

TPS25940A, TPS25940L

ZHCSCK2-JUNE 2014

TPS25940x 2.7V - 18V 电子熔丝 (eFuse), 具有真正反向阻断和针对固态 硬盘 (SSD) 的 DevSleep 支持

特性

- 2.7V 18V 工作电压,最大绝对值 20V
- 42mΩ R_{ON} (典型值)
- 0.6A 至 5.3A 可调电流限值 (±8%)
- IMON 电流指示器输出 (±8%)
- 200μA 工作 I_O (典型值)
- 95µA DevSleep 模式 Io (典型值)
- 被禁用时, 15µA I_O(典型值)
- +2% 过压、欠压阈值
- 反向电流阻断
- 1µs 反向电压关闭
- 可编程 dV。/dt 控制
- 电源正常和故障输出
- -40°C 至 125°C 的结温范围
- UL2367 认证正在处理中
- UL60950 单点故障测试期间安全

2 应用范围

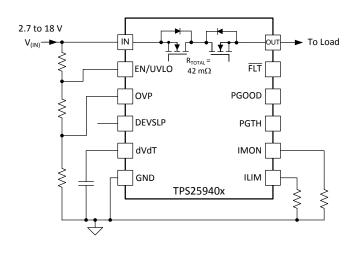
- PCIe/SATA/SAS 硬盘 (HDD) 和 SSD 硬盘
- 企业级和微型服务器
- 智能负载开关
- 机顶盒 (STB),数字电视 (DTV)和游戏控制台
- RAID 卡 保持电源管理
- 电信交换机和路由器
- 适配器供电器件

3 说明

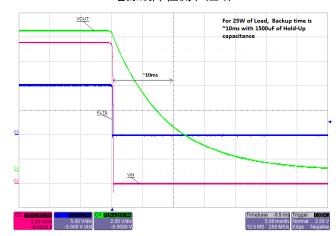
TPS25940 eFuse 电源开关是一款紧凑且特性丰富的 电源管理器件,此器件具有一整套的保护功能,其中包 括一个低功率 DevSleep™ 模式, 此模式支持与 SATA™ 器件睡眠标准的兼容性。 宽工作范围可实现 对很多常用直流总线电压的控制。 集成背靠背场效应 晶体管 (FET) 提供双向电流控制,从而使得器件非常 适合于那些具有负载侧保持能量,而这些能量又一定不 能回流至故障电源总线的系统。

负载、电源和器件保护由很多可编程特性提供,其中包 括过流,dV_a/dt 斜率和过压、欠压阈值。 为了实现系 统状态监视和下游负载控制, 此器件提供

PGOOD, FLT 和精密电流监视输出。 精密可编程欠 压、过压阈值和低 Io DevSleep 模式简化了 SSD 电源 管理设计。


TPS25940 监视 V_(IN) 和 V_(OUT), 以便在 V_(IN) < (V_(OUT) - 10mV) 时提供真正反向阻断。 这个功能在后备电压 大于总线电压的系统中支持快速切换至一个升压储能元 件。

器件信息(1)


产品型号(2)	封装	封装尺寸 (标称值)	
TPS25940A	超薄四方扁平无引线	3.00mm x 4.00mm	
TPS25940L	(WQFN) (20)	3.00mm x 4.00mm	

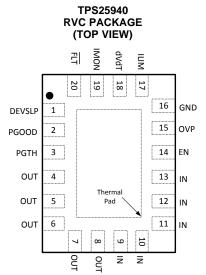
- (1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。
- (2) TPS25940L = 已锁存, TPS25940A = 自动重试

简化电路原理图

电源故障检测和阻断

目录

1	特性1		9.3 Feature Description	19
2	应用范围 1		9.4 Device Functional Modes	
3		10	Application and Implementation	25
4	简化电路原理图1		10.1 Application Information	25
5	修订历史记录		10.2 Typical Application	25
6	Pin Configuration and Functions		10.3 System Examples	33
7	Specifications	11	Power Supply Recommendations	36
•	•		11.1 Transient Protection	36
	7.1 Absolute Maximum Ratings		11.2 Output Short-Circuit Measurements	37
	7.2 Handling Ratings	12	Layout	
	7.3 Recommended Operating Conditions		12.1 Layout Guidelines	
	7.4 Thermal Characteristics 5		12.2 Layout Example	
	7.5 Electrical Characteristics6	40		
	7.6 Timing Requirements8	13	器件和文档支持	
	7.7 Typical Characteristics9		13.1 相关链接	40
8	Parametric Measurement Information		13.2 Trademarks	40
•			13.3 Electrostatic Discharge Caution	40
9	Detailed Description 17		13.4 Glossary	
	9.1 Overview 17	4.4		
	9.2 Functional Block Diagram 18	14	机械封装和可订购信息	40


5 修订历史记录

日期	修订版本	注释
2014年6月	*	最初发布。

www.ti.com.cn ZHCSCK2 - JUNE 2014

6 Pin Configuration and Functions

Pin Functions

NAME	NO.	1/0	DESCRIPTION
DEVSLP	1	I	Active High. DevSleep Mode control. A high at this pin will activate the DevSleep mode(Low Power Mode).
PGOOD	2	0	Active High. A high indicates PGTH has crossed the threshold value. It is an open drain output.
PGTH	3	I	Positive input of PGOOD comparator.
OUT	4 - 8	0	Power Output of the device.
IN	9 - 13	I	Power Input and supply voltage of the device.
EN/UVLO	14	I	Input for setting programmable undervoltage lockout threshold. An undervoltage event will open internal FET and assert FLT to indicate power-failure. When pulled to GND, resets the fault latch in TPS25940L.
OVP	15	I	Input for setting programmable overvoltage protection threshold. An overvoltage event will open the internal FET and assert FLT to indicate overvoltage.
GND	16	_	Ground.
ILIM	17	I/O	A resistor from this pin to GND sets the overload and short-circuit current limit.
dVdT	18	I/O	A capacitor from this pin to GND sets the ramp rate of output voltage.
IMON	19	0	This pin sources a scaled down ratio of current through the internal FET. A resistor from this pin to GND converts current to proportional voltage, used as analog current monitor.
FLT	20	0	Fault event indicator, goes low to indicate fault condition due to Undervoltage, Overvoltage, Reverse voltage and Thermal shutdown event. It is an open drain output.
PowerPAD ^T	М		The GND terminal must be connected to the exposed PowerPAD. This PowerPAD must be connected to a PCB ground plane using multiple vias for good thermal performance.

7 Specifications

7.1 Absolute Maximum Ratings

over operating temperature range (unless otherwise noted) (1)

		VALU	JE	UNIT	
		MIN	MAX	UNII	
	IN, OUT, PGTH, PGOOD, EN/UVLO, OVP, DEVSLP, FLT	-0.3	20		
Input voltage range	IN (10 ms Transient)		22	V	
	dVdT, ILIM	-0.3	3.6		
	IMON	-0.3	7		
Sink current	PGOOD, FLT, dVdT		10	mA	
Source current dVdT, ILIM, IMON		Internally	Limited		
Maximum junction, T _J		-40	150	°C	
Continuous power dissipation See the <i>Thermal Chara</i>			mal Charact	eristics ⁽²⁾	

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	T _{stg} Storage temperature range		-65	150	°C
V _{ECD} Flectrostatic discharge	Floatrootatio dia shares	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-2	2	kV
	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	-500	500	V	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
	IN	2.7		18	
Innut voltage renge	EN/UVLO, OVP, DEVSLP, OUT, PGTH, PGOOD, FLT	0		18	V
Input voltage range	dVdT, ILIM	0		3	V
	IMON	0		6	
Resistance	ILIM	16.9		150	kΩ
Resistance	IMON	1			K12
External conscitones	OUT	0.1			μF
External capacitance	dVdT			470	nF
Operating junction temperature range, T _J			25	125	°C

⁽²⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

www.ti.com.cn

7.4 Thermal Characteristics⁽¹⁾

	THERMAL METRIC		LINUT
	I HERMAL METRIC	RVC (20) PINS	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	38.1	
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	40.5	
$R_{\theta JB}$	Junction-to-board thermal resistance	13.6	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.6	·C/VV
Ψ_{JB}	Junction-to-board characterization parameter	13.7	
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance	3.4	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

ZHCSCK2 – JUNE 2014 www.ti.com.cn

7.5 Electrical Characteristics

Conditions are $-40^{\circ}\text{C} \le \text{T}_J = \text{T}_A \le 125^{\circ}\text{C}$, $2.7 \text{ V} \le \text{V}_{(IN)} = 18 \text{ V}$, $\text{V}_{(EN/UVLO)} = 2 \text{ V}$, $\text{V}_{(OVP)} = \text{V}_{(DEVSLP)} = \text{V}_{(PGTH)} = 0 \text{ V}$, $\text{R}_{(ILIM)} = 150 \text{ k}\Omega$, $\text{C}_{(OUT)} = 1 \text{ } \mu\text{F}$, $\text{C}_{(dVdT)} = \text{OPEN}$, PGOOD = FLT = IMON = OPEN. Positive current into terminals. All voltages referenced to GND (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY VOLTA	AGE AND INTERNAL UNDERVOLTAG	E LOCKOUT				
$V_{(IN)}$	Operating Input Voltage		2.7		18	V
$V_{(UVR)}$	Internal UVLO threshold, rising		2.2	2.3	2.4	V
$V_{(UVRhys)}$	Internal UVLO hysteresis		105	116	125	mV
		$V_{(EN/UVLO)} = 2 \text{ V}, V_{(IN)} = 3 \text{ V}$	140	210	300	
$I_{Q(ON)}$	Supply current, Enabled	$V_{(EN/UVLO)} = 2 \text{ V}, V_{(IN)} = 12 \text{ V}$	140	199	260	μΑ
		$V_{(EN/UVLO)} = 2 \text{ V}, V_{(IN)} = 18 \text{ V}$	140	202	270	
		$V_{(EN/UVLO)} = 0 \text{ V}, V_{(IN)} = 3 \text{ V}$	4	8.6	15	
$I_{Q(OFF)}$	Supply current, Disabled	$V_{(EN/UVLO)} = 0 \text{ V}, V_{(IN)} = 12 \text{ V}$	6	15	20	μΑ
		$V_{(EN/UVLO)} = 0 \text{ V}, V_{(IN)} = 18 \text{ V}$	8	18.5	25	
I _{Q(DEVSLP)}	Supply current, DevSleep Mode	$V_{(DEVSLP)} = 0 \text{ V}, V_{(IN)} = 2.7 \text{V to } 18 \text{V}$	70	95	130	μA
ENABLE AND U	JNDERVOLTAGE LOCKOUT (EN/UVL	O) INPUT				
V _(ENR)	EN/UVLO threshold voltage, rising		0.97	0.99	1.01	V
$V_{(ENF)}$	EN/UVLO threshold voltage, falling		0.9	0.92	0.94	V
V _(SHUTF)	EN threshold voltage for Low I _Q shutdown, falling		0.3	0.47	0.63	V
V _(SHUTFhys)	EN hysteresis for low I _Q shutdown, hysteresis ⁽¹⁾			66		mV
I _{EN}	EN Input leakage current	0 V ≤ V _(EN/UVLO) ≤ 18 V	-100	0	100	nA
OVER VOLTAG	E PROTECTION (OVP) INPUT					
V _(OVPR)	Overvoltage Threshold Voltage, Rising,		0.97	0.99	1.01	V
$V_{(OVPF)}$	Overvoltage Threshold Voltage, Falling		0.9	0.92	0.94	V
I _(OVP)	OVP Input Leakage Current	0 V ≤ V _(OVP) ≤ 5 V	-100	0	100	nA
DEVSLP MODE	INPUT (DEVSLP): ACTIVE HIGH					
V _(DEVSLPR)	DEVSLP threshold voltage, rising		1.6	1.85	2	V
V _(DEVSLPF)	DEVSLP threshold voltage, falling		0.8	0.96	1.1	V
I _(DEVSLP)	DEVSLP input leakage current	0.2 V ≤ V _(DEVSLP) ≤ 18 V	0.6	1	1.25	μΑ
OUTPUT RAMP	CONTROL (dVdT)					
I _(dVdT)	dVdT charging current	$V_{(dVdT)} = 0 V$	0.85	1	1.15	μΑ
R _(dVdT)	dVdT discharging resistance	EN/UVLO = 0 V, I _(dVdT) = 10 mA sinking		16	24	Ω
V _(dVdTmax)	dVdT maximum capacitor voltage		2.6	2.88	3.1	V
GAIN _(dVdT)	dVdT to OUT gain	$\Delta V_{(OUT)} \Delta V_{(dVdT)}$	11.65	11.9	12.05	V/V
CURRENT LIMI	T PROGRAMMING (ILIM)				•	
V _(ILIM)	ILIM bias voltage			0.87		٧
		$R_{(ILIM)} = 150 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 1 \text{ V}$	0.53	0.58	0.63	
		$R_{(ILIM)} = 88.7 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 1 \text{ V}$	0.9	0.99	1.07	
		$R_{(ILIM)} = 42.2 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 1 \text{ V}$	1.92	2.08	2.25	A
	(0)	$R_{(ILIM)} = 24.9 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 1 \text{ V}$	3.25	3.53	3.81	
I _(LIM)	Current limit ⁽²⁾	$R_{(ILIM)} = 16.9 \text{ k}\Omega, (V_{(IN)} - V_{(OUT)}) = 1 \text{ V}$	4.78	5.2	5.62	
		R _(ILIM) = OPEN, Open resistor current limit (Single Point Failure Test: UL60950)	0.35	0.45	0.55	
		R _(ILIM) = SHORT, Shorted resistor current limit (Single Point Failure Test: UL60950)	0.55	0.67	0.8	
I _{(DEVSLP(LIM))}	DevSleep Mode Current Limit		0.55	0.67	0.8	Α

⁽¹⁾ These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account separately.

www.ti.com.cn

Electrical Characteristics (continued)

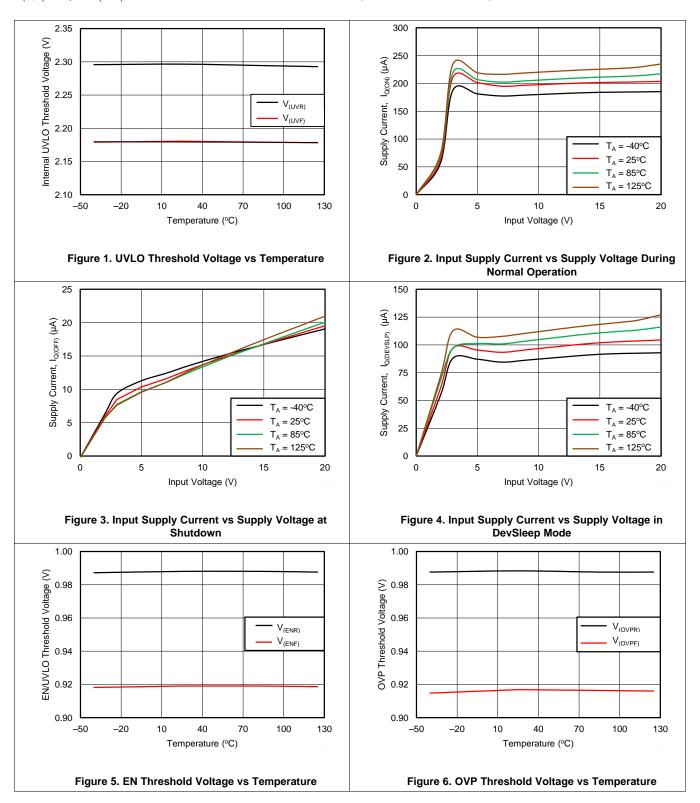
Conditions are $-40^{\circ}\text{C} \le \text{T}_J = \text{T}_A \le 125^{\circ}\text{C}$, $2.7 \text{ V} \le \text{V}_{(IN)} = 18 \text{ V}$, $\text{V}_{(EN/UVLO)} = 2 \text{ V}$, $\text{V}_{(OVP)} = \text{V}_{(DEVSLP)} = \text{V}_{(PGTH)} = 0 \text{ V}$, $\text{R}_{(ILIM)} = 150 \text{ k}\Omega$, $\text{C}_{(OUT)} = 1 \text{ } \mu\text{F}$, $\text{C}_{(dVdT)} = \text{OPEN}$, PGOOD = $\overline{\text{FLT}} = \text{IMON} = \text{OPEN}$. Positive current into terminals. All voltages referenced to GND (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$R_{(ILIM)} = 42.2 \text{ k}\Omega, V_{(VIN)} = 12 \text{ V}, (V_{(IN)} - V_{(OUT)}) = 5 \text{ V}$	1.91	2.07	2.24	
Ios	Short-circuit current limit (2)	$R_{(ILIM)} = 24.9 \text{ k}\Omega, V_{(VIN)} = 12 \text{ V}, (V_{(IN)} - V_{(OUT)}) = 5 \text{ V}$	3.21	3.49	3.77	Α
105	Short should sufficient milk	$$R_{(ILIM)}=16.9~k\Omega,~V_{(VIN)}=12~V,~(V_{(IN)}~\text{-}V_{(OUT)})=5~V,~\text{-}40^{\circ}C \leq T_{J} \leq 85^{\circ}C$	4.7	5.11	5.52	,,
I _(FASTRIP)	Fast-Trip comparator threshold ⁽¹⁾⁽²⁾			1.5 x I _(LIM) + 0.375		Α
CURRENT M	ONITOR OUTPUT (IMON)					
GAIN _(IMON)	Gain Factor I _(IMON) :I _(OUT)	1 A ≤ I _(OUT) ≤ 5 A	47.78	52.3	57.23	μA/A
MOSFET - P	OWER SWITCH					
R _{ON}	IN to OUT - ON Resistance	1 A ≤ I _(OUT) ≤ 5 A, T _J = 25°C	34	42	49	
		1 A $\leq I_{(OUT)} \leq$ 5 A, -40°C $\leq T_{J} \leq 85$ °C	26	42	58	$m\Omega$
		$1 \text{ A} \le I_{(OUT)} \le 5 \text{ A}, -40^{\circ}\text{C} \le T_{\text{J}} \le 125^{\circ}\text{C}$	26	42	64	
PASS FET O	UTPUT (OUT)					
	OLIT leakage surrent in off state	V _(IN) = 18 V, V _(EN/UVLO) = 0 V, V _(OUT) = 0 V (Sourcing)	-2	0	2	
I _{lkg(OUT)}	OUT leakage current in off state	$V_{(IN)} = 2.7 \text{ V}, V_{(EN/UVLO)} = 0 \text{ V}, V_{(OUT)} = 18 \text{ V (Sinking)}$	6	13	20	μA
V _(REVTH)	$V_{(IN)}$ - $V_{(OUT)}$ threshold for reverse protection comparator, falling		-15	-9.3	-3	mV
V _(FWDTH)	V _(IN) -V _(OUT) threshold for reverse protection comparator, rising		86	100	114	mV
FAULT FLAG	(FLT): ACTIVE LOW		•		•	
R _(FLT)	FLT internal pull-down resistance	V _(OVP) = 2 V, I _(FLT) = 5 mA sinking	10	18	30	Ω
I _(FLT)	FLT input leakage current	0 V ≤ V _(FLT) ≤ 18 V	-1	0	1	μΑ
POSITIVE IN	PUT for POWER-GOOD COMPARATOR	(PGTH)				
V _(PGTHR)	PGTH threshold voltage, rising		0.97	0.99	1.01	V
V _(PGTHF)	PGTH threshold voltage, falling		0.9	0.92	0.94	V
I _(PGTH)	PGTH input leakage current	0 V ≤ V _(PGTH) ≤ 18 V	-100	0	100	nA
POWER-GOO	DD COMPARATOR OUTPUT (PGOOD): A	ACTIVE HIGH				
R _(PGOOD)	PGOOD internal pull-down resistance	$V_{(PGTH)} = 0V$, $I_{(PGOOD)} = 5$ mA sinking	10	20	35	Ω
I _(PGOOD)	PGOOD input leakage current	0 V ≤ V _(PGOOD) ≤ 18 V	-1	0	1	μΑ
THERMAL SI	HUT DOWN (TSD)				· · · · · · · · · · · · · · · · · · ·	
T _(TSD)	TSD Threshold ⁽³⁾			160		°C
T _(TSDhys)	TSD Hysteresis ⁽³⁾			12		°C
	The arrest French (I state at a 1.0.1.	TPS25940L		LATCHED		
	Thermal Fault: (Latched or Auto-Retry)	TPS25940A		AUTO- RETRY		

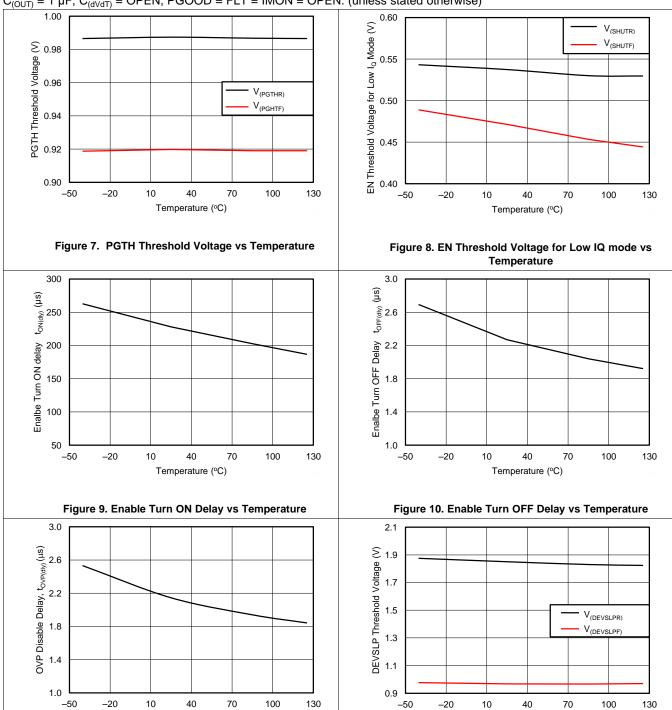
⁽³⁾ These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

7.6 Timing Requirements

Conditions are $-40^{\circ}\text{C} \le \text{T}_J = \text{T}_A \le 125^{\circ}\text{C}$, $2.7 \text{ V} \le \text{V}_{(\text{IN})} = 18 \text{ V}$, $\text{V}_{(\text{EN/UVLO})} = 2 \text{ V}$, $\text{V}_{(\text{OVP})} = \text{V}_{(\text{DEVSLP})} = \text{V}_{(\text{PGTH})} = 0 \text{ V}$, $\text{R}_{(\text{ILIM})} = 150 \text{ k}\Omega$, $\text{C}_{(\text{OUT})} = 1 \text{ µF}$, $\text{C}_{(\text{dVdT})} = \text{OPEN}$, PGOOD = $\overline{\text{FLT}} = \text{IMON} = \text{OPEN}$. Positive current into terminals. All voltages referenced to GND (unless otherwise noted). Refer to Figure 42 for the timing diagrams.


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ENABLE and	UVLO INPUT	,				
	EN turn on dolov	EN/UVLO \uparrow (100mV above $V_{(ENR)})$ to $V_{(OUT)}$ = 100 mV, $C_{(dVdT)}$ < 0.8 nF		220		μs
t _{ON(dly)}	EN turn on delay	EN/UVLO \uparrow (100mV above V _(ENR)) to V _(OUT) = 100 mV, $C_{(dVdT)} \ge 0.8$ nF, $[C_{(dVdT)}$ in nF]		100 + 150 x C _(dVdT)		μs
t _{OFF(dly)}	EN turn off delay	EN/UVLO \downarrow (100mV below V _(ENF)) to $\overline{\text{FLT}}\downarrow$		2		μs
OVERVOLTA	GE PROTECTION INPUT (OVP)					
t _{OVP(dly)}	OVP disable delay	OVP↑ (100mV above V _(OVPR)) to FLT↓		2		μs
OUTPUT RAN	IP CONTROL (dV/dT)					
		EN/UVLO \uparrow to $V_{(OUT)} = 4.5 \text{ V}$, with $C_{(dVdT)} = \text{open}$		0.12		
t_{dVdT}	Output ramp time	EN/UVLO \uparrow to $V_{(OUT)}$ = 11 V, with $C_{(dVdT)}$ = open	0.25	0.37	0.5	ms
		EN/UVLO \uparrow to $V_{(OUT)} = 11 \text{ V, with } C_{(dVdT)} = 1 \text{ nF}$		0.97		
CURRENT LIN	МІТ					
t _{FASTRIP(dly)}	Fast-Trip comparator delay	$I_{(OUT)} > I_{(FASTRIP)}$		200		ns
REVERSE PR	OTECTION COMPARATOR					
	_	$(V_{(IN)} - V_{(OUT)})\downarrow$ (1 mV overdrive below $V_{(REVTH)}$) to $\overline{FLT}\downarrow$		10		
t _{REV(dly)}	Reverse protection comparator delay	$(V_{(IN)} - V_{(OUT)})\downarrow$ (10 mV overdrive below $V_{(REVTH)}$) to $\overline{FLT}\downarrow$		1		μs
t _{FWD(dly)}	30.37	$(V_{(IN)} - V_{(OUT)})\uparrow$ (10 mV overdrive above $V_{(FWDTH)}$) to $\overline{FLT}\uparrow$		3.1		
POWER-GOO	D COMPARATOR OUTPUT (PGOOD)	ACTIVE HIGH				
t _{PGOODR}	PGOOD delay (de-glitch) time	Rising edge	0.42	0.54	0.66	ms
t _{PGOODF}	r GOOD delay (de-gillon) time	Falling edge	0.42	0.54	0.66	ms
THERMAL SH	IUT DOWN (TSD)				<u> </u>	
	Retry delay in TSD	TPS25940A Only		128		ms

www.ti.com.cn


7.7 Typical Characteristics

Conditions are $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} = \text{T}_{\text{J}} \leq 125^{\circ}\text{C}, \ \underline{V_{(\text{IN})}} = 12 \text{ V}, \ V_{(\text{EN/UVLO})} = 2 \text{ V}, \ V_{(\text{OVP})} = V_{(\text{DEVSLP})} = V_{(\text{PGTH})} = 0 \text{ V}, \ R_{(\text{ILIM})} = 150 \text{ k}\Omega, \ C_{(\text{OUT})} = 1 \text{ } \mu\text{F}, \ C_{(\text{dVdT})} = \text{OPEN}, \ \text{PGOOD} = \overline{\text{FLT}} = \text{IMON} = \text{OPEN}. \ \text{(unless stated otherwise)}$

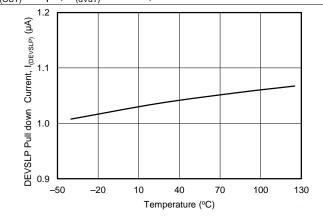
Typical Characteristics (continued)

Conditions are $-40^{\circ}\text{C} \leq T_{\text{A}} = T_{\text{J}} \leq 125^{\circ}\text{C}, \ \underline{V_{(\text{IN})}} = 12 \text{ V}, \ V_{(\text{EN/UVLO})} = 2 \text{ V}, \ V_{(\text{OVP})} = V_{(\text{DEVSLP})} = V_{(\text{PGTH})} = 0 \text{ V}, \ R_{(\text{ILIM})} = 150 \text{ k}\Omega, \ C_{(\text{OUT})} = 1 \ \mu\text{F}, \ C_{(\text{dVdT})} = \text{OPEN}, \ \text{PGOOD} = \overline{\text{FLT}} = \text{IMON} = \text{OPEN}. \ \text{(unless stated otherwise)}$

Temperature (°C)

Figure 11. OVP Disable Delay vs Temperature

Temperature (°C)


Figure 12. DEVSLP Threshold Voltage vs Temperature

www.ti.com.cn

Typical Characteristics (continued)

Conditions are $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} = \text{T}_{\text{J}} \leq 125^{\circ}\text{C}, \ \underline{V_{(\text{IN})}} = 12 \text{ V}, \ V_{(\text{EN/UVLO})} = 2 \text{ V}, \ V_{(\text{OVP})} = V_{(\text{DEVSLP})} = V_{(\text{PGTH})} = 0 \text{ V}, \ R_{(\text{ILIM})} = 150 \text{ k}\Omega, \ \underline{C_{(\text{OUT})}} = 1 \text{ } \mu\text{F}, \ C_{(\text{dVdT})} = \text{OPEN}, \ \text{PGOOD} = \overline{\text{FLT}} = \text{IMON} = \text{OPEN}. \ \text{(unless stated otherwise)}$

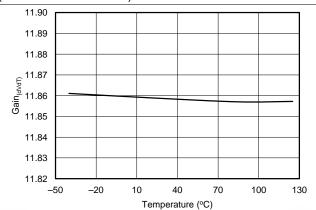
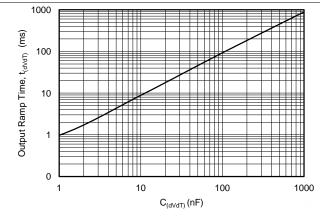



Figure 13. DEVSLP Pull Down Current vs Temperature

Figure 14. GAIN_(dVdT) vs Temperature

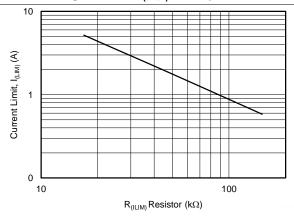


Figure 15. Output Ramp Time vs C_(dVdT)

Figure 16. Current Limit vs Current Limit Resistor

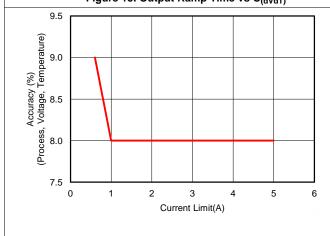
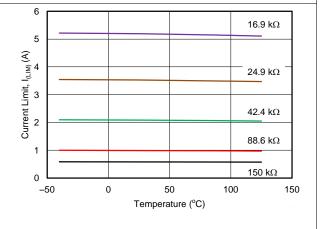
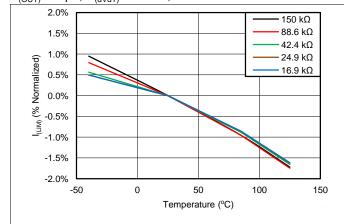
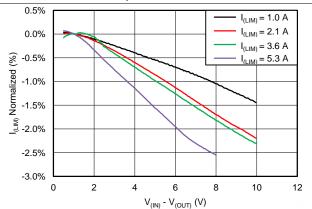


Figure 17. Current Limit Accuracy vs Current Limit


Figure 18. Current Limit vs Temperature Across R_(ILIM)

TEXAS INSTRUMENTS

Typical Characteristics (continued)

Conditions are $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} = \text{T}_{\text{J}} \leq 125^{\circ}\text{C}, \ \underline{V_{(\text{IN})}} = 12 \text{ V}, \ V_{(\text{EN/UVLO})} = 2 \text{ V}, \ V_{(\text{OVP})} = V_{(\text{DEVSLP})} = V_{(\text{PGTH})} = 0 \text{ V}, \ R_{(\text{ILIM})} = 150 \text{ k}\Omega, \ \underline{C_{(\text{OUT})}} = 1 \text{ } \mu\text{F}, \ C_{(\text{dVdT})} = \text{OPEN}, \ \text{PGOOD} = \overline{\text{FLT}} = \text{IMON} = \text{OPEN}. \ \text{(unless stated otherwise)}$

Thermal shutdown occurs when $I_{(LIM)} = 5.3 \text{ A}$ and $[V_{(IN)} - V_{(OUT)}] > 8 \text{ V}$

Figure 19. Current Limit (% Normalized) vs R(LIMIT) Resistor

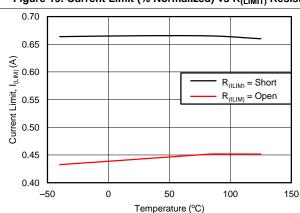


Figure 20. Current Limit Normalized (%) vs $V_{(IN)}$ - $V_{(OUT)}$

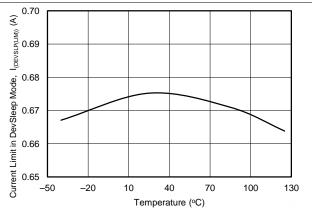


Figure 21. Current Limit for R_(ILIM) = Open and Short vs Temperature

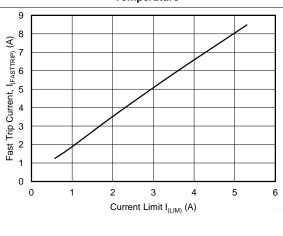


Figure 23. Fast Trip Threshold vs Current Limit

Figure 22. Current Limit in DevSleep Mode vs Temperature

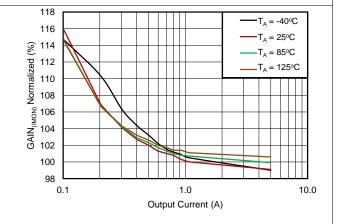
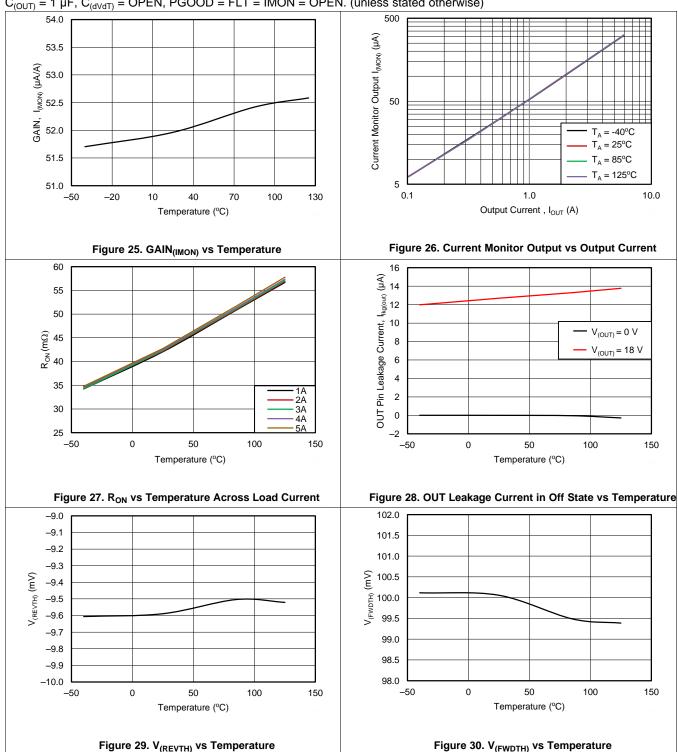



Figure 24. GAIN_(IMON)% Normalized vs Output Current

www.ti.com.cn

Typical Characteristics (continued)

TEXAS INSTRUMENTS

Typical Characteristics (continued)

Conditions are $-40^{\circ}\text{C} \leq T_{\text{A}} = T_{\text{J}} \leq 125^{\circ}\text{C}, \ \underline{V_{(\text{IN})}} = 12 \text{ V}, \ V_{(\text{EN/UVLO})} = 2 \text{ V}, \ V_{(\text{OVP})} = V_{(\text{DEVSLP})} = V_{(\text{PGTH})} = 0 \text{ V}, \ R_{(\text{ILIM})} = 150 \text{ k}\Omega, \ C_{(\text{OUT})} = 1 \ \mu\text{F}, \ C_{(\text{dVdT})} = \text{OPEN}, \ \text{PGOOD} = \overline{\text{FLT}} = \text{IMON} = \text{OPEN}. \ \text{(unless stated otherwise)}$

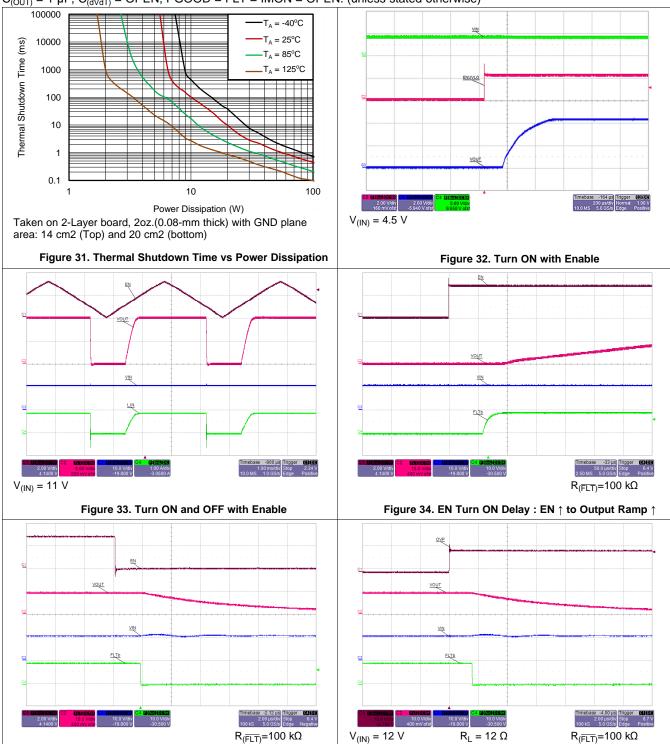
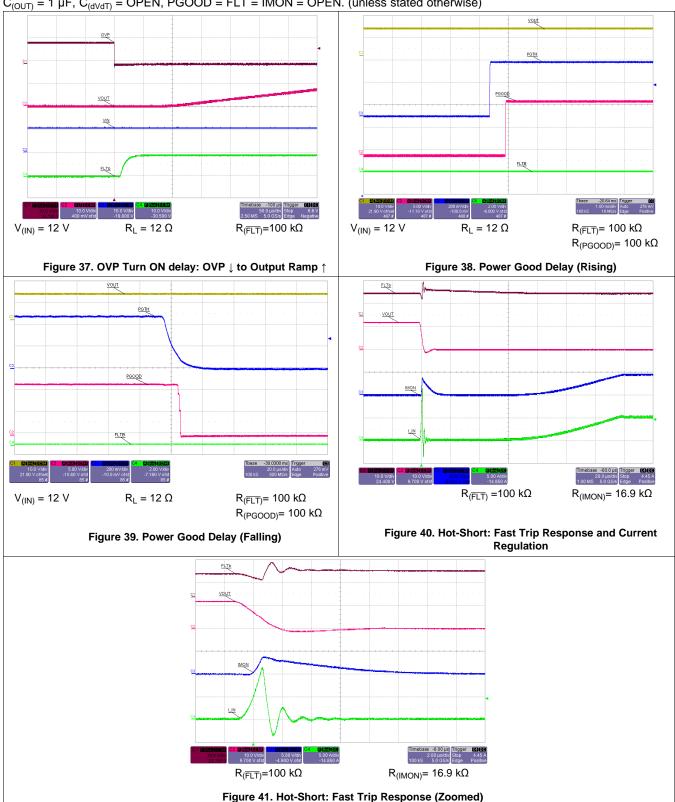
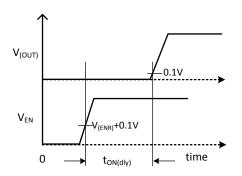
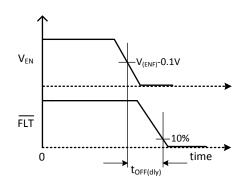
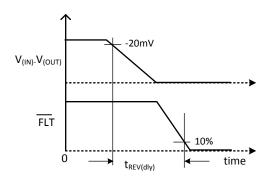


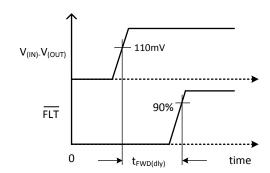
Figure 35. EN Turn OFF Delay : EN ↓ to Fault ↓

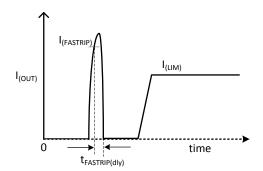

Figure 36. OVP Turn OFF delay: OVP ↑ to Fault ↓


www.ti.com.cn


Typical Characteristics (continued)


Conditions are $-40^{\circ}\text{C} \leq T_{\text{A}} = T_{\text{J}} \leq 125^{\circ}\text{C}, \ \underline{V_{(\text{IN})}} = 12 \text{ V}, \ V_{(\text{EN/UVLO})} = 2 \text{ V}, \ V_{(\text{OVP})} = V_{(\text{DEVSLP})} = V_{(\text{PGTH})} = 0 \text{ V}, \ R_{(\text{ILIM})} = 150 \text{ k}\Omega, \ C_{(\text{OUT})} = 1 \ \mu\text{F}, \ C_{(\text{dVdT})} = \text{OPEN}, \ \text{PGOOD} = \overline{\text{FLT}} = \text{IMON} = \text{OPEN}. \ \text{(unless stated otherwise)}$




8 Parametric Measurement Information

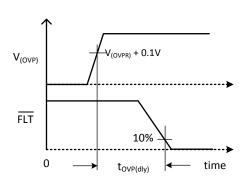


Figure 42. Timing Diagrams

9 Detailed Description

9.1 Overview

www.ti.com.cn

TPS25940 is a smart eFuse with integrated back-to-back FETs and enhanced built-in protection circuitry. It provides robust protection for all systems and applications powered from 2.7 V to 18 V.

For hot-plug-in boards, the device provides hot-swap power management with in-rush current control and programmable output ramp-rate. The device integrates overcurrent and short circuit protection. The precision overcurrent limit helps to minimize over design of the input power supply, while the fast response short circuit protection immediately isolates the load from input when a short circuit is detected. The device allows the user to program the overcurrent limit threshold between 0.6 A and 5.3 A via an external resistor.

The device provides precise monitoring of voltage bus for brown-out and overvoltage conditions and asserts fault for downstream system. Its overall threshold accuracy of 2% ensures tight supervision of bus, eliminating the need for a separate supply voltage supervisor chip.

The device is designed to protect systems such as enterprise SSD drives against sudden power loss events. The device monitors $V_{(IN)}$ and $V_{(OUT)}$ to provide true reverse blocking from output when reverse condition or input power fail condition is detected. Also, the device signals the downstream controller to initiate transfer of power to the hold-up capacitor for data hardening.

The additional features include:

- Precise current monitor output for health monitoring of the system
- Additional power good comparator with precision internal reference for output or any other rail voltage monitoring
- Over temperature protection to safely shutdown in the event of an overcurrent event
- · De-glitched fault reporting for brown-out and overvoltage faults
- · A choice of latched or automatic restart mode

9.2 Functional Block Diagram

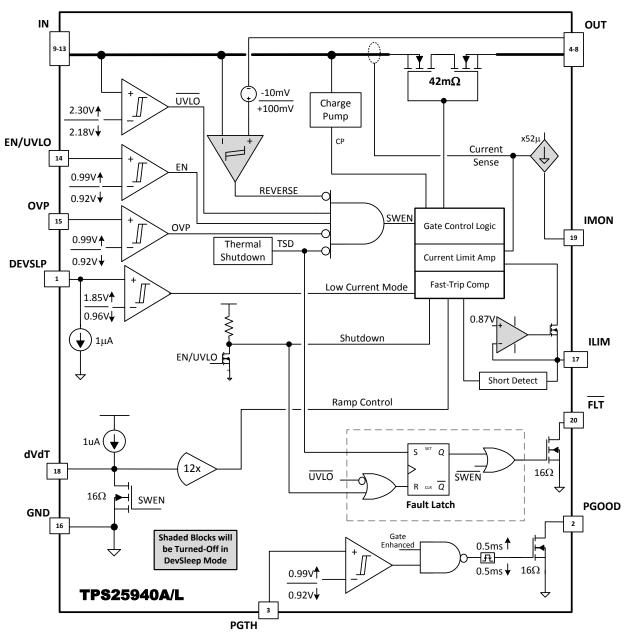


Figure 43. TPS25940A/L Block Diagram

ZHCSCK2-JUNE 2014 www.ti.com.cn

9.3 Feature Description

9.3.1 Enable and Adjusting Undervoltage Lockout

The EN/UVLO pin controls the ON/OFF state of the internal FET. A voltage $V_{(EN/UVLO)} < V_{(ENF)}$ on this pin will turn off the internal FET, thus disconnecting IN from OUT, while voltage below V(SHUTF) will take the device into shutdown mode, with I_Ω less than 15 μA to ensure minimal power loss. Cycling EN/UVLO low and then back high resets the TPS25940L that has latched off due to a fault condition.

The internal de-glitch delay on EN/UVLO falling edge is kept low for quick detection of power failure. For applications where a higher de-glitch delay on EN/UVLO is desired, or when the supply is particularly noisy, it is recommended to use an external bypass capacitor from EN/UVLO terminal to GND.

The undervoltage lock out can be programmed by using an external resistor divider from supply IN terminal to EN/UVLO terminal to GND as shown in Figure 44. When an undervoltage or input power fail event is detected, the internal FET is quickly turned off, and FLT is asserted. If the Under-Voltage Lock-Out function is not needed, the EN/UVLO terminal should be connected to the IN terminal. EN/UVLO terminal should not be left floating.

The device also implements internal undervoltage-lockout (UVLO) circuitry on the IN terminal. The device disables when the IN terminal voltage falls below internal UVLO Threshold V_(UVF). The internal UVLO threshold has a hysteresis of 115mV.

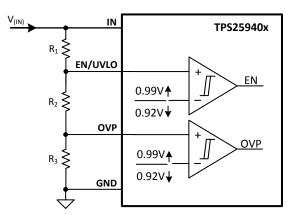


Figure 44. UVLO and OVP Thresholds Set By R₁, R₂ and R₃

9.3.2 Overvoltage Protection (OVP)

The device incorporates circuit to protect system during overvoltage conditions. A resistor divider connected from the supply to OVP terminal to GND (as shown in Figure 44) programs the overvoltage threshold. A voltage more than V_(OVPR) on OVP pin turns off the internal FET and protects the downstream load. This pin should be tied to GND when not used.

9.3.3 Hot Plug-in and In-Rush Current Control

The device is designed to control the in-rush current upon insertion of a card into a live backplane or other "hot" power source. This limits the voltage sag on the backplane's supply voltage and prevents unintended resets of the system power. A slew rate controlled startup (dVdT) also helps to eliminate conductive and radiative interferences. An external capacitor connected from the dVdT pin to GND defines the slew rate of the output voltage at power-on (as shown in Figure 45). Equation governing slew rate at start-up is shown in Equation 1:

ZHCSCK2 – JUNE 2014 www.ti.com.cn

TEXAS INSTRUMENTS

Feature Description (continued)

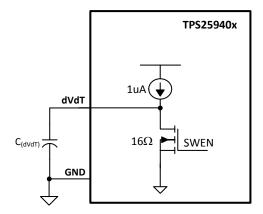


Figure 45. Output Ramp Up Time t_{dVdT} is Set by C_(dVdT)

$$I_{(dVdT)} = \left(\frac{C_{(dVdT)}}{GAIN_{(dVdT)}}\right) \times \left(\frac{dV_{(OUT)}}{dt}\right)$$
(1)

Where:

• $I_{(dVdT)} = 1 \mu A \text{ (typical)}$

dV_(OUT)

- dt = Desired output slew rate
- GAIN_(dVdT) = dVdT to OUT gain = 12

The total ramp time (t_{dVdT}) of $V_{(OUT)}$ for 0 to $V_{(IN)}$ can be calculated using Equation 2:

$$t_{dVdT} = 8.3 \times 10^4 \times V_{(IN)} \times C_{(dVdT)}$$
 (2)

The inrush current, I(INRUSH) can be calculated as

$$I_{\text{(INRUSH)}} = C_{\text{(OUT)}} \times V_{\text{(IN)}} / t_{\text{dVdT}}. \tag{3}$$

The dVdT pin can be left floating to obtain a predetermined slew rate (t_{dVdT}) on the output. When terminal is left floating, the device sets an internal ramp rate of 12V/ms for output ($V_{(OUT)}$) ramp.

Figure 58 and Figure 59 illustrate the inrush current control behavior of the device. For systems where load is present during start-up, the current never exceeds the overcurrent limit set by $R_{(ILIM)}$ resistor for the application. For defining appropriate charging time/rate under different load conditions, refer to the *Setting Output Voltage Ramp time* (t_{dVdT}) section.

9.3.4 Overload and Short Circuit Protection:

At all times load current is monitored by sensing voltage across an internal sense resistor. During overload events, current is limited to the current limit ($I_{(LIM)}$) programmed by $R_{(ILIM)}$ resistor

$$I_{(LIM)} = \frac{89}{R_{(ILIM)}} \tag{4}$$

- I(LIM) is overload current limit in Ampere
- R_(ILIM) is the current limit resistor in kΩ

The device incorporates two distinct levels: a current limit $(I_{(LIM)})$ and a fast-trip threshold $(I_{(FASTRIP)})$. Fast trip and current limit operation are shown in Figure 46.

Bias current on ILIM pin directly controls current-limiting behavior of the device, and PCB routing of this node must be kept away from any noisy (switching) signals.

Feature Description (continued)

9.3.4.1 Overload Protection

For overload conditions, the internal current-limit amplifier regulates the output current to $I_{(LIM)}$. The output voltage droops during the current regulation, resulting in increased power dissipation in the device. If the device junction temperature reaches the thermal shutdown threshold $(T_{(TSD)})$, the internal FET is turned off. Once in thermal shutdown, The TPS25940L version stays latched off, whereas TPS25940A commences an auto-retry cycle 128 ms after $T_J < [T_{(TSD)} - 12^{\circ}C]$. During thermal shutdown, the fault pin \overline{FLT} pulls low to signal a fault condition. Figure 62 and Figure 63 illustrate overload behavior.

9.3.4.2 Short Circuit Protection

During a transient short circuit event, the current through the device increases very rapidly. As current-limit amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip comparator, with a threshold $I_{(FASTRIP)}$. This comparator shuts down the pass device within 1µs, when the current through internal FET exceeds $I_{(FASTRIP)}$ ($I_{(OUT)} > I_{(FASTRIP)}$), and terminates the rapid short-circuit peak current. The trip threshold is set to more than 50% of the programmed overload current limit ($I_{(FASTRIP)} = 1.5 \times I_{(LIM)} + 0.375$). The fast-trip circuit holds the internal FET off for only a few microseconds, after which the device turns back on slowly, allowing the current-limit loop to regulate the output current to $I_{(LIM)}$. Then, device behaves similar to overload condition. Figure 64 through Figure 66 illustrate the behavior of the system when the current exceeds the fast-trip threshold.

9.3.4.3 Start-Up with Short on Output

During start-up into a short circuit current is limited to $I_{(LIM)}$. Figure 67 and Figure 68 illustrate start-up with a short on the output. This feature helps in quick fault isolation and hence ensures stability of the DC bus.

9.3.4.4 Constant Current Limit Behavior During Overcurrent Faults

When power dissipation in the internal FET [$P_D = (V_{(IN)} - V_{(OUT)}) \times I_{(OUT)}$] > 10 W, there is a ~0 to 5 % thermal fold back in the current limit value so that $I_{(LIM)}$ drops to I_{OS} . Eventually, the device shuts down due to over temperature.

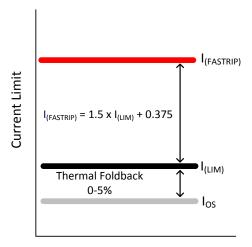


Figure 46. Fast-Trip Current

9.3.5 FAULT Response

The FLT open-drain output is asserted (active low) during undervoltage, overvoltage, reverse voltage/current and thermal shutdown conditions. The FLT signal remains asserted until the fault condition is removed and the device resumes normal operation. The device is designed to eliminate false fault reporting by using an internal "deglitch" circuit for undervoltage and overvoltage (2.2-µs typical) conditions without the need for external circuitry. This ensures that fault is not accidentally asserted during transients on input bus.

Connect \overline{FLT} with a pull up resistor to Input or Output voltage rail. \overline{FLT} may be left open or tied to ground when not used. $V_{(IIN)}$ falling below $V_{(UVF)} = 2.1 \text{ V}$ resets \overline{FLT} .

ZHCSCK2 – JUNE 2014 www.ti.com.cn

TEXAS INSTRUMENTS

Feature Description (continued)

9.3.6 Current Monitoring:

The current source at IMON terminal is configured to be proportional to the current flowing from IN to OUT. This current can be converted to a voltage using a resistor $R_{(IMON)}$ from IMON terminal to GND terminal. This voltage, computed using Equation 6, can be used as a means of monitoring current flow through the system.

The maximum voltage range for monitoring the current ($V_{(IMONmax)}$) is limited to minimum([$V_{(IN)}$ - 2.2 V], 6.0 V) to ensure linear output. This puts limitation on maximum value of $R_{(IMON)}$ resistor and is determined by Equation 5.

$$R_{(IMONmax)} = \frac{\text{minimum } (V_{(IN)} - 2.2, 6)}{1.6 \times I_{(LIM)} \times GAIN_{(IMON)}}$$
(5)

The output voltage at IMON terminal is calculated from Equation 6

$$V_{(IMON)} = I_{(OUT)} \times GAIN_{(IMON)} \times R_{(IMON)}$$
(6)

Where

- $GAIN_{(IMON)} = Gain factor I_{(IMON)}:I_{(OUT)} = 52 \mu A/A$
- I_(OUT) = Load current

This pin should not have a bypass capacitor to avoid delay in the current monitoring information.

The voltage at IMON pin can be digitized using an ADC (such as ADS1100, SBAS239) to read the current monitor information over an I2C bus.

9.3.7 Power Good Comparator

The device incorporates a Power Good comparator for co-ordination of status to downstream DC-DC converters or system monitoring circuits. The comparator has an internal reference of $V_{(PGTHR)} = 0.99 \text{ V}$ at negative terminal and positive terminal PGTH can be utilized for monitoring of either input or output of the device. The comparator output PGOOD is an open-drain active high signal, which can be used to indicate the status to downstream units. PGOOD is asserted high when internal FET is fully enhanced and PGTH pin voltage is higher than internal reference $V_{(PGTHR)}$.

The PGOOD signal has deglitch time incorporated to ensure that internal FET is fully enhanced before heavy load is applied by downstream converters. Rising de-glitch delay is determined by Equation 7.

$$t_{PGOOD(deal)} = Maximum\{(3.5 \times 10^6 \times C_{(dVdT)}), t_{PGOODR}\}$$
(7)

Connect the PGOOD pin with a pull up resistor to Input or Output voltage rail. PGOOD may be left open or tied to ground when not used.

9.3.8 IN, OUT and GND Pins

The device has multiple pins for input (IN) and output (OUT).

All IN pins should be connected together and to the power source. A ceramic bypass capacitor close to the device from IN to GND is recommended to alleviate bus transients. The recommended operating voltage range is 2.7 V - 18 V.

Similarly all OUT pins should be connected together and to the load. $V_{(OUT)}$ in the ON condition, is calculated using the Equation 8

$$V_{(OUT)} = V_{(IN)} - (R_{ON} \times I_{(OUT)})$$
(8)

where, R_{ON} is the total ON resistance of the internal FET.

GND terminal is the most negative voltage in the circuit and is used as a reference for all voltage reference unless otherwise specified.

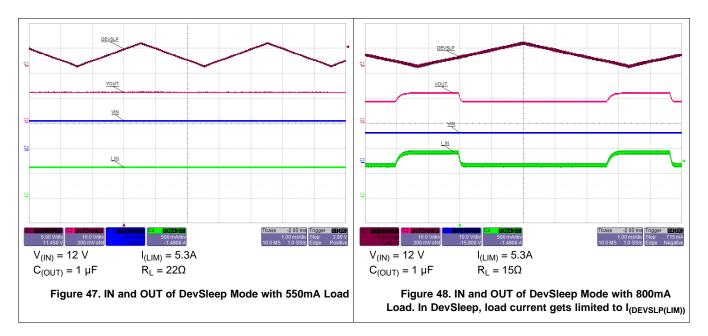
9.3.9 Thermal Shutdown:

Internal over temperature shutdown disables turns off the FET when $T_J > 160^{\circ}\text{C}$ (typical). The TPS25940L version latches off the internal FET, whereas TPS25940A commences an auto-retry cycle128 ms after T_J drops below $[T_{(TSD)} - 12^{\circ}\text{C}]$. During the thermal shutdown, the fault pin \overline{FLT} pulls low to signal a fault condition.

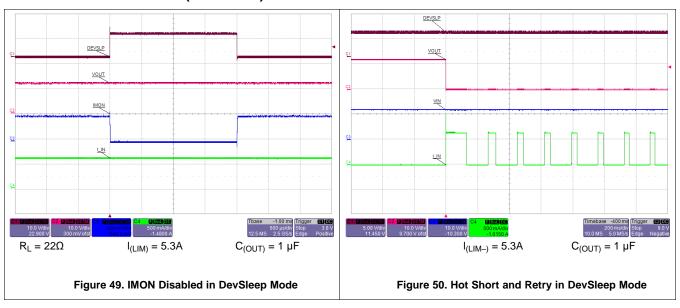
www.ti.com.cn ZHCSCK2 – JUNE 2014

9.4 Device Functional Modes

9.4.1 DevSleep Mode for SATA® Interface Devices


DevSleep is a new state introduced in the SATA® specification, which requires SATA-based storage solutions to reach a level of low power operation. This is appended to meet the aggressive power/battery life requirements of SATA-based mobile devices. DevSleep enables hosts and devices to completely hibernate the SATA interface. This saves more power versus the existing Partial and Slumber interface power states, which require that the PHY be left powered. In this mode, power consumption is limited to 5 mW or less for SSDs.

Detailed information on DevSleep is available in document 'SATA-DevSleep' and on www.sata-io.org


TPS25940 provides a dedicated DevSleep interface terminal (DEVSLP) to drive the device in low power mode. The DEVSLP terminal is compatible with standard hardware signals asserted from the host controller. When pulled high, it puts the device in low power DevSleep mode. In this mode, the quiescent current consumption of the device is limited to less than 130 μ A (95 μ A typical). During this mode, the output voltage remains active, the overload current limit is set to $I_{(DEVSLP(LIM))}$ and functionality of reverse comparator and current monitoring is disabled. All other protections are kept active ensuring the safety of the system even in DevSleep mode.

User must ensure that load currents on the bus are limited to less than $I_{(DEVSLP(LIM))}$, when the device is driven to DevSleep mode. Also, while coming out of DevSleep, it is important to sequence the TPS25940 earlier than the load. Otherwise, the load can exceed $I_{(DEVSLP(LIM))}$ and cause TPS25940 to enter the overload mode.

Figure 47 through Figure 50 illustrate the behavior of the system in DevSleep mode.

Device Functional Modes (continued)

9.4.2 Shutdown Control

The internal FET and hence the load current can be remotely switched off by taking the UVLO pin below its 0.6 V threshold with an open collector or open drain device as shown in Figure 51. The device quiescent current is reduced to less than 20 µA in this state. Upon releasing the UVLO pin the device turns on with soft-start cycle.

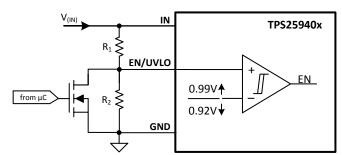
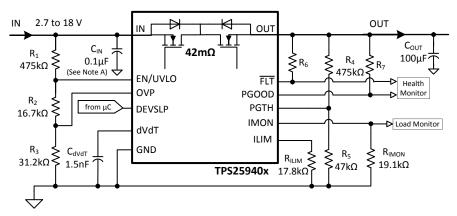


Figure 51. Shutdown Control

10 Application and Implementation

10.1 Application Information

The TPS25940 is a smart eFuse. It is typically used for Hot-Swap and Power rail protection applications. It operates from 2.7 V to 18 V with programmable current limit, overvoltage and undervoltage protection. The device aids in controlling the in-rush current and provides fast turn-off during reverse voltage conditions for systems such as Enterprise SSDs, HDDs, Servers, Power Back-up Storage units and RAID cards. The device also provides robust protection for multiple faults on the sub-system rail.


The following design procedure can be used to select component values for the device.

Alternatively, the WEBENCH® software may be used to generate a complete design. The WEBENCH® software uses an iterative design procedure and accesses a comprehensive database of components when generating a design. Additionally, a spreadsheet design tool *TPS25940 Design Calculator* is available on web folder.

This section presents a simplified discussion of the design process.

10.2 Typical Application

10.2.1 eFuse for Enterprise SSDs

A. C_{IN}: Optional and only for noise suppression.

Figure 52. Typical Application Schematics: eFuse for Enterprise SSDs

10.2.1.1 Design Requirements

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range, V _(IN)	12 V
Undervoltage lockout set point, V _(UV)	10.8 V
Overvoltage protection set point , V _(LIM)	16.5 V
Load at Start-Up , R _{L(SU)}	4.8 Ω
Current limit, I _(LIM)	5 A
Load capacitance , C _(OUT)	100 μF
Maximum ambient temperatures , T_{A}	85°C

ZHCSCK2 – JUNE 2014 www.ti.com.cn

TEXAS INSTRUMENTS

10.2.1.2 Detailed Design Procedure

The following design procedure can be used to select component values for the TPS25940A and TPS25940L.

10.2.1.2.1 Step by Step Design Procedure

To begin the design process a few parameters must be decided upon. The designer needs to know the following:

- Normal input operation voltage
- Maximum output capacitance
- Maximum current Limit
- Load during start-up
- Maximum ambient temperature of operation

This design procedure below seeks to control the junction temperature of device under both static and transient conditions by proper selection of output ramp-up time and associated support components. The designer can adjust this procedure to fit the application and design criteria.

10.2.1.2.2 Programming the Current-Limit Threshold: R_(ILIM) Selection

The R_(II IM) resistor at the ILIM pin sets the over load current limit, this can be set using Equation 4.

$$R_{\text{(ILIM)}} = \frac{89}{5} = 17.8 \text{k}\Omega \tag{9}$$

Choose closest standard value: 17.8k, 1% standard value resistor.

10.2.1.2.3 Undervoltage Lockout and Overvoltage Set Point

The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using the external voltage divider network of R_1 , R_2 and R_3 as connected between IN, EN, OVP and GND pins of the device. The values required for setting the undervoltage and overvoltage are calculated solving Equation 10 and Equation 11.

$$V_{(OVPR)} = \frac{R_3}{R_1 + R_2 + R_3} \times V_{(OV)}$$
 (10)

$$V_{(ENR)} = \frac{R_2 + R_3}{R_1 + R_2 + R_3} \times V_{(UV)}$$
(11)

For minimizing the input current drawn from the power supply $\{I_{(R123)} = V_{(IN)}/(R_1 + R_2 + R_3)\}$, it is recommended to use higher values of resistance for R_1 , R_2 and R_3 .

However, leakage currents due to external active components connected to the resistor string can add error to these calculations. So, the resistor string current, $I_{(R123)}$ must be chosen to be 20x greater than the leakage current expected.

From the device electrical specifications, $V_{(OVPR)} = 0.99 \text{ V}$ and $V_{(ENR)} = 0.99 \text{ V}$. For design requirements, $V_{(OV)}$ is 16.5 V and $V_{(UV)}$ is 10.8 V. To solve the equation, first choose the value of $R_3 = 31.2 \text{ k}\Omega$ and use Equation 10 to solve for $(R_1 + R_2) = 488.8 \text{ k}\Omega$. Use Equation 11 and value of $(R_1 + R_2)$ to solve for $R_2 = 16.47 \text{ k}\Omega$ and finally $R_1 = 472.33 \text{ k}\Omega$.

Using the closest standard 1% resistor values gives $R_1 = 475 \text{ k}\Omega$, $R_2 = 16.7 \text{ k}\Omega$, and $R_3 = 31.2 \text{ k}\Omega$.

The power failure threshold is detected on the falling edge of supply. This threshold voltage is 7% lower than the rising threshold, $V_{(UV)}$. This is calculated using Equation 12.

$$V_{(PFAIL)} = 0.93 \times V_{(UV)} \tag{12}$$

10.2.1.2.4 Programming Current Monitoring Resistor - RIMON

Voltage at IMON pin $V_{(IMON)}$ represents the voltage proportional to load current. This can be connected to an ADC of the downstream system for health monitoring of the system. The $R_{(IMON)}$ need to be configured based on the maximum input voltage range of the ADC used. $R_{(IMON)}$ is set using Equation 13.

$$R_{\text{(IMON)}} = \frac{V_{\text{(IMONmax)}}}{I_{\text{(LIM)}} \times 52 \times 10^{-6}} \text{ k}\Omega$$
(13)

For $I_{(LIM)} = 5$ A, and considering the operating range of ADC from 0 V to 5 V, $V_{(IMONmax)}$ is 5 V and $R_{(IMON)}$ is determined by:

www.ti.com.cn ZHCSCK2 – JUNE 2014

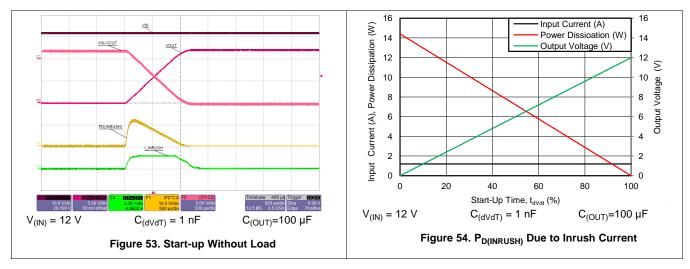
$$R_{(IMON)} = \frac{5}{5 \times 52 \times 10^{-6}} = 19.23 \text{ k}\Omega \tag{14}$$

Selecting R_(IMON) value less than determined by Equation 14 ensures that ADC limits are not exceeded for maximum value of load current.

If the IMON pin voltage is not being digitized with an ADC, $R_{(IMON)}$ can be selected to produce a 1V/1A voltage at the IMON pin, using Equation 13.

Choose closest 1 % standard value: 19.1 kΩ.

If current monitoring up to I_(FASTRIP) is desired, R_(IMON) can be reduced by a factor of 1.6, as in Equation 5.


10.2.1.2.5 Setting Output Voltage Ramp time (t_{dVdT})

For a successful design, the junction temperature of device should be kept below the absolute-maximum rating during both dynamic (start-up) and steady state conditions. Dynamic power stresses often are an order of magnitude greater than the static stresses, so it is important to determine the right start-up time and in-rush current limit required with system capacitance to avoid thermal shutdown during start-up with and without load.

The ramp-up capacitor $C_{(dVdT)}$ needed is calculated considering the two possible cases:

10.2.1.2.5.1 Case1: Start-up Without Load: Only Output Capacitance C(OUT) Draws Current During Start-up

During start-up, as the output capacitor charges, the voltage difference across the internal FET decreases, and the power dissipated decreases as well. Typical ramp-up of output voltage $V_{(OUT)}$ with inrush current limit of 1.2A and power dissipated in the device during start-up is shown in Figure 53. The average power dissipated in the device during start-up is equal to area of triangular plot (red curve in Figure 54) averaged over t_{dVdT} .

For TPS25940 device, the inrush current is determined as,

$$I = C \times \frac{dV}{dT} = > I_{(INRUSH)} = C_{(OUT)} \times \frac{V_{(IN)}}{t_{dVdT}}$$
(15)

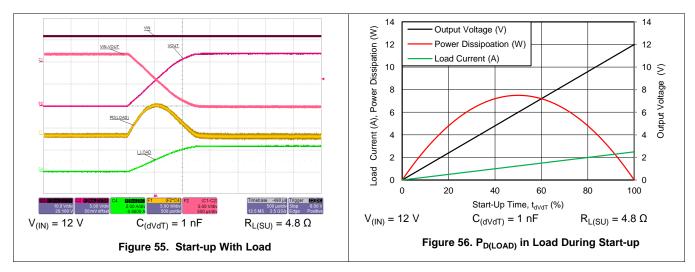
Power dissipation during start-up is:

$$P_{D(INRUSH)} = 0.5 \times V_{(IN)} \times I_{(INRUSH)}$$
(16)

Equation 16 assumes that load does not draw any current until the output voltage has reached its final value.

10.2.1.2.5.2 Case 2: Start-up With Load: Output Capacitance C(OUT) and Load Draws Current During Start-up

When load draws current during the turn-on sequence, there will be additional power dissipated. Considering a resistive load $R_{L(SU)}$ during start-up, load current ramps up proportionally with increase in output voltage during t_{dVdT} time. Typical ramp-up of output voltage, Load current and power dissipation in the device is shown in Figure 55 and power dissipation with respect to time is plotted in Figure 56. The additional power dissipation during start-up phase is calculated as follows.


STRUMENTS

$$(V_{I} - V_{O})(t) = V_{(IN)} \times \left(1 - \frac{t}{t_{dVdT}}\right)$$
(17)

$$I_{L}(t) = \left(\frac{V_{(IN)}}{R_{L}(SU)}\right) \times \frac{t}{t_{dVdT}}$$
(18)

Where $R_{L(SU)}$ is the load resistance present during start-up. Average energy loss in the internal FET during charging time due to resistive load is given by:

$$W_t = \int_0^{tdVdT} V_{(IN)} x \left(1 - \frac{t}{t_{dVdT}}\right) x \left(\frac{V_{(IN)}}{R_{L(SU)}} x \frac{t}{t_{dVdT}}\right) dt \tag{19}$$

On solving Equation 19 the average power loss in the internal FET due to load is:

$$P_{D(LOAD)} = \left(\frac{1}{6}\right) \times \frac{V^2(IN)}{R_{L(SU)}}$$
(20)

Total power dissipated in the device during startup is:

$$P_{D(STARTUP)} = P_{D(INRUSH)} + P_{D(LOAD)}$$
 (21)

Total current during startup is given by:

$$I(STARTUP) = I(INRUSH) + I_L(t)$$
 (22)

If $I_{(STARTUP)} > I_{(LIM)}$, the device limits the current to $I_{(LIM)}$ and the current limited charging time is determined by:

$$t_{dVdT(current\ limited)} = C_{(OUT)} \times \frac{V_{(IN)}}{I_{(LIM)}}$$
 (23)

The power dissipation, with and without load, for selected start-up time should not exceed the shutdown limits as shown in Figure 57.

www.ti.com.cn ZHCSCK2 – JUNE 2014

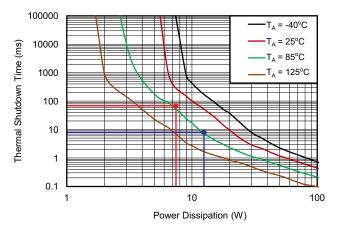


Figure 57. Thermal Shutdown Limit Plot

For the design example under discussion,

Select ramp-up capacitor $C_{(dVdT)} = 1nF$, using Equation 2.

$$t_{dvdt} = 8.3 \times 10^4 \times 12 \times 1 \times 10^{-9} = 0.996 \text{ms} = \sim 1 \text{ms}$$
 (24)

The inrush current drawn by the load capacitance $(C_{(OUT)})$ during ramp-up using Equation 3.

$$I_{\text{(INRUSH)}} = \left(100 \times 10^{-6}\right) \times \left(\frac{12}{1 \times 10^{-3}}\right) = 1.2 \text{ A}$$
 (25)

The inrush Power dissipation is calculated, using Equation 16.

$$P_{D(INRUSH)} = 0.5 \times 12 \times 1.2 = 7.2 \text{ W}$$
 (26)

For 7.2 W of power loss, the thermal shut down time of the device should not be less than the ramp-up time t_{dVdT} to avoid the false trip at maximum operating temperature. From thermal shutdown limit graph Figure 57 at $T_A = 85^{\circ}\text{C}$, for 7.2 W of power the shutdown time is ~60 ms. So it is safe to use 1 ms as start-up time without any load on output.

Considering the start-up with load 4.8 Ω , the additional power dissipation, when load is present during start up is calculated, using Equation 20.

$$P_{D(LOAD)} = \left(\frac{1}{6}\right) \times \frac{12 \times 12}{4.8} = 5 \text{ W}$$
 (27)

The total device power dissipation during start up is:

$$P_{D(STARTUP)} = (7.2+5) = 12.2 \text{ W}$$
 (28)

From thermal shutdown limit graph at $T_A = 85^{\circ}$ C, the thermal shutdown time for 12.2 W is close to 7.5 ms. It is safe to have 30% margin to allow for variation of system parameters such as load, component tolerance, and input voltage. So it is well within acceptable limits to use the 1 nF capacitor with start-up load of 4.8 Ω .

If there is a need to decrease the power loss during start-up, it can be done with increase of $C_{(dVdT)}$ capacitor.

To illustrate, choose $C_{(dVdT)} = 1.5 \text{ nF}$ as an option and recalculate:

$$t_{dvdt} = 1.5ms (29)$$

$$I_{\text{(INRUSH)}} = \left(100 \times 10^{-6}\right) \times \left(\frac{12}{1.5 \times 10^{-3}}\right) = 0.8 \text{ A}$$
 (30)

$$P_{D(INRUSH)} = 0.5 \times 12 \times 0.8 = 4.8 \text{ W}$$
 (31)

$$P_{D(LOAD)} = \left(\frac{1}{6}\right) \times \left(\frac{12 \times 12}{4.8}\right) = 5 \text{ W}$$
 (32)

$$P_{D(STARTUP)} = 4.8 + 5 = 9.8 \text{ W}$$
 (33)

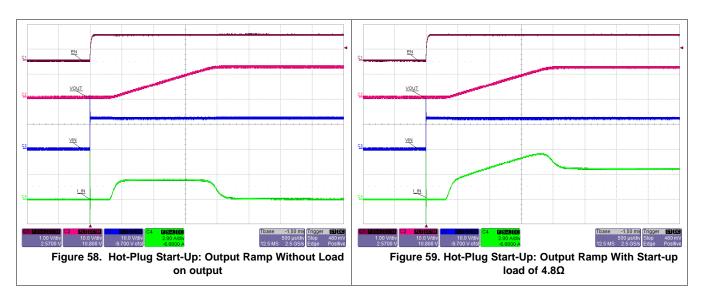
ZHCSCK2 – JUNE 2014 www.ti.com.cn

From thermal shutdown limit graph at $T_A = 85^{\circ}$ C, the shutdown time for 10 W power dissipation is ~17 ms, which increases the margins further for shutdown time and ensures successful operation during start up and steady state conditions.

The spreadsheet tool available on the web can be used for iterative calculations.

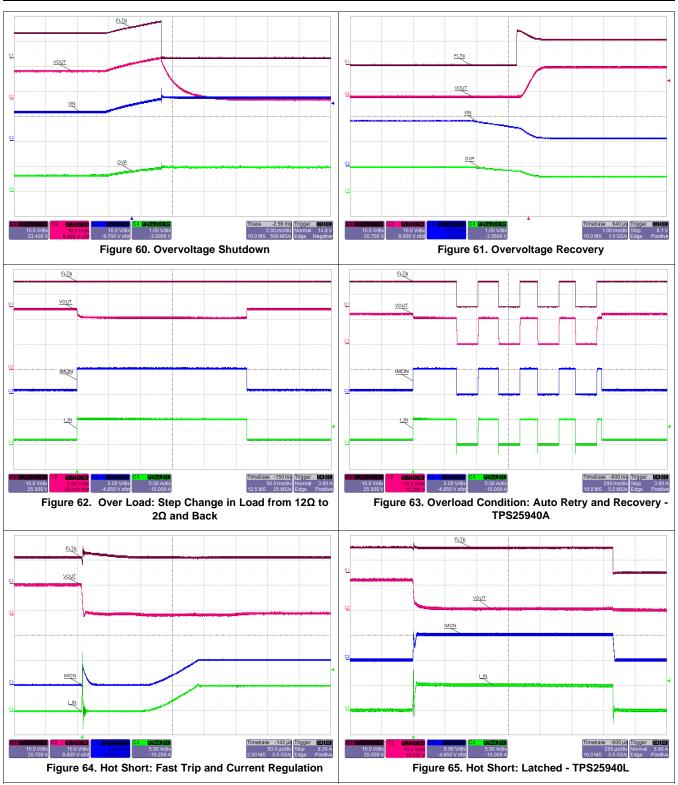
10.2.1.2.6 Programing the Power Good Set Point

As shown in Figure 52, R_4 and R_5 sets the required limit for PGOOD signal as needed for the downstream converters. Considering a power good threshold of 11 V for this design, the values of R_4 and R_5 are calculated using Equation 34.

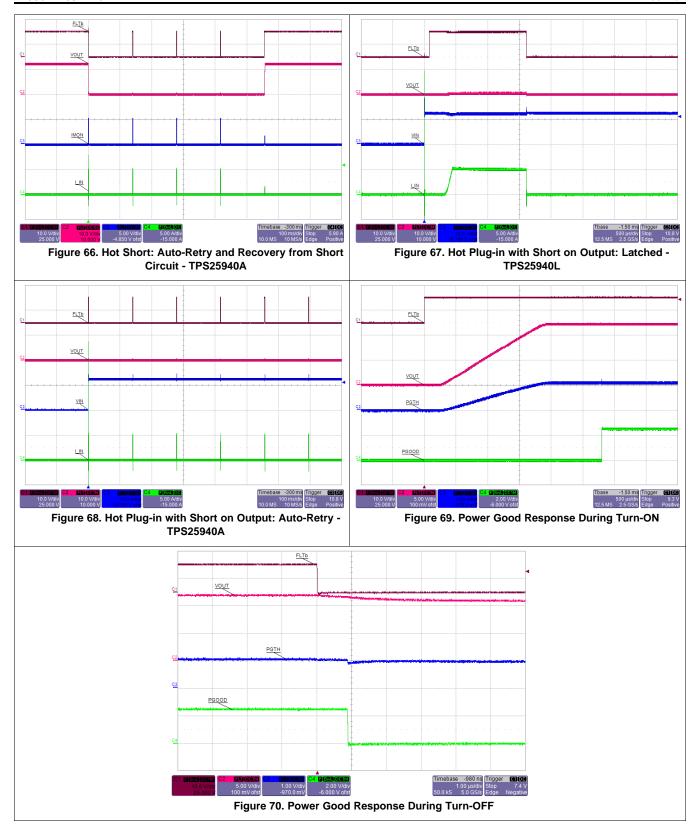

$$V_{(PGTH)} = 0.99 \times \left(1 + \frac{R_4}{R_5}\right)$$
 (34)

It is recommended to have high values for these resistors to limit the current drawn from the output node. Choosing a value of R_4 = 475 k Ω , R_5 = 47 k Ω provides $V_{(PGTH)}$ = 11 V.

10.2.1.2.7 Support Component Selections - R₆, R₇ and C_{IN}


Reference to application schematics, R_6 and R_7 are required only if PGOOD and \overline{FLT} are used; these resistors serve as pull-ups for the open-drain output drivers. The current sunk by each of these pins should not exceed 10 mA (refer to the Absolute Maximum Ratings table). C_{IN} is a bypass capacitor to help control transient voltages, unit emissions, and local supply noise. Where acceptable, a value in the range of 0.001 μF to 0.1 μF is recommended for $C_{(IN)}$.

10.2.1.3 Application Curves



ZHCSCK2-JUNE 2014 www.ti.com.cn

ZHCSCK2 – JUNE 2014 www.ti.com.cn

ZHCSCK2-JUNE 2014 www.ti.com.cn

10.3 System Examples

10.3.1 Power Failure Protection and Data Retention in SSDs

For enterprise and Industrial SSDs, it is necessary to have hold-up circuit and capacitor bank to ensure that critical user data is never lost during power-failure to the drive. The power-failure event could be due to momentary loss of power regulation (transient brown-out condition) or due to loss of power when drive is hotplugged out.

The TPS25940 continuously monitors the supply voltage at EN/UVLO pin and swiftly disconnects the input bus from output when the voltage drops below a predefined threshold (power fail detection). The TPS25940 also monitors the reverse voltage from IN to OUT and when it exceeds -10 mV, it stops the flow of reverse current. In addition, it provides an instant warning signal (FLT) to the SSD controller to initiate the data hardening process. Its swift true reverse blocking feature reacts in 1 µs (typical) ensuring that the capacitor bank charge is retained. This helps the drive to have power for longer time to harden data and reduces the capacitance required in the hold-up bank, saving system cost.

The typical application diagram and application schematic of TPS25940 usage for enterprise SSD are shown in Figure 71 and Figure 72

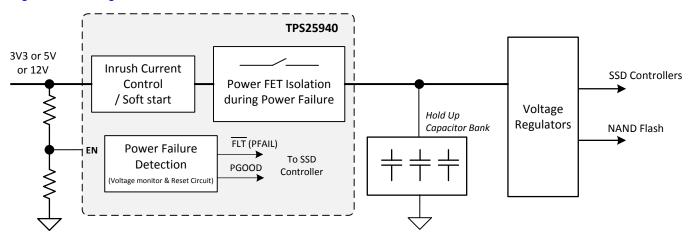


Figure 71. Power Circuit Block Diagram of Enterprise and Industrial SSDs

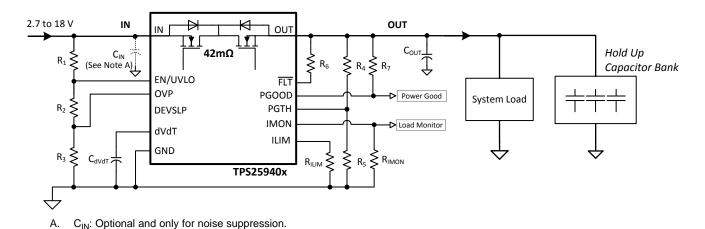
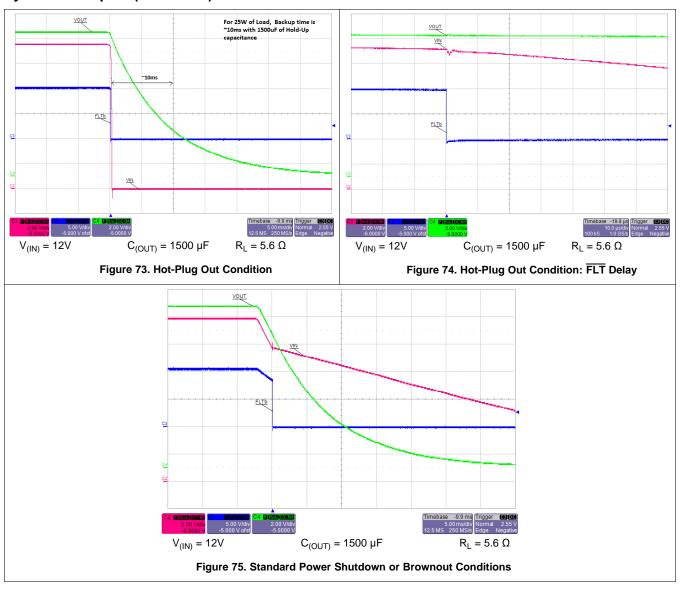



Figure 72. Enterprise SSD – Holdup Capacitor Implementation using TPS25940

The oscilloscope plots demonstrating the true reverse blocking, fast turn-off and FLT signal delay are shown in Figure 73 through Figure 75.

TEXAS INSTRUMENTS

System Examples (continued)

10.3.2 Boost Power Rail Configuration for Data Retention in Enterprise SSDs

In certain enterprise SSD architectures, the hold-up capacitor voltage is boosted to value higher than the input bus voltage to optimize the storage capacitor bank. A typical boosted hold-up voltage ranges from 12 V to 18 V. A typical power circuit block diagram is shown in Figure 76. For these applications, TPS25940 provides quick and smooth changeover of the power from main input bus to boosted backup voltage.

www.ti.com.cn

Cyctom Cycmples (continued

System Examples (continued)

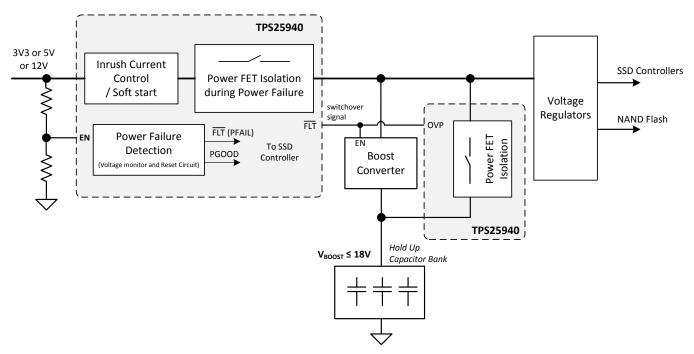
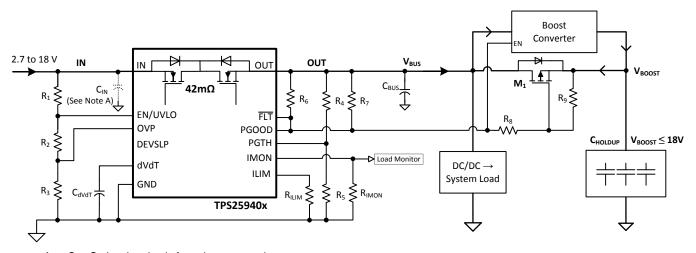



Figure 76. Power Circuit Block Diagram with Boosted Backup Power for Enterprise SSD

A typical application schematic for implementation of boosted backup power configuration is shown in Figure 77. During startup TPS25940 provides the inrush current control to charge up the $C_{(BUS)}$ as well as $C_{(HOLDUP)}$ close to $V_{(IN)}$. Once $V_{(BUS)}$ reaches the programmed PGOOD threshold, the boost converter is enabled to charge $C_{(HOLDUP)}$ to $V_{(BOOST)}$. When $V_{(IN)}$ fails, TPS25940 detects power failure and asserts the fault signal (FLT), which in turn disables the boost converter and shorts $V_{(BOOST)}$ to $V_{(BUS)}$, through M_1 . The FLT signal can be interfaced to SSD controller to initiate the data hardening process. If current limit protection is desired during data hardening process (when holdup capacitor is supplying system bus), M_1 can be replaced by another TPS25940.

The oscilloscope plot demonstrating change over from Main (12 V) to Boosted backup power (14.5 V) is shown in Figure 78.

A. C_{IN} : Optional and only for noise suppression.

Figure 77. Enterprise SSDs: Boosted Backup Power Multiplexing Circuit Implementation

TEXAS INSTRUMENTS

System Examples (continued)

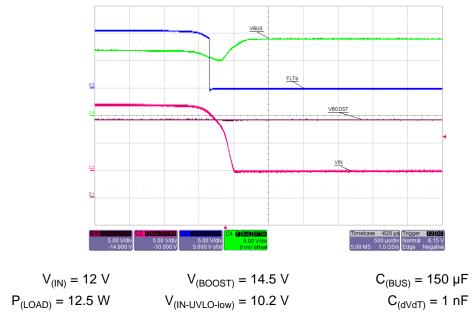


Figure 78. Brownout (Power Fail) Condition: Switch over to Boosted Backup Power

11 Power Supply Recommendations

The TPS25940 device is designed for supply voltage range of 2.7 V \leq V_{IN} \leq 18 V. If the input supply is located more than a few inches from the device an input ceramic bypass capacitor higher than 0.1 μ F is recommended. Power supply should be rated higher than the current limit set to avoid voltage droops during over current and short-circuit conditions.

11.1 Transient Protection

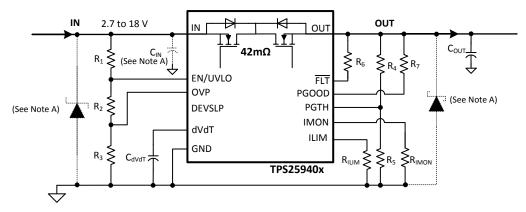
In case of short circuit and over load current limit, when the device interrupts current flow, input inductance generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on value of inductance in series to the input or output of the device. Such transients can exceed the *Absolute Maximum Ratings* of the device if steps are not taken to address the issue.

Typical methods for addressing transients include

- · Minimizing lead length and inductance into and out of the device
- Using large PCB GND plane
- Schottky diode across the output to absorb negative spikes
- A low value ceramic capacitor (C_(IN) = 0.001 μF to 0.1 μF) to absorb the energy and dampen the transients.
 The approximate value of input capacitance can be estimated with Equation 35.

$$V_{\text{SPIKE}(\text{Absolute})} = V_{\text{(IN)}} \times I_{\text{(LOAD)}} \times \sqrt{\frac{L_{\text{(IN)}}}{C_{\text{(IN)}}}}$$
(35)

Where:


- V_(IN) is the nominal supply voltage
- I_(LOAD) is the load current,
- L_(IN) equals the effective inductance seen looking into the source
- C_(IN) is the capacitance present at the input

Transient Protection (continued)

Some applications may require the addition of a Transient Voltage Suppressor (TVS) to prevent transients from exceeding the *Absolute Maximum Ratings* of the device.

The circuit implementation with optional protection components (a ceramic capacitor, TVS and schottky diode) is shown in Figure 79.

A. Optional components needed for suppression of transients

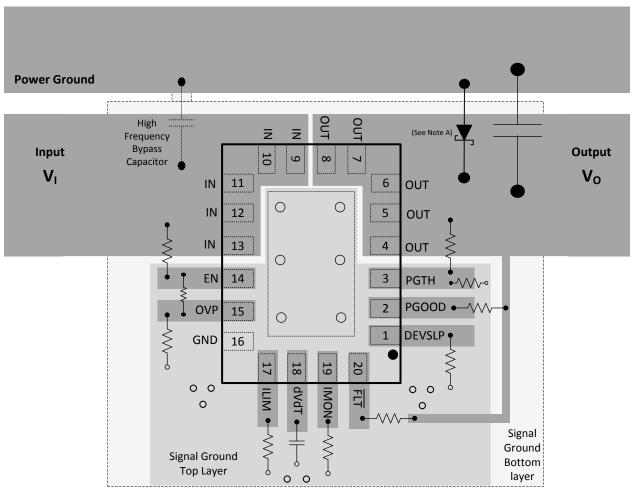
Figure 79. Circuit Implementation With Optional Protection Components

11.2 Output Short-Circuit Measurements

It is difficult to obtain repeatable and similar short-circuit testing results. Source bypassing, input leads, circuit layout and component selection, output shorting method, relative location of the short, and instrumentation all contribute to variation in results. The actual short itself exhibits a certain degree of randomness as it microscopically bounces and arcs. Care in configuration and methods must be used to obtain realistic results. Do not expect to see waveforms exactly like those in the data sheet; every setup differs.

TEXAS INSTRUMENTS

12 Layout


12.1 Layout Guidelines

- For all applications, a 0.1-uF or greater ceramic decoupling capacitor is recommended between IN terminal and GND. For hot-plug applications, where input power path inductance is negligible, this capacitor can be eliminated/minimized.
- The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care
 must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the
 GND terminal of the IC. See Figure 80 for a PCB layout example.
- High current carrying power path connections should be as short as possible and should be sized to carry at least twice the full-load current.
- Low current signal ground (SGND), which is the reference ground for the device should be a copper plane or island.
- Locate all TPS25940 support components: R_(ILIM), C_{dVdT}, R_(IMON), and resistors for UVLO and OVP, close to their connection pin. Connect the other end of the component to the SGND with shortest trace length.
- The trace routing for the R_{ILIM} and R_(IMON) components to the device should be as short as possible to reduce
 parasitic effects on the current limit and current monitoring accuracy. These traces should not have any
 coupling to switching signals on the board.
- The SGND plane must be connected to high current ground (main power ground) at a single point, that is at the negative terminal of input capacitor
- Protection devices such as TVS, snubbers, capacitors, or diodes should be placed physically close to the
 device they are intended to protect, and routed with short traces to reduce inductance. For example, a
 protection Schottky diode is recommended to address negative transients due to switching of inductive loads,
 and it should be physically close to the OUT pins.
- Thermal Considerations: When properly mounted the PowerPAD™ package provides significantly greater cooling ability than an ordinary package. To operate at rated power, the PowerPAD must be soldered directly to the board GND plane directly under the device. The PowerPAD is at GND potential and can be connected using multiple vias to inner layer GND. Other planes, such as the bottom side of the circuit board can be used to increase heat sinking in higher current applications. Refer to Technical Briefs: PowerPad™ Thermally Enhanced Package (TI literature Number SLMA002) and PowerPAD™ Made Easy (TI Literature Number SLMA004) or more information on using this PowerPAD™ package
- The thermal via land pattern specific to TPS25940 can be downloaded from device webpage
- Obtaining acceptable performance with alternate layout schemes is possible; however this layout has been shown to produce good results and is intended as a guideline.

ZHCSCK2-JUNE 2014 www.ti.com.cn

12.2 Layout Example

Top layer Top layer signal ground plane Bottom layer signal ground plane O Via to signal ground plane

Optional: Needed only to suppress the transients caused by inductive load switching

Figure 80. Board Layout

TEXAS INSTRUMENTS

13 器件和文档支持

13.1 相关链接

以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买 链接。

Table 2. 相关链接

部件	产品文件夹	样片与购买	技术文档	工具与软件	支持与社区
TPS25940A	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
TPS25940L	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处

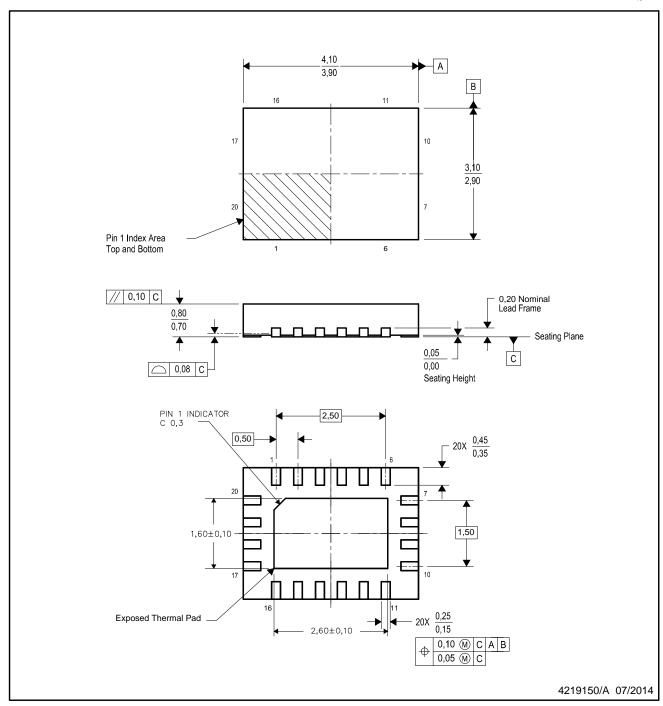
13.2 Trademarks

DevSleep, SATA are trademarks of The Serial ATA International Organization (SATA-IO). All other trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

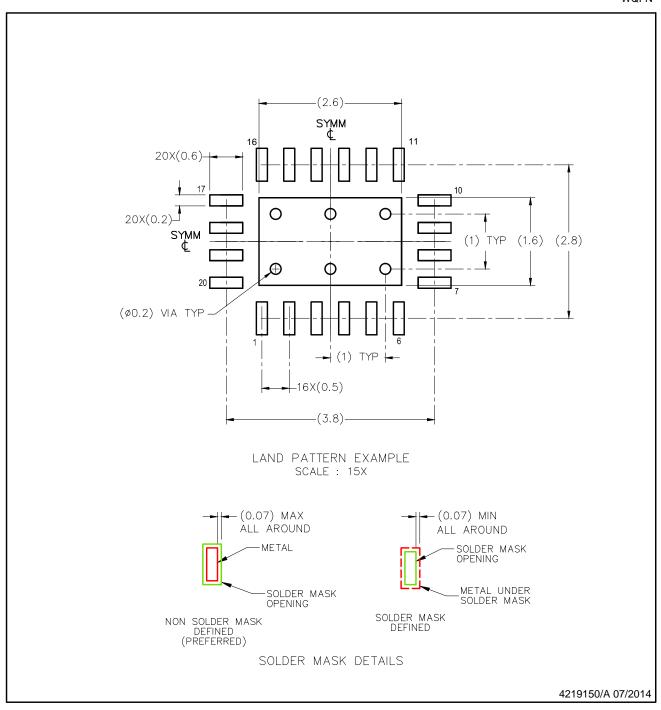

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

14 机械封装和可订购信息

以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

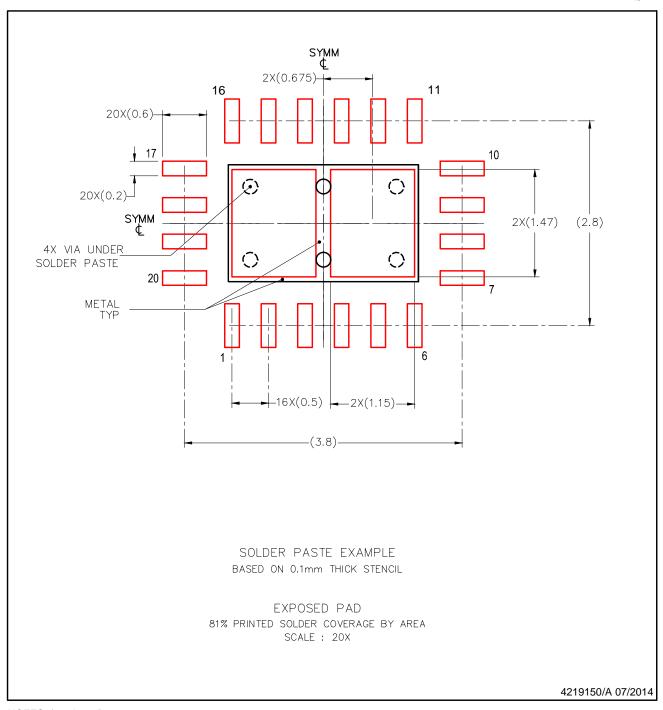
WOFN



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

WOEN



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271) .

WOFN

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

www.ti.com

31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TPS25940ARVCR	Active	Production	WQFN (RVC) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25940A
TPS25940ARVCR.A	Active	Production	WQFN (RVC) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25940A
TPS25940ARVCRG4	Active	Production	WQFN (RVC) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25940A
TPS25940ARVCRG4.A	Active	Production	WQFN (RVC) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	25940A
TPS25940ARVCT	Active	Production	WQFN (RVC) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25940A
TPS25940ARVCT.A	Active	Production	WQFN (RVC) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25940A
TPS25940LRVCR	Active	Production	WQFN (RVC) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	(25940A, 25940L)
TPS25940LRVCR.A	Active	Production	WQFN (RVC) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	(25940A, 25940L)
TPS25940LRVCRG4	Active	Production	WQFN (RVC) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25940L
TPS25940LRVCRG4.A	Active	Production	WQFN (RVC) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25940L
TPS25940LRVCT	Active	Production	WQFN (RVC) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25940L
TPS25940LRVCT.A	Active	Production	WQFN (RVC) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25940L

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 31-Oct-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS25940:

Automotive: TPS25940-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月