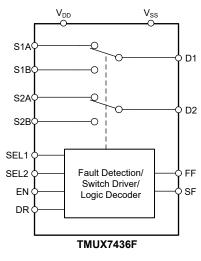


TMUX7436F

ZHCSPX3A - OCTOBER 2022 - REVISED NOVEMBER 2022

TMUX7436F 具有故障保护功能、闩锁 效应抑制和 1.8V 逻辑的 ±60V 双路 2:1 多路复用器

1 特性


宽电源电压范围:

Texas

- 单电源:8V 至 44V
- 双电源:**±5V**至**±22V**
- 集成故障保护:
 - 过压保护(从源极到电源或到漏极):±85V
 - 过压保护:±60V
 - 断电保护:±60V
 - 指示故障状态的中断标志
 - 故障期间的输出开路
- 器件构造可实现闩锁效应抑制
- 6kV 人体放电模型 (HBM) ESD 等级
- 低导通电阻:8.6Ω 典型值
- 平缓的导通电阻:10mΩ 典型值
- 支持 1.8V 逻辑电平
- 失效防护逻辑:高达44V(与电源无关)
- 业界通用的 TSSOP 封装和较小的 WQFN 封装

2 应用

- 工厂自动化和控制
- 可编程逻辑控制器 (PLC)
- 模拟输入模块
- 半导体测试设备
- 电池测试设备
- 伺服驱动器控制模块
- 数据采集系统 (DAQ)

功能模块图

3 说明

TMUX7436F 是一款具有闩锁效应抑制的互补金属氧化 物半导体 (CMOS) 模拟多路复用器,采用双通道 2:1 配置。该器件在双电源(±5V至±22V)、单电源(8V 至 44V) 或非对称电源 (例如 V_{DD} = 12V, V_{SS} = -5V)供电情况下运行良好。TMUX7436F器件在通电 和断电情况下均提供过压保护,适用于无法精确控制电 源时序的应用。

在通电和断电条件下,该器件可阻断最高+60V或 -60V 的对地故障电压。在没有电源的情况下,无论开 关输入条件如何,开关通道都将保持关断状态,并且逻 辑引脚上的任何控制信号都会被忽略。如果任何 Sx 引 脚上的信号路径输入电压超过电源电压(V_{DD}或V_{SS}) 一个阈值电压 (V_T), 那么通道将会关闭, 并且 Sx 引脚 将变为高阻态。漏极引脚 (Dx) 将被拉至超出范围的故 障电源电压或保持悬空,具体取决于 DR 控制逻辑。 TMUX7436F 器件提供两个低电平有效中断标志 (FF 和 SF),用于指示故障详情并有助于系统诊断。FF 标志指示是否有任何源输入出现故障,而 SF 标志用于 说明出现故障状态的特定输入。

封装信息(1)

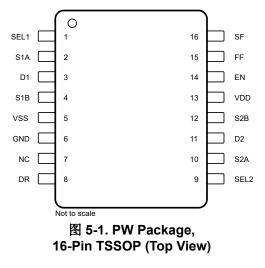
器件型号	封装	封装尺寸(标称值)
	PW(TSSOP,16)	5.00mm × 4.40mm
TMUX7436F	RRP(WQFN,16) (2)	4.00mm × 4.00mm

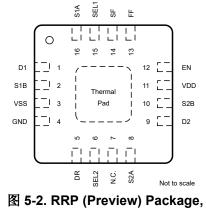
如需了解所有可用封装,请参阅数据表末尾的可订购产品附 (1)录。

预发布封装 (2)

Table of Contents

1	特性1
	应用1
3	说明1
4	Revision History2
5	Pin Configuration and Functions
6	Specifications
	6.1 Absolute Maximum Ratings4
	6.2 ESD Ratings 4
	6.3 Thermal Information5
	6.4 Recommended Operating Conditions5
	6.5 Electrical Characteristics: Global6
	6.6 ±15 V Dual Supply: Electrical Characteristics7
	6.7 ±20 V Dual Supply: Electrical Characteristics10
	6.8 12 V Single Supply: Electrical Characteristics 13
	6.9 36 V Single Supply: Electrical Characteristics 16
	6.10 Typical Characteristics
7	Parameter Measurement Information25
	7.1 On-Resistance
	7.2 Off-Leakage Current
	7.3 On-Leakage Current
	7.4 Input and Output Leakage Current Under
	Overvoltage Fault
	7.5 Enable Delay Time
	7.6 Break-Before-Make Delay
	7.7 Transition Time
	7.8 Fault Response Time
	7.9 Fault Recovery Time
	7.10 Fault Flag Response Time


7.11 Fault Flag Recovery Time	<mark>30</mark>
7.12 Charge Injection	31
7.13 Off Isolation	31
7.14 Crosstalk	
7.15 Bandwidth	
7.16 THD + Noise	
8 Detailed Description	
8.1 Overview	
8.2 Functional Block Diagram	
8.3 Feature Description	
8.4 Device Functional Modes	
9 Application and Implementation	
9.1 Application Information	
9.2 Typical Application	
10 Power Supply Recommendations	
11 Layout	
11.1 Layout Guidelines	
11.2 Layout Example	
12 Device and Documentation Support	
12.1 Documentation Support	
12.2 接收文档更新通知	
12.3 支持资源	
12.4 Trademarks	
12.5 Electrostatic Discharge Caution	
12.6 术语表	
13 Mechanical, Packaging, and Orderable	
Information	43


4 Revision History

Cł	nanges from Revision * (October 2022) to Revision A (November 2022)	Page
•	将数据表的状态从 <i>预告信息</i> 更改为"量产数据"	1

5 Pin Configuration and Functions

16-Pin WQFN (Top View)

	PIN					
NAME	TSSOP	WQFN ⁽²⁾	IYPE()	DESCRIPTION		
D1	3	1	I/O	Drain pin 1. Can be an input or output. The drain pin is not overvoltage protected.		
D2	11	9	I/O	Drain pin 2. Can be an input or output. The drain pin is not overvoltage protected.		
DR	8	5	I	Drain Response (DR) input. Tying the DR pin to GND enables the drain to be pulled to V_{DD} or V_{SS} through a 40 k Ω resistor during an overvoltage fault event. The drain pin becomes open circuit when the DR pin is a logic high or left floating.		
EN	14	12	I	Active high logic enable (EN) pin, has internal 4 M Ω pull-down resistor. The device is disabled and all switches become high impedance when the pin is low. As provided in $\frac{1}{8}$ 8-1, when the pin is high, the SELx logic inputs determine individual switch states.		
FF	15	13	0	General fault flag. This pin is an open drain output and is asserted low when overvoltage condition is detected on any of the source (Sxy) input pins. Connect this pin to an external supply (1.8 V to 5.5 V) through a 1 k Ω pull-up resistor.		
GND	6	4	Р	Ground (0 V) reference		
N.C.	7	7		No internal connection. This pin can be shorted to GND or left floating.		
S1A	2	16	I/O	Overvoltage protected source pin 1A. Can be an input or output.		
S1B	4	2	I/O	Overvoltage protected source pin 1B. Can be an input or output.		
S2A	10	8	I/O	Overvoltage protected source pin 2A. Can be an input or output.		
S2B	12	10	I/O	Overvoltage protected source pin 2B. Can be an input or output.		
SEL1	1	15	I	Logic control input 1.		
SEL2	9	6	I	Logic control input 2.		
SF	16	14	0	Specific fault flag. This pin is an open drain output and is asserted low when an overvoltage condition is detected on a specific (Sxy) input pin, depending on the state of the SELx pins, as provided in $\frac{1}{8}$ 8-1. Connect this pin to an external supply (1.8 V to 5.5 V) through a 1 k Ω pull-up resistor.		
V _{DD}	13	11	Ρ	Positive power supply. This pin is the most positive power-supply potential. Connect a decoupling capacitor ranging from 0.1 μF to 10 μF between V_{DD} and GND for reliable operation.		
V _{SS}	5	3	Р	Negative power supply. This pin is the most negative power-supply potential. This pin can be connected to ground in single-supply applications. Connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V _{SS} and GND for reliable operation.		
	Thermal Pad	l	_	The thermal pad is not connected internally. It is recommended to tie the pad to GND or VSS for best performance.		

表 5-1. Pin Functions

(1) I = input, O = output, I/O = input and output, P = power.

(2) Preview package.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{DD} to V _{SS}			48	V
V _{DD} to GND	Supply voltage	- 0.3	48	V
V _{SS} to GND		- 48	0.3	V
V _S to GND	Source input pin (Sx) voltage to GND	- 65	65	V
V_{S} to V_{DD}	Source input pin (Sx) voltage to V _{DD}	- 90		V
V_{S} to V_{SS}	Source input pin (Sx) voltage to V _{SS}		90	V
V _D	Drain pin (Dx) voltage	V _{SS} - 0.7	V _{DD} +0.7	V
V _{LOGIC}	Logic control input pin voltage (EN, SELx, DR) ⁽²⁾	GND - 0.7	48	V
V _{xF}	Logic output pin voltage (FF, SF) ⁽²⁾	GND - 0.7	6	V
I _{LOGIC}	Logic control input pin current (EN, SELx, DR) ⁽²⁾	- 30	30	mA
I _{xF}	Logic output pin current (FF, SF) ⁽²⁾	- 10	10	mA
I _S or I _{D (CONT)}	Source or drain continuous current (Sx or Dx)	I _{DC} ± 10 % ⁽³⁾	I _{DC} ± 10 % ⁽³⁾	mA
T _{stg}	Storage temperature	- 65	150	°C
T _A	Ambient temperature	- 55	150	°C
TJ	Junction temperature		150	°C
P _{tot} ⁽⁴⁾	Total power dissipation (TSSOP)		650	mW

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) Stresses have to be kept at or below both voltage and current ratings at all time.

(3) Refer to Recommended Operating Conditions for I_{DC} ratings.

(4) For TSSOP package: P_{tot} derates linearly above $T_A = 70^{\circ}$ C by 10.1 mW/°C.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±4000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all $pins^{(2)}$	±750	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Thermal Information

		TMUX		
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	RRP (WQFN)	UNIT
		16 PINS	16 PINS	
R _{0 JA}	Junction-to-ambient thermal resistance	100.4	TBD	°C/W
R _{0 JC(top)}	Junction-to-case (top) thermal resistance	31.3	TBD	°C/W
R _{0 JB}	Junction-to-board thermal resistance	46.4	TBD	°C/W
ΨJT	Junction-to-top characterization parameter	1.7	TBD	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	45.8	TBD	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	TBD	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
V _{DD} - V _{SS} (1)	Power supply voltage differential		8	44	v
V _{DD}	Positive power supply voltage		5	44	v
V _S	Source pin (Sx) voltage (non-fault condition)		V _{SS}	V _{DD}	
V _S to GND	Source pin (Sx) voltage to GND (fault condition)		- 60	60	
V_{S} to V_{DD} ⁽²⁾	Source pin (Sx) voltage to V_{DD} or V_D (fault condition)		- 85		V
$V_{\rm S}$ to $V_{\rm SS}$ ⁽²⁾	Source pin (Sx) voltage to V_{SS} or V_D (fault condition)			85	
V _D	Drain pin (Dx) voltage		V _{SS}	V _{DD}	
V _{LOGIC}	Logic control input pin voltage (EN, SELx, DR)		GND	44	v
V _{xF} ⁽³⁾	Logic output pin voltage (FF, SF)		GND	5.5	
T _A	Ambient temperature		- 40	125	°C
		T _A = 25°C		115	mA
I _{DC}	Continuous current through switch operating 1 channel, TSSOP package	T _A = 85°C		115	mA
		T _A = 125°C		85	mA
		T _A = 25°C		115	mA
I _{DC}	Continuous current through switch operating max number of channels at the same time, TSSOP package	T _A = 85°C		115	mA
l		T _A = 125°C		60	mA

(1)

 V_{DD} and V_{SS} can be any value as long as 8 V \leq ($V_{DD} - V_{SS}$) \leq 44 V, and the minimum V_{DD} is met. Source pin voltage (Sx) under a fault condition may not exceed 85 V from supply pins (V_{DD} and V_{SS} .) or drain pins (D, Dx). (2)

(3) Logic output pin (FF) is an open drain output and should be pulled up to a voltage within the maximum ratings.

6.5 Electrical Characteristics: Global

at T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITION	IS	MIN	TYP	MAX	UNIT
ANALOG SW	ЛТСН	-		_			
V _T	Threshold voltage for fault detected	or	25°C		0.7		V
LOGIC INPU							
V _{IH}	High-level input voltage	EN, SELx, DR pins	- 40°C to +125°C	1.3		44	V
V _{IL}	Low-level input voltage	EN, SELx, DR pins	- 40°C to +125°C	0		0.8	V
V _{OL(FLAG)}	Low-level output voltage	FF and SF pins, I _O = 5 mA	- 40°C to +125°C			0.35	V
POWER SUP	PLY						
Un Un	Undervoltage lockout (UVLO)	Rising edge, single supply	- 40°C to +125°C	5.1	5.8	6.6	V
V _{UVLO}	SUPPLY	Falling edge, single supply	- 40°C to +125°C	5	5.7	6.4	V
V _{HYS}	V _{DD} Undervoltage lockout (UVLO) hysteresis	Single supply	- 40°C to +125°C		0.2		V
R _{D(OVP)}	Drain resistance to supply rail during overvoltage event on selected source pin	Drain resistance to supply rail during overvoltage event on selected source pin	25°C		40		kΩ

6.6 ±15 V Dual Supply: Electrical Characteristics

 V_{DD} = +15 V ± 10%, V_{SS} = -15 V ±10%, GND = 0 V (unless otherwise noted)

Typical at V_{DD} = +15 V, V_{SS} = -15 V, T_A = 25 °C (unless otherwise noted)

PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
СН	·					
		25°C		8.6	11	
On-resistance		- 40°C to +85°C			14	Ω
		- 40°C to +125°C			16.5	
		25°C		0.06	0.45	
On-resistance mismatch between channels		- 40°C to +85°C			0.5	Ω
		- 40°C to +125°C			0.6	
		25°C		0.01	0.4	
On-resistance flatness		- 40°C to +85°C			0.4	Ω
		- 40°C to +125°C			0.4	
On-resistance drift	V _S = 0 V, I _S = - 10 mA	- 40°C to +125°C		0.04		Ω/°C
	V _{DD} = 16.5 V, V _{SS} = - 16.5 V	25°C	- 0.7	0.03	0.7	
Input leakage current ⁽¹⁾	Switch state is off $V_{-} = \pm 10 V_{-} = 10 V_{-}$	- 40°C to +85°C	- 2		2	nA
	$V_{\rm D} = -10 \text{ V} / + 10 \text{ V}$	- 40°C to +125°C	- 11		11	
	V _{DD} = 16.5 V, V _{SS} = - 16.5 V	25°C	- 1.4	0.06	1.4	
Output off leakage current ⁽¹⁾	Switch state is off	- 40°C to +85°C	- 4		4	nA
	$V_{\rm S} = -10 \text{ V} / -10 \text{ V}$	- 40°C to +125°C	- 24		24	
Output on leakage current ⁽²⁾	V_{DD} = 16.5 V, V_{SS} = - 16.5 V Switch state is on V_S = V_D = ±10 V	25°C	- 1.4	0.08	1.4	
		- 40°C to +85°C	- 4		4	nA
		- 40°C to +125°C	- 27		27	
ION						
Input leakage current durring overvoltage	$V_{S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	- 40°C to +125°C		±100		μA
Input leakage current during overvoltage with grounded supply voltages	$V_{S} = \pm 60 \text{ V}, \text{GND} = 0 \text{ V}$ $V_{DD} = V_{SS} = 0 \text{ V}$	- 40°C to +125°C		±125		μA
Input leakage current during overvoltage with floating supply voltages	$V_{S} = \pm 60 \text{ V}, \text{GND} = 0 \text{ V},$ $V_{DD} = V_{SS} = \text{floating}$	- 40°C to +125°C		±125		μA
		25°C	- 20	±0.1	20	
Output leakage current		- 40°C to +85°C	- 30		30	nA
during overvoltage	$v_{\rm DD} = 10.3 v, v_{\rm SS} = -10.3 v$	- 40°C to +125°C	- 60		60	
Output la pluma sumant		25°C	- 30	±0.01	30	
during overvoltage with	$V_{\rm S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$	- 40°C to +85°C	- 50		50	nA
grounded supply voltages	$v_{DD} = v_{SS} = 0 v$	- 40°C to +125°C	- 90		90	
		25°C		±4		
Output leakage current during overvoltage with	$V_{\rm S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$	- 40°C to +85°C		±6		μA
floating supply voltages	$v_{DD} = v_{SS} = noating$			±8		•
				-	±1.6	
High-level input current	$V_{EN} = V_{SELx} = V_{DR} = V_{DD}$					μA
		25°C			±1	
	CH On-resistance On-resistance mismatch between channels On-resistance flatness On-resistance drift Input leakage current ⁽¹⁾ Output off leakage current ⁽²⁾ Output on leakage current ⁽²⁾ IN Input leakage current during overvoltage with grounded supply voltages Input leakage current during overvoltage with floating supply voltages Output leakage current during overvoltage Input leakage current during overvoltage with floating supply voltages Output leakage current during overvoltage Output leakage current during overvoltage Output leakage current during overvoltage with floating supply voltages Output leakage current during overvoltage with grounded supply voltages Output leakage current during overvoltage with grounded supply voltages Output leakage current during overvoltage with grounded supply voltages Output leakage current during overvoltage with grounded supply voltages	CH $V_S = -10 \vee to +10 \vee I_D = -10 \text{ mA}$ On-resistance $V_S = -10 \vee to +10 \vee I_D = -10 \text{ mA}$ On-resistance mismatch between channels $V_S = -10 \vee to +10 \vee I_D = -10 \text{ mA}$ On-resistance flatness $V_S = -10 \vee to +10 \vee I_D = -10 \text{ mA}$ On-resistance drift $V_S = 0 \vee, I_S = -10 \text{ mA}$ On-resistance drift $V_S = 0 \vee, I_S = -10 \text{ mA}$ On-resistance drift $V_S = 0 \vee, I_S = -10 \text{ mA}$ On-resistance drift $V_S = 0 \vee, I_S = -10 \text{ mA}$ On-resistance drift $V_S = 0 \vee, I_S = -10 \text{ mA}$ On-resistance drift $V_S = 0 \vee, I_S = -10 \text{ mA}$ On-resistance drift $V_S = 0 \vee, I_S = -10 \text{ mA}$ Output leakage current ⁽¹⁾ $V_{DD} = 16.5 \vee, V_{SS} = -16.5 \vee$ Output off leakage current ⁽²⁾ $V_{DD} = 16.5 \vee, V_{SS} = -16.5 \vee$ Output on leakage current ⁽²⁾ $V_{DD} = 16.5 \vee, V_{SS} = -16.5 \vee$ Output leakage current during overvoltage $V_S = \pm 60 \vee, \text{GND} = 0 \vee, V_{DD} = V_{SS} = 0 \vee$ Input leakage current during overvoltage with floating supply voltages $V_S = \pm 60 \vee, \text{GND} = 0 \vee, V_{DD} = V_{SS} = 0 \vee$ Output leakage current during overvoltage with grounded supply voltages $V_S = \pm 60 \vee, \text{GND} = 0 \vee, V_{DD} = V_{SS} = 0 \vee$ Output leakage current during overvoltage with grou	CH 25°C On-resistance $V_S = -10 \text{ V to } +10 \text{ V}$ $I_0 = -10 \text{ mA}$ $\frac{25°C}{-40°C \text{ to } +25°C}$ On-resistance mismatch between channels $V_S = -10 \text{ V to } +10 \text{ V}$ $I_0 = -10 \text{ mA}$ $\frac{25°C}{-40°C \text{ to } +125°C}$ On-resistance flatness $V_S = -10 \text{ V to } +10 \text{ V}$ $I_0 = -10 \text{ mA}$ $\frac{40°C \text{ to } +85°C}{-40°C \text{ to } +125°C}$ On-resistance drift $V_S = -10 \text{ V to } +10 \text{ V}$ $I_0 = -10 \text{ mA}$ $\frac{40°C \text{ to } +25°C}{-40°C \text{ to } +125°C}$ On-resistance drift $V_S = -10 \text{ V to } +10 \text{ V}$ $V_S = -10 \text{ V / - 10 \text{ N}$ $\frac{25°C}{-40°C \text{ to } +125°C}$ Input leakage current(1) $V_S = 0 \text{ V}, I_S = -16.5 \text{ V}$ Switch state is off $V_S = +10 \text{ V / - 10 \text{ V}$ $\frac{25°C}{-40°C \text{ to } +125°C}$ Output off leakage current(2) $V_{D_D} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ Switch state is off $V_S = +10 \text{ V / - 10 \text{ V}$ $\frac{25°C}{-40°C \text{ to } +125°C}$ Output on leakage current(2) $V_{D_D} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ Switch state is off $V_S = +50 \text{ V}, \text{ CND } = 0 \text{ V}$ $\frac{40°C \text{ to } +125°C}{-40°C \text{ to } +125°C}$ Input leakage current(2) $V_S = \pm 60 \text{ V}, \text{ GND } = 0 \text{ V}$ $\frac{40°C \text{ to } +125°C}{-40°C \text{ to } +125°C}$ Input leakage current during overvoltage with floating supply voltages $V_S = \pm 60 \text{ V}, \text{ GND } = 0 \text{ V},$ $\frac{40°C \text{ to } +125°C}{-40$	$ \begin{array}{ c c c c c } \mbox{CH} & V_{g} = -10 \ V \ b + 10 \ V \\ I_{p} = -10 \ mA & \frac{25^{\circ} C}{-40^{\circ} C \ b + 155^{\circ} C} & \frac{-40^{\circ} C \ b + 155^{\circ} C}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-40^{\circ} C \ b + 125^{\circ} C}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-40^{\circ} C \ b + 125^{\circ} C}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-40^{\circ} C \ b + 125^{\circ} C}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-40^{\circ} C \ b + 125^{\circ} C}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-40^{\circ} C \ b + 125^{\circ} C}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-40^{\circ} C \ b + 125^{\circ} C}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-40^{\circ} C \ b + 125^{\circ} C}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-40^{\circ} C \ b + 125^{\circ} C}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-10}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-11}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-14}{-40^{\circ} C \ b + 125^{\circ} C} & \frac{-27}{-40^{\circ} C \ b + 125^{\circ} C} &$	$ \begin{array}{ c c c c c c } CH & & & & & & & & & & & & & & & & & & $	$ \begin{array}{ c c c c c c } \mbox{CH} & V_{g} = -10 \ V \ to +10 \ V \\ I_{Q} = -10 \ mA & V_{g} = -10 \ V \ to +10 \ V \\ I_{Q} = -10 \ mA & -40^{\circ} C \ to +125^{\circ} C & 0.06 & 0.45 \\ -40^{\circ} C \ to +125^{\circ} C & 0.06 & 0.45 \\ -40^{\circ} C \ to +125^{\circ} C & 0.06 & 0.45 \\ -40^{\circ} C \ to +125^{\circ} C & 0.06 & 0.45 \\ -40^{\circ} C \ to +125^{\circ} C & 0.01 & 0.4 \\ \hline 0 \ n-resistance flatness & V_{g} = -10 \ V \ to +10 \ V \\ I_{Q} = -10 \ mA & -40^{\circ} C \ to +125^{\circ} C & 0.01 & 0.4 \\ \hline -40^{\circ} C \ to +125^{\circ} C & 0.04 \\ \hline -40^{\circ} C \ to +125^{\circ} C & 0.04 \\ \hline -40^{\circ} C \ to +125^{\circ} C & 0.04 \\ \hline -40^{\circ} C \ to +125^{\circ} C & 0.04 \\ \hline -40^{\circ} C \ to +125^{\circ} C & 0.04 \\ \hline -40^{\circ} C \ to +125^{\circ} C & 0.04 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -0.7 & 0.03 & 0.7 \\ \hline N \ v_{Q} = -10 \ V/ + 10 \ V & -40^{\circ} C \ to +125^{\circ} C & -11 & 11 \\ \hline 1 \ u_{Q} = -10 \ V/ + 10 \ V & -40^{\circ} C \ to +125^{\circ} C & -14 & 0.06 & 1.4 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -14 & 0.06 & 1.4 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -14 & 0.06 & 1.4 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -14 & 0.06 & 1.4 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -14 & 0.06 & 1.4 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -24 & 24 \\ \hline 24^{\circ} C \ to +125^{\circ} C & -14 & 0.06 & 1.4 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -14 & 0.06 & 1.4 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -24 & 24 \\ \hline 24^{\circ} C \ to +125^{\circ} C & -24 & 24 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -24 & 24 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -24 & 24 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -24 & 24 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -24 & 24 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -24 & 24 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -24 & 24 \\ \hline -40^{\circ} C \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to +125^{\circ} C & -24 & 24 \\ \hline 10^{\circ} U \ to $

6.6 ±15 V Dual Supply: Electrical Characteristics (continued)

 $\label{eq:VDD} \begin{array}{l} V_{DD} = +15 \ V \pm 10\%, \ V_{SS} = -15 \ V \pm 10\%, \ GND = 0 \ V \ (unless \ otherwise \ noted) \\ \hline Typical \ at \ V_{DD} = +15 \ V, \ V_{SS} = -15 \ V, \ T_A = 25 \ \ \ \ (unless \ otherwise \ noted) \end{array}$

	PARAMETER	TEST CONDITIONS	TA	MIN TYP	MAX	UNIT
SWITCHING CH	ARACTERISTICS		·			
			25°C	435	515	
t _{ON (EN)}	Enable turn-on time	V _S = 10 V, R _L = 300 Ω, C _L = 12 pF	- 40°C to +85°C		530	ns
			- 40°C to +125°C		550	
			25°C	50	130	
t _{OFF (EN)}	Enable turn-off time	$V_{S} = 10 V,$ $R_{I} = 300 \Omega, C_{I} = 12 pF$	- 40°C to +85°C		140	ns
. ,		$R_{L} = 300 \ \text{s}^{2}, \ C_{L} = 12 \ \text{pr}$	- 40°C to +125°C		150	
			25°C	417	540	
t _{TRAN}	Transition time	$V_{\rm S} = 10 \text{ V},$ $R_{\rm L} = 300 \ \Omega, C_{\rm L} = 12 \text{ pF}$	- 40°C to +85°C		555	ns
		$R_{L} = 300 \ \text{s}^{2}, \ C_{L} = 12 \ \text{pr}$	- 40°C to +125°C		570	
			25°C	110	505	
tRESPONSE	Fault response time	$R_{\rm L} = 300 \ \Omega, C_{\rm L} = 12 \ \rm pF$	- 40°C to +85°C		515	ns
			- 40°C to +125°C		520	
			25°C	1600	4500	
tRECOVERY	Fault recovery time	$R_{L} = 300 \ \Omega, C_{L} = 12 \text{ pF}$	- 40°C to +85°C		4800	ns
RECOVERT			- 40°C to +125°C		4800	
		$R_{L} = 300 \ \Omega, C_{L} = 12 \text{ pF},$				
tRESPONSE(FLAG)	Fault flag response time	$R_{PU} = 1 k \Omega$, $C_{L_xF} = 12 pF$	25°C	120		ns
t _{RECOVERY(FLAG)}	Fault flag recovery time	$R_L = 300 Ω$, $C_L = 12 pF$, $R_{PU} = 1 k Ω$, $C_L _{xF} = 12 pF$	25°C	1		μs
t _{BBM}	Break-before-make time delay	$V_{\rm S} = 10 \text{ V}, \text{ R}_{\rm L} = 300 \Omega, \text{ C}_{\rm L} = 12 \text{ pF}$	- 40°C to +125°C	200 380		ns
Q _{INJ}	Charge injection	$V_{\rm S} = 0 V, C_{\rm I} = 1 \text{ nF}$	25°C	- 300		pC
O _{ISO}	Off-isolation	$R_{S} = 50 \ \Omega$, $R_{L} = 50 \ \Omega$, $C_{L} = 5 \ pF$, $V_{S} = 200 \ mV_{RMS}$, $V_{BIAS} = 0 \ V$, $f = 1 \ MHz$	25°C	- 60		dB
	Intra-channel crosstalk		25°C	- 62		
X _{TALK}	Inter-channel crosstalk		25°C	- 88		dB
BW	- 3 dB bandwidth	$R_{S} = 50 \ \Omega$, $R_{L} = 50 \ \Omega$, $C_{L} = 5 \ pF$, $V_{S} = 200 \ mV_{RMS}$, $V_{BIAS} = 0 \ V$	25°C	220		MHz
I _{LOSS}	Insertion loss	R_{S} = 50 Ω , R_{L} = 50 Ω , C_{L} = 5 pF, V_{S} = 200 mV _{RMS} , V _{BIAS} = 0 V, f = 1 MHz	25°C	- 0.7		dB
THD+N	Total harmonic distortion plus noise		25°C	0.0007		%
C _{S(OFF)}	Input off-capacitance	f = 1 MHz, V _S = 0 V	25°C	13		pF
C _{D(OFF)}	Output off-capacitance	f = 1 MHz, V _S = 0 V	25°C	25		pF
C _{S(ON)} C _{D(ON)}	Input/Output on-capacitance	f = 1 MHz, V _S = 0 V	25°C	28		pF
POWER SUPPL	Y					
			25°C	0.32	0.5	
I _{DD}	V _{DD} supply current	V _{DD} = 16.5 V, V _{SS} = - 16.5 V, V _{SELx} = V _{DR} = 0 V, 5 V, or V _{DD} , V _{EN} = 5 V	- 40°C to +85°C		0.5	mA
		or V _{DD}	- 40°C to +125°C		0.6	
			25°C	0.26	0.4	
I _{SS}	V _{SS} supply current	V_{DD} = 16.5 V, V_{SS} = - 16.5 V, V_{SELx} = V_{DR} = 0 V, 5 V, or V_{DD} , V_{EN} = 5 V	- 40°C to +85°C		0.4	mA
		or V _{DD}	- 40°C to +125°C		0.5	
I _{GND}	GND current	V _{DD} = 16.5 V, V _{SS} = - 16.5 V, V _{SELx} = V _{DR} = 0 V, 5 V, or V _{DD} , V _{EN} = 5 V or V _{DD}	25°C	0.06		mA

6.6 ±15 V Dual Supply: Electrical Characteristics (continued)

 $\label{eq:VDD} \begin{array}{l} V_{DD} = +15 \ V \pm 10\%, \ V_{SS} = -15 \ V \pm 10\%, \ GND = 0 \ V \ (unless \ otherwise \ noted) \\ Typical \ at \ V_{DD} = +15 \ V, \ V_{SS} = -15 \ V, \ T_A = 25 \ \ \ (unless \ otherwise \ noted) \end{array}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = ± 60 V,	25°C		0.27	0.7	
I _{DD(FA)}	V _{DD} supply current under fault	V_{DD} = 16.5 V, V_{SS} = - 16.5 V, V_{SELx} = V_{DR} = 0 V, 5 V, or V_{DD} , V_{EN} = 5 V	- 40°C to +85°C			0.8	mA
		or V _{DD}	- 40°C to +125°C			0.8	
		V _S = ± 60 V,	25°C		0.2	0.6	
SS(FA) V _{SS} supply current	V _{SS} supply current under fault	$V_{DD} = 16.5 V, V_{SS} = -16.5 V,$ $V_{SELx} = V_{DR} = 0 V, 5 V, or V_{DD}, V_{EN} = 5 V$	- 40°C to +85°C			0.8	mA
			- 40°C to +125°C			0.8	
I _{GND(FA)}	GND current under fault		25°C		0.15		mA
			25°C		0.15	0.5	
I _{DD(DISABLE)}	V _{DD} supply current (disable mode)	$V_{DD} = 16.5 V, V_{SS} = -16.5 V,$ $V_{SFLX} = V_{DR} = 0 V, 5 V, \text{ or } V_{DD}, V_{FN} = 0 V$	- 40°C to +85°C			0.5	mA
		Selx OR COLOR STREET	- 40°C to +125°C			0.5	
			25°C		0.1	0.4	
I _{SS(DISABLE)}	V _{SS} supply current (disable mode)	$V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V},$ $V_{SELx} = V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 0 \text{ V}$	- 40°C to +85°C			0.4	mA
		GELA DR, - , O, ODD, PEN O	- 40°C to +125°C			0.4	

(1) When V_S is positive, V_D is negative. And when V_S is negative, V_D is positive.

(2) When V_S is at a voltage potential, V_D is floating. And when V_D is at a voltage potential, V_S is floating.

6.7 ±20 V Dual Supply: Electrical Characteristics

 V_{DD} = +20 V ± 10%, V_{SS} = -20 V ±10%, GND = 0 V (unless otherwise noted)

Typical at V_{DD} = +20 V, V_{SS} = -20 V, T_A = 25° C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG SWIT	гсн						
			25°C		8.6	11	
R _{ON}	On-resistance	$V_{\rm S} = -15$ V to +15 V I_{\rm D} = -10 mA	- 40°C to +85°C			14	Ω
			- 40°C to +125°C			17	
			25°C		0.06	0.35	
ΔR_{ON}	On-resistance mismatch between channels	$V_{\rm S} = -15$ V to +15 V I_{\rm D} = -10 mA	- 40°C to +85°C			0.5	Ω
			- 40°C to +125°C			0.5	
			25°C		0.015	0.4	
R _{FLAT}	On-resistance flatness	$V_{\rm S} = -15$ V to +15 V I _D = -10 mA	- 40°C to +85°C			0.5	Ω
			- 40°C to +125°C			0.5	
R _{ON_DRIFT}	On-resistance drift	V _S = 0 V, I _S = - 10 mA	- 40°C to +125°C		0.04		Ω/°C
		V _{DD} = 22 V, V _{SS} = - 22 V	25°C	- 0.7	0.03	0.7	
I _{S(OFF)}	Input leakage current ⁽¹⁾	Switch state is off V _S = +15 V / - 15 V	- 40°C to +85°C	- 2		2	nA
		$V_{\rm D} = -15 \text{V} / + 15 \text{V}$	- 40°C to +125°C	- 11		11	
		V _{DD} = 22 V, V _{SS} = - 22 V	25°C	- 1.4	0.06	1.4	
I _{D(OFF)}	Output off leakage current ⁽¹⁾	Switch state is off V _S = +15 V / - 15 V	- 40°C to +85°C	- 4		4	nA
		$V_{\rm D} = -15 \text{V} / + 15 \text{V}$	- 40°C to +125°C	- 24		24	
			25°C	- 1.4	0.08	1.4	
Out	Output on leakage current ⁽²⁾	$V_{DD} = 22 V, V_{SS} = -22 V$ Switch state is on	- 40°C to +85°C	- 4		4	nA
		$V_{S} = V_{D} = \pm 15 V$	- 40°C to +125°C	- 27		27	
FAULT CONDI	TION						
I _{S(FA)}	Input leakage current durring overvoltage	$V_{S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = 22 \text{ V}, V_{SS} = -22 \text{ V}$	- 40°C to +125°C		±85		μA
I _{S(FA)} Grounded	Input leakage current during overvoltage with grounded supply voltages	$V_{S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = V_{SS} = 0 \text{ V}$	- 40°C to +125°C		±125		μA
I _{S(FA)} Floating	Input leakage current during overvoltage with floating supply voltages	$V_{S} = \pm 60 \text{ V}, \text{GND} = 0 \text{ V},$ $V_{DD} = V_{SS} = \text{floating}$	- 40°C to +125°C		±125		μA
			25°C	- 50	±5	50	
I _{D(FA)}	Output leakage current during overvoltage	$V_{S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = 22 \text{ V}, V_{SS} = -22 \text{ V},$	- 40°C to +85°C	- 70		70	nA
		$v_{\rm DD} = 22 v$, $v_{\rm SS} = -22 v$,	- 40°C to +125°C	- 90		90	
	Output lookage ourrent		25°C	- 30	±10	30	
ID(FA) Grounded	Output leakage current during overvoltage with	$V_{S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = V_{SS} = 0 \text{ V}$	- 40°C to +85°C	- 50		50	nA
	grounded supply voltages	VDD - VSS - OV	- 40°C to +125°C	- 90		90	
			25°C		±4		
D(FA) Floating	Output leakage current during overvoltage with	$V_{\rm S} = \pm 60$ V, GND = 0 V,	- 40°C to +85°C		±6		μA
, .,	floating supply voltages	$V_{DD} = V_{SS} = $ floating	- 40°C to +125°C		±8		
			25°C			±1.8	
I _{IH}	High-level input current	$V_{EN} = V_{SELx} = V_{DR} = V_{DD}$	- 40°C to +125°C	-		±2.2	μA
			25°C	-		±1	
IIL	Low-level input current	$V_{EN} = V_{SELx} = V_{DR} = 0$	- 40°C to +125°C			±1.1	μA

6.7 ±20 V Dual Supply: Electrical Characteristics (continued)

 $\label{eq:VDD} \begin{array}{l} V_{DD} = +20 \ V \pm 10\%, \ V_{SS} = -20 \ V \pm 10\%, \ GND = 0 \ V \ (unless \ otherwise \ noted) \\ \hline Typical \ at \ V_{DD} = +20 \ V, \ V_{SS} = -20 \ V, \ T_A = 25 \ \ \ \ (unless \ otherwise \ noted) \end{array}$

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
SWITCHING CH	ARACTERISTICS					
			25°C	430	535	
^t ON (EN)	Enable turn-on time	V _S = 10 V, R _L = 300 Ω, C _L = 12 pF	- 40°C to +85°C		560	ns
		, ,	- 40°C to +125°C		585	
			25°C	50	120	
t _{OFF (EN)}	Enable turn-off time	$V_{\rm S} = 10 \text{ V},$ R ₁ = 300 Ω , C ₁ = 12 pF	- 40°C to +85°C		130	ns
			- 40°C to +125°C		150	
			25°C	433	555	
t _{TRAN}	Transition time	$V_{\rm S} = 10 \text{ V},$ R ₁ = 300 Ω , C ₁ = 12 pF	- 40°C to +85°C		571	ns
			- 40°C to +125°C		580	
			25°C	110	505	
tRESPONSE	Fault response time	R _L = 300 Ω, C _L = 12 pF	- 40°C to +85°C		515	ns
			- 40°C to +125°C		520	
			25°C	1600	4500	
t _{RECOVERY}	Fault recovery time	R _L = 300 Ω, C _L = 12 pF	- 40°C to +85°C		4900	ns
			- 40°C to +125°C		4900	
t _{RESPONSE(FLAG)}	Fault flag response time	R _L = 300 Ω, C _L = 12 pF, R _{PU} = 1 k Ω, C _{L_XF} = 12 pF	25°C	140		ns
t _{RECOVERY(FLAG)}	Fault flag recovery time	R _L = 300 Ω, C _L = 12 pF, R _{PU} = 1 k Ω, C _{L_XF} = 12 pF	25°C	1		μs
t _{BBM}	Break-before-make time delay	$V_{\rm S}$ = 10 V, R _L = 300 Ω , C _L = 12 pF	- 40°C to +125°C	210 400		ns
Q _{INJ}	Charge injection	V _S = 0 V, C _L = 1 nF	25°C	- 330		рС
O _{ISO}	Off-isolation	R_{S} = 50 Ω, R_{L} = 50 Ω, C_{L} = 5 pF, V _S = 200 mV _{RMS} , V _{BIAS} = 0 V, f = 1 MHz	25°C	- 60		dB
Y	Intra-channel crosstalk	$ \begin{array}{l} {\sf R}_{\sf S} = {\sf 50} \;\; \Omega \;, \; {\sf R}_{\sf L} = {\sf 50} \;\; \Omega \;, \; {\sf C}_{\sf L} = {\sf 5} \; p{\sf F}, \\ {\sf V}_{\sf S} = {\sf 200} \; m{\sf V}_{\sf RMS}, \; {\sf V}_{\sf BIAS} = {\sf 0} \; {\sf V}, \; {\sf f} = {\sf 1} \; {\sf MHz} \end{array} $	25°C	- 64		dB
X _{TALK}	Inter-channel crosstalk	$ \begin{array}{l} R_{S} = 50 \hspace{0.1cm} \Omega \hspace{0.1cm}, \hspace{0.1cm} R_{L} = 50 \hspace{0.1cm} \Omega \hspace{0.1cm}, \hspace{0.1cm} C_{L} = 5 \hspace{0.1cm} pF, \\ V_{S} = 200 \hspace{0.1cm} mV_{RMS}, \hspace{0.1cm} V_{BIAS} = 0 \hspace{0.1cm} V, \hspace{0.1cm} f = 1 \hspace{0.1cm} MHz \end{array} $	25°C	- 81		uв
BW	- 3 dB bandwidth	R_{S} = 50 Ω , R_{L} = 50 Ω , C_{L} = 5 pF, V_{S} = 200 mV_{RMS}, V_{BIAS} = 0 V	25°C	230		MHz
I _{LOSS}	Insertion loss	$ \begin{array}{l} R_{S} = 50 \hspace{0.1cm} \Omega \hspace{0.1cm} , \hspace{0.1cm} R_{L} = 50 \hspace{0.1cm} \Omega \hspace{0.1cm} , \hspace{0.1cm} C_{L} = 5 \hspace{0.1cm} pF, \\ V_{S} = 200 \hspace{0.1cm} mV_{RMS}, \hspace{0.1cm} V_{BIAS} = 0 \hspace{0.1cm} V, \hspace{0.1cm} f = 1 \hspace{0.1cm} MHz \end{array} $	25°C	- 0.7		dB
THD+N	Total harmonic distortion plus noise		25°C	0.0008		%
C _{S(OFF)}	Input off-capacitance	f = 1 MHz, V _S = 0 V	25°C	12		pF
C _{D(OFF)}	Output off-capacitance	f = 1 MHz, V _S = 0 V	25°C	24		pF
C _{S(ON)} C _{D(ON)}	Input/Output on-capacitance	f = 1 MHz, V _S = 0 V	25°C	27		pF
POWER SUPPL	Y					
		$V_{DD} = 22 V, V_{SS} = -22 V,$	25°C	0.32	0.5	
I _{DD}	V _{DD} supply current	$V_{SELx} = V_{DR} = 0 V$, 5 V, or V_{DD} , $V_{EN} = 5 V$	- 40°C to +85°C		0.5	mA
		or V _{DD}	- 40°C to +125°C		0.6	
		V _{DD} = 22 V, V _{SS} = - 22 V,	25°C	0.26	0.4	
I _{SS}	V _{SS} supply current	$V_{DD} = 22 V, V_{SS} = -22 V,$ $V_{SELx} = V_{DR} = 0 V, 5 V, \text{ or } V_{DD}, V_{EN} = 5 V$	- 40°C to +85°C		0.4	mA
		or V _{DD}	- 40°C to +125°C		0.5	
I _{GND}	GND current		25°C	0.06		mA

6.7 ±20 V Dual Supply: Electrical Characteristics (continued)

 $\label{eq:VDD} \begin{array}{l} V_{DD} = +20 \; V \pm 10\%, \, V_{SS} = -20 \; V \pm 10\%, \, \text{GND} = 0 \; V \; (\text{unless otherwise noted}) \\ \text{Typical at } V_{DD} = +20 \; V, \, V_{SS} = -20 \; V, \, T_A = 25 ^{\circ} \mathbb{C} \; \; (\text{unless otherwise noted}) \end{array}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = ± 60 V,	25°C		0.27	0.8	
I _{DD(FA)}	V _{DD} supply current under fault	$V_{DD} = 22 V, V_{SS} = -22 V,$ $V_{SELx} = V_{DR} = 0 V, 5 V, \text{ or } V_{DD}, V_{EN} = 5 V$	- 40°C to +85°C			1	mA
		or V _{DD}	- 40°C to +125°C			1	
		V _S = ± 60 V,	25°C		0.2	0.7	
I _{SS(FA)}	V _{SS} supply current under fault	$V_{DD} = 22 V, V_{SS} = -22 V,$ $V_{SELx} = V_{DR} = 0 V, 5 V, or V_{DD}, V_{EN} = 5 V$	- 40°C to +85°C			1	mA
			- 40°C to +125°C			1	
I _{GND(FA)}	GND current under fault		25°C		0.15		mA
			25°C		0.15	0.5	
I _{DD(DISABLE)}	V _{DD} supply current (disable mode)	$V_{DD} = 22 V, V_{SS} = -22 V,$ $V_{SELx} = V_{DR} = 0 V, 5 V, \text{ or } V_{DD}, V_{EN} = 0 V$	- 40°C to +85°C			0.5	mA
		Selx OR Constant DD, Fen Constant	- 40°C to +125°C			0.5	
			25°C		0.1	0.4	
I _{SS(DISABLE)}	V _{SS} supply current (disable mode)	$V_{DD} = 22 V, V_{SS} = -22 V,$ $V_{SELX} = V_{DR} = 0 V, 5 V, \text{ or } V_{DD}, V_{EN} = 0 V$	- 40°C to +85°C			0.4	mA
· · ·		GELA DIA - , - , - , - , - , DD, - EN C -	- 40°C to +125°C			0.4	

(1) When V_S is positive, V_D is negative. And when V_S is negative, V_D is positive.

(2) When V_S is at a voltage potential, V_D is floating. And when V_D is at a voltage potential, V_S is floating.

6.8 12 V Single Supply: Electrical Characteristics

 $\label{eq:VDD} \begin{array}{l} V_{DD} = +12 \; V \pm 10\%, \, V_{SS} = 0 \; V, \, GND = 0 \; V \; (unless \; otherwise \; noted) \\ \hline Typical \; at \; V_{DD} = +12 \; V, \, V_{SS} = 0 \; V, \; T_A = 25 ^{\circ} \mathbb{C} \quad (unless \; otherwise \; noted) \end{array}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG SWIT	ГСН						
			25°C		8.6	11	
R _{ON}	On-resistance	$V_{\rm S} = 0$ V to 7.8 V, $I_{\rm S} = -10$ mA	- 40°C to +85°C			15	Ω
			- 40°C to +125°C			18	
			25°C		0.06	0.5	
∆ R _{ON}	On-resistance mismatch between channels	$V_{S} = 0 V \text{ to } 7.8 V,$ $I_{S} = -10 \text{ mA}$	- 40°C to +85°C			0.6	Ω
			- 40°C to +125°C			0.7	
			25°C		0.06	0.4	
R _{FLAT}	On-resistance flatness	$V_{S} = 0 V \text{ to } 7.8 V,$ $I_{S} = -10 \text{ mA}$	- 40°C to +85°C			0.5	Ω
			- 40°C to +125°C			0.5	
R _{ON_DRIFT}	On-resistance drift	V _S = 6 V, I _S = -10 mA	- 40°C to +125°C		0.04		Ω/°C
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	- 0.7	0.03	0.7	
I _{S(OFF)}	Input leakage current ⁽¹⁾	Switch state is off V _S = 10 V / 1 V	- 40°C to +85°C	- 2		2	nA
		$V_{\rm D} = 1 \text{V} / 10 \text{V}$	- 40°C to +125°C	- 11		11	
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	- 1.4	0.06	1.4	
I _{D(OFF)}	Output off leakage current ⁽¹⁾	Switch state is off V _S = 10 V / 1 V	- 40°C to +85°C	- 4		4	nA
. ,		$V_{\rm D} = 1 \text{V} / 10 \text{V}$	- 40°C to +125°C	- 24		24	
			25°C	- 1.4	0.08	1.4	
I _{S(ON)} I _{D(ON)} Ou	Output on leakage current ⁽²⁾	V_{DD} = 13.2 V, V_{SS} = 0 V Switch state is on	- 40°C to +85°C	- 4		4	nA
		$V_{\rm S} = V_{\rm D} = 10$ V or 1 V	- 40°C to +125°C	- 26		26	
FAULT CONDI	TION						
I _{S(FA)}	Input leakage current durring overvoltage	$V_{S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$	- 40°C to +125°C		±130		μA
IS(FA) Grounded	Input leakage current during overvoltage with grounded supply voltages	$V_{S} = \pm 60 \text{ V}, \text{GND} = 0 \text{ V},$ $V_{DD} = V_{SS} = 0 \text{ V}$	- 40°C to +125°C		±125		μA
IS(FA) Floating	Input leakage current during overvoltage with floating supply voltages	$V_{S} = \pm 60 \text{ V}, \text{GND} = 0 \text{ V},$ $V_{DD} = V_{SS} = \text{floating}$	- 40°C to +125°C		±125		μA
			25°C	- 20	±2	20	
D(FA)	Output leakage current during overvoltage	$V_{S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$	- 40°C to +85°C	- 30		30	nA
		v _{DD} = 10.2 v, v _{SS} = 0 v	- 40°C to +125°C	- 50		50	
	Output lookage ourrent		25°C	- 30	±10	30	
ID(FA) Grounded	Output leakage current during overvoltage with	$V_{S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = V_{SS} = 0 \text{ V}$	- 40°C to +85°C	- 50		50	nA
	grounded supply voltages		- 40°C to +125°C	- 90		90	
			25°C		±4		
D(FA) Floating	Output leakage current during overvoltage with	$V_{\rm S} = \pm 60$ V, GND = 0 V,	- 40°C to +85°C		±6		μA
. ,3	floating supply voltages	$V_{DD} = V_{SS} = $ floating	- 40°C to +125°C		±8		1
			25°C			±1.6	
Ін	High-level input current	$V_{EN} = V_{SELx} = V_{DR} = V_{DD}$	- 40°C to +125°C			±2	μA
			25°C			±1	
IIL	Low-level input current	$V_{EN} = V_{SELx} = V_{DR} = 0$	- 40°C to +125°C			±1.1	μA

6.8 12 V Single Supply: Electrical Characteristics (continued)

 $\label{eq:VDD} V_{DD}$ = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25 $^\circ\!\mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
SWITCHING CH	ARACTERISTICS					
			25°C	350	515	
t _{ON (EN)}	Enable turn-on time	V _S = 8 V, R _L = 300 Ω, C _L = 12 pF	- 40°C to +85°C		530	ns
			- 40°C to +125°C		550	
			25°C	85	200	
t _{OFF (EN)}	Enable turn-off time	$V_{\rm S} = 8 V$, R ₁ = 300 Ω , C ₁ = 12 pF	- 40°C to +85°C		210	ns
		ιτ <u>μ</u> = 300 ∞, σ <u>μ</u> = 12 μι	- 40°C to +125°C		210	
			25°C	360	520	
t _{TRAN}	Transition time	V _S = 8 V, R _L = 300 Ω, C _L = 12 pF	- 40°C to +85°C		540	ns
		itt = 500 ∞, CL= 12 μ	- 40°C to +125°C		560	
			25°C	180	765	
t _{RESPONSE}	Fault response time	R _L = 300 Ω, C _L = 12 pF	- 40°C to +85°C		765	ns
			- 40°C to +125°C		765	
			25°C	950	2400	
t _{RECOVERY}	Fault recovery time	$R_1 = 300 \ \Omega, C_1 = 12 \text{ pF}$	- 40°C to +85°C		2900	ns
120072111			- 40°C to +125°C		2900	
t _{RESPONSE(FLAG)}	Fault flag response time	R _L = 300 Ω, C _L = 12 pF, R _{PU} = 1 k Ω, C _{L_XF} = 12 pF	25°C	160		ns
t _{RECOVERY(FLAG)}	Fault flag recovery time	R _L = 300 Ω, C _L = 12 pF, R _{PU} = 1 k Ω, C _{L xF} = 12 pF	25°C	0.7		μs
t _{BBM}	Break-before-make time delay	 V _S = 8 V, R _L = 300 Ω, C _L = 12 pF	25°C	155 250		ns
Q _{INJ}	Charge injection	$V_{\rm S} = 6 \text{ V}, \text{ C}_{\rm L} = 1 \text{ nF}$	25°C	- 203		рС
O _{ISO}	Off-isolation	$R_{S} = 50 $ Ω , $R_{L} = 50 $ Ω , $C_{L} = 5 $ pF, $V_{S} = 200 $ mV _{RMS} , $V_{BIAS} = 0 $ V, f = 1 MHz	25°C	- 56		dB
×	Intra-channel crosstalk	R_{S} = 50 Ω, R_{L} = 50 Ω, C_{L} = 5 pF, V _S = 200 mV _{RMS} , V _{BIAS} = 6 V, f = 1 MHz	25°C	- 58		10
X _{TALK}	Inter-channel crosstalk	R_{S} = 50 Ω , R_{L} = 50 Ω , C_{L} = 5 pF, V_{S} = 200 mV _{RMS} , V _{BIAS} = 6 V, f = 1 MHz	25°C	- 81		dB
BW	- 3 dB bandwidth		25°C	213		MHz
I _{LOSS}	Insertion loss	$ \begin{array}{c} {\sf R}_{\sf S} = {\sf 50} \;\; \Omega \;, \; {\sf R}_{\sf L} = {\sf 50} \;\; \Omega \;, \; {\sf C}_{\sf L} = {\sf 5} \; p{\sf F}, \\ {\sf V}_{\sf S} = {\sf 200} \; m{\sf V}_{\sf RMS}, \; {\sf V}_{\sf BIAS} = {\sf 0} \; {\sf V}, \; {\sf f} = {\sf 1} \; {\sf MHz} \end{array} $	25°C	- 0.7		dB
THD+N	Total harmonic distortion plus noise		25°C	0.0009		%
C _{S(OFF)}	Input off-capacitance	f = 1 MHz, V _S = 6 V	25°C	13		pF
C _{D(OFF)}	Output off-capacitance	f = 1 MHz, V _S = 6 V	25°C	28		pF
C _{S(ON)} C _{D(ON)}	Input/Output on-capacitance	f = 1 MHz, V _S = 6 V	25°C	31		pF
POWER SUPPL	Y					
		V _{DD} = 13.2 V, V _{SS} = 0 V,	25°C	0.3	0.5	mA
I _{DD}	V _{DD} supply current	$V_{SELx} = V_{DR} = 0 V$, 5 V, or V_{DD} , $V_{EN} = 5 V$	- 40°C to +85°C		0.5	IIIA
		or V _{DD}	- 40°C to +125°C		0.6	mA
		V _{DD} = 13.2 V, V _{SS} = 0 V,	25°C	0.14	0.4	
I _{SS}	V _{SS} supply current	$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V},$ $V_{SELx} = V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V}$	- 40°C to +85°C		0.4	mA
		or V _{DD}	- 40°C to +125°C		0.4	
I _{GND}	GND current	$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}, V_{SELx} = V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V}$ or V_{DD}	25°C	0.06		mA

6.8 12 V Single Supply: Electrical Characteristics (continued)

 $\label{eq:VDD} \begin{array}{l} V_{DD} = +12 \ V \pm 10\%, \ V_{SS} = 0 \ V, \ GND = 0 \ V \ (unless \ otherwise \ noted) \\ \hline Typical \ at \ V_{DD} = +12 \ V, \ V_{SS} = 0 \ V, \ T_A = 25 \ ^{\circ} \! C \ \ (unless \ otherwise \ noted) \end{array}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = ± 60 V,	25°C		0.25	0.6	
I _{DD(FA)}	V _{DD} supply current under fault	$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V},$ $V_{SELX} = V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V}$	- 40°C to +85°C			0.7	mA
		or V _{DD}	- 40°C to +125°C			0.7	
	S(FA) V _{SS} supply current under fault	V _S = ± 60 V,	25°C		0.15	0.5	
I _{SS(FA)}		$_{DD} = 13.2 \text{ V}, \text{ V}_{SS} = 0 \text{ V},$ $_{SELx} = \text{V}_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } \text{V}_{DD}, \text{ V}_{EN} = 5 \text{ V}$	- 40°C to +85°C			0.5	mA
		or V _{DD}	- 40°C to +125°C			0.5	
I _{GND(FA)}	GND current under fault		25°C		0.15		mA
			25°C		0.15	0.5	
DD(DISABLE)	V _{DD} supply current (disable mode)	$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V},$ $V_{SELX} = V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 0 \text{ V}$	- 40°C to +85°C			0.5	mA
		Sela DR - S, - DD, - EN	- 40°C to +125°C			0.5	
			25°C		0.1	0.4	
I _{SS(DISABLE)}	V _{SS} supply current (disable mode)	$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V},$ $V_{SFLx} = V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{FN} = 0 \text{ V}$	- 40°C to +85°C			0.4	mA
			- 40°C to +125°C			0.4	

When V_S is 10 V, V_D is 1 V. Or when V_S is 1 V, V_D is 10 V. When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating. (1) (2)

6.9 36 V Single Supply: Electrical Characteristics

 $\label{eq:VDD} V_{DD}$ = +36 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +36 V, V_{SS} = 0 V, T_A = 25 $^\circ\!\mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG SWIT	ГСН						
			25°C		8.6	11	
R _{ON}	On-resistance	$V_{\rm S} = 0 \text{ V to } 30 \text{ V},$ $I_{\rm S} = -10 \text{ mA}$	- 40°C to +85°C			14	Ω
			- 40°C to +125°C			17	
			25°C		0.06	0.5	
∆ R _{ON}	On-resistance mismatch between channels	$V_{\rm S} = 0 \text{ V to } 30 \text{ V},$ $I_{\rm S} = -10 \text{ mA}$	- 40°C to +85°C			0.6	Ω
			- 40°C to +125°C			0.7	
			25°C		0.07	0.4	
R _{FLAT}	On-resistance flatness	$V_{S} = 0 V \text{ to } 30 V,$ $I_{S} = -10 \text{ mA}$	- 40°C to +85°C			0.5	Ω
			- 40°C to +125°C			0.5	
R _{ON_DRIFT}	On-resistance drift	V _S = 18 V, I _S = -1 mA	- 40°C to +125°C		0.04		Ω/°C
		V _{DD} = 39.6 V, V _{SS} = 0 V	25°C	- 0.7	0.05	0.7	
S(OFF)	Input leakage current ⁽¹⁾	Switch state is off $V_S = 30 V / 1 V$	- 40°C to +85°C	- 2		2	nA
		$V_{\rm D} = 1 \text{ V} / 30 \text{ V}$	- 40°C to +125°C	- 11		11	
		V _{DD} = 39.6 V, V _{SS} = 0 V	25°C	- 1.4	0.1	1.4	
D(OFF)	Output off leakage current ⁽¹⁾	Switch state is off $V_S = 30 V / 1 V$	- 40°C to +85°C	- 4		4	nA
		$V_{\rm D} = 1 \text{ V} / 30 \text{ V}$	- 40°C to +125°C	- 24		24	
			25°C	- 1.4	0.15	1.4	
I _{S(ON)} I _{D(ON)} O	Output on leakage current ⁽²⁾	V_{DD} = 39.6 V, V_{SS} = 0 V Switch state is on	- 40°C to +85°C	- 4		4	nA
		$V_{\rm S} = V_{\rm D} = 30$ V or 1 V	- 40°C to +125°C	- 27		27	
FAULT CONDI	TION						
I _{S(FA)}	Input leakage current durring overvoltage	V _S = 60 / - 40 V, V _{DD} = 39.6 V, V _{SS} = 0 V, GND = 0 V	- 40°C to +125°C		±90		μA
IS(FA) Grounded	Input leakage current during overvoltage with grounded supply voltages	V _S = ± 60 V, V _{DD} = V _{SS} = 0 V, GND = 0 V	- 40°C to +125°C		±125		μA
IS(FA) Floating	Input leakage current during overvoltage with floating supply voltages	$V_{S} = \pm 60 \text{ V},$ $V_{DD} = V_{SS} = \text{floating, GND} = 0 \text{ V},$	- 40°C to +125°C		±125		μA
			25°C	- 20	±2	20	
D(FA)	Output leakage current during overvoltage	V _S = 60 / - 40 V, V _{DD} = 39.6 V, V _{SS} = 0, GND = 0V	- 40°C to +85°C	- 30		30	nA
			- 40°C to +125°C	- 60		60	
	Output leakage current		25°C	- 30	±10	30	
D(FA) Grounded	during overvoltage with	$V_{S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = V_{SS} = 0 \text{ V}$	- 40°C to +85°C	- 50		50	nA
	grounded supply voltages		- 40°C to +125°C	- 90		90	
	Output lookage sumant		25°C		±4		
D(FA) Floating	Output leakage current during overvoltage with	$V_{S} = \pm 60 V$, GND = 0 V, $V_{DD} = V_{SS} = $ floating	- 40°C to +85°C		±6		μA
., .	floating supply voltages		- 40°C to +125°C		±8		
			25°C			±2.7	
н	High-level input current	$V_{EN} = V_{SELx} = V_{DR} = V_{DD}$	- 40°C to +125°C			±3.1	μA
			25°C			±1	
IIL	Low-level input current	$V_{EN} = V_{SELx} = V_{DR} = 0$	- 40°C to +125°C			±1.1	μA

6.9 36 V Single Supply: Electrical Characteristics (continued)

 V_{DD} = +36 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted)

Typical at $V_{DD} = +36 V_{CD}$. Vss = 0 V. T₄ = 25°C	(unless otherwise noted)

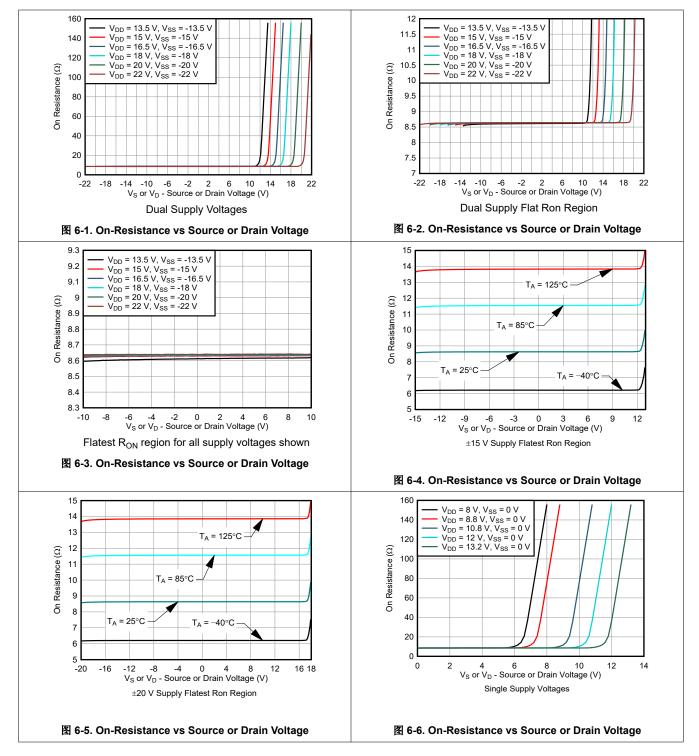
	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT	
SWITCHING CH	ARACTERISTICS						
			25°C	370	520		
t _{ON (EN)}	Enable turn-on time	$V_{\rm S} = 18 \text{ V},$ R ₁ = 300 Ω , C ₁ = 12 pF	- 40°C to +85°C		550	ns	
			- 40°C to +125°C		560		
			25°C	100	210		
t _{OFF (EN)}	Enable turn-off time	V _S = 18 V, R _L = 300 Ω, C _L = 12 pF	- 40°C to +85°C		230	ns	
		ιτ <u>μ</u> = 300 ± , θ <u>μ</u> = 12 μι	- 40°C to +125°C		230		
			25°C	365	540		
t _{TRAN}	Transition time	V _S = 18 V, R _L = 300 Ω, C _L = 12 pF	- 40°C to +85°C		560	ns	
		int = 300 s², θ[= 12 μi	- 40°C to +125°C		570		
			25°C	120	340		
t _{RESPONSE}	Fault response time	R _L = 300 Ω, C _L = 12 pF	- 40°C to +85°C		360	ns	
			- 40°C to +125°C		385		
			25°C	1250	2350		
t _{RECOVERY}	Fault recovery time	$R_1 = 300 \ \Omega, C_1 = 12 \text{ pF}$	- 40°C to +85°C		2850	50 ns	
RECOVERT			- 40°C to +125°C		2850		
t _{RESPONSE(FLAG)}	Fault flag response time	R _L = 300 Ω, C _L = 12 pF, R _{PU} = 1 k Ω, C _{L xF} = 12 pF	25°C	100		ns	
t _{RECOVERY(FLAG)}	Fault flag recovery time	R _L = 300 Ω, C _L = 12 pF, R _{PU} = 1 k Ω, C _{L xF} = 12 pF	25°C	1		μs	
t _{BBM}	Break-before-make time delay		25°C	160 270		ns	
Q _{INJ}	Charge injection	V _S = 18 V, C _L = 1 nF	25°C	- 300		рС	
O _{ISO}	Off-isolation	$R_{S} = 50 \ \Omega$, $R_{L} = 50 \ \Omega$, $C_{L} = 5 \ pF$, $V_{S} = 200 \ mV_{RMS}$, $V_{BIAS} = 6 \ V$, $f = 1 \ MHz$	25°C	- 56		dB	
~	Intra-channel crosstalk	$R_{S} = 50 \ \Omega$, $R_{L} = 50 \ \Omega$, $C_{L} = 5 \ pF$, $V_{S} = 200 \ mV_{RMS}$, $V_{BIAS} = 6 \ V$, $f = 1 \ MHz$	25°C	- 59			
X _{TALK}	Inter-channel crosstalk	R_{S} = 50 Ω , R_{L} = 50 Ω , C_{L} = 5 pF, V_{S} = 200 mV _{RMS} , V _{BIAS} = 6 V, f = 1 MHz	25°C	- 80		dB	
BW	- 3 dB bandwidth	R_{S} = 50 Ω, R_{L} = 50 Ω, C_{L} = 5 pF, V _S = 200 mV _{RMS} , V _{BIAS} = 6 V	25°C	215		MHz	
I _{LOSS}	Insertion loss	$ \begin{array}{l} R_{S} = 50 \hspace{0.1cm} \Omega \hspace{0.1cm}, \hspace{0.1cm} R_{L} = 50 \hspace{0.1cm} \Omega \hspace{0.1cm}, \hspace{0.1cm} C_{L} = 5 \hspace{0.1cm} pF, \\ V_{S} = 200 \hspace{0.1cm} mV_{RMS}, \hspace{0.1cm} V_{BIAS} = 6 \hspace{0.1cm} V, \hspace{0.1cm} f = 1 \hspace{0.1cm} MHz \end{array} $	25°C	- 0.7		dB	
THD+N	Total harmonic distortion plus noise		25°C	0.0008		%	
C _{S(OFF)}	Input off-capacitance	f = 1 MHz, V _S = 18 V	25°C	14		pF	
C _{D(OFF)}	Output off-capacitance	f = 1 MHz, V _S = 18 V	25°C	28		pF	
C _{S(ON)} C _{D(ON)}	Input/Output on-capacitance	f = 1 MHz, V _S = 18 V	25°C	31		pF	
POWER SUPPL	Y			1			
		V _{DD} = 39.6 V, V _{SS} = 0 V,	25°C	0.3	0.5		
I _{DD}	V _{DD} supply current	$V_{\text{DD}} = 53.6 \text{ V}, V_{\text{SS}} = 6 \text{ V},$ $V_{\text{SELx}} = V_{\text{DR}} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{\text{DD}}, V_{\text{EN}} = 5 \text{ V}$	- 40°C to +85°C		0.5	mA	
		or V _{DD}	- 40°C to +125°C		0.6		
			25°C	0.14	0.4		
I _{SS}	V _{SS} supply current	V _{DD} = 39.6 V, V _{SS} = 0 V, V _{SELx} = V _{DR} = 0 V, 5 V, or V _{DD} , V _{EN} = 5 V	- 40°C to +85°C		0.4	mA	
		or V _{DD}	- 40°C to +125°C		0.4		
I _{GND}	GND current	$V_{DD} = 39.6 V, V_{SS} = 0 V, V_{SLx} = V_{DR} = 0 V, 5 V, or V_{DD}, V_{EN} = 5 V$ or V_{DD}	25°C	0.06		mA	

Product Folder Links: TMUX7436F

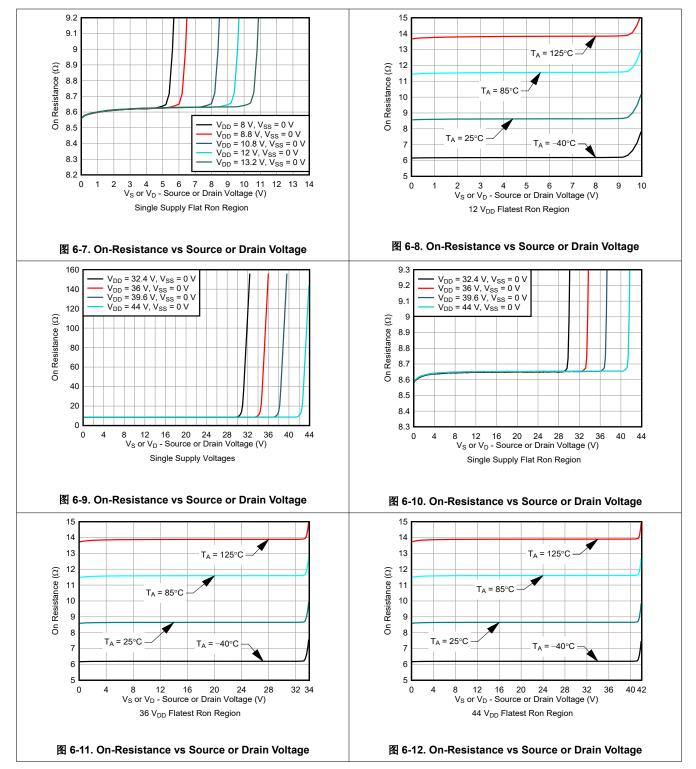
6.9 36 V Single Supply: Electrical Characteristics (continued)

 $\label{eq:VDD} \begin{array}{l} V_{DD} = +36 \; V \pm 10\%, \, V_{SS} = 0 \; V, \, \text{GND} = 0 \; V \; (\text{unless otherwise noted}) \\ \text{Typical at } V_{DD} = +36 \; V, \, V_{SS} = 0 \; V, \, T_A = 25 \ensuremath{\,^\circ} \ensuremath{\mathrm{C}} \\ \text{(unless otherwise noted)} \end{array}$

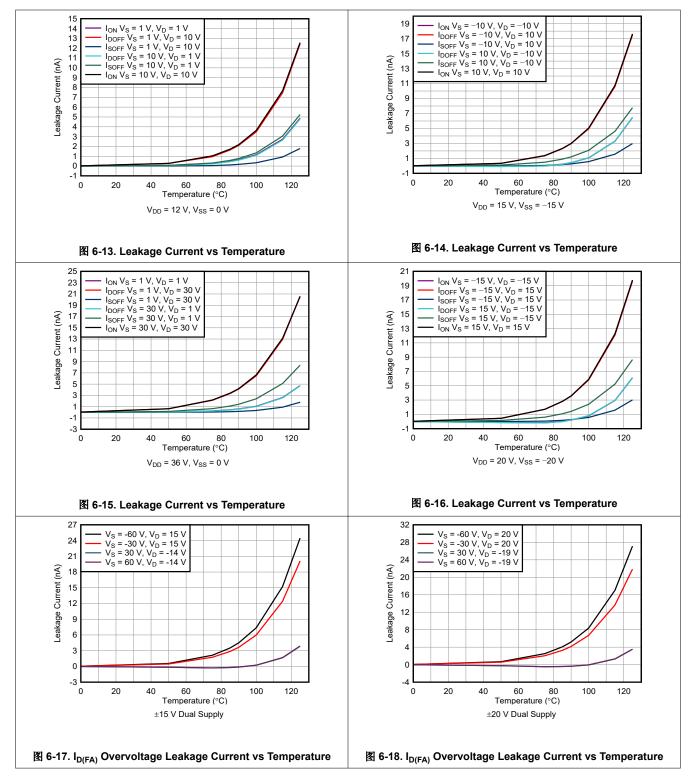
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		$V_{\rm S} = 60 / - 40 V,$	25°C		0.25	1.2	
I _{DD(FA)}	V _{DD} supply current under fault	$V_{DD} = 39.6 V, V_{SS} = 0 V,$ $V_{SELx} = V_{DR} = 0 V, 5 V, \text{ or } V_{DD}, V_{EN} = 5 V$	- 40°C to +85°C			1.6	mA
		or V _{DD}	- 40°C to +125°C			1.6	1
		$V_{\rm S} = 60 / - 40 V,$	25°C		0.15	0.5	
I _{SS(FA)} V _{SS} supply cu	V _{SS} supply current under fault	$V_{DD} = 39.6 V, V_{SS} = 0 V,$ $V_{SELx} = V_{DR} = 0 V, 5 V, \text{ or } V_{DD}, V_{EN} = 5 V$	- 40°C to +85°C			0.5	mA
		or V _{DD}	- 40°C to +125°C			0.5	1
I _{GND(FA)}	GND current under fault		25°C		0.1		mA
			25°C		0.15	0.5	
I _{DD(DISABLE)}	V _{DD} supply current (disable mode)	$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V},$ $V_{SELX} = V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 0 \text{ V}$	- 40°C to +85°C			0.5	mA
		SELX UR OT, OT, OT, ODD, VEN OT	- 40°C to +125°C			0.5	1
			25°C		0.1	0.4	
I _{SS(DISABLE)}	V _{SS} supply current (disable mode)	$V_{DD} = 39.6 V, V_{SS} = 0 V,$ $V_{SELx} = V_{DR} = 0 V, 5 V, \text{ or } V_{DD}, V_{EN} = 0 V$	- 40°C to +85°C			0.4	mA
		SELA DR CV, CV, CV, DD, VEN - CV	- 40°C to +125°C			0.4	1


(1)

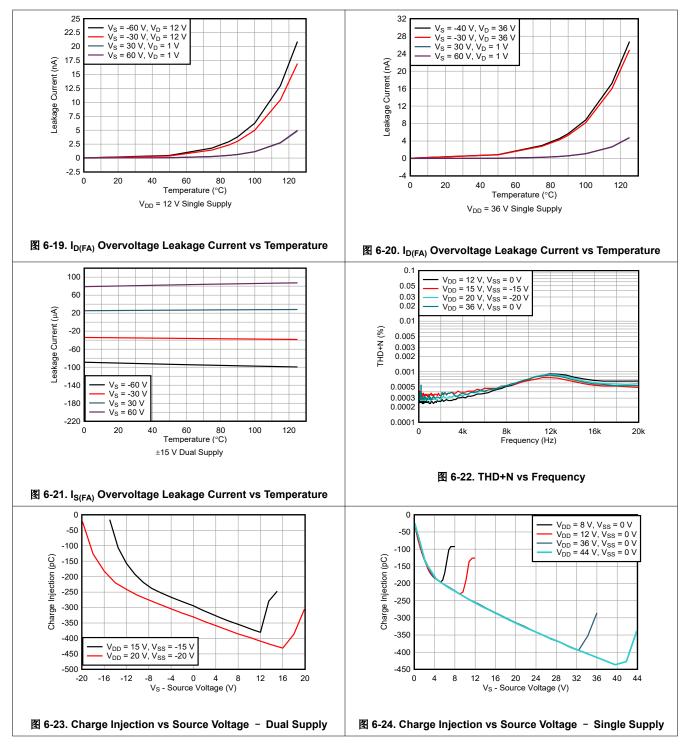
When V_S is 30 V, V_D is 1 V. Or when V_S is 1 V, V_D is 30 V. When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating. (2)


6.10 Typical Characteristics

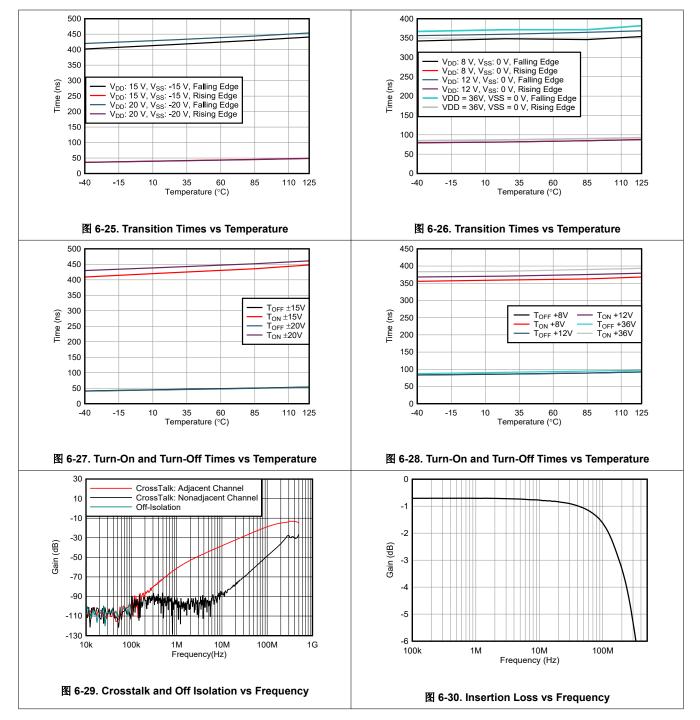
at $T_A = 25^{\circ}C$, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)



at T_A = 25°C, V_{DD} = 15 V, and V_{SS} = -15 V (unless otherwise noted)



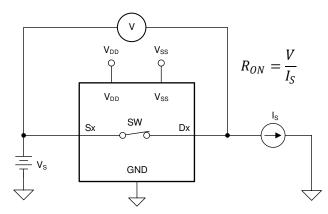
at T_A = 25°C, V_{DD} = 15 V, and V_{SS} = -15 V (unless otherwise noted)



at T_A = 25°C, V_{DD} = 15 V, and V_{SS} = -15 V (unless otherwise noted)

at T_A = 25°C, V_{DD} = 15 V, and V_{SS} = -15 V (unless otherwise noted)

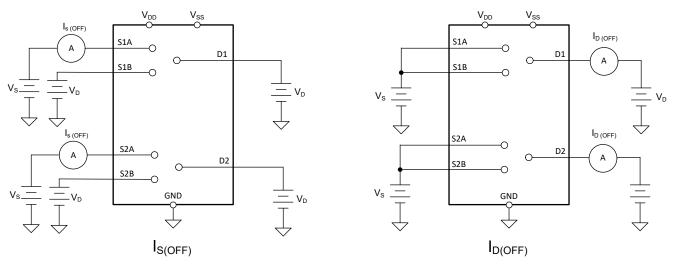
at $T_A = 25^{\circ}$ C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)



7 Parameter Measurement Information

7.1 On-Resistance

The on-resistance of the TMUX7436F is the ohmic resistance across the source (Sx) and drain (Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. 7-1 shows the measurement setup used to measure R_{ON} . $\triangle R_{ON}$ represents the difference between the R_{ON} of any two channels, while R_{ON} -FLAT denotes the flatness that is defined as the difference between the maximum and minimum value of on-resistance measured over the specified analog signal range.


图 7-1. On-Resistance Measurement Setup

7.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- Source off-leakage current I_{S(OFF)}: the leakage current flowing into or out of the source pin when the switch is off.
- Drain off-leakage current I_{D(OFF)}: the leakage current flowing into or out of the drain pin when the switch is off.

图 7-2 shows the setup used to measure both off-leakage currents.

图 7-2. Off-Leakage Measurement Setup

7.3 On-Leakage Current

Source on-leakage current $(I_{S(ON)})$ and drain on-leakage current $(I_{D(ON)})$ denote the channel leakage currents when the switch is in the on state. $I_{S(ON)}$ is measured with the drain floating, while $I_{D(ON)}$ is measured with the source floating. \mathbb{X} 7-3 shows the circuit used for measuring the on-leakage currents.

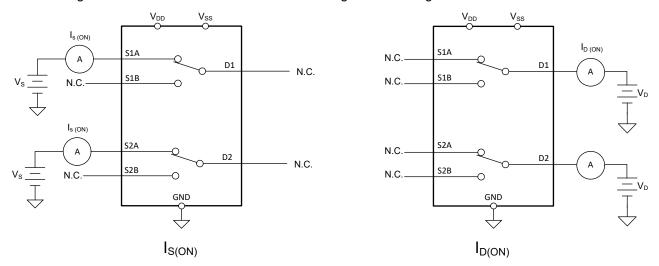
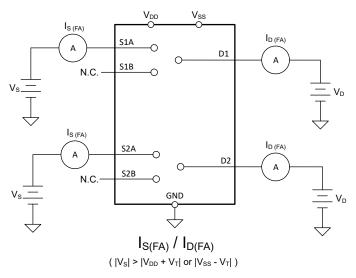



图 7-3. On-Leakage Measurement Setup

7.4 Input and Output Leakage Current Under Overvoltage Fault

If any of the source pin voltage goes above the supplies (V_{DD} or V_{SS}) by one threshold voltage (V_T), then the overvoltage protection feature of the TMUX7436F is triggered to turn off the switch under fault, keeping the fault channel in a high-impedance state. $I_{S(FA)}$ and $I_{D(FA)}$ denotes the input and output leakage current under overvoltage fault conditions, respectively. When the overvoltage fault occurs, the supply (or supplies) can either be in normal operating condition (\mathbb{X} 7-4) or abnormal operating condition (\mathbb{X} 7-5). During abnormal operating condition, the supply (or supplies) can either be unpowered (V_{DD} = V_{SS} = 0 V) or floating (V_{DD} = V_{SS} = no connection), and remains within the leakage performance specifications.

图 7-4. Measurement Setup for Input and Output Leakage Current under Overvoltage Fault With Normal Supplies

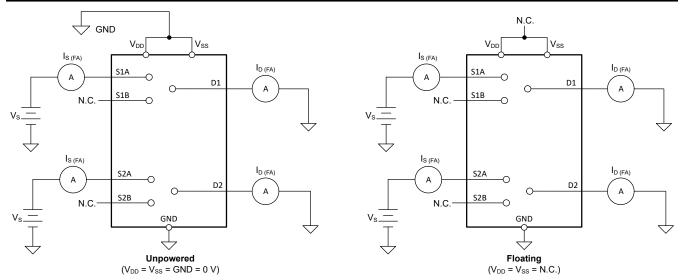


图 7-5. Measurement Setup for Input and Output Leakage Current under Overvoltage Fault With Unpowered or Floating Supplies

7.5 Enable Delay Time

 $t_{ON(EN)}$ is defined as the time taken by the output of the TMUX7436F to rise to a 90% final value after the EN signal has past the 50% threshold. $t_{OFF(EN)}$ is defined as the time taken by the output of the TMUX7436F to fall to a 10% initial value after the EN signal has past the 50% threshold. \mathbb{X} 7-6 shows the setup used to measure t_{ON} and t_{OFF} .

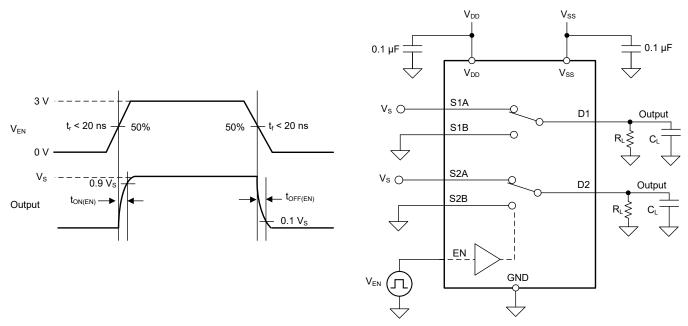


图 7-6. Enable Delay Measurement Setup

7.6 Break-Before-Make Delay

The break-before-make delay is a safety feature of the TMUX7436F switch. The ON switches of the TMUX7436F first break the connection before the OFF switches make connection. The time delay between the break and the make is known as break-before-make delay. \mathbb{X} 7-7 shows the setup used to measure break-before-make delay, denoted by the symbol t_{BBM}.

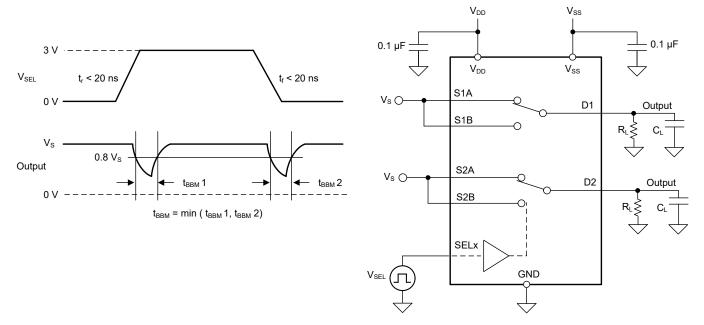


图 7-7. Break-Before-Make Delay Measurement Setup

7.7 Transition Time

Transition time is defined as the time taken by the output of the device to rise (to 90% of the transition) or fall (to 10% of the transition) after the select signal (SELx) has fallen or risen to 50% of the transition. 37-8 shows the setup used to measure transition time, denoted by the symbol t_{TRAN} .

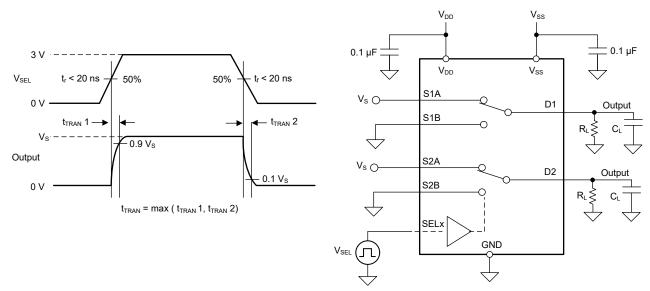


图 7-8. Transition Time Measurement Setup

7.8 Fault Response Time

Fault response time ($t_{RESPONSE}$) measures the delay between the source voltage exceeding the supply voltage (V_{DD} or V_{SS}) by 0.5 V and the drain voltage failing to 50% of the maximum output voltage. [4] 7-9 shows the setup used to measure $t_{RESPONSE}$.

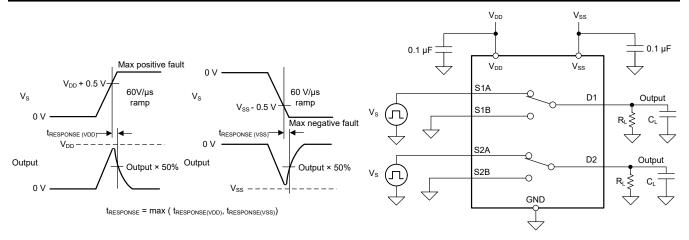
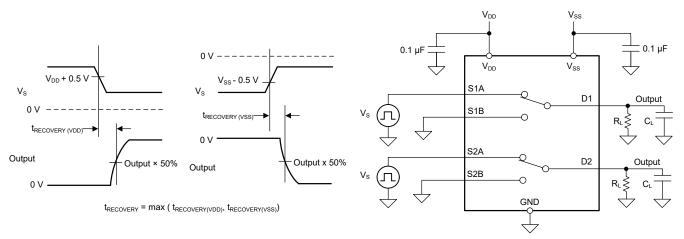
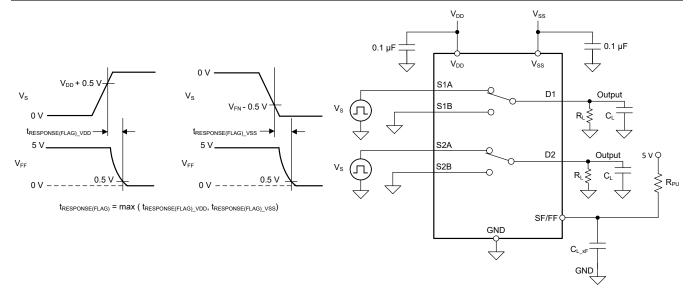
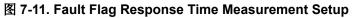



图 7-9. Fault Response Time Measurement Setup

7.9 Fault Recovery Time

Fault recovery time ($t_{RECOVERY}$) measures the delay between the source voltage falling from overvoltage condition to below supply voltage (V_{DD} or V_{SS}) plus 0.5 V and the drain voltage rising from 0 V to 50% of the final output voltage. \boxtimes 7-10 shows the setup used to measure $t_{RECOVERY}$.


图 7-10. Fault Recovery Time Measurement Setup


7.10 Fault Flag Response Time

Fault flag response time ($t_{RESPONSE(FLAG)}$) measures the delay between the source voltage exceeding the fault supply voltage (V_{DD} or V_{SS}) by 0.5 V and the general fault flag (FF) pin to go below 10% of its original value. 7-11 shows the setup used to measure $t_{RESPONSE(FLAG)}$.

7.11 Fault Flag Recovery Time

Fault flag recovery time ($t_{RECOVERY(FLAG)}$) measures the delay between the source voltage falling from overvoltage condition to below fault supply voltage (V_{DD} or V_{SS}) plus 0.5 V and the general fault flag (FF) pin to rise above 3 V with 5 V external pull-up. \boxtimes 7-12 shows the setup used to measure $t_{RECOVERY(FLAG)}$.

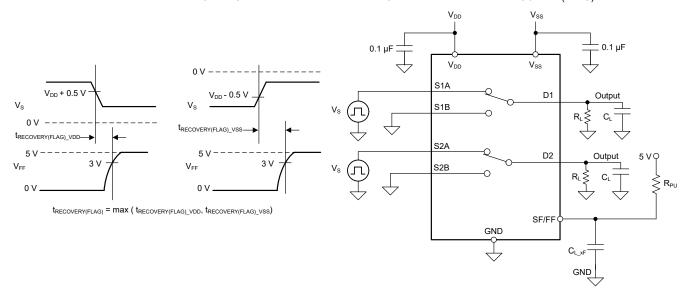


图 7-12. Fault Flag Recovery Time Measurement Setup

7.12 Charge Injection

Charge injection is a measure of the glitch impulse transferred from the logic input to the signal path during logic pin switching, and is denoted by the symbol Q_{INJ} . \boxtimes 7-13 shows the setup used to measure charge injection from the source to drain.

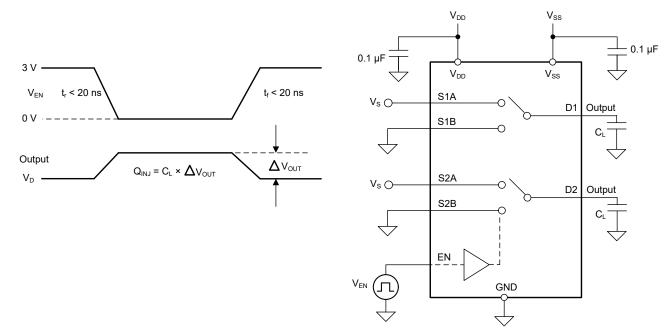
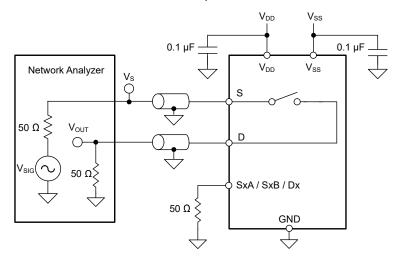
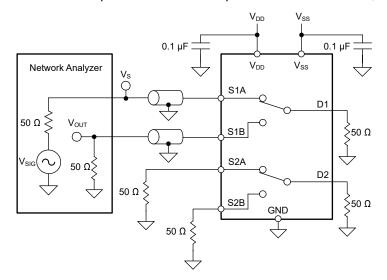


图 7-13. Charge-Injection Measurement Setup

7.13 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the source pin (Sx) of an off-channel. $\boxed{8}$ 7-14 shows the setup used to measure off isolation.




图 7-14. Off Isolation Measurement Setup

7.14 Crosstalk

The following are two types of crosstalk that can be defined for the devices:

- 1. Intra-channel crosstalk ($X_{TALK(INTRA)}$): the voltage at the source pin (Sx) of an off-switch input, when a 1-V_{RMS} signal is applied at the source pin of an on-switch input in the same channel, as shown in 🖄 7-15.
- 2. Inter-channel crosstalk (X_{TALK(INTER)}): the voltage at the source pin (Sx) of an on-switch input, when a 1-V_{BMS} signal is applied at the source pin of an on-switch input in a different channel, as shown in $\boxed{8}$ 7-16.

图 7-15. Intra-Channel Crosstalk Measurement Setup

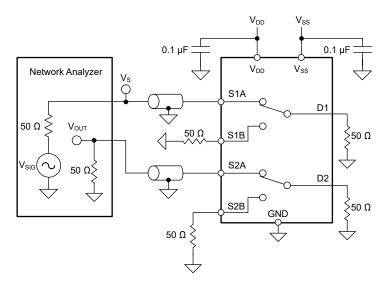


图 7-16. Inter-Channel Crosstalk Measurement Setup

7.15 Bandwidth

Bandwidth (BW) is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. $\boxed{8}$ 7-17 shows the setup used to measure bandwidth of the switch.

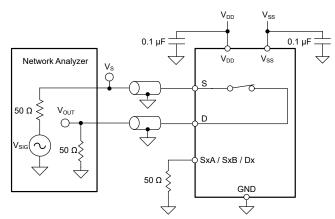


图 7-17. Bandwidth Measurement Setup

7.16 THD + Noise

The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the switch output. The on-resistance of the device varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD+N. [X] 7-18 shows the setup used to measure THD+N of the devices.

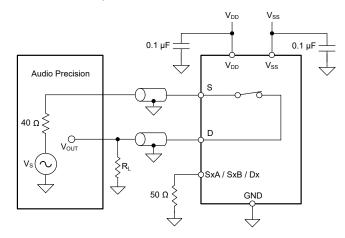
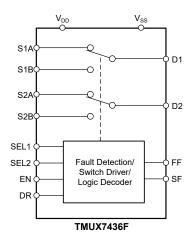


图 7-18. THD+N Measurement Setup



8 Detailed Description

8.1 Overview

The TMUX7436F device is a 44-V fault protected multiplexer with latch-up immunity in a 2:1, 2 channel configuration. The device works well with dual supplies (± 5 V to ± 22 V), a single supply (8 V to 44 V), or asymmetric supplies (such as VDD = 15 V, VSS = -5 V). The overvoltage protection feature on the source pins works under powered and powered-off conditions, allowing for use in harsh industrial environments. The powered-off condition includes floating power supplies, grounded power supplies, or power supplies at any level that are below the undervoltage (UV) threshold.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Flat ON-Resistance

The TMUX7436F is designed with a special switch architecture to produce ultra-flat on-resistance (R_{ON}) across most of the switch input operation region. The flat R_{ON} response allows the device to be used in precision sensor applications since the R_{ON} is controlled regardless of the signals sampled. The architecture is implemented without a charge pump so no unwanted noise is produced from the device to affect sampling accuracy.

8.3.2 Protection Features

The TMUX7436F offers a number of protection features to enable robust system implementations.

8.3.2.1 Input Voltage Tolerance

The maximum voltage that can be applied to any source input pin is +60 V or -60 V, regardless of supply voltage. This allows the device to handle typical voltage fault condition in industrial applications. Caution: the device is rated to handle a maximum stress of 85 V across different pins, such as the following:

1. Between source pins and supply rails: 85 V

For example, if the device is powered by V_{DD} supply of 25 V, then the maximum negative signal level on any source pin is -60 V to maintain the 60 V maximum rating on any source pin. If the device is powered by V_{DD} supply of 40 V, then the maximum negative signal level on any source pin is reduced to -45 V to maintain the 85 V maximum rating across the source pin and the supply.

2. Between source pins and the drain pin: 85 V

For example, if channel S1A is ON and the voltage on S1A pin is 40 V, then the drain voltage D1 is also 40 V. In this case, the maximum negative voltage allowed on S1B is - 45 V to maintain the 85 V maximum rating across the source pin and the drain pin.

8.3.2.2 Powered-Off Protection

When the supplies of TMUX7436F are removed (V_{DD} / $V_{SS} = 0$ V or floating), the source (Sx) pins of the device remain within the leakage performance mentioned in the *Electrical Characteristics*. Powered-off protection minimizes system complexity by removing the need to control power supply sequencing of the system. The feature prevents errant voltages on the input source pins from reaching the rest of the system and maintains isolation when the system is powering up. Without powered-off protection, signals on the input source pins can back-power the supply rails through internal ESD diodes and cause potential damage to the system. For more information on powered-off protection, refer to the *Eliminate Power Sequencing with Powered-Off Protection Signal Switches* application brief.

A GND reference must always be present to ensure proper operation. Source and drain voltage levels of up to ± 60 V are blocked in the powered-off condition.

8.3.2.3 Fail-Safe Logic

Fail-safe logic circuitry allows voltages on the logic control pins to be applied before the supply pins, protecting the device from potential damage. The switch is specified to be in the OFF state, regardless of the state of the logic signals. The logic inputs are protected against positive faults of up to +44 V in powered-off condition, but do not offer protection against negative overvoltage condition.

Fail-safe logic also allows the TMUX7436F device to interface with a voltage greater than V_{DD} during normal operation to add maximum flexibility in system design. For example, with a V_{DD} of = 15 V, the logic control pins could be connected to +24 V for a logic high signal which allows different types of signals, such as analog feedback voltages, to be used when controlling the logic inputs. Regardless of the supply voltage, the logic inputs can be interfaced as high as 44 V.

8.3.2.4 Overvoltage Protection and Detection

The TMUX7436F detects overvoltage inputs by comparing the voltage on a source pin (Sx) with the supplies (V_{DD} and V_{SS}). A signal is considered overvoltage if it exceeds the supply voltages by the threshold voltage (V_T).

The switch automatically turns OFF regardless of the logic controls when an overvoltage is detected. The source pin becomes high impedance and ensures only small leakage current flows through the switch. The drain pin (Dx) behavior can be adjusted by controlling the drain response (DR) pin in the following ways:

1. DR pin floating or driven above VIH:

If the DR pin is driven above VIH level of the pin, then the drain pin becomes high impedance (Hi-Z) upon overvoltage fault.

2. DR driven below VIL:

If the DR pin is driven below VIL level of the pin, and the channel expeirencing the overvoltage fault condition is currently being selected by the logic controls (EN, SELx), then the drain pin (Dx) is pulled to the supply that was exceeded through a 40 k Ω resistor. For example, if the source voltage exceeds V_{DD} , then the drain output is pulled to V_{DD} . If the source voltage exceeds V_{SS} , then the drain output is pulled to V_{SS} . The pull-up/pull-down impedance is approximately 40 k Ω , and as a result, the drain current is limited during a shorted load (to GND) condition.

8-1 shows a detailed view of the how the DR pin, SELx pin, and EN pin controls the output state of the drain pin under a fault scenario.

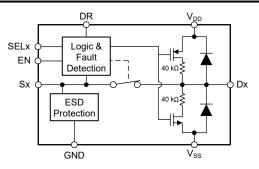


图 8-1. Detailed Functional Diagram

8.3.2.5 Adjacent Channel Operation During Fault

When the logic pins are set to a channel under a fault, the overvoltage detection will trigger, the switch will open, and the drain pin will operate as described in $\ddagger 8.3.2.4$. During such an event, all other channels not under a fault can continue to operate as normal. For example, if S1A voltage exceeds V_{DD} , and the logic pins are set to S1A, and the DR pin is set to logic low, then the drain output is pulled to V_{DD} . Afterwards if the logic pins are changed to set S1B, which is not in overvoltage or undervoltage, then the drain will disconnect from the pullup to V_{DD} and the S1B switch will be enabled and connected to the drain, operating as normal, although there is still an overvoltage condition present on S1A. If the logic pins are switched back to S1A, then the S1B switch will be disabled until the overvoltage fault is removed.

8.3.2.6 ESD Protection

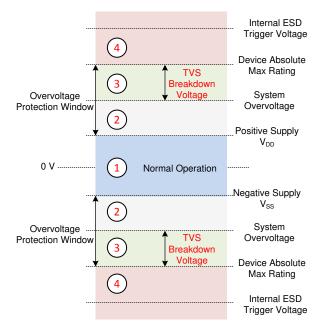
All pins on the TMUX7436F support HBM ESD protection level up to \pm 6 kV, which helps prevent the device from being damaged by ESD events during the manufacturing process.

The drain pins (Dx) have internal ESD protection diodes to the supplies V_{DD} and V_{SS} ; therefore the voltage at the drain pins must not exceed the supply voltages to prevent excessive diode current. The source pins have specialized ESD protection that allows the signal voltage to reach ±60 V regardless of supply voltage level. Exceeding ±60 V on any source input may damage the ESD protection circuitry on the device and cause the device to malfunction if the damage is excessive.

8.3.2.7 Latch-Up Immunity

Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the low impedance path.

The TMUX7436F device is constructed on silicon on insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX7436F to be used in harsh environments. For more information on latch-up immunity, refer to *Using Latch Up Immune Multiplexers to Help Improve System Reliability*.



8.3.2.8 EMC Protection

The TMUX7436F is not intended for standalone electromagnetic compatibility (EMC) protection in industrial applications. There are three common high voltage transient specifications that govern industrial high voltage transient specification: IEC61000-4-2 (ESD), IEC61000-4-4 (EFT), and IEC61000-4-5 (surge immunity). A transient voltage suppressor (TVS), along with some low-value series current limiting resistor, are required to prevent source input voltages from going above the rated ±60 V limits.

When selecting a TVS protection device, it is critical to ensure that the maximum working voltage is greater than both the normal operating range of the input source pins to be protected and any known system common-mode overvoltage that may be present due to miswiring, loss of power, or short circuit. 🔀 8-2 shows an example of the proper design window when selecting a TVS device.

Region 1 denotes normal operation region of TMUX7436F, where the input source voltages stay below the supplies V_{DD} and V_{SS} . Region 2 represents the range of possible persistent DC (or long duration AC overvoltage fault) presented on the source input pins. Region 3 represents the margin between any known DC overvoltage level and the absolute maximum rating of the TMUX7436F. The TVS breakdown voltage must be selected to be less than the absolute maximum rating of the TMUX7436F, but greater than any known possible persistent DC or long duration AC overvoltage fault to avoid triggering the TVS inadvertently. Region 4 represents the margin system designers must impose when selecting the TVS protection device to prevent accidental triggering of ESD cells of the TMUX7436F device.

图 8-2. System Operation Regions and Proper Region of Selecting a TVS Protection Device

8.3.3 Overvoltage Fault Flags

The voltages on the source input pins of the TMUX7436F are continuously monitored, and the status of whether an overvoltage condition occurs is indicated by an active low general fault flag (FF). The voltage on the FF pin indicates if any of the source input pins are experiencing an overvoltage condition. If any source pin voltage exceeds the fault supply voltages by a V_T , then the FF output is pulled-down to below V_{OL} .

The specific fault (SF) output pins, on the other hand, can be used to decode which inputs are experiencing an overvoltage condition. As provided in the $\frac{1}{8}$ 8-1, the SF pin is pulled-down to below V_{OL} when an overvoltage condition is detected on a specific source input pin, depending on the state of the SEL1, SEL2, and EN logic pins.

Both the FF pin and the SF pin are an open-drain output and an external pull-up resistor of 1 k Ω is recommended. The pull-up voltage can be in the range of 1.8 V to 5.5 V, depending on the controller voltage the device interfaces with.

8.3.4 Bidirectional Operation

The TMUX7436F conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). However, it is noted that the overvoltage protection is implemented only on the source (Sx) side. The voltage on the drain is only allowed to swing between V_{DD} and V_{SS} and no overvotlage protection is available on the drain side.

The flatest on-resistance region extends from V_{SS} to roughly 3 V below V_{DD} . Once the signal is within 3 V of V_{DD} the on-resistance will expoentially increase and may impact desired signal transmission.

8.3.5 1.8 V Logic Compatible Inputs

The TMUX7436F device has 1.8 V logic compatible control for all logic control inputs. 1.8 V logic level inputs allows the TMUX7436F to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations, refer to *Simplifying Design with 1.8 V logic Muxes and Switches*.

8.3.6 Integrated Pull-Down Resistor on Logic Pins

The TMUX7436F has internal weak pull-down resistors to GND to ensure the logic pins are not left floating. The value of this pull-down resistor is approximately 4 M Ω , but is clamped to about 1 µA at higher voltages. This feature integrates up to four external components and reduces system size and cost.

8.4 Device Functional Modes

The TMUX7436F offers two modes of operation (normal mode and fault mode) depending on whether any of the input pins experience an overvoltage condition.

8.4.1 Normal Mode

In Normal mode operation, signals of up to V_{DD} and V_{SS} can be passed through the switch from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). As provided in $\frac{1}{28}$ 8-1, the select pins (SELx) and enable pin (EN) determines which switch path to turn on. The following conditions must be satisfied for the switch to stay in the ON condition:

- The difference between the supples (V_{DD} V_{SS}) must be greater than or equal to 8 V, with a minimum V_{DD} of 5 V.
- The input signals on the source (Sx) or the drain (Dx) must be be between V_{DD}+ V_T and V_{SS} V_T.
- The logic control (SELx and EN) must have selected the switch.

8.4.2 Fault Mode

The TMUX7436F enters into Fault mode when any of the input signals on the source (Sx) pins exceed V_{DD} or V_{SS} by a threshold voltage V_T . Under the overvoltage condition, the switch input experiencing the fault automatically turns off regardless of the logic status, and the source pin becomes high impedance with negligible amount of leakage current flowing through the switch. For more information about how the drain pain (Dx) behavior under the Fault mode can be programmed, see $\ddagger 8.3.2.4$.

In the Fault mode, the general fault flag (FF) is asserted low. $\frac{1}{8}$ 8-1 provides how the specific flag (SF) is asserted low depending on the status of the logic control pins SELx and EN.

The overvoltage protection is provided only for the source (Sx) input pins. The drain (Dx) pin, if used as signal input, must stay in between V_{DD} and V_{SS} at all times since no overvoltage protection is implemented on the drain pin.

8.4.3 Truth Tables

 \pm 8-1 and \pm 8-2 provides the truth tables for the TMUX7436F under normal and fault conditions.

			Normal Condition	Fault Condition					
EN	SEL2	SEL1	Normal Condition	State of S	pecific Flag (S	F) when fault	occurs on		
			On Switch	S1A	S1B	S2A	S2B		
0	0	0	None	0	1	1	1		
0	0	1	None	1	0	1	1		
0	1	0	None	1	1	1	0		
0	1	1	None	1	1	0	1		
1	0	0	S1B, S2B	0	1	1	1		
1	0	1	S1A, S2B	1	0	1	1		
1	1	0	S1B, S2A	1	1	1	0		
1	1	1	S1A, S2A	1	1	0	1		

表 8-1. TMUX7436F Truth Table

Take note, more than one source pin can be in fault at a given time. As $\frac{1}{8}$ 8-1 provides, the SF pin will assert low even when multiple source pins are under fault.

A 0-2. TWOA7450F DK THUIT TADLE						
DR PIN STATE	Dx State During Fault Condition					
0	Pulled up to V_{DD} or V_{SS}					
1	Open (HI-Z)					

表 8-2. TMUX7436F DR Truth Table

If unused, then SELx pins must be tied to GND to ensure the device does not consume additional current (for more information, refer to *Implications of Slow or Floating CMOS Inputs*. Unused signal path inputs (Sx or Dx) should be connected to GND.

9 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The TMUX7436F is a part of the fault protected switches and multiplexers family of devices. The ability to protect downstream components from overvoltage events up to ± 60 V and latch-up immunity features makes these switches and multiplexers suitable for harsh environments.

9.2 Typical Application

The need to monitor remote sensors is common among factory automation control systems. For example, an analog input module or mixed module (AI, AO, DI, and DO) of a programmable logic controller (PLC) will interface to a field transmitter to monitor various process sensors at remote locations around the factory. A switch or multiplexer is often used to connect multiple inputs from the system and reduce the number of downstream channels.

There are a number of fault cases that may occur that can be damaging to many of the integrated circuits. Such fault conditions may include, but are not limited to, human error from wiring the connections incorrectly, component failure, wire shorts, electromagnetic interference (EMI), transient distrubances, and more.

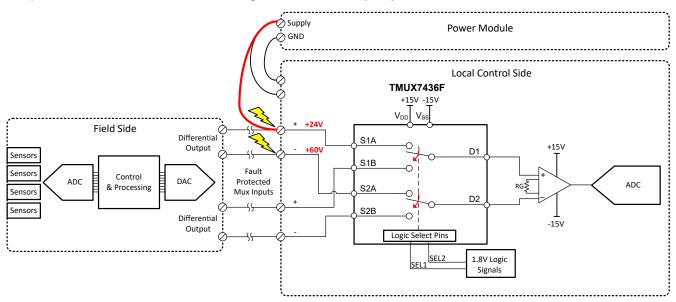


图 9-1. Typical Application

9.2.1 Design Requirements

PARAMETER	VALUE						
Positive supply (V _{DD}) mux	+15 V						
Negative supply (V _{SS}) mux	-15 V						
Power board supply voltage	24 V						
Input or output signal range non-faulted	-15 V to 15 V						
Overvoltage protection levels	-60 V to 60 V						
Control logic thresholds	1.8 V compatible, up to 44 V						
Temperature range	-40°C to +125°C						

表 9-1. Design Parameters

9.2.2 Detailed Design Procedure

The normal operation of the application is to take multiple differential inputs and use a 2:1 multiplexer to pass the signal to the downstream instrumentation amplifier. A fault protected switch can add extra robustness to the sytem against fault conditions while also reducing the number of components required to interface with the systems physical input channels.

The [m] 9-1 shows the case where a human wired the condition incorrectly and one of the input connectors shorted to the power board supply voltage. If the board supply voltage is higher than the power supply of the multiplexer, then the TMUX7436F device will disconnect the source input from passing the signal to protect the downstream components. The drain pin of the channels can either be pulled up to the supply voltage (V_{DD} and V_{SS}) through a 40 k Ω resistor or be left floating depending on the state of the DR pin. This can be configured to match the system requirements on how to handle a fault condition.

9.2.3 Application Curves

The previous example shows how the fault protection of the TMUX7436F is utilized to protect downstream components from damage due to wiring the connections incorrectly from the power module. 3 9-2 shows an example of positive overvoltage fault response with a fast fault ramp rate of 40 V/µs. 3 9-3 shows the extremely flat on-resistance across source voltage while operating within a common signal range of ±10 V. These features make the TMUX7436F an ideal solution for factory automation applications that can face various fault conditions but also require excellent linearity and low distortion.

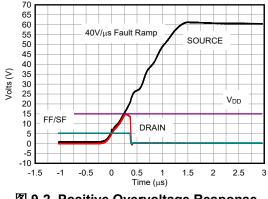


图 9-2. Positive Overvoltage Response

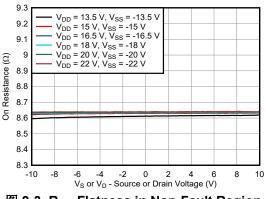
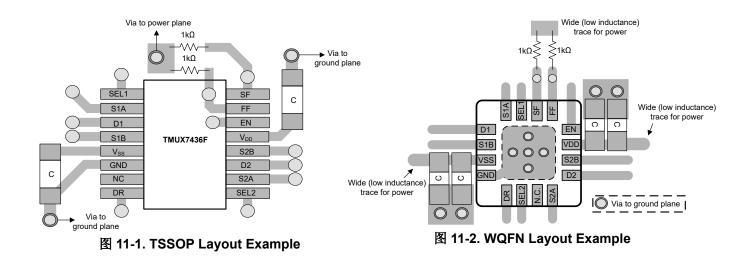


图 9-3. R_{ON} Flatness in Non-Fault Region

10 Power Supply Recommendations

The TMUX7436F operates across a wide supply range of ±5 V to ±22 V (8 V to 44 V in single-supply mode). It also performs well with asymmetrical supplies such as V_{DD} = 12 V and V_{SS} = -5 V. Use a supply decoupling capacitor ranging from 1 µF to 10 µF at the V_{DD} and V_{SS} pins to ground for improved supply noise immunity. Always ensure the ground (GND) connection is established before supplies are ramped.


11 Layout

11.1 Layout Guidelines

图 11-1 and 图 11-2 shows an example of a PCB layout with the TMUX7436F. The following are some key considerations:

- Decouple the V_{DD} and V_{SS} pins with a 1- μ F capacitor, placed as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the V_{DD} and V_{SS} supplies.
- Multiple decoupling capacitors can be used if their is a lot of noise in the system. For example, a 0.1-µF and 1-µF can be placed on the supply pins. If multiple capacitors are used, placing the lowest value capacitor closest to the supply pin is recommended.
- Keep the input lines as short as possible.
- Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

11.2 Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

- · Texas Instruments, Implications of Slow or Floating CMOS Inputs application note
- Texas Instruments, Improving Analog Input Modules Reliability Using Fault Protected Multiplexers application report
- · Texas Instruments, Multiplexers and Signal Switches Glossary application report
- Texas Instruments, *Protection Against Overvoltage Events, Miswiring, and Common Mode Voltages* application report
- Texas Instruments, Using Latch-Up Immune Multiplexers to Help Improve System Reliability application report
- Texas Instruments, Using Latch Up Immune Multiplexers to Help Improve System Reliability

12.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新*进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。

所有间标均为共合目所有有的财产。

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 术语表

TI术语表 本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TMUX7436FPWR	ACTIVE	TSSOP	PW	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TM7436F	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司