.4	V+ > 2 V, I _{OL} = 3 mA	0		0.4	
		SDA	V+ < 2 V, I _{OL} = 3 mA	0		0.2 × (V+)	
V _{OL}	Output logic	AL EDT	V+ > 2 V, I _{OL} = 3 mA	0		0.4	V
		ALERT	V+ < 2 V, I _{OL} = 3 mA	0		0.2 × (V+)	
	Resolution	l .			12		Bit
	Conversion time				10	15	ms
			CR1 = 0, CR0 = 0		0.25		
	Conversion modes		CR1 = 0, CR0 = 1		1		
			CR1 = 1, CR0 = 0 (default)		4		Conv/s
			CR1 = 1, CR0 = 1		8		
	Timeout time				30	40	ms
POWE	R SUPPLY					-	
	Operating supply range			1.4		3.6	V
			Serial bus inactive, CR1 = 0, CR0 = 1		3.2	5	
	A		Serial bus inactive, CR1 = 1, CR0 = 0 (default)		4.8	7.5	4
lQ	Average quiescent current		Serial bus active, SCL frequency = 400 kHz		10		μA
			Serial bus active, SCL frequency = 2.85 MHz		40		
			Serial bus inactive		0.15	0.35	
I _{SD}	Shutdown current		Serial bus active, SCL frequency = 400 kHz		5.5		μΑ
			Serial bus active, SCL frequency = 2.85 MHz		35		
TEMPI	ERATURE		1	1			
	Specified range			- 40		125	°C
	Operating range			- 55		150	°C

Product Folder Links: TMP102

提交文档反馈

5

5.6 Timing Requirements


See the *Timing Diagrams* section for additional information.

			FAST MOD	FAST MODE		IODE	UNIT
			MIN	MAX	MIN	MAX	UNII
f _(SCL)	SCL operating frequency	V+	0.001	0.4	0.001	2.85	MHz
t _(BUF)	Bus-free time between STOP and START condition		600		160		ns
t _(HDSTA)	Hold time after repeated START condition. After this period, the first clock is generated.		600		160		ns
t _(SUSTA)	Repeated START condition setup time	See 图 6-1	600		160		ns
t _(SUSTO)	STOP condition setup time		600		160		ns
t _(HDDAT)	Data hold time		100	900	25	105	ns
t _(SUDAT)	Data setup time		100		25		ns
t _(LOW)	SCL clock low period	V+, See 图 6-1	1300		210		ns
t _(HIGH)	SCL clock high period	See 图 6-1	600		60		ns
t _{FD}	Data fall time	See 图 6-1		300		80	ns
		See 图 6-1		300			ns
t _{RD}	Data rise time	SCLK ≤ 100 kHz, See		1000			ns
t _{FC}	Clock fall time	See 图 6-1		300		40	ns
t _{RC}	Clock rise time	See 图 6-1		300		40	ns

5.7 Typical Characteristics

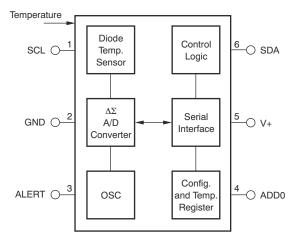
At $T_A = 25$ °C and V+ = 3.3 V, unless otherwise noted.

English Data Sheet: SBOS397

6 Detailed Description

6.1 Overview

The TMP102 device is a digital temperature sensor that is designed for thermal-management and thermal-protection applications. The TMP102 device is two-wire, SMBus and I²C interface-compatible. The device is specified over an operating temperature range of -40°C to 125°C. See *Functional Block Diagram* for a block diagram of the TMP102 device.


The TMP102 device is a temperature sensor. Thermal paths run through the package leads as well as the plastic package. The package leads provide the primary thermal path because of the lower thermal resistance of the metal.

An alternative version of the TMP102 device is available. The TMP112 device has highest accuracy, the same micro-package, and is pin-to-pin compatible.

SUPPLY SUPPLY SPECIFIED COMPATIBLE LOCAL SENSOR ACCURACY SUPPLY DEVICE PACKAGE /OLTAGE VOLTAGE RESOLUTION CALIBRATION CURRENT (MAX) (MIN) (MAX) **DRIFT SLOPE** SOT563 12 bit 0.5°C: (0°C to 65°C) TMP112 3 6 V 7.5 µA 14 V Yes SMBus 1.2 × 1.6 × 0.6 0.0625°C 1°C: (-40°C to 125°C) I²C SOT563 12 bit 2°C: (25°C to 85°C) TMP102 7.5 uA 14 V 3 6 V No SMBus 1.2 × 1.6 × 0.6 0.0625°C 3°C: (-40°C to 125°C)

表 6-1. Advantages of TMP112 versus TMP102

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Digital Temperature Output

The digital output from each temperature measurement is stored in the read-only temperature register. The temperature register of the TMP102 device is configured as a 12-bit, read-only register (configuration register EM bit = 0, see the *Extended Mode (EM)* section), or as a 13-bit, read-only register (configuration register EM bit = 1) that stores the output of the most recent conversion. Two bytes must be read to obtain data and are listed in $\frac{1}{8}$ 6-8 and $\frac{1}{8}$ 6-9. Byte 1 is the most significant byte (MSB), followed by byte 2, the least significant byte (LSB). The first 12 bits (13 bits in extended mode) are used to indicate temperature. The least significant byte does not have to be read if that information is not needed. The data format for temperature is summarized in $\frac{1}{8}$ 6-2 and $\frac{1}{8}$ 6-3. One LSB equals 0.0625°C. Negative numbers are represented in binary twos-complement format. Following power-up or reset, the temperature register reads 0°C until the first conversion is complete. Bit D0 of byte 2 indicates normal mode (EM bit = 0) or extended mode (EM bit = 1), and can be used to distinguish between the two temperature register data formats. The unused bits in the temperature register always read 0.

Product Folder Links: TMP102

Copyright © 2024 Texas Instruments Incorporated

表 6-2. 12-Bit Temperature Data Format	(1	1))
---------------------------------------	----	----	---

A C I I I I I I I I I I I I I I I I I I				
TEMPERATURE (°C)	DIGITAL OUTPUT (BINARY)	HEX		
128	0111 1111 1111	7FF		
127.9375	0111 1111 1111	7FF		
100	0110 0100 0000	640		
80	0101 0000 0000	500		
75	0100 1011 0000	4B0		
50	0011 0010 0000	320		
25	0001 1001 0000	190		
0.25	0000 0000 0100	004		
0	0000 0000 0000	000		
- 0.25	1111 1111 1100	FFC		
- 25	1110 0111 0000	E70		
- 55	1100 1001 0000	C90		

⁽¹⁾ The resolution for the Temp ADC in Internal Temperature mode is 0.0625°C/count.

表 6-2 does not list all temperatures. Use the following rules to obtain the digital data format for a given temperature or the temperature for a given digital data format.

To convert positive temperatures to a digital data format:

- 1. Divide the temperature by the resolution
- 2. Convert the result to binary code with a 12-bit, left-justified format, and MSB = 0 to denote a positive sign.

Example: $(50^{\circ}C) / (0.0625^{\circ}C / LSB) = 800 = 320h = 0011 0010 0000$

To convert a positive digital data format to temperature:

- 1. Convert the 12-bit, left-justified binary temperature result, with the MSB = 0 to denote a positive sign, to a decimal number.
- 2. Multiply the decimal number by the resolution to obtain the positive temperature.

Example: $0011\ 0010\ 0000 = 320h = 800 \times (0.0625^{\circ}C / LSB) = 50^{\circ}C$

To convert negative temperatures to a digital data format:

- 1. Divide the absolute value of the temperature by the resolution, and convert the result to binary code with a 12-bit, left-justified format.
- 2. Generate the twos complement of the result by complementing the binary number and adding one. Denote a negative number with MSB = 1.

Example: $(|-25^{\circ}C|) / (0.0625^{\circ}C / LSB) = 400 = 190h = 0001 1001 0000$

Two's complement format: 1110 0110 1111 + 1 = 1110 0111 0000

To convert a negative digital data format to temperature:

- Generate the twos compliment of the 12-bit, left-justified binary number of the temperature result (with MSB = 1, denoting negative temperature result) by complementing the binary number and adding one. This represents the binary number of the absolute value of the temperature.
- 2. Convert to decimal number and multiply by the resolution to get the absolute temperature, then multiply by 1 for the negative sign.

Example: 1110 0111 0000 has twos compliment of 0001 1001 0000 = 0001 1000 1111 + 1

Convert to temperature: 0001 1001 0000 = 190h = 400; $400 \times (0.0625^{\circ}\text{C} / \text{LSB}) = 25^{\circ}\text{C} = (|-25^{\circ}\text{C}|); (|-25^{\circ}\text{C}|) \times (|-1|) = |-25^{\circ}\text{C}|$

Product Folder Links: TMP102

表 6-3. 13-Bit Temperature Data Format

TEMPERATURE (°C)	DIGITAL OUTPUT (BINARY)	HEX	
150	0 1001 0110 0000	0960	
128	0 1000 0000 0000	0800	
127.9375	0 0111 1111 1111	07FF	
100	0 0110 0100 0000	0640	
80	0 0101 0000 0000	0500	
75	0 0100 1011 0000	04B0	
50	0 0011 0010 0000	0320	
25	0 0001 1001 0000	0190	
0.25	0 0000 0000 0100	0004	
0	0 0000 0000 0000	0000	
- 0.25	1 1111 1111 1100	1FFC	
- 25	1 1110 0111 0000	1E70	
- 55	1 1100 1001 0000	1C90	

6.3.2 Serial Interface

The TMP102 device operates as a target device only on the two-wire bus and SMBus. Connections to the bus are made through the open-drain I/O lines, SDA and SCL. The SDA and SCL pins feature integrated spike suppression filters and Schmitt triggers to minimize the effects of input spikes and bus noise. The TMP102 device supports the transmission protocol for both fast (1 kHz to 400 kHz) and high-speed (1 kHz to 2.85 MHz) modes. All data bytes are transmitted MSB first.

6.3.3 Bus Overview

The device that initiates the transfer is called a *controller*, and the devices controlled by the controller are called *targets*. The bus must be controlled by a controller device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions.

To address a specific device, a START condition is initiated, indicated by pulling the data-line (SDA) from a high to low logic level when SCL is high. All targets on the bus shift in the target address byte on the rising edge of the clock, with the last bit indicating whether a read or write operation is intended. During the ninth clock pulse, the target being addressed responds to the controller by generating an acknowledge and by pulling SDA pin low.

A data transfer is then initiated and sent over eight clock pulses followed by an acknowledge bit. During the data transfer the SDA pin must remain stable when SCL is high, because any change in SDA pin when SCL pin is high is interpreted as a START signal or STOP signal.

When all data have been transferred, the controller generates a STOP condition indicated by pulling SDA pin from low to high, when the SCL pin is high.

6.3.4 Serial Bus Address

To communicate with the TMP102, the controller must first address target devices via a target address byte. The target address byte consists of seven address bits, and a direction bit indicating the intent of executing a read or write operation.

The TMP102 features an address pin to allow up to four devices to be addressed on a single bus. 表 6-4 describes the pin logic levels used to properly connect up to four devices.

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TMP102*

	表 6-4.	Address	Pin	and	Target	Addresses
--	--------	---------	-----	-----	--------	-----------

DEVICE TWO-WIRE ADDRESS	A0 PIN CONNECTION
1001000	Ground
1001001	V+
1001010	SDA
1001011	SCL

6.3.5 Writing and Reading Operation

Accessing a particular register on the TMP102 device is accomplished by writing the appropriate value to the pointer register. The value for the pointer register is the first byte transferred after the target address byte with the R/W bit low. Every write operation to the TMP102 device requires a value for the pointer register (see 🗵 6-2).

When reading from the TMP102 device, the last value stored in the pointer register by a write operation determines which register is read by a read operation. To change the register pointer for a read operation, a new value must be written to the pointer register. This action is accomplished by issuing a target address byte with the R/W bit low, followed by the pointer register byte. No additional data are required. The controller then generates a START condition and sends the target address byte with the R/W bit high to initiate the read command. See 8 6-1 for details of this sequence. If repeated reads from the same register are desired, continually sending the Pointer Register bytes is not necessary because the TMP102 remembers the Pointer Register value until the device is changed by the next write operation.

Register bytes are sent with the most significant byte first, followed by the least significant byte.

6.3.6 Target Mode Operations

The TMP102 can operate as a target receiver or target transmitter. As a target device, the TMP102 never drives the SCL line.

6.3.6.1 Target Receiver Mode

The first byte transmitted by the controller is the target address, with the R/W bit low. The TMP102 then acknowledges reception of a valid address. The next byte transmitted by the controller is the pointer register. The TMP102 then acknowledges reception of the pointer register byte. The next byte or bytes are written to the register addressed by the pointer register. The TMP102 acknowledges reception of each data byte. The controller can terminate data transfer by generating a START or STOP condition...

6.3.6.2 Target Transmitter Mode

The first byte transmitted by the controller is the target address, with the R/ \overline{W} bit high. The target acknowledges reception of a valid target address. The next byte is transmitted by the target and is the most significant byte of the register indicated by the pointer register. The controller acknowledges reception of the data byte. The next byte transmitted by the target is the least significant byte. The controller acknowledges reception of the data byte. The controller terminates data transfer by generating a Not-Acknowledge on reception of any data byte, or generating a START or STOP condition.

6.3.7 SMBus Alert Function

The TMP102 device supports the SMBus alert function. When the TMP102 device operates in Interrupt Mode (TM = 1), the ALERT pin can be connected as an SMBus alert signal. When a controller senses that an ALERT condition is present on the ALERT line, the controller sends an SMBus alert command (0001 1001) to the bus. If the ALERT pin is active, the device acknowledges the SMBus alert command and responds by returning the target address on the SDA line. The eighth bit (LSB) of the target address byte indicates if the ALERT condition was caused by the temperature exceeding T_{HIGH} or falling below T_{LOW}. For POL = 0, the LSB is low if the temperature is greater than or equal to T_{HIGH}; this bit is high if the temperature is less than T_{LOW}. The polarity of this bit is inverted if POL = 1. See 8 6-4 for details of this sequence.

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

11

If multiple devices on the bus respond to the SMBus alert command, arbitration during the target address portion of the SMBus alert command determines which device clears the ALERT status. The device with the lowest two-wire address wins the arbitration. If the TMP102 device wins the arbitration, the ALERT pin inactivates at the completion of the SMBus alert command. If the TMP102 device loses the arbitration, the ALERT pin remains active.

6.3.8 General Call

The TMP102 device responds to a two-wire general call address (000 0000) if the eighth bit is 0. The device acknowledges the general call address and responds to commands in the second byte. If the second byte is 0000 0110, the TMP102 device internal registers are reset to power-up values. The TMP102 device does not support the general address acquire command.

6.3.9 High-Speed (HS) Mode

For the two-wire bus to operate at frequencies above 400 kHz, the controller device must issue an HS-Mode controller code (0000 1xxx) as the first byte after a START condition to switch the bus to high-speed operation. The TMP102 device does not acknowledge this byte, but switches the input filters on SDA and SCL and the output filters on SDA to operate in HS-mode, allowing transfers of up to 2.85 MHz. After sending the HS-Mode controller code and NACK bit, user must send a repeated start before sending the target address. The bus continues to operate in HS-Mode until a STOP condition occurs on the bus. Upon receiving the STOP condition, the TMP102 device switches the input and output filters back to fast-mode operation.

6.3.10 Timeout Function

The TMP102 device resets the serial interface if SCL is held low for 30 ms (typ) between a start and stop condition. The TMP102 device releases the SDA line if the SCL pin is pulled low and waits for a start condition from the host controller. To avoid activating the time-out function, maintaining a communication speed of at least 1 kHz for SCL operating frequency is necessary..

6.3.11 Timing Diagrams

The TMP102 device is two-wire, SMBus, and I^2C -interface compatible. \boxtimes 6-1, \boxtimes 6-2, \boxtimes 6-3, and \boxtimes 6-4 list the various operations on the TMP102 device. Parameters for \boxtimes 6-1 are defined in the *Timing Requirements* table. The bus definitions are defined as follows:

Acknowledge	Each receiving device, when addressed, is obliged to generate an acknowledge bit. A

device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the Acknowledge clock pulse. Setup and hold times must be taken into account. On a controller receive, the termination of the data transfer can be signaled by the controller generating a *not*-

acknowledge (1) on the last byte that has been transmitted by the target.

Bus Idle Both SDA and SCL lines remain high.

Data Transfer The number of data bytes transferred between a START and a STOP condition is not

limited and is determined by the controller device. The TMP102 device can also be used for single byte updates. To update only the MS byte, terminate the communication by issuing a

START or STOP communication on the bus.

Start DataA change in the state of the SDA line, from high to low, when the SCL line is high, defines a START condition. Each data transfer is initiated with a START condition.

Stop Data
A change in the state of the SDA line from low to high when the SCL line is high defines a

STOP condition. Each data transfer is terminated with a repeated START or STOP

condition.

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TMP102*

English Data Sheet: SBOS397

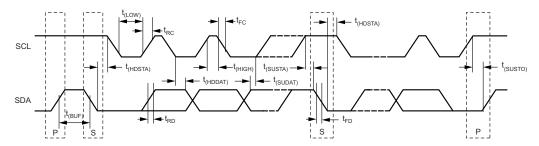
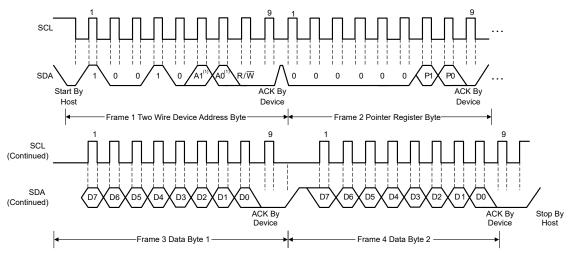



图 6-1. Two-Wire Timing Diagram

NOTE: (1) The value of A0 and A1 are determined by the ADD0 pin.

图 6-2. Two-Wire Timing Diagram for Write Word Format

13

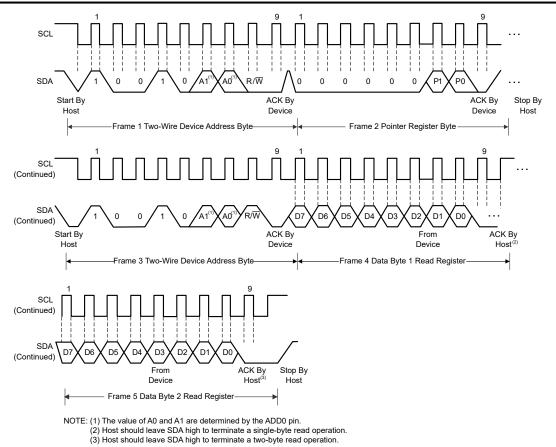


图 6-3. Two-Wire Timing Diagram for Read Word Format

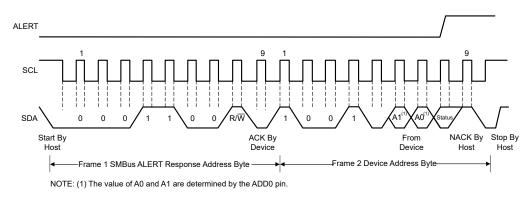
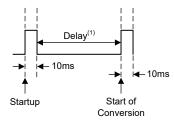


图 6-4. Timing Diagram for SMBus Alert

6.4 Device Functional Modes

6.4.1 Continuous-Conversion Mode


The default mode of the TMP102 device is continuous conversion mode. During continuous-conversion mode, the ADC performs continuous temperature conversions and stores each results to the temperature register, overwriting the result from the previous conversion. The conversion rate bits, CR1 and CR0, configure the TMP102 device for conversion rates of 0.25 Hz, 1 Hz, 4 Hz, or 8 Hz. The default rate is 4 Hz. The TMP102 device has a typical conversion time of 10 ms. To achieve different conversion rates, the TMP102 device makes a conversion and then powers down to wait for the appropriate delay set by CR1 and CR0. 表 6-5 lists the settings for CR1 and CR0.

Copyright © 2024 Texas Instruments Incorporated

	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
CR1	CR0	CONVERSION RATE		
0	0	0.25 Hz		
0	1	1 Hz		
1	0	4 Hz (default)		
1	1	8 Hz		

表 6-5. Conversion Rate Settings

After power-up or general-call reset, the TMP102 immediately starts a conversion, as shown in \(\begin{align*} \exists 6-5. \) The first result is available after 10 ms (typical). The active quiescent current during conversion is 55 µA (typical at +27°C). The quiescent current during delay is 2.6 μ A (typical at +27°C).

Delay is set by CR1 and CR0.

图 6-5. Conversion Start

6.4.2 Extended Mode (EM)

The Extended-Mode bit configures the device for Normal mode operation (EM = 0) or Extended mode operation (EM = 1). In Normal mode, the Temperature Register and high- and low-limit registers use a 12-bit data format. Normal mode is used to make the TMP102 device compatible with the TMP75 device.

Extended mode (EM = 1) allows measurement of temperatures above 128°C by configuring the Temperature Register, and high- and low-limit registers for 13-bit data format.

6.4.3 Shutdown Mode (SD)

The Shutdown-mode bit saves maximum power by shutting down all device circuitry other than the serial interface, reducing current consumption to typically less than 0.15 µA. Shutdown mode enables when the SD bit is 1; the device shuts down when current conversion is completed. When SD is equal to 0, the device maintains a continuous conversion state.

6.4.4 One-Shot/Conversion Ready (OS)

The TMP102 device features a one-shot temperature measurement mode. When the device is in Shutdown Mode, writing a 1 to the OS bit starts a single temperature conversion. During the conversion, the OS bit reads '0'. The device returns to the shutdown state at the completion of the single conversion. After the conversion, the OS bit reads 1. This feature reduces power consumption in the TMP102 device when continuous temperature monitoring is not required.

As a result of the short conversion time, the TMP102 device achieves a higher conversion rate. A single conversion typically takes 10 ms and a read can take place in less than 20 µs. When using One-Shot Mode, 80 or more conversions per second are possible.

6.4.5 Thermostat Mode (TM)

The thermostat-mode bit indicates to the device whether to operate in comparator mode (TM = 0) or Interrupt mode (TM = 1).

Product Folder Links: TMP102

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

15

6.4.5.1 Comparator Mode (TM = 0)

In Comparator mode (TM = 0), the Alert pin is activated when the temperature equals or exceeds the value in the $T_{(HIGH)}$ register and remains active until the temperature falls below the value in the $T_{(LOW)}$ register. For more information on the comparator mode, see the *High- and Low-Limit Registers*.

6.4.5.2 Interrupt Mode (TM = 1)

In Interrupt mode (TM = 1), the Alert pin is activated with the conditions described in *High- and Low-Limit Registers*. The Alert pin is cleared when the host controller reads the temperature register. For more information on the interrupt mode, see the *High- and Low-Limit Registers*.

6.5 Programming

6.5.1 Pointer Register

图 6-6 illustrates the internal register structure of the TMP102 device. The 8-bit Pointer Register of the device is used to address a given data register. The Pointer Register uses the two least-significant bytes (LSBs) (see 表 6-15 and 表 6-16) to identify which of the data registers must respond to a read or write command. 表 6-6 identifies the bits of the Pointer Register byte. During a write command, P2 through P7 must always be '0'. 表 6-7 describes the pointer address of the registers available in the TMP102 device. The power-up reset value of P1 and P0 is 00. By default, the TMP102 device reads the temperature on power up.

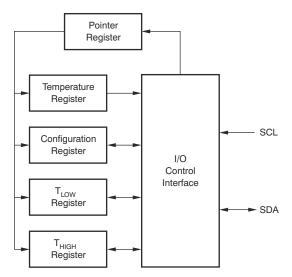


图 6-6. Internal Register Structure

表 6-6. Pointer Register Byte

P7	P6	P5	P4	P3	P2	P1	P0
0	0	0	0	0	0	Regist	er Bits

表 6-7. Pointer Addresses

P1	P0	REGISTER
0	0	Temperature Register (Read Only)
0	1	Configuration Register (Read/Write)
1	0	T _{LOW} Register (Read/Write)
1	1	T _{HIGH} Register (Read/Write)

6.5.2 Temperature Register

The Temperature Register of the TMP102 is configured as a 12-bit, read-only register (Configuration Register EM bit = 0, see the *Extended Mode* section), or as a 13-bit, read-only register (Configuration Register EM bit = 1)

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SBOS397

that stores the output of the most recent conversion. Two bytes must be read to obtain data, and are described in 表 6-8 and 表 6-9. Note that byte 1 is the most significant byte, followed by byte 2, the least significant byte. The first 12 bits (13 bits in Extended mode) are used to indicate temperature. The least significant byte does not have to be read if that information is not needed.

表 6-8. Byte 1 of Temperature Register (1)

D7	D6	D5	D4	D3	D2	D1	D0
T11	T10	Т9	Т8	T7	T6	T5	T4
(T12)	(T11)	(T10)	(T9)	(T8)	(T7)	(T6)	(T5)

⁽¹⁾ Extended mode 13-bit configuration shown in parenthesis.

表 6-9. Byte 2 of Temperature Register (1)

D7	D6	D5	D4	D3	D2	D1	D0
ТЗ	T2	T1	ТО	0	0	0	0
(T4)	(T3)	(T2)	(T1)	(T0)	(0)	(0)	(1)

⁽¹⁾ Extended mode 13-bit configuration shown in parenthesis.

6.5.3 Configuration Register

The Configuration Register is a 16-bit read/write register used to store bits that control the operational modes of the temperature sensor. Read/write operations are performed MSB first. 表 6-10 and 表 6-11 list the format and the power-up or reset value of the configuration register. For compatibility, 表 6-10 and 表 6-11 correspond to the configuration register in the TMP75 device and TMP275 device (for more information see the device data sheets, SBOS288 and SBOS363, respectively). All registers are updated byte by byte.

表 6-10. Byte 1 of Configuration and Power-Up or Reset Format

D7	D6	D5	D4	D3	D2	D1	D0
OS	R1	R0	F1	F0	POL	TM	SD
0	1	1	0	0	0	0	0

表 6-11. Byte 2 of Configuration and Power-Up or Reset Format

					•		
D7	D6	D5	D4	D3	D2	D1	D0
CR1	CR0	AL	EM	0	0	0	0
1	0	1	0	0	0	0	0

6.5.3.1 Shutdown Mode (SD)

The Shutdown-mode bit saves maximum power by shutting down all device circuitry other than the serial interface, reducing current consumption to typically less than 0.5 μA. Shutdown mode enables when the SD bit is 1; the device shuts down when current conversion is completed. When SD is equal to 0, the device maintains a continuous conversion state

6.5.3.2 Thermostat Mode (TM)

The Thermostat mode bit indicates to the device whether to operate in Comparator mode (TM = 0) or Interrupt mode (TM = 1). For more information on comparator and interrupt modes, see the *High- and Low-Limit Registers* section.

6.5.3.3 Polarity (POL)

The polarity bit allows the user to adjust the polarity of the ALERT pin output. If the POL bit is set to 0 (default), the ALERT pin becomes active low. When the POL bit is set to 1, the ALERT pin becomes active high and the state of the ALERT pin is inverted. The operation of the ALERT pin in various modes is illustrated in \(\begin{aligned} \exists 6-7. \exists \)

Product Folder Links: TMP102

Copyright © 2024 Texas Instruments Incorporated

17

提交文档反馈

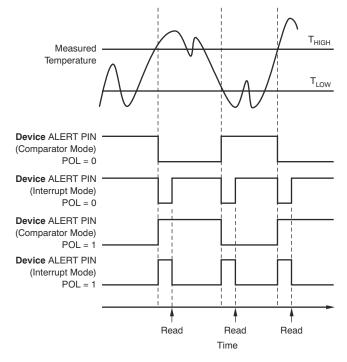


图 6-7. Output Transfer Function Diagrams

6.5.3.4 Fault Queue (F1/F0)

A fault condition exists when the measured temperature exceeds the user-defined limits set in the T_{HIGH} and T_{LOW} registers. Additionally, the number of fault conditions required to generate an alert can be programmed using the fault queue. The fault queue is provided to prevent a false alert as a result of environmental noise. The fault queue requires consecutive fault measurements to trigger the alert function. $\frac{1}{8}$ 6-12 defines the number of measured faults that can be programmed to trigger an alert condition in the device. For T_{HIGH} and T_{LOW} register format and byte order, see the *High- and Low-Limit Registers* section.

 F1
 F0
 CONSECUTIVE FAULTS

 0
 0
 1

 0
 1
 2

 1
 0
 4

 1
 1
 6

表 6-12. TMP102 Fault Settings

6.5.3.5 Converter Resolution (R1/R0)

The converter resolution bits, R1 and R0, are read-only bits. The TMP102 converter resolution is set at device start-up to 11 which sets the temperature register to a 12 bit-resolution.

6.5.3.6 One-Shot (OS)

When the device is in Shutdown Mode, writing a 1 to the OS bit starts a single temperature conversion. During the conversion, the OS bit reads '0'. The device returns to the shutdown state at the completion of the single conversion. For more information on the one-shot conversion mode, see the *One-Shot/Conversion Ready (OS)* section.

Product Folder Links: TMP102

Copyright © 2024 Texas Instruments Incorporated

6.5.3.7 EM Bit

The Extended-Mode bit configures the device for Normal Mode operation (EM = 0) or Extended Mode operation (EM = 1). In normal mode, the temperature register, high-limit register, and low-limit register use a 12-bit data format. For more information on the extended mode, see the *Extended Mode (EM)* section.

6.5.3.8 Alert (AL Bit)

The AL bit is a read-only function. Reading the AL bit provides information about the comparator mode status. The state of the POL bit inverts the polarity of data returned from the AL bit. When the POL bit equals 0, the AL bit reads as 1 until the temperature equals or exceeds $T_{(HIGH)}$ for the programmed number of consecutive faults, causing the AL bit to read as 0. The AL bit continues to read as 0 until the temperature falls below $T_{(LOW)}$ for the programmed number of consecutive faults, when the AL bit again reads as 1. The status of the TM bit does not affect the status of the AL bit.

6.5.3.9 Conversion Rate (CR)

The conversion rate bits, CR1 and CR0, configure the TMP102 device for conversion rates of 0.25 Hz, 1 Hz, 4 Hz, or 8 Hz. The default rate is 4 Hz. For more information on the conversion rate bits, see 表 6-5.

6.5.4 High- and Low-Limit Registers

The temperature limits are stored in the $T_{(LOW)}$ and $T_{(HIGH)}$ registers in the same format as the temperature result, and the values are compared to the temperature result on every conversion. The outcome of the comparison drives the behavior of the ALERT pin, which operates as a comparator output or an interrupt, and is set by the TM bit in the configuration register.

In Comparator mode (TM = 0), the ALERT pin becomes active when the temperature equals or exceeds the value in T_{HIGH} and generates a consecutive number of faults according to fault bits F1 and F0. The ALERT pin remains active until the temperature falls below the indicated T_{LOW} value for the same number of faults.

In Interrupt mode (TM = 1), the ALERT pin becomes active when the temperature equals or exceeds the value in $T_{(HIGH)}$ for a consecutive number of fault conditions (as shown in $\stackrel{?}{\gtrsim} 6-5$). The ALERT pin remains active until a read operation of any register occurs, or the device successfully responds to the SMBus Alert Response address. The ALERT pin will also be cleared if the device is placed in Shutdown mode. When the ALERT pin is cleared, it becomes active again only when temperature falls below $T_{(LOW)}$, and remains active until cleared by a read operation of any register or a successful response to the SMBus Alert Response address. When the ALERT pin is cleared, the above cycle repeats, with the ALERT pin becoming active when the temperature equals or exceeds $T_{(HIGH)}$. The ALERT pin can also be cleared by resetting the device with the General Call Reset command. This action also clears the state of the internal registers in the device, returning the device to Comparator mode (TM = 0).

Both operational modes are represented in 图 6-7. 表 6-13 through 表 6-16 describe the format for the T_{HIGH} and T_{LOW} registers. Note that the most significant byte is sent first, followed by the least significant byte. Power-up reset values for T_{HIGH} and T_{LOW} are: $T_{HIGH} = 80$ °C and $T_{LOW} = 75$ °C. The format of the data for T_{HIGH} and T_{LOW} is the same as for the Temperature Register.

表 6-13. Byte 1 Temperature Register_{HIGH} (1)

D7	D6	D5	D4	D3	D2	D1	D0
H11	H10	H9	H8	H7	H6	H5	H4
(H12)	(H11)	(H10)	(H9)	(H8)	(H7)	(H6)	(H5)

(1) Extended mode 13-bit configuration shown in parenthesis.

Copyright © 2024 Texas Instruments Incorporated

表 6-14. Byte 2 Temperature Register HIGH

			<u> </u>		111011		
D7	D6	D5	D4	D3	D2	D1	D0
Н3	H2	H1	H0	0	0	0	0
(H4)	(H3)	(H2)	(H1)	(H0)	(0)	(0)	(0)

Product Folder Links: TMP102

English Data Sheet: SBOS397

表 6	-15.	Byte	1	Temperature	Reg	gister _{LOW}	(1))
-----	------	------	---	--------------------	-----	-----------------------	-----	---

D7	D6 D5		D4	D3	D2	D1	D0
L11	L10	L9	L8	L7	L6	L5	L4
(L12)	(L11)	(L10)	(L9)	(L8)	(L7)	(L6)	(L5)

(1) Extended mode 13-bit configuration shown in parenthesis.

表 6-16. Byte 2 Temperature RegisterLOW

D7	D6	D5	D4	D3	D2	D1	D0
L3	L2	L1	L0	0	0	0	0
(L4)	(L3)	(L2)	(L1)	(L0)	(0)	(0)	(0)

7 Application and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

7.1 Application Information

The TMP102 device is used to measure the PCB temperature of the board location where the device is mounted. The programmable address options allow up to four locations on the board to be monitored on a single serial bus.

7.2 Typical Application

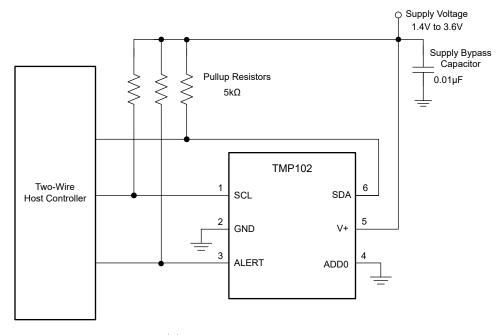


图 7-1. Typical Connections

7.2.1 Design Requirements

The TMP102 device requires pullup resistors on the SCL, SDA, and ALERT pins. The recommended value for the pullup resistors is 5-k Ω . In some applications the pullup resistor can be lower or higher than 5 k Ω but must not exceed 3 mA of current on any of those pins. A 0.01- μ F bypass capacitor on the supply is recommended as shown in \boxtimes 7-1. The SCL and SDA lines can be pulled up to a supply that is equal to or higher than V+ through

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TMP102*

the pullup resistors. To configure one of four different addresses on the bus, connect the ADD0 pin to either the GND, V+, SDA, or SCL pin.

7.2.2 Detailed Design Procedure

Place the TMP102 device in close proximity to the heat source that must be monitored, with a proper layout for good thermal coupling. This placement verifies that temperature changes are captured within the shortest possible time interval. To maintain accuracy in applications that require air or surface temperature measurement, care must be taken to isolate the package and leads from ambient air temperature. A thermally-conductive adhesive is helpful in achieving accurate surface temperature measurement.

The TMP102 device is a very low-power device and generates very low noise on the supply bus. Applying an RC filter to the V+ pin of the TMP102 device can further reduce any noise that the TMP102 device can propagate to other components. $R_{(F)}$ in \mathbb{Z} 7-2 must be less than 5 k Ω and $C_{(F)}$ must be greater than 10 nF.

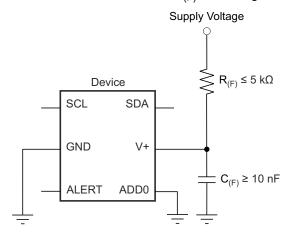


图 7-2. Noise Reduction Techniques

7.2.3 Application Curve

🗵 7-3 shows the step response of the TMP102 device to a submersion in an oil bath of 100°C from room temperature (27°C). The time-constant, or the time for the output to reach 63% of the input step, is 0.8 s. The time-constant result depends on the printed circuit board (PCB) that the TMP102 device is mounted. For this test, the TMP102 device was soldered to a two-layer PCB that measured 0.375 inch × 0.437 inch.

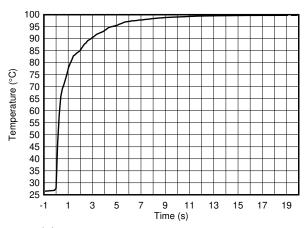


图 7-3. Temperature Step Response

Product Folder Links: TMP102

21

English Data Sheet: SBOS397

7.3 Power Supply Recommendations

The TMP102 device operates with power supply in the range of 1.4 to 3.6 V. The device is optimized for operation at 3.3-V supply but can measure temperature accurately in the full supply range.

A power-supply bypass capacitor is required for proper operation. Place this capacitor as close as possible to the supply and ground pins of the device. A typical value for this supply bypass capacitor is 0.01 μ F. Applications with noisy or high-impedance power supplies can require additional decoupling capacitors to reject power-supply noise.

7.4 Layout

7.4.1 Layout Guidelines

Place the power-supply bypass capacitor as close as possible to the supply and ground pins. The recommended value of this bypass capacitor is 0.01 $\,\mu$ F. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies. Pull up the open-drain output pins (SDA , SCL and ALERT) through 5-k Ω pullup resistors.

7.4.2 Layout Example

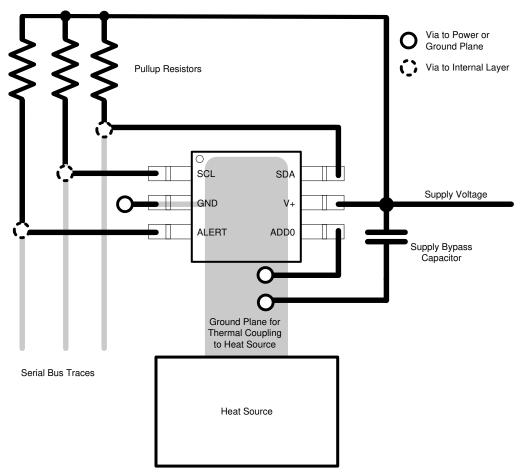


图 7-4. TMP102 Layout Example

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TMP102*

8 Device and Documentation Support

8.1 Documentation Support

8.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, TMPx75 Temperature Sensor With I2C and SMBus Interface in Industry Standard LM75
 Form Factor and Pinout, data sheet
- Texas Instruments, TMP275 ±0.5°C Temperature Sensor With I 2C and SMBus Interface in Industry Standard LM75 Form Factor and Pinout, data sheet
- Texas Instruments, Capacitive Touch Operated Automotive LED Dome Light with Haptics Feedback, Design Guide

8.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

8.3 支持资源

TI E2E[™] 中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

8.4 Trademarks

SMBus[™] is a trademark of Intel, Inc.

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

8.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

8.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

9 Revision History

Copyright © 2024 Texas Instruments Incorporated

注:以前版本的页码可能与当前版本的页码不同

C	hanges from Revision H (December 2018) to Revision I (June 2024)	Page
•	通篇更新了表格、图和交叉参考的编号格式	1
•	将提到 I ² C 的旧术语实例通篇更改为控制器和目标	1
•	通篇更改了"转换时间"	1
•	通篇更改了工作电流、关断电流、平均和延迟静态电流	1
•	Changed the SCL pin description in <i>Pin Functions</i> table	3
•	Removed machine model (MM) from ESD Ratings section	4
•	Changed DRL package Thermal Information section	4
•	Changed "Conversion time" in Electrical Characteristics table	<u>5</u>
•	Added Average quiescent current at 1Hz conversion mode in Electrical Characteristics table	<mark>5</mark>

Product Folder Links: TMP102

•	Changed Average quiescent current at 4Hz conversion mode in Electrical Characteristics table	5
•	Changed Average quiescent current when serial bus active, SCL frequency = 400 kHz in Electrical Characteristics table	5
•	Changed Average quiescent current when serial bus active, SCL frequency = 2.85MHz in Electrical Characteristics table	5
•	Changed the frequency from 3.4 to 2.85 MHz in the POWER SUPPLY section of the <i>Electrical Charact</i> table	teristics 5
•	Changed shutdown current for both serial bus inactive and active, SCL frequency = 400 kHz in Electric Characteristics table	5
•	Changed shutdown current when serial bus active, SCL frequency = 2.85 MHz in Electrical Characteristable	5
•	Changed Average Quiescent Current vs Temperature, Shutdown Current vs Temperature, Conversion vs Temperature, and Quiescent Current vs Bus Frequency graphs in the <i>Typical Characteristics</i> section Changed the <i>Interrupt Mode (TM=1)</i> section	n <mark>7</mark>
CI	nanges from Revision G (September 2018) to Revision H (December 2018)	Page
•	Changed Absolute Maximum Ratings for voltage at SCL, SDA and ADD0 pin Changed Absolute Maximum Ratings for voltage at ALERT pin	
CI	nanges from Revision F (September 2018) to Revision G (November 2018)	Page
•	Changed input voltage maximum value from: 3.6V to: 4V	4
•	Changed output voltage maximum value from: 3.6V to: ((V+) + 0.5) and \leq 4V	4
•	Changed Junction-to-ambient thermal resistance from 200 °C/W to 210.3 °C/W	
•	Changed Junction-to-case (top) thermal resistance from 73.7 °C/W to 105.0 °C/W	4
•	Changed Junction-to-board thermal resistance from 34.4 °C/W to 87.5 °C/W	4
•	Changed Junction-to-top characterization parameter from 3.1 °C/W to 6.1 °C/W	4
•	Changed Junction-to-board characterization parameter from 34.2 °C/W to 87.0 °C/W	
• _	Added the Receiving Notification of Documentation Updates section	23
	nanges from Revision E (April 2015) to Revision F (December 2015)	Page
•	新增了 TI 设计	
•	添加了 "NIST 特性" 要点	
<u>.</u>	向 <i>说明</i> 部分添加了最后一段	1
CI	nanges from Revision D (September 2014) to Revision E (December 2014)	Page
• •	Changed the Temperature Error vs Temperature graph in the <i>Typical Characteristics</i> section	
CI	nanges from Revision C (October 2012) to Revision D (September 2014)	Page
•	Added Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	4

Copyright © 2024 Texas Instruments Incorporated

Changed parameters in <i>Timing Requirements</i> .	6
Changes from Revision B (October 2008) to Revision C (October 2012)	Page
Changed DRL package Thermal Information section	4
Changed "Conversion time" in Electrical Characteristics table	
Changed values for Data Hold Time parameter in Timing Requirements	12

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TMP102

25

English Data Sheet: SBOS397

www.ti.com 30-Jul-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TMP102AIDRLR	ACTIVE	SOT-5X3	DRL	6	4000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	CBZ	Samples
TMP102AIDRLT	OBSOLETE	SOT-5X3	DRL	6		TBD	Call TI	Call TI	-40 to 125	CBZ	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

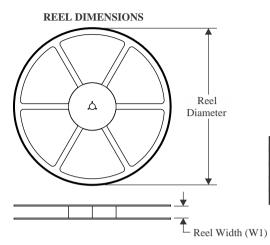
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

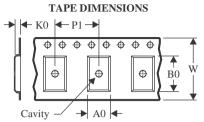
PACKAGE OPTION ADDENDUM

www.ti.com 30-Jul-2024

OTHER QUALIFIED VERSIONS OF TMP102:

Automotive : TMP102-Q1


NOTE: Qualified Version Definitions:

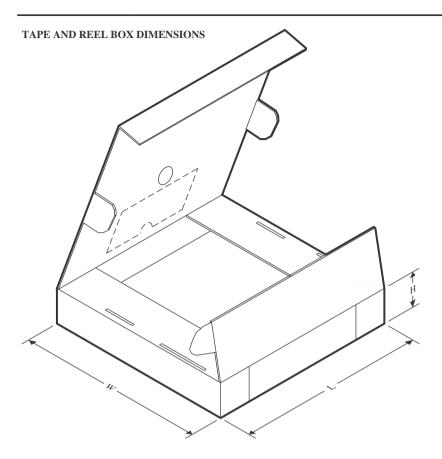

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 7-Nov-2024

TAPE AND REEL INFORMATION

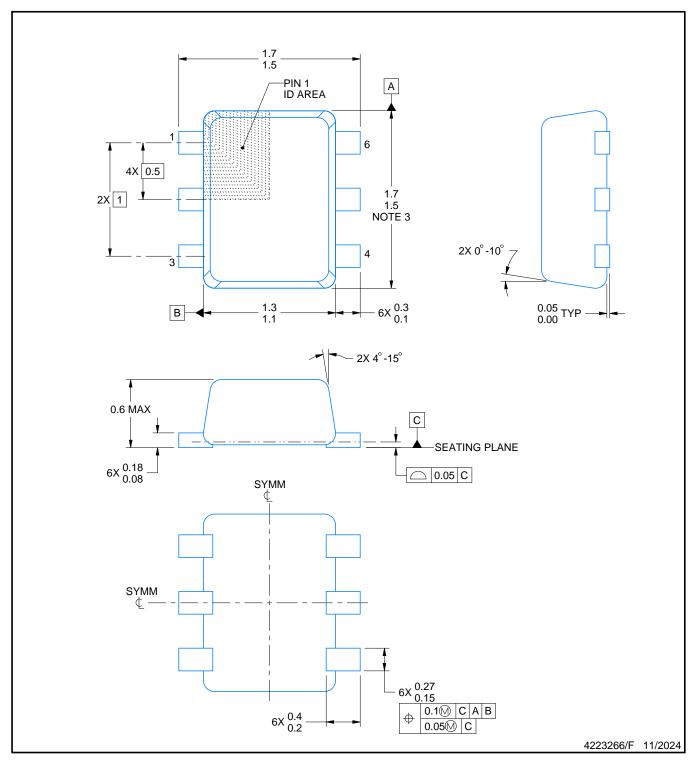
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMP102AIDRLR	SOT-5X3	DRL	6	4000	180.0	8.4	2.0	1.8	0.75	4.0	8.0	Q3
TMP102AIDRLR	SOT-5X3	DRL	6	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3

www.ti.com 7-Nov-2024

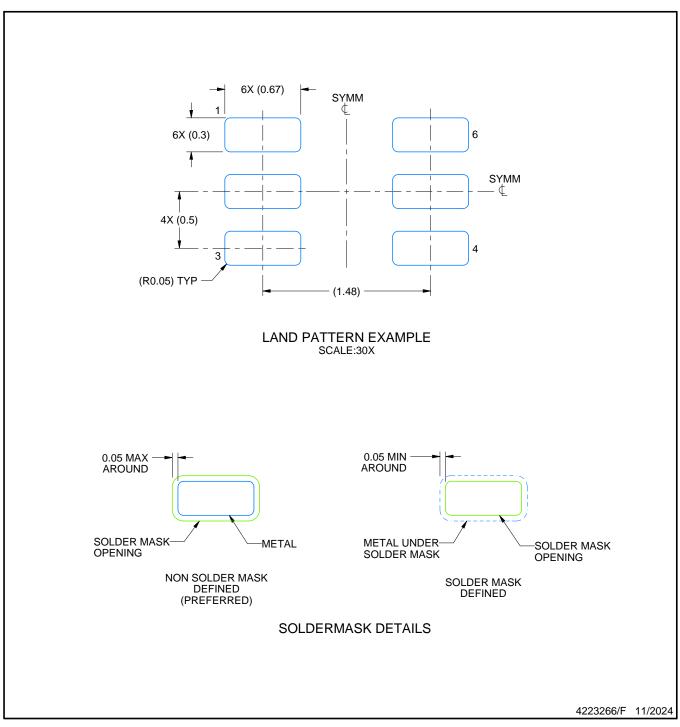


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMP102AIDRLR	SOT-5X3	DRL	6	4000	210.0	185.0	35.0
TMP102AIDRLR	SOT-5X3	DRL	6	4000	202.0	201.0	28.0

PLASTIC SMALL OUTLINE

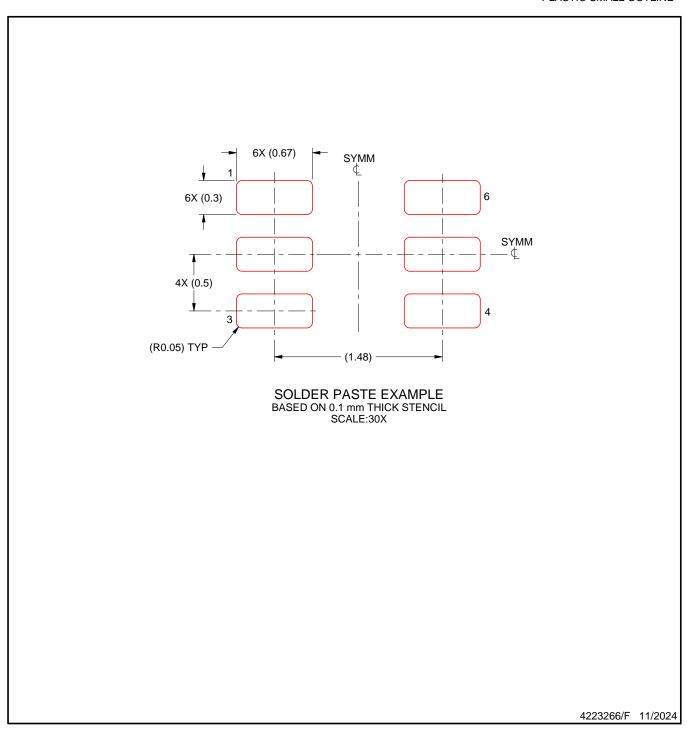
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-293 Variation UAAD

PLASTIC SMALL OUTLINE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司