

具有 4 个直流/直流转换器、1 个 LDO 和集成电源时序的 TPS65216 电源管理 IC (PMIC)

1 特性

- 具有集成开关 FET 的三个可调节降压转换器 (DCDC1、DCDC2 和 DCDC3) :
 - DCDC1：默认电压为 1.1V，电流高达 1.8A
 - DCDC2：默认电压为 1.1V，电流高达 1.8A
 - DCDC3：默认电压为 1.1V，电流高达 1.8A
 - VIN 范围为 3.6V 至 5.5V
 - 可调节输出电压范围为 0.85V 至 1.675V (DCDC1 和 DCDC2)
 - 可调节输出电压范围为 0.9V 至 3.4V (DCDC3)
 - 轻负载电流状态下进入节能模式
 - 100% 占空比，可实现超低压降
 - 禁用时主动输出放电
- 具有集成开关 FET 的一个可调节降压/升压转换器 (DCDC4) :
 - DCDC4：默认电压为 3.3V，电流高达 1.6A
 - VIN 范围为 3.6V 至 5.5V
 - 可调节输出电压范围：1.175V 至 3.4V
 - 禁用时主动输出放电
- 可调节通用 LDO (LDO1)
 - LDO1：默认电压为 1.8V，电流高达 400mA
 - 1.8V 至 5.5V 的 VIN 范围
 - 可调节输出电压范围：0.9V 至 3.4V
 - 禁用时主动输出放电
- 具有 100mA 或 500mA 可选电流限值的高压负载开关 (LS)
 - 1.8V 至 10V 的 VIN 范围
 - 500mΩ (最大值) 开关阻抗
- 内置有监控器功能监视器的监控器
 - DCDC1、DCDC2 ±4% 容差
 - DCDC3、DCDC4 ±5% 容差
 - LDO1 ±5% 容差
- 保护、诊断和控制：
 - 欠压锁定 (UVLO)
 - 常开型按钮监视器
 - 过热警告和关断
 - I²C 接口 (地址 0x24) (请参阅 400kHz 时的 I²C 操作 [时序要求](#))

2 应用

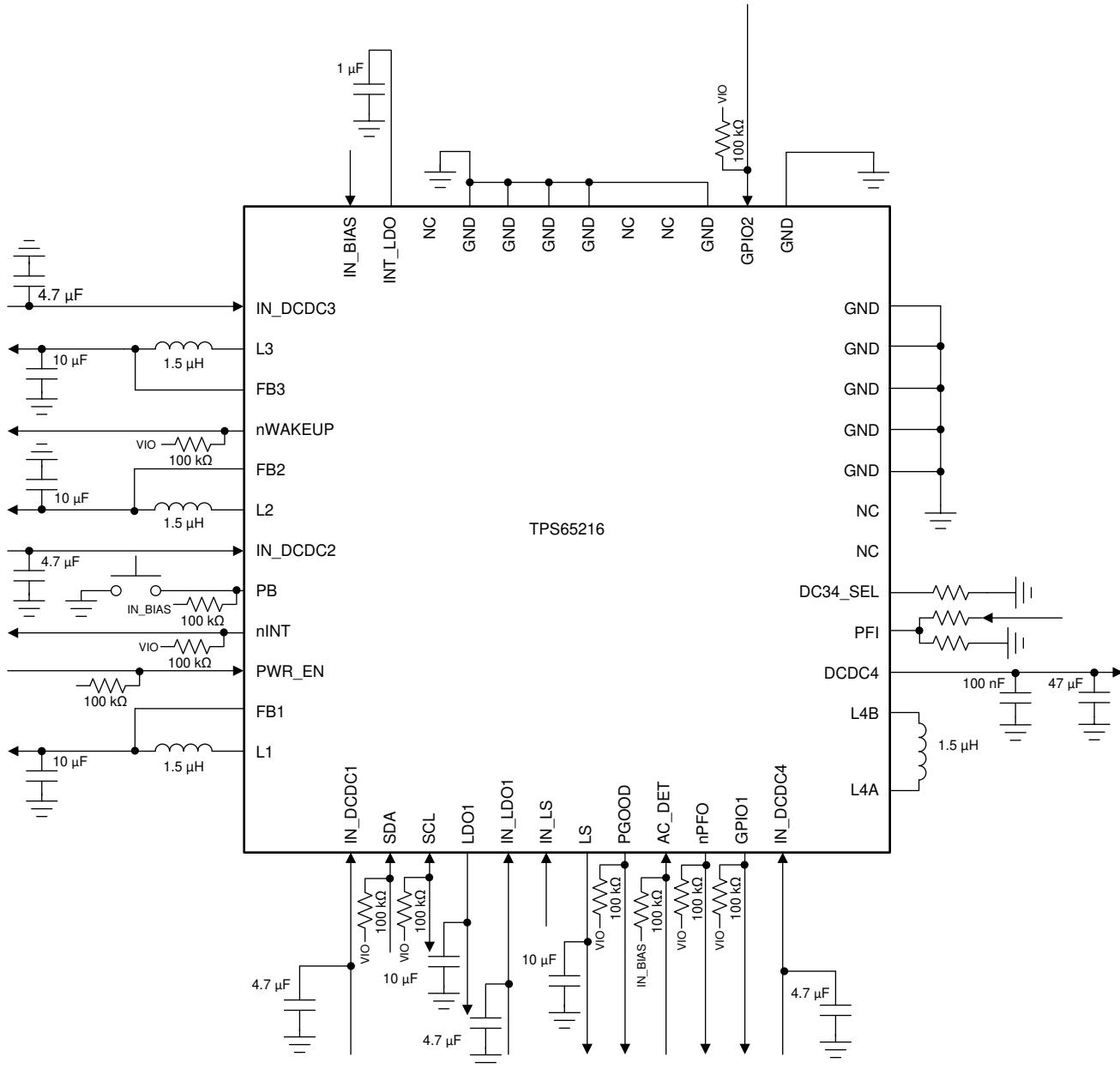
- 电网基础设施
- 人机界面 (HMI)
- 工业自动化
- 电子销售点 (ePOS)
- 测试和测量
- 工业通信
- 背板 I/O
- 联网工业驱动器

3 说明

TPS65216 是一款单芯片电源管理 IC (PMIC)，专门用于支持线路供电 (5V) 应用中的 AMIC110、AMIC120、AM335x 和 AM437x 系列处理器。该器件的额定工作温度范围为 -40°C 至 +105°C，因而适用于各种工业应用。

TPS65216 经过专门设计，可为 AMIC110、AMIC120、AM335x 和 AM437x 的所有功能提供电源管理。直流/直流转换器 DCDC1 至 DCDC4 分别专门为内核、MPU、DDR 存储器以及 3.3V 模拟和 I/O 供电。LDO1 为处理器提供 1.8V 模拟电压和 I/O。GPIO2 可实现 DCDC1 和 DCDC2 转换器的热复位。利用 I²C 接口，用户可以启用和禁用所有稳压器、负载开关和 GPIO。此外，可以通过 I²C 对 UVLO 和监控器电压阈值、加电序列和断电序列进行编程。也可监控因过热、过流和欠压引起的中断。该监控器可监测 DCDC1 至 DCDC4 以及 LDO1。监控器有两种设置，一种用于典型欠压容差 (STRICT = 0b)，另一种用于严格的欠压和过压容差 (STRICT = 1b)。电源正常信号指示五个电压稳压器的调节是否正常。

本资源的原文使用英文撰写。为方便起见，TI 提供了译文；由于翻译过程中可能使用了自动化工具，TI 不保证译文的准确性。为确认准确性，请务必访问 ti.com 参考最新的英文版本 (控制文档)。


三个迟滞降压转换器旨在为处理器内核、MPU 和 DDRx 存储器供电。每个转换器的默认输出电压均可通过 I²C 接口进行调节。DCDC1 和 DCDC2 采用动态电压调节，可在处理器的所有工作点供电。DCDC1 和 DCDC2 还具有可编程压摆率，有助于保护处理器器件。DCDC3 在处理器处于 SUSPEND 模式时仍然可得到供电，从而保持向 DDRx 内存供电。

TPS65216 器件采用 48 引脚 VQFN 封装 (6mm × 6mm , 0.4mm 间距) 。

器件信息

器件型号	封装 ⁽¹⁾	封装尺寸 (标称值)
TPS65216	VQFN (48)	6.00mm × 6.00mm

(1) 如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。

Copyright © 2018, Texas Instruments Incorporated

简化版原理图

内容

1 特性	1	7 寄存器映射	40
2 应用	1	8 应用和实施	78
3 说明	1	8.1 应用信息	78
4 引脚配置和功能	5	8.2 典型应用	78
5 规格	7	8.3 电源相关建议	81
5.1 绝对最大额定值	7	8.4 布局	81
5.2 ESD 等级	7	9 器件和文档支持	83
5.3 建议运行条件	7	9.1 器件支持	83
5.4 热性能信息	8	9.2 文档支持	83
5.5 电气特性	8	9.3 接收文档更新通知	83
5.6 时序要求	16	9.4 支持资源	83
5.7 典型特性	17	9.5 商标	83
6 详细说明	18	9.6 静电放电警告	83
6.1 概述	18	9.7 术语表	83
6.2 功能方框图	19	10 修订历史记录	84
6.3 特性说明	20	11 机械、封装和可订购信息	84
6.4 器件功能模式	38	11.1 封装选项附录	85

4 引脚配置和功能

图 4-1 显示了 48 引脚 RSL 塑料无引线四方扁平封装。

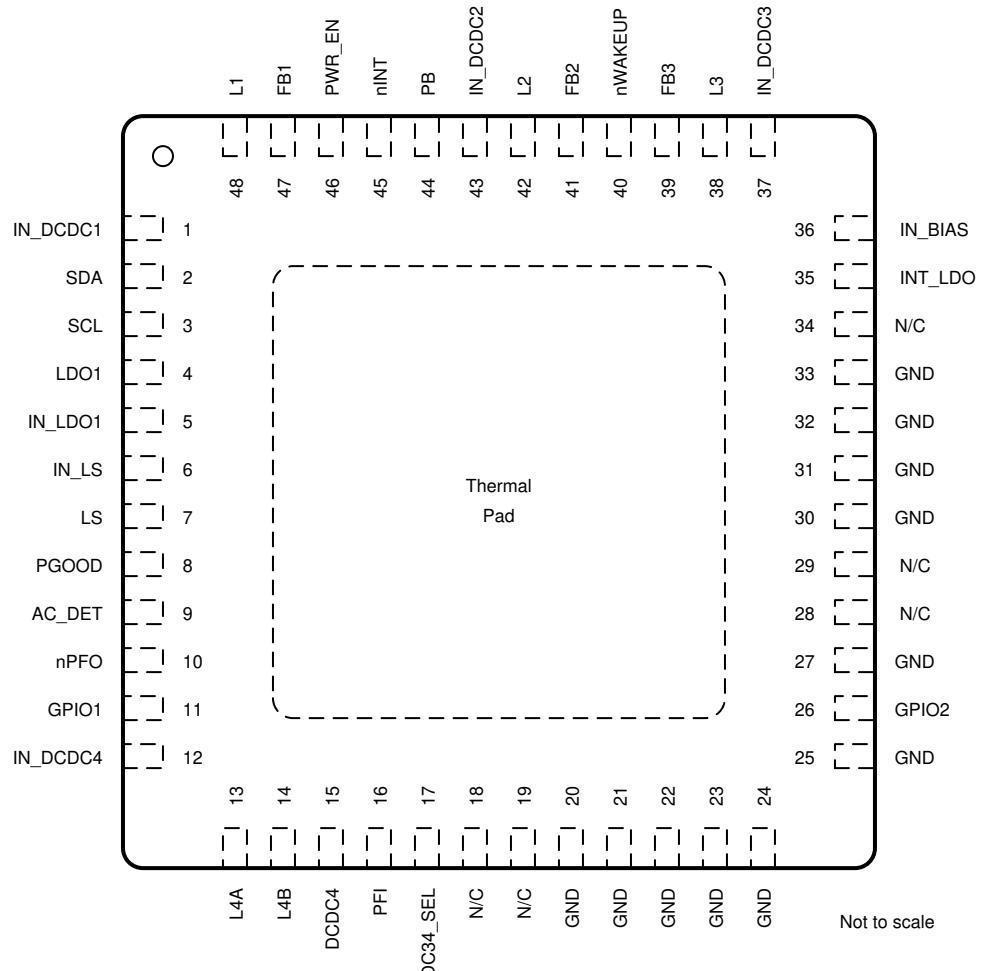


图 4-1. 散热焊盘外露的 48 引脚 RSL VQFN (顶视图 , 6mm × 6mm × 1mm , 间距为 0.4mm)

表 4-1. 引脚功能

引脚		类型	说明
编号	名称		
1	IN_DCDC1	P	DCDC1 的输入电源引脚。
2	SDA	I/O	I ² C 接口的数据线。连接到上拉电阻。
3	SCL	I	I ² C 接口的时钟输入。连接到上拉电阻。
4	LDO1	O	LDO1 的输出电压引脚。连接到电容器。
5	IN_LDO1	P	LDO1 的输入电源引脚。
6	IN_LS	P	负载开关的输入电源引脚。
7	LS	O	负载开关的输出电压引脚。连接到电容器。
8	PGOOD	O	电源正常输出 (配置为开漏) 。当 DCDC1-4 或 LDO1 超出稳压范围时 , 下拉至低电平。负载开关不会影响 PGOOD 引脚。
9	AC_DET	I	用于 DCDC1-4、LDO1 和负载开关的交流监测器输入和使能。有关详细信息 , 请参阅 运行模式 。不使用时将此引脚连接至 IN_BIAS。
10	nPFO	O	电源故障比较器输出 , 抗尖峰脉冲 (开漏) 。当 PFI 输入低于电源故障阈值时 , 引脚被拉至低电平。

表 4-1. 引脚功能 (续)

引脚		类型	说明
编号	名称		
11	GPIO1	I/O	通用开漏输出。更多详情, 请参阅 I/O 配置 。
12	IN_DCDC4	P	DCDC4 的输入电源引脚。
13	L4A	P	DCDC4 的开关引脚。连接到电感器。
14	L4B	P	DCDC4 的开关引脚。连接到电感器。
15	DCDC4	P	DCDC4 的输出电压引脚。连接到电容器。
16	PFI	I	电源故障比较器输入。连接到电阻分压器。
17	DC34_SEL	I	DCDC3 或 DCDC4 的上电默认选择引脚。上电默认值通过接地的电阻器进行编程。请参阅 DCDC3 和 DCDC4 上电默认选择 , 以了解电阻器选项。
18	N/C	-	无连接。保持引脚悬空。
19	N/C	-	无连接。保持引脚悬空。
20	GND	—	将引脚接地。
21	GND		
22	GND		
23	GND		
24	GND		
25	GND		
26	GPIO2	I/O	引脚可配置为 DCDC1 和 DCDC2 的热复位 (负边沿) 或通用开漏输出。更多详细信息, 请参阅 I/O 配置 。
27	GND	-	将引脚接地。
28	N/C	—	无连接。保持引脚悬空。
29	N/C		
30	GND	—	将引脚接地。
31	GND		
32	GND		
33	GND		
34	N/C	-	无连接。保持引脚悬空。
35	INT_LDO	P	内部偏置电压。连接到 $1\mu\text{F}$ 电容器。TI 不建议将任何外部负载连接到此引脚。
36	IN_BIAS	P	参考系统的输入电源引脚。
37	IN_DCDC3	P	DCDC3 的输入电源引脚。
38	L3	P	DCDC3 的开关引脚。连接到电感器。
39	FB3	I	DCDC3 的反馈电压引脚。连接到输出电容器。
40	nWAKEUP	O	向 SOC 发送信号以指示上电事件 (低电平有效, 开漏输出)。
41	FB2	I	DCDC2 的反馈电压引脚。连接到输出电容器。
42	L2	P	DCDC2 的开关引脚。连接到电感器。
43	IN_DCDC2	P	DCDC2 的输入电源引脚。
44	PB	I	按钮监视器输入。通常连接到瞬时开关以接地 (低电平有效)。有关详细信息, 请参阅 运行模式 。
45	nINT	O	中断输出 (低电平有效, 开漏)。如果设置了中断位, 则引脚被拉到低电平。读取导致中断的位后, 引脚返回到 Hi-Z 状态。可以屏蔽中断。
46	PWR_EN	I	DCDC1-4、LDO1 和负载开关的电源使能输入。有关详细信息, 请参阅 运行模式 。
47	FB1	I	DCDC1 的反馈电压引脚。连接到输出电容器。
48	L1	P	DCDC1 的开关引脚。连接到电感器。
—	散热焊盘	P	电源接地和散热。连接地平面。

5 规格

5.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得 (除非另有说明)。⁽¹⁾

		最小值	最大值	单位
电源电压	IN_BIAS、IN_LDO1、IN_DCDC1、IN_DCDC2、IN_DCDC3、 IN_DCDC4	-0.3	7	V
	IN_LS	-0.3	11.2	
输入电压	所有引脚 (除非单独说明)	-0.3	7	V
输出电压	所有引脚 (除非单独说明)	-0.3	7	V
灌电流	PGOOD、nWAKEUP、nINT、nPFO、SDA、GPIO1、GPIO2	6	mA	
T _A	工作环境温度	-40	105	°C
T _J	结温	-40	125	°C
T _{stg}	贮存温度	-65	150	°C

(1) 应力超出绝对最大额定值中列出的值时可能会对器件造成永久损坏。这些仅仅是应力等级，并不表示器件在这些条件下以及在建议运行条件以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。

5.2 ESD 等级

		值	单位
V _(ESD)	静电放电	人体放电模型 (HBM)，符合 ANSI/ESDA/JEDEC JS-001 标准 ⁽¹⁾	±2000
		充电器件模型 (CDM)，符合 JEDEC 规范 JESD22-C101 ⁽²⁾	±500

(1) JEDEC 文档 JEP155 指出：500V HBM 可通过标准 ESD 控制流程实现安全生产。

(2) JEDEC 文档 JEP157 指出：250V CDM 能够在标准 ESD 控制流程下安全生产。

5.3 建议运行条件

在自然通风条件下的工作温度范围内测得 (除非另有说明)。

		最小值	标称值	最大值	单位
电源电压, IN_BIAS		3.6	5.5	5.5	V
DCDC1、DCDC2、DCDC3 和 DCDC4 的输入电压		3.6	5.5	5.5	V
LDO1 的输入电压		1.8	5.5	5.5	V
LS 的输入电压		1.8	10	10	V
DCDC1 的输出电压		0.85	1.675	1.675	V
DCDC2 的输出电压		0.85	1.675	1.675	V
DCDC3 的输出电压		0.9	3.4	3.4	V
DCDC4 的输出电压		1.175	3.4	3.4	V
LDO1 的输出电压		0.9	3.4	3.4	V
DCDC1、DCDC2 和 DCDC3 的输出电流		0	1.8	1.8	A
DCDC4 的输出电流	VIN_DCDC4 = 2.8V			1	
	VIN_DCDC4 = 3.6V			1.3	A
	VIN_DCDC4 = 5V			1.6	
LDO1 的输出电流		0	400	400	mA
LS 的输出电流	VIN_LS > 2.3V	0	900	900	
	VIN_LS ≤ 2.3V	0	475	475	mA

5.4 热性能信息

热指标 ⁽¹⁾		TPS65216	单位
		RSL (VQFN)	
		48 引脚	
R _θ JC(top)	结至外壳 (顶部)	17.2	°C/W
R _θ JB	结点到电路板	5.8	°C/W
R _θ JA	结至环境热阻。JEDEC 4 层高 K 电路板。	30.6	°C/W
Ψ _{JT}	结至封装顶部	0.2	°C/W
Ψ _{JB}	结点到电路板	5.6	°C/W
R _θ JC(bot)	结至外壳 (底部)	1.5	°C/W

(1) 有关新旧热指标的更多信息，请参阅 [半导体和 IC 封装热指标](#) 应用报告。

5.5 电气特性

在自然通风条件下的工作温度范围内测得 (除非另有说明)。

参数	测试条件	最小值	典型值	最大值	单位
输入电压和电流					
V _{IN_BIAS}	输入电源电压范围	正常运行	3.6	5.5	V
		EEPROM 编程	4.5	5.5	
	抗尖峰脉冲时间		5		ms
I _{OFF}	OFF 状态电流，流入 IN_BIAS、IN_DCDCx、IN_LDO1、IN_LS 的总电流	V _{IN} = 3.6V；禁用所有电源轨。 T _J = 0°C 至 85°C	5		μA
I _{SUSPEND}	SUSPEND 状态电流，流入 IN_BIAS、IN_DCDCx、IN_LDO1、IN_LS 的总电流	V _{IN} = 3.6V；DCDC3 已启用，低功耗模式，无负载。 所有其他电源轨已禁用。 T _J = 0°C 至 105°C	220		μA
INT_LDO					
V _{INT_LDO}	输出电压		2.5		V
	DC 精度	I _{OUT} < 10mA	-2%	2%	
I _{OUT}	输出电流范围	允许的最大外部负载	0	10	mA
I _{LIMIT}	短路电流限值	输出短接至 GND	23		mA
t _{HOLD}	保持时间	测量范围为 V _{INT_LDO} = 至 V _{INT_LDO} = 1.8V 在断电前启用所有电源轨， V _{IN_BIAS} = 2.8V 至 0 V，时间 < 5μs INT_LDO 上无外部负载 C _{INT_LDO} = 1μF，请参阅表 8-3。	150		ms
C _{OUT}	标称输出电容器值	陶瓷、X5R 或 X7R，请参阅表 8-3。	0.1	1	22 μF
	容差	陶瓷、X5R 或 X7R，额定电压 ≥ 6.3V	-20%	20%	
DCDC1 (1.1V 降压)					
V _{IN_DCDC1}	输入电压范围	V _{IN_BIAS} > V _{UVLO}	3.6	5.5	V
V _{DCDC1}	输出电压范围	可通过 I ² C 调节	0.85	1.675	V
	DC 精度	3.6V ≤ V _{IN} ≤ 5.5V；0A ≤ I _{OUT} ≤ 1.8A	-2%	2%	
	动态精度	相对于标称输出电压 I _{OUT} = 50mA 至 450mA，时间 < 1μs 在整个输入电压范围内，C _{OUT} ≥ 10μF。	-2.5%	2.5%	
I _{OUT}	持续输出电流	V _{IN_DCDC1} > 3.6V		1.8	A
I _Q	静态电流	来自 I _{N_DCDC1} 引脚的总电流；器件未开关，空载	25	50	μA

5.5 电气特性 (续)

在自然通风条件下的工作温度范围内测得 (除非另有说明)。

参数		测试条件	最小值	典型值	最大值	单位
$R_{DS(ON)}$	高侧 FET 导通电阻	$V_{IN_DCDC1} = 3.6V$		230	355	$m\Omega$
	低侧 FET 导通电阻	$V_{IN_DCDC1} = 3.6V$		90	145	
I_{LIMIT}	高侧电流限值	$V_{IN_DCDC1} = 3.6V$		2.8		A
	低侧电流限值	$V_{IN_DCDC1} = 3.6V$		3.1		
V_{PG}	电源正常阈值	V_{OUT} 下降	STRICT = 0b	88.5%	90%	91.5%
			STRICT = 1b	96%	96.5%	97%
	迟滞	V_{OUT} 上升	STRICT = 0b	3.8%	4.1%	4.4%
			STRICT = 1b		0.25%	
	抗尖峰脉冲	V_{OUT} 下降	STRICT = 0b		1	ms
			STRICT = 1b		50	μs
		V_{OUT} 上升	STRICT = 0b		10	μs
			STRICT = 1b		10	μs
	超时				5	ms
V_{OV}	过压流检测阈值	V_{OUT} 上升, STRICT = 1b		103%	103.5%	104%
	迟滞	V_{OUT} 下降, STRICT = 1b			0.25%	
	抗尖峰脉冲	V_{OUT} 上升, STRICT = 1b			50	μs
I_{INRUSH}	浪涌电流	$V_{IN_DCDC1} = 3.6V$; $C_{OUT} = 10\mu F$ 至 $100\mu F$			500	mA
R_{DIS}	放电电阻器		150	250	350	Ω
L	标称电感器值	请参阅表 8-2。	1	1.5	2.2	μH
	容差		-30%		30%	
C_{OUT}	输出电容值	陶瓷、X5R 或 X7R, 请参阅表 8-3。	10	22	100 ⁽¹⁾	μF
DCDC2 (1.1V 降压)						
V_{IN_DCDC2}	输入电压范围	$V_{IN_BIAS} > V_{UVLO}$	3.6	5.5		V
V_{DCDC2}	输出电压范围	可通过 I ² C 调节	0.85	1.675		V
	DC 精度	$3.6V \leq V_{IN} \leq 5.5V$; $0A \leq I_{OUT} \leq 1.8A$	-2%		2%	
动态精度		相对于标称输出电压 $I_{OUT} = 50mA$ 至 $450mA$, 时间 $< 1\mu s$ 在整个输入电压范围内, $C_{OUT} \geq 10\mu F$		-2.5%	2.5%	
I_{OUT}	持续输出电流	$V_{IN_DCDC2} > 3.6V$			1.8	A
I_Q	静态电流	来自 I_{N_DCDC2} 引脚的总电流; 器件未开关, 空载		25	50	μA
$R_{DS(ON)}$	高侧 FET 导通电阻	$V_{IN_DCDC2} = 3.6V$		230	355	$m\Omega$
	低侧 FET 导通电阻	$V_{IN_DCDC2} = 3.6V$		90	145	
I_{LIMIT}	高侧电流限值	$V_{IN_DCDC2} = 3.6V$		2.8		A
	低侧电流限值	$V_{IN_DCDC2} = 3.6V$		3.1		

5.5 电气特性 (续)

在自然通风条件下的工作温度范围内测得 (除非另有说明)。

参数		测试条件	最小值	典型值	最大值	单位
V_{PG}	电源正常阈值	V_{OUT} 下降	STRICT = 0b	88.5%	90%	91.5%
			STRICT = 1b	96%	96.5%	97%
	迟滞	V_{OUT} 上升	STRICT = 0b	3.8%	4.1%	4.4%
			STRICT = 1b	0.25%		
	抗尖峰脉冲	V_{OUT} 下降	STRICT = 0b	1		
			STRICT = 1b	50		
		V_{OUT} 上升	STRICT = 0b	10		
			STRICT = 1b	10		
	超时	在 DCDC2 使能时及 DCDC2 寄存器写入 (寄存器 0x17) 后发生。			5	ms
V_{OV}	过压流检测阈值	V_{OUT} 上升, STRICT = 1b	103%	103.5%	104%	
	迟滞	V_{OUT} 下降, STRICT = 1b	0.25%			
	抗尖峰脉冲	V_{OUT} 上升, STRICT = 1b	50			μs
I_{INRUSH}	浪涌电流	$V_{IN_DCDC2} = 3.6V$; $C_{OUT} = 10\mu F$ 至 $100\mu F$	500			mA
R_{DIS}	放电电阻器		150	250	350	Ω
L	标称电感器值	请参阅表 8-2。	1	1.5	2.2	μH
	容差		-30%	30%		
C_{OUT}	输出电容值	陶瓷、X5R 或 X7R, 请参阅表 8-3。	10	22	100 ⁽¹⁾	μF

DCDC3 (1.2V 降压)

V_{IN_DCDC3}	输入电压范围	$V_{IN_BIAS} > V_{UVLO}$	3.6	5.5	V	
V_{DCDC3}	输出电压范围	可通过 I ² C 调节	0.9	3.4	V	
	DC 精度	$3.6V \leq V_{IN} \leq 5.5V$; $0A \leq I_{OUT} \leq 1.8A$, $V_{IN_DCDC3} \geq (V_{DCDC3} + 700mV)$	-2%	2%		
动态精度		相对于标称输出电压 $I_{OUT} = 50mA$ 至 $450mA$, 时间 $< 1\mu s$ 在整个输入电压范围内, $C_{OUT} \geq 10\mu F$	-2.5%	-2.5%		
I_{OUT}	持续输出电流	$V_{IN_DCDC3} > 3.6V$	1.8			
I_Q	静态电流	来自 IN_DCDC3 引脚的总电流 ; 器件未开关, 空载	25	50	μA	
$R_{DS(ON)}$	高侧 FET 导通电阻	$V_{IN_DCDC3} = 3.6V$	230	345	mΩ	
	低侧 FET 导通电阻	$V_{IN_DCDC3} = 3.6V$	100	150		
I_{LIMIT}	高侧电流限值	$V_{IN_DCDC3} = 3.6V$	2.8			
	低侧电流限值	$V_{IN_DCDC3} = 3.6V$	3			
V_{PG}	电源正常阈值	V_{OUT} 下降	STRICT = 0b	88.5%	90%	91.5%
			STRICT = 1b	95%	95.5%	96%
	迟滞	V_{OUT} 上升	STRICT = 0b	3.8%	4.1%	4.4%
			STRICT = 1b	0.25%		
	抗尖峰脉冲	V_{OUT} 下降	STRICT = 0b	1		
			STRICT = 1b	50		
		V_{OUT} 上升	STRICT = 0b	10		
			STRICT = 1b	10		
	超时	在 DCDC3 使能时及 DCDC3 寄存器写入 (寄存器 0x18) 后发生。			5	ms

5.5 电气特性 (续)

在自然通风条件下的工作温度范围内测得 (除非另有说明)。

参数		测试条件	最小值	典型值	最大值	单位	
V _{OV}	过压流检测阈值	V _{OUT} 上升, STRICT = 1b	104%	104.5%	105%		
	迟滞	V _{OUT} 下降, STRICT = 1b		0.25%			
	抗尖峰脉冲	V _{OUT} 上升, STRICT = 1b		50		μs	
I _{INRUSH}	浪涌电流	V _{IN_DCDC3} = 3.6V ; C _{OUT} = 10μF 至 100μF		500		mA	
R _{DIS}	放电电阻器		150	250	350	Ω	
L	标称电感器值	请参阅表 8-2。	1.0	1.5	2.2	μH	
	容差		-30%		30%		
C _{OUT}	输出电容值	陶瓷、X5R 或 X7R, 请参阅表 8-3。	10	22	100	μF	
DCDC4 (3.3V 降压/升压) /模拟和 I/O							
V _{IN_DCDC4}	输入电压工作范围	V _{IN_BIAS} > V _{UVLO} , -40°C 至 +105°C	3.6	5.5		V	
V _{DCDC4}	输出电压范围	可通过 I ² C 调节	1.175	3.3		V	
V _{DCDC4}	DC 精度	4.2V ≤ V _{IN} ≤ 5.5V ; 3V < V _{OUT} ≤ 3.4V 0A ≤ I _{OUT} ≤ 1.6A		-2%		2%	
		3.3V ≤ V _{IN} ≤ 4.2V ; 3V < V _{OUT} ≤ 3.4V 0A ≤ I _{OUT} ≤ 1.3A		-2%		2%	
		2.8V ≤ V _{IN} ≤ 5.5V ; 1.65V < V _{OUT} ≤ 3V 0A ≤ I _{OUT} ≤ 1A		-2%		2%	
		2.8V ≤ V _{IN} ≤ 5.5V ; 1.175V < V _{OUT} ≤ 1.65V 0A ≤ I _{OUT} ≤ 1A		-2.5%		2.5%	
输出电压纹波		PFM 模式已启用 ; 4.2V ≤ V _{IN} ≤ 5.5V ; 0A ≤ I _{OUT} ≤ V _{OUT} = 3.3V				mV _{pp}	
降压模式下的最小占空比					18%		
I _{OUT}	持续输出电流	V _{IN_DCDC4} = 2.8V, V _{OUT} = 3.3V			1	A	
		V _{IN_DCDC4} = 3.6V, V _{OUT} = 3.3V			1.3		
		V _{IN_DCDC4} = 5V, V _{OUT} = 3.3V			1.6		
I _Q	静态电流	来自 IN_DCDC4 引脚的总电流 ; 器件未开关, 空载。	25	50		μA	
f _{SW}	开关频率		2400			kHz	
R _{DS(ON)}	高侧 FET 导通电阻	V _{IN_DCDC3} = 3.6V	IN_DCDC4 至 L4A	166		mΩ	
			L4B 至 DCDC4	149			
	低侧 FET 导通电阻	V _{IN_DCDC3} = 3.6V	L4A 至 GND	142	190		
			L4B 至 GND	144	190		
I _{LIMIT}	平均开关电流限值	V _{IN_DCDC4} = 3.6V		3000		mA	

5.5 电气特性 (续)

在自然通风条件下的工作温度范围内测得 (除非另有说明)。

参数		测试条件	最小值	典型值	最大值	单位
V _{PG}	电源正常阈值	V _{OUT} 下降	STRICT = 0b	88.5%	90%	91.5%
			STRICT = 1b	95%	95.5%	96%
	迟滞	V _{OUT} 上升	STRICT = 0b	3.8%	4.1%	4.4%
			STRICT = 1b	0.25%		
	抗尖峰脉冲	V _{OUT} 下降	STRICT = 0b	1		ms
			STRICT = 1b	50		μs
		V _{OUT} 上升	STRICT = 0b	10		μs
			STRICT = 1b	10		μs
	超时	在 DCDC4 使能时及 DCDC4 寄存器写入 (寄存器 0x19) 后发生			5	ms
V _{ov}	过压流检测阈值	V _{OUT} 上升, STRICT = 1b	104%	104.5%	105%	
	迟滞	V _{OUT} 下降, STRICT = 1b	0.25%			
	抗尖峰脉冲	V _{OUT} 上升, STRICT = 1b	50			μs
I _{INRUSH}	浪涌电流	V _{IN_DCDC4} = 3.6V ≤ V _{IN_DCDC4} ≤ 5.5V ; 40μF ≤ C _{OUT} ≤ 100μF	500			mA
R _{DIS}	放电电阻器 ⁽²⁾		150	250	350	Ω
L	标称电感器值	请参阅表 8-2。	1.2	1.5	2.2	μH
	容差		-30%	30%		
C _{OUT}	输出电容值	陶瓷、X5R 或 X7R, 请参阅表 8-3。	40	80	100	μF

5.5 电气特性 (续)

在自然通风条件下的工作温度范围内测得 (除非另有说明)。

参数	测试条件	最小值	典型值	最大值	单位
LDO1 (1.8V LDO)					
V _{IN_LDO1}	输入电压范围	V _{IN_BIAS} > V _{UVLO}	1.8	5.5	V
I _Q	静态电流	无负载	35		μA
V _{OUT}	输出电压范围	可通过 I ² C 调节	0.9	3.4	V
	DC 精度	V _{OUT} + 0.2V ≤ V _{IN} ≤ 5.5V ; 0A ≤ I _{OUT} ≤ 200mA	-2%	2%	
I _{OUT}	输出电流范围	V _{IN_LDO1} - V _{DO} = V _{OUT}	0	200	mA
		V _{IN_LDO1} > 2.7V , V _{OUT} = 1.8V	0	400	
I _{LIMIT}	短路电流限值	输出短接至 GND	445	550	mA
V _{DO}	压降电压	I _{OUT} = 100mA , V _{IN} = 3.6V		200	mV
V _{PG}	电源正常阈值	V _{OUT} 下降	STRICT = 0b	86%	90% 94%
			STRICT = 1b	95%	95.5% 96%
		迟滞 , V _{OUT} 上升	STRICT = 0b	3%	4% 5%
			STRICT = 1b		0.25%
	抗尖峰脉冲	V _{OUT} 下降	STRICT = 0b	1	ms
			STRICT = 1b	50	μs
		V _{OUT} 上升	STRICT = 0b	10	μs
			STRICT = 1b	10	μs
	超时			5	ms
V _{OV}	过压流检测阈值	V _{OUT} 上升 , STRICT = 1b	104%	104.5%	105%
	迟滞	V _{OUT} 下降 , STRICT = 1b		0.25%	
	抗尖峰脉冲	V _{OUT} 上升 , STRICT = 1b		50	μs
		V _{OUT} 下降 , STRICT = 1b		1	ms
R _{DIS}	放电电阻器		150	250	380
C _{OUT}	输出电容值	陶瓷、X5R 或 X7R	22	100	μF
负载开关					
V _{IN_LS}	输入电压范围	V _{IN_BIAS} > V _{UVLO}	1.8	10	V
R _{DS(ON)}	静态导通电阻	V _{IN_LS} = 9V , I _{OUT} = 500mA , 全温度范围适用		440	mΩ
		V _{IN_LS} = 5V , I _{OUT} = 500mA , 全温度范围适用		526	
		V _{IN_LS} = 2.8V , I _{OUT} = 200mA , 全温度范围适用		656	
		V _{IN_LS} = 1.8V , I _{OUT} = 200mA , 全温度范围适用		910	
I _{LIMIT}	短路电流限值	V _{IN_LS} > 2.3V , 输出短接至 GND	LSILIM[1:0] = 00b	98	126
			LSILIM[1:0] = 01b	194	253
			LSILIM[1:0] = 10b	475	738
			LSILIM[1:0] = 11b	900	1234
	短路电流限值	V _{IN_LS} ≤ 2.3V , 输出短接至 GND	LSILIM[1:0] = 00b	98	126
			LSILIM[1:0] = 01b	194	253
			LSILIM[1:0] = 10b	475	738
t _{BLANK}	中断消隐时间	输出短接至 GND , 直到中断被触发。	15		ms
R _{DIS}	输出端的内部放电电阻器 ⁽²⁾	LSDCHRG = 1	650	1000	1500
T _{OTS}	过热关断 ⁽³⁾		125	132	139
	迟滞			10	°C
C _{OUT}	标称输出电容值	陶瓷、X5R 或 X7R , 请参阅表 8-3。	1	100	220

5.5 电气特性 (续)

在自然通风条件下的工作温度范围内测得 (除非另有说明)。

参数		测试条件	最小值	典型值	最大值	单位
I/O 电平和计时特点						
PG _{DLY}	PGOOD 延迟时间	PGDLY[1:0] = 00b	10			ms
		PGDLY[1:0] = 01b	20			
		PGDLY[1:0] = 10b	50			
		PGDLY[1:0] = 11b	150			
t _{DG}	抗尖峰脉冲时间	PB 输入	上升沿	100		ms
			下降沿	50		ms
		AC_DET 输入	上升沿	100		μs
			下降沿	10		ms
		PWR_EN 输入	上升沿	10		ms
			下降沿	100		μs
		GPIO1	上升沿	1		ms
			下降沿	1		ms
		GPIO2	上升沿	5		μs
			下降沿	5		μs
t _{RESET}	复位时间	PB 输入保持低电平	TRST = 0b	8		s
			TRST = 1b	15		
V _{IH}	高电平输入电压	SCL、SDA、GPIO1 和 GPIO2		1.3		V
		AC_DET、PB		0.66 × IN_BIAS		
		PWR_EN		1.3		
V _{IL}	低电平输入电压	SCL、SDA、PWR_EN、AC_DET、PB、GPIO1 和 GPIO2		0	0.4	V
V _{OL}	低电平输出电压	nWAKEUP、nINT、SDA、PGOOD、GPIO1 和 GPIO2 ; I _{SINK} = 2mA		0	0.3	V
		nPFO ; I _{SINK} = 2mA		0	0.35	
V _{PFI}	电源故障比较器阈值	输入下降		800		mV
	迟滞	输入上升		40		mV
	精度			-4%	4%	
	抗尖峰脉冲	输入下降		25		μs
		输入上升		10		ms
I _{DC34_SEL}	DC34_SEL 偏置电流	仅在上电时启用。		10		μA
V _{DC34_SEL}	DCDC3 和 DCDC4 上电默认选择阈值	阈值 1		100		mV
		阈值 2		163		
		阈值 3		275		
		阈值 4		400		
		阈值 5		575		
		阈值 6		825		
		阈值 7		1200		

5.5 电气特性 (续)

在自然通风条件下的工作温度范围内测得 (除非另有说明)。

参数	测试条件	最小值	典型值	最大值	单位
R_{DC34_SEL} DCDC3 和 DCDC4 上电默认选择电阻值	设置 0	0	0	7.7	$k\Omega$
	设置 1			12.1	
	设置 2			20	
	设置 3	30.9	31.6	32.3	
	设置 4			45.3	
	设置 5				
	设置 6			95.3	
	设置 7			150	
I_{BIAS} 输入偏置电流	SCL、SDA、GPIO1 ⁽⁴⁾ 、GPIO2 ⁽⁴⁾ ; $V_{IN} = 3.3V$	0.01	1	μA	
	PB、AC_DET、PFI ; $V_{IN} = 3.3V$		500	nA	
I_{LEAK} 引脚漏电流	nINT、nWAKEUP、nPFO、PGOOD、PWR_EN、 GPIO1 ⁽⁵⁾ 、GPIO2 ⁽⁵⁾ $V_{OUT} = 3.3V$		500	nA	
振荡器					
f_{OSC}	振荡器频率		2400		kHz
	频率精度	$T_J = -40^{\circ}C$ 至 $+105^{\circ}C$	-12%	12%	
过热关断					
T_{OTS}	过热关断	升高结温	135	145	155
	迟滞	降低结温		20	$^{\circ}C$
T_{WARN}	高温警告	升高结温	90	100	110
	迟滞	降低结温		15	$^{\circ}C$

- (1) DCDC1 和 DCDC2 可支持 500 μF 的远程电容。
- (2) 默认禁用放电功能。
- (3) 如果输入电压降至 UVLO 阈值以下, 开关将暂时关断。
- (4) 配置为输入。
- (5) 配置为输出。

5.6 时序要求

		最小值	标称值	最大值	单位
f_{SCL}	串行时钟频率		100		kHz
			400		
$t_{HD;STA}$	(重复) START 条件后的保持时间。在此时间段之后，生成第一个时钟脉冲。	SCL = 100kHz	4		μs
		SCL = 400kHz	600		
t_{LOW}	SCL 时钟的低电平周期	SCL = 100kHz	4.7		μs
		SCL = 400kHz	1.3		
t_{HIGH}	SCL 时钟的高电平周期	SCL = 100kHz	4		μs
		SCL = 400kHz ⁽¹⁾	1		
$t_{SU;STA}$	重复 START 条件的建立时间	SCL = 100kHz	4.7		μs
		SCL = 400kHz	600		
$t_{HD;DAT}$	数据保持时间	SCL = 100kHz	0	3.45	μs
		SCL = 400kHz	0	900	
$t_{SU;DAT}$	数据建立时间	SCL = 100kHz	250		ns
		SCL = 400kHz	100		
t_r	SDA 和 SCL 信号的上升时间	SCL = 100kHz		1000	ns
		SCL = 400kHz		300	
t_f	SDA 和 SCL 信号的下降时间	SCL = 100kHz		300	ns
		SCL = 400kHz		300	
$t_{SU;STO}$	STOP 条件的建立时间	SCL = 100kHz	4		μs
		SCL = 400kHz	600		
t_{BUF}	停止条件和启动条件之间的总线空闲时间	SCL = 100kHz	4.7		μs
		SCL = 400kHz	1.3		
t_{SP}	必须由输入滤波器进行抑制的尖峰脉冲宽度	SCL = 100kHz	— ⁽²⁾	— ⁽²⁾	ns
		SCL = 400kHz	0	50	
C_b	每个总线的容性负载	SCL = 100kHz		400	pF
		SCL = 400kHz		400	

(1) 400kHz 时的 SCL 占空比必须 $> 40\%$ 。

(2) 标准模式下 I²C 器件的输入不需要尖峰抑制。

5.7 典型特性

条件为 $T_J = 25^\circ\text{C}$ ，除非另有说明。

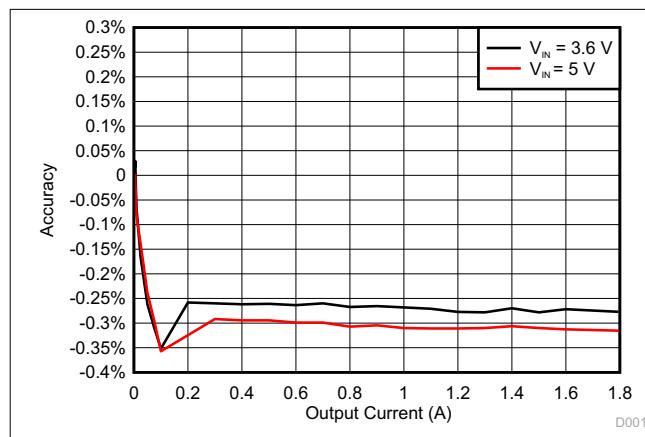


图 5-1. DCDC1 精度

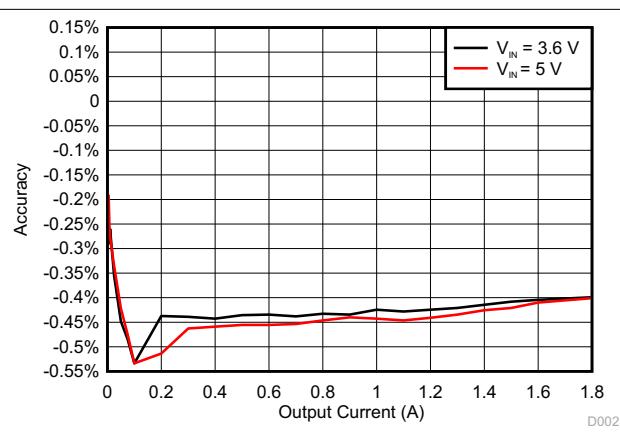


图 5-2. DCDC2 精度

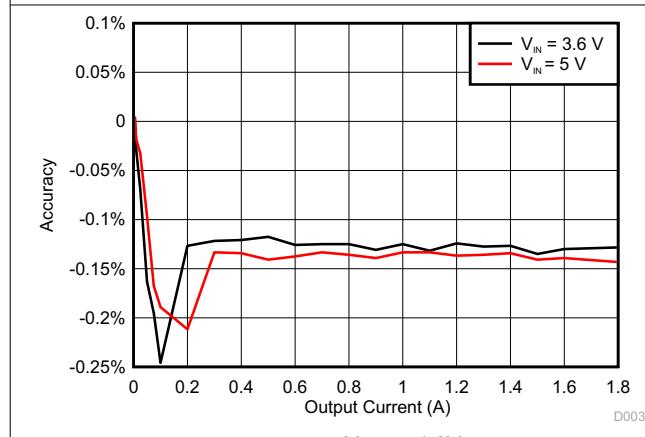


图 5-3. DCDC3 精度

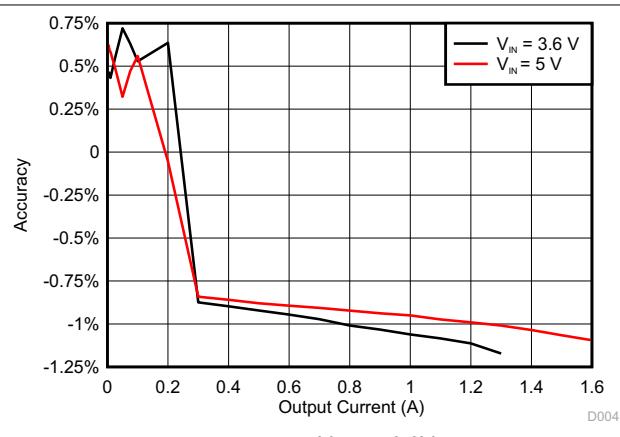
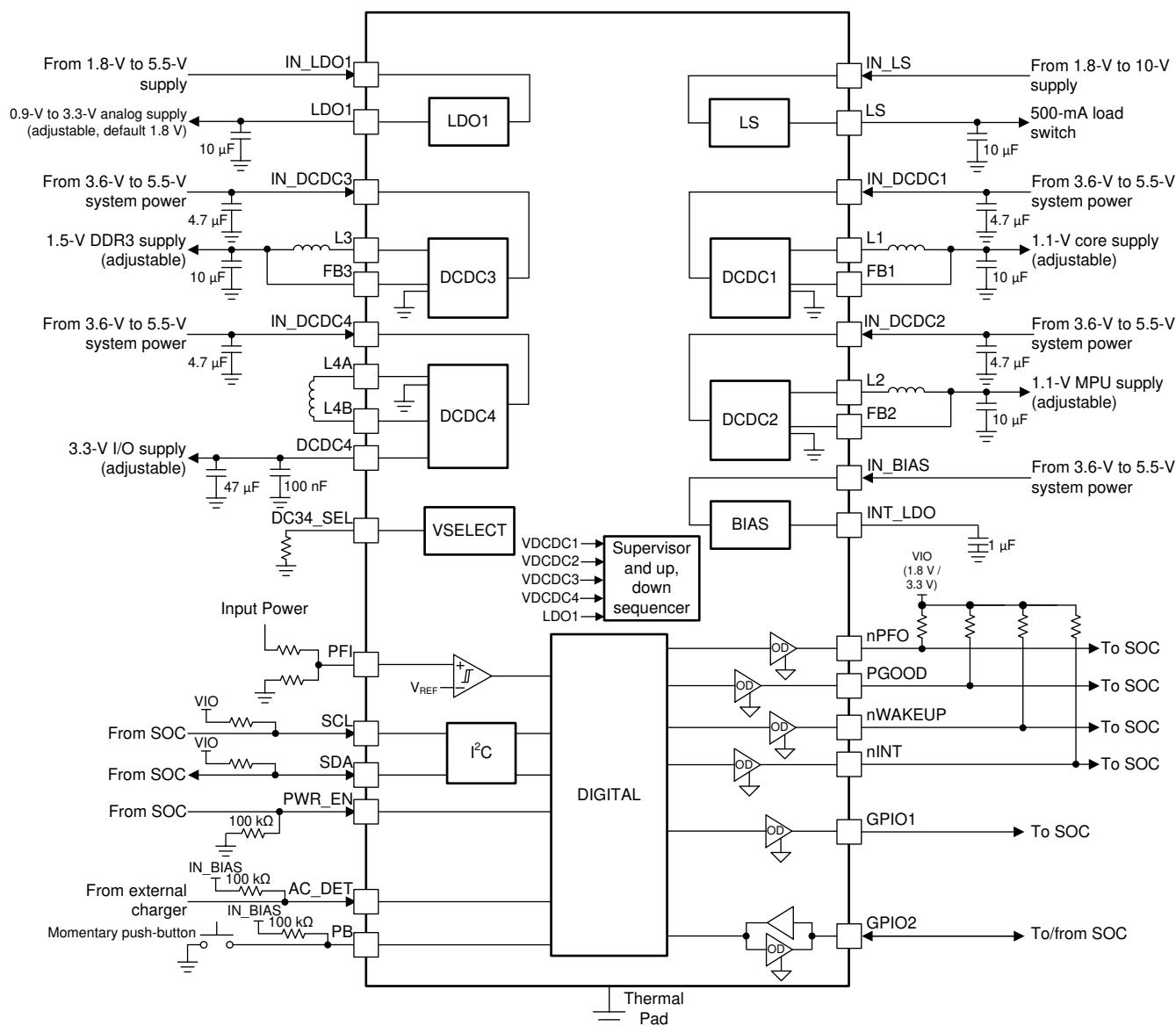


图 5-4. DCDC4 精度

6 详细说明

6.1 概述


TPS65216 提供三个降压转换器、三个通用 I/O、一个降压/升压转换器、一个负载开关和一个 LDO。该系统可以使用稳压 5V 电源来供电。该器件的额定工作温度范围为 -40°C 至 $+105^{\circ}\text{C}$ ，因而适用于各种工业应用。

I^2C 接口提供使用 TPS65216 所需的全面特性。所有电源轨、负载开关和 GPIO 均可启用和禁用。可以自定义 UVLO 和监控器的电压阈值。还可通过 I^2C 对加电和断电顺序进行编程。可以监测负载开关因过热、过流和欠压引起的中断。

集成电压监控器可监测 DCDC 1-4 和 LDO1。它有两种设置；标准设置仅监测欠压情况，而严格的设置可实现严格的欠压和过压容差。提供电源正常信号以报告五条电源轨的调节状态。

三个迟滞型降压转换器各自可提供高达 1.8A 的电流。每个转换器的默认输出电压均可通过 I^2C 接口进行调节。DCDC1 和 DCDC2 采用动态电压调节，具有可调压摆率。对于噪声敏感型应用，降压转换器在轻负载时以低功耗模式运行，并可以强制在功率模式 (PWM) 下运行。

6.2 功能方框图

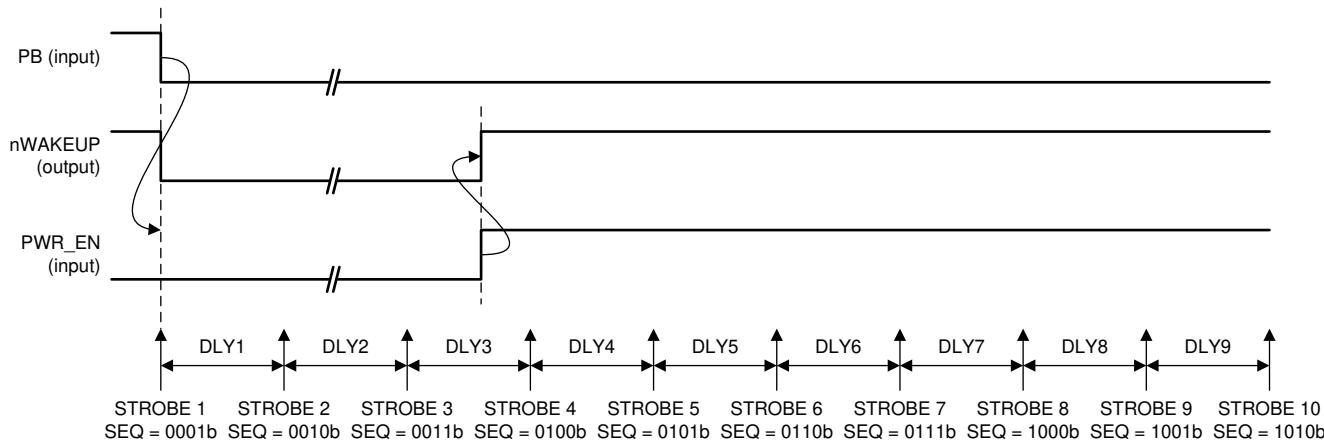
6.3 特性说明

6.3.1 唤醒以及上电和断电序列

TPS65216 预定义了上电和断电序列，该序列在典型应用中不会改变。用户可以使用 I²C 定义自定义序列。上电时序由十路选通与九段延迟时间构成的序列定义。每个输出轨分配给一个选通以确定使能电源轨的顺序。单个电源轨仅分配给一个选通，但可将多个电源轨分配给同一选通。选通之间的延迟时间在 2ms 和 5ms 之间。

6.3.1.1 上电序列

上电序列启动时，发生选通 1，分配给该选通的任何电源轨都将启用。在 DLY1 的延迟时间过后，发生选通 2，分配给该选通的电源轨上电。该序列一直持续到所有选通信号发生完并执行了所有 DLYx 时间。选通分配和延迟时间在 SEQx 寄存器中定义，并在 I²C 控制下变化。如果发生以下事件之一，则会执行上电序列：


- 从 OFF 状态：
 - 按钮 (PB) 被按下 (PB 上的下降沿) 或
 - AC_DET 引脚被拉至低电平 (下降沿) 或
 - PWR_EN 置为有效 (驱动至高电平) 或
 - 主电源已连接 (IN_BIAS) 且 AC_DET 已接地且
 - 器件未处于欠压锁定 (UVLO) 或过热关断 (OTS) 状态。
- 从 PRE_OFF 状态：
 - PB 被按下 (PB 上的下降沿) 或
 - AC_DET 引脚被拉至低电平 (下降沿) 或
 - PWR_EN 置为有效 (驱动至高电平) 且
 - 器件未处于 UVLO 或 OTS 状态。
- 从 SUSPEND 状态：
 - PB 被按下 (PB 上的下降沿) 或
 - AC_DET 引脚被拉至低电平 (下降沿) 或
 - PWR_EN 引脚被拉至高电平 (电平敏感) 且
 - 器件未处于 UVLO 或 OTS 状态。

当检测到上电事件时，器件会进入 WAIT_PWR_EN 状态并触发上电序列。只要 PWR_EN 以及 PB 或 AC_DET 引脚保持低电平，器件就会保持在 WAIT_PWR_EN 状态。如果 PB 和 AC_DET 都恢复到逻辑高电平状态，并且在进入 WAIT_PWR_EN 状态后 20 秒内 PWR_EN 引脚未置为有效，则会触发断电序列，器件返回 OFF 状态。PWR_EN 置为有效后，器件会进入 ACTIVE 状态，在功能上相当于 WAIT_PWR_EN。但是，AC_DET 引脚被忽略，断电仅由 PWR_EN 引脚控制。

未分配给选通 (SEQ = 0000b) 的电源轨不受上电和断电序列影响，无论序列发生器如何都保持其当前的导通或关断状态。除了序列发生器处于运行状态时无法访问 ENABLEx 寄存器之外，可以通过设置 ENABLEx 寄存器中的相应使能位随时启用和禁用电源轨。使能位始终反映电源轨的当前使能状态。例如，序列发生器会设置并复位在其控制下的电源轨的使能位。

备注

上电序列由选通和延迟时间定义，可以由 PB、AC_DET (未显示，与 PB 相同) 或 PWR_EN 引脚触发。

未显示按钮抗尖峰脉冲时间。

图 6-1. OFF 或 SUSPEND 状态下的上电序列 ; PB 是上电事件

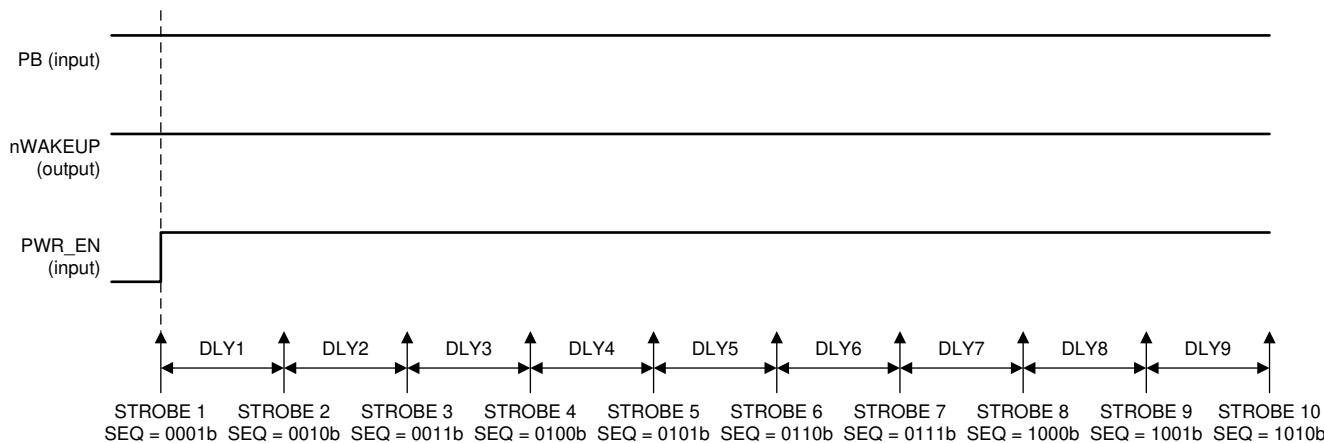


图 6-2. SUSPEND 状态下的上电序列 ; PWR_EN 是上电事件

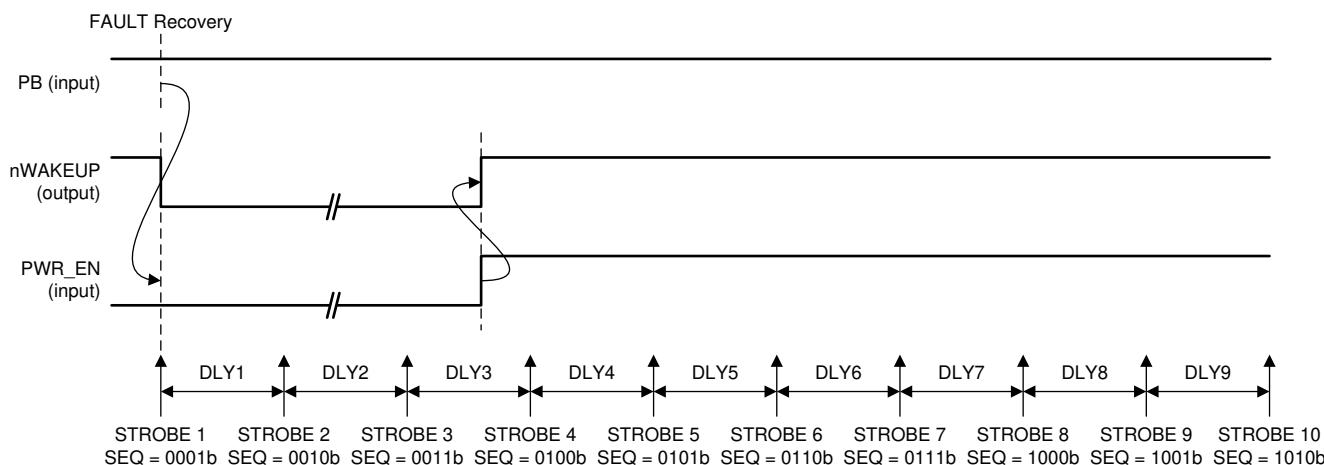


图 6-3. RECOVERY 状态下的上电序列

6.3.1.2 断电序列

默认情况下，断电序列遵循与上电序列相反的顺序。触发断电序列后，将发生选通 10，分配给选通 10 的任何电源轨都将关断，并启用其放电电路。经过 DLY9 的延迟时间后，发生选通 9，分配给它的任何电源轨都将关断，并启用其放电电路。该序列一直持续到所有选通信号发生完并执行了所有 DLYx 时间。DLYx 时间会延长 10 倍，以便有足够的时间放电，并防止关断期间输出电压交叉。DLYFCTR 位全局应用于所有断电延迟时间。无论 DLYx 和 DLYFCTR 设置如何，PMIC 都会在断电序列启动 500ms 后进入 OFF、SUSPEND 或 RECOVERY 状态，以确保在下一个上电序列启动之前，放电电路保持启用状态至少 150ms。

如果发生以下事件之一，则会执行断电序列：

- 器件处于 WAIT_PWR_EN 状态，PB 和 AC_DET 引脚为高电平，PWR_EN 为低电平，20s 计时器已结束。
- 器件处于 ACTIVE 状态，PWR_EN 引脚拉至低电平。
- 器件处于 WAIT_PWR_EN、ACTIVE 或 SUSPEND 状态，按钮保持低电平超过 8s (如果 TRST = 1b，则超过 15s)。
- 器件中会发生故障 (OTS、UVLO、PGOOD 故障)。

从 ACTIVE 转换到 SUSPEND 状态时，非断电序列发生器控制的电源轨在 SUSPEND 状态下保持与在 ACTIVE 状态下相同的 ON/OFF 状态。这样，所选电源轨能够在 SUSPEND 状态下保持上电状态。

转换到 OFF 或 RECOVERY 状态时，不受序列发生器控制的电源轨会按上述方式关断：

- 如果不受序列发生器控制 (SEQ = 0b)，则 DCDC1、DCDC2、DCDC3、DCDC4 和 LDO1 在断电序列开始时关闭。
- LS 在状态机进入 OFF 或 RECOVERY 状态时以及在触发断电序列 500ms 后关断。

如果 IN_BIAS 上的电源电压降至 2.5V 以下，则数字内核将复位，所有电源轨将立即关断，并由其内部放电电路 (DCDC1-4 和 LDO1) 将其拉低至接地电平。放电电路保持活动状态的时间是 INT_LDO 保持时间的函数 (更多详细信息，请参阅 [内部 LDO \(INT_LDO\)](#))。

6.3.1.3 选通 1 和选通 2

选通 1 和选通 2 是 TPS65216 器件中未使用的特殊选通，但仍会执行选通 1 和选通 2 以进行上电。上电序列从 DLY1 和 DLY2 计时器之后的选通 3 开始。断电序列在选通 3 处结束。

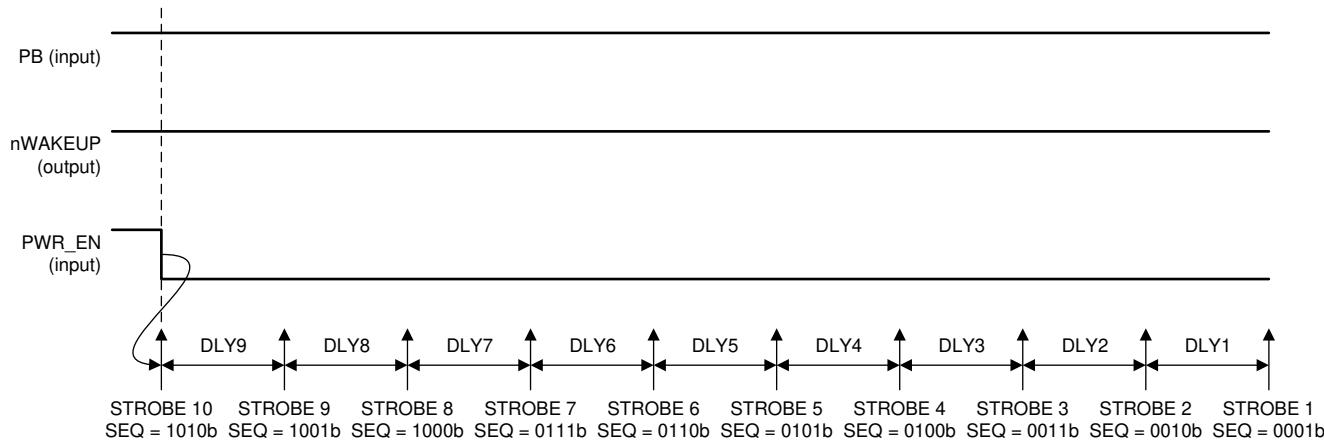
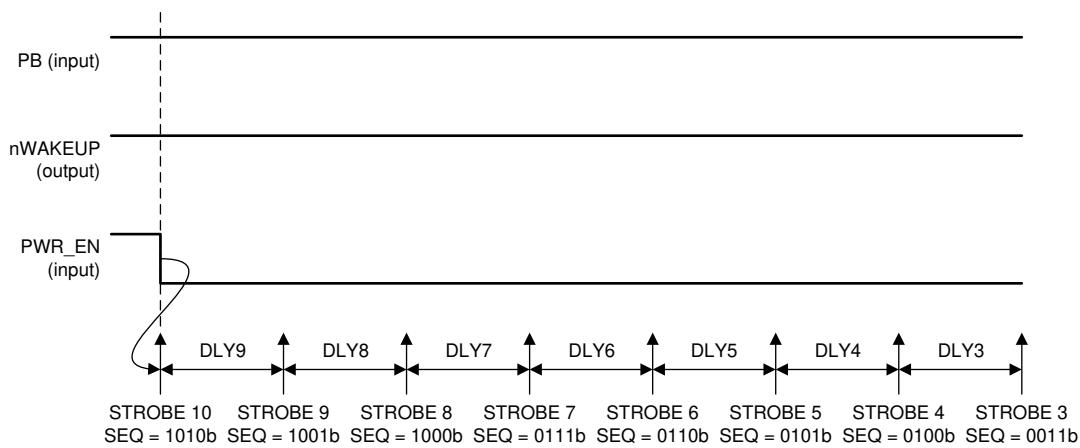
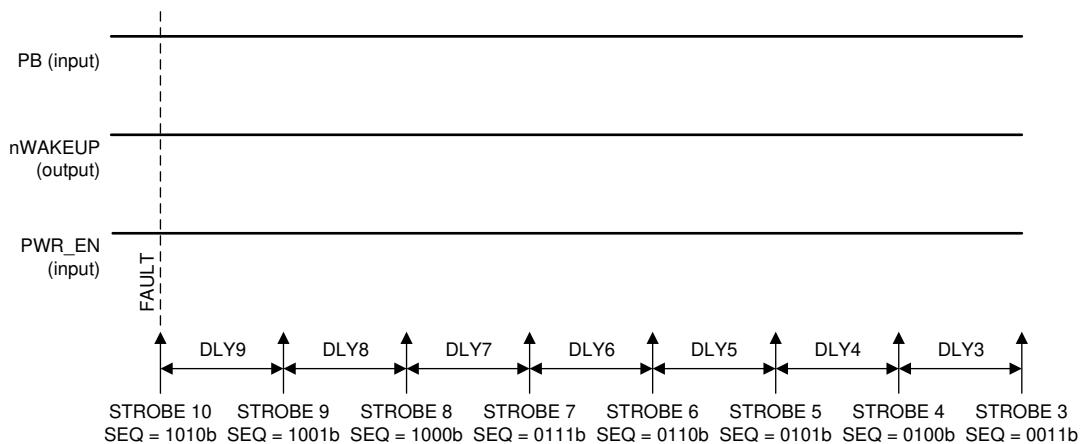




图 6-4. 断电序列至关断状态；PWR_EN 是断电事件

不显示选通 2 和选通 1。

图 6-5. 断电序列至挂起状态；PWR_EN 是断电事件

不显示选通 2 和选通 1。

图 6-6. 断电序列至恢复状态；TSD 或 UV 是断电事件

6.3.1.4 电源电压监控器和电源正常 (PGOOD)

电源正常 (PGOOD) 是内置电压监控器的开漏输出，可监测 DCDC1、DCDC2、DCDC3、DCDC4 和 LDO1。当所有已启用电源轨处于稳压状态时，输出为 Hi-Z；当一个或多个电源轨遇到导致输出电压超出指定容差范围的故障时，输出为低电平。在典型应用中，PGOOD 驱动 SOC 的复位信号。

监控器有两种由 **STRICT** 位控制的运行模式。**STRICT** 位设置为 0 时，五个稳压器的所有已启用电源轨仅通过宽松的阈值和抗尖峰脉冲时间进行欠压监控。当 **STRICT** 位设置为 1 时，将会监测五个稳压器的所有已启用电源轨是否存在欠压和过压，并具有严格的限制和较短的抗尖峰脉冲时间。[表 6-1](#) 总结了这些详细信息。

表 6-1. 由 **STRICT** 位控制的监控器特性

参数		STRICT = 0b (典型值)	STRICT = 1b (典型值)
欠压监测	阈值 (输出下降)	90%	96.5% (DCDC1 和 DCDC2) 95.5% (DCDC3、DCDC4 和 LDO1)
	抗尖峰脉冲 (输出下降)	1ms	50μs
	抗尖峰脉冲 (输出上升)	10μs	10μs
过压监测	阈值 (输出下降)	不适用	103.5% (DCDC1 和 DCDC2) 104.5% (DCDC3、DCDC4 和 LDO1)
	抗尖峰脉冲 (输出下降)	不适用	1ms
	抗尖峰脉冲 (输出上升)	不适用	50μs

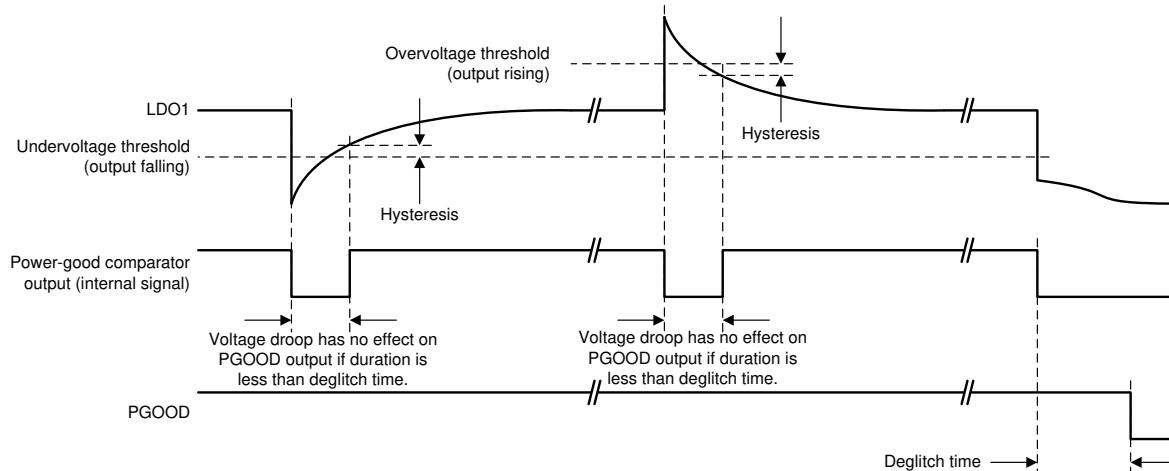


图 6-7. 欠压、过压阈值、迟滞和抗尖峰脉冲时间的定义

以下规则适用于 PGOOD 输出：

- PGOOD 的上电默认状态为低电平。当所有电源轨都被禁用时，PGOOD 输出被驱动为低电平。
- 仅监测已启用的电源轨。禁用的电源轨将被忽略。
- 特定电源轨的电源正常监测从电源轨启用 5ms 后开始，此后持续监测。这样可使电源轨上电。
- 序列发生器完成并启用最后一个电源轨后，PGOOD 会延迟 PGDLY 时间。
- 如果启用的电源轨持续超出监测阈值的时间超过抗尖峰脉冲时间，则 PGOOD 会被拉至低电平，并且所有电源轨都会按照断电序列关断。PGDLY 不适用。
- 通过复位 DCx_EN 或 LDO1_EN 位来手动禁用电源轨对 PGOOD 引脚没有影响。如果所有电源轨均被禁用，则 PGOOD 被驱动为低电平，因为最后一个电源轨被禁用。
- 如果触发了断电序列发生器，PGOOD 将被驱动为低电平。
- 无论启用的电源轨数量如何，PGOOD 在 SUSPEND 状态下都被驱动为低电平。

图 6-8 展示了典型的上电序列和 PGOOD 时序。

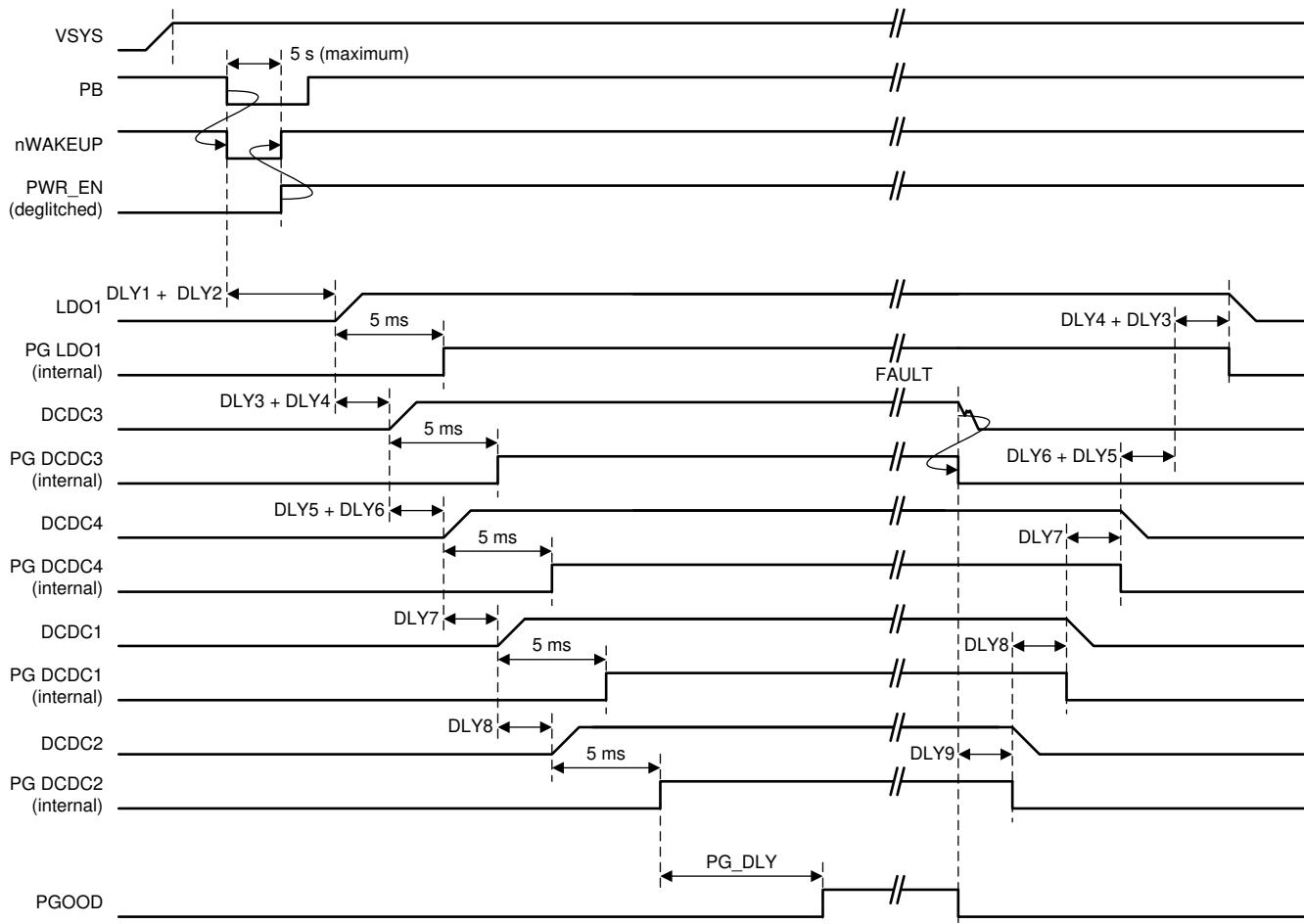


图 6-8. 主输出电源轨的典型上电序列

6.3.1.5 内部 LDO (INT_LDO)

内部 LDO 为内部数字内核和模拟电路提供稳定电压。内部 LDO 的标称输出电压为 2.5V，可支持高达 10mA 的外部负载。

当系统电源出现故障时，UVLO 比较器将触发断电序列。如果系统电源电压降至 以下，则数字内核将复位，所有其余电源轨将立即关断，并由其内部放电电路 (DCDC1-4 和 LDO1) 将其拉低至接地电平。

内部 LDO 反向会阻止 INT_LDO 引脚上的输出电容器 (C_{INT_LDO}) 放电。INT_LDO 输出电容器上的剩余电量为电源轨放电电路提供电源，以确保即使系统电源发生故障，输出也会放电至接地。电气特性中指定的保持时间量是输出电容值 (C_{INT_LDO}) 与 INT_LDO 引脚上的外部负载量 (如果有) 的函数。此设计可让保持时间足以使 DCDC1-4 和 LDO1 充分放电，从而确保正确的处理器断电时序。

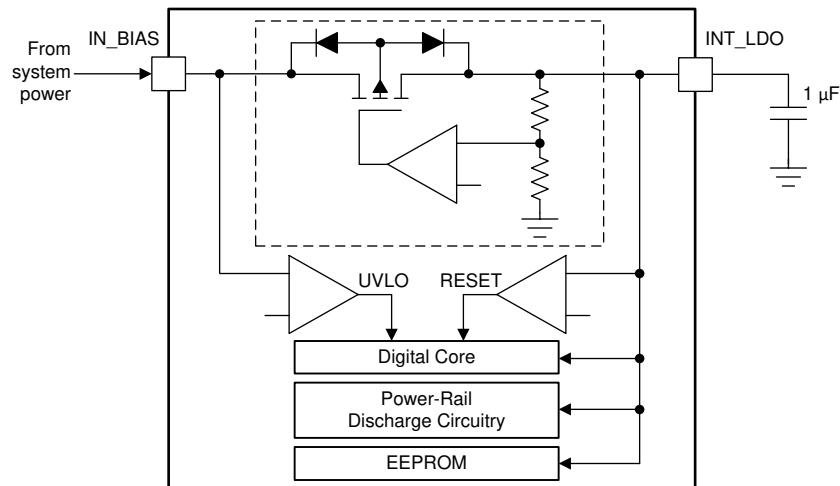


图 6-9. 内部 LDO 和 UVLO 检测

6.3.1.6 限流负载开关

TPS65216 提供了一个具有单独使能控制的限流负载开关。负载开关可提供以下控制和诊断功能：

- 开关的导通或关断状态由使能寄存器中相应的 LS_EN 位控制。
- 只能通过 I²C 通信来控制负载开关。序列发生器无法控制负载开关。
- 负载开关具有主动放电功能，默认情况下禁用，并通过 LSDCHRG 位启用。启用后，只要禁用开关，开关输出就会对地放电。
- 当 PFI 输入降至电源故障阈值以下（电源故障比较器跳闸）时，负载开关会自动禁用以减少系统负载。此功能必须通过相应的 LSnPFO 位单独执行。开关不会在系统电压恢复时自动重新导通，必须手动重新启用。
- 每当负载开关主动限制输出电流时，例如当输出负载超过电流限制值时，就会发出中断 (LS_I)。开关保持导通状态，并根据电流限制设置为负载提供电流。
- 负载开关配有一个本地过热传感器，如果功率耗散和结温超过安全工作值，该传感器会禁用开关。一旦温度降至 OTS 阈值减滞以下，开关就会自动恢复。当 OTS 功能将开关保持为关断时，会设置 LS_F (FAULT) 中断位。

负载开关 (LS) 是一种非反向阻断、中压 (< 10V)、低阻抗开关，可用于为辅助端口提供 1.8V 至 10V 电源。LS 有四个可选的电流限制值，可以通过 LSILIM[1:0] 进行选择。

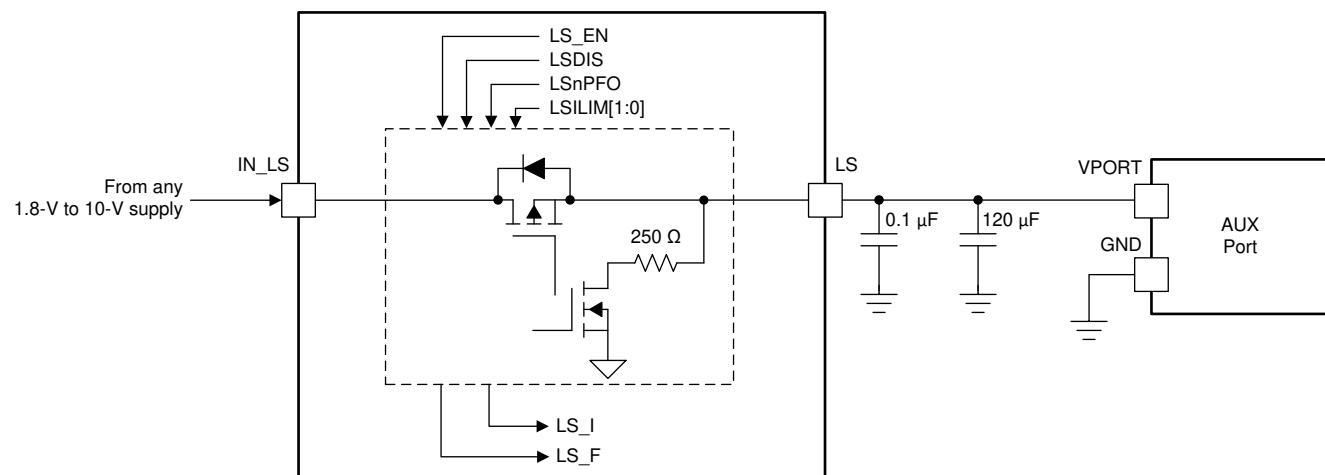


图 6-10. 负载开关的典型应用

6.3.1.7 LDO1

LDO1 是一款用于为 SOC 上的模拟电路供电的通用 LDO。LDO1 的输入电压范围为 1.8V 至 5.5V，可直接连接到系统电源或 DCDC 转换器的输出。输出电压可在 0.9V 至 3.4V 的范围内进行编程，默认电压为 1.8V。LDO1 在最小指定余量电压下支持高达 200mA 的电流，在 $V_{OUT} = 1.8V$ 且 $V_{IN_LDO1} > 2.7V$ 的典型工作条件下支持高达 400mA 的电流。

6.3.1.8 UVLO

根据 IN_BIAS 引脚输入电压的压摆率，TPS65216 的电源轨将在 V_{ULVO} 或 $V_{ULVO} + V_{HYS}$ 下启用。

如果 IN_BIAS 电压的压摆率大于 30V/s，则 TPS65216 将在 V_{ULVO} 下上电。一旦输入电压升至此电平以上，则在 PMIC 关断之前，输入电压可能会降至 V_{UVLO} 电平。在这种情况下，如果输入电压降至 V_{UVLO} 以下但高于 2.55V，则输入电压必须在不到 5ms 的时间内恢复为高于 V_{UVLO} ，器件才能保持运行状态。

如果 IN_BIAS 电压的压摆率小于 30V/s，则 TPS65216 将在 $V_{ULVO} + V_{HYS}$ 下上电。一旦输入电压升至此电平以上，则在 PMIC 关断之前，输入电压可能会降至 V_{UVLO} 电平。在这种情况下，如果输入电压降至 V_{UVLO} 以下但高于 2.5V，则输入电压必须在不到 5ms 的时间内恢复为高于 $V_{UVLO} + V_{HYS}$ ，器件才能保持运行状态。

在任何一种压摆率情况下，如果输入电压降至 2.5V 以下，则数字内核将复位，所有其余电源轨将立即关断，并由其内部放电电路 (DCDC1-4 和 LDO1) 将其拉低至接地电平。

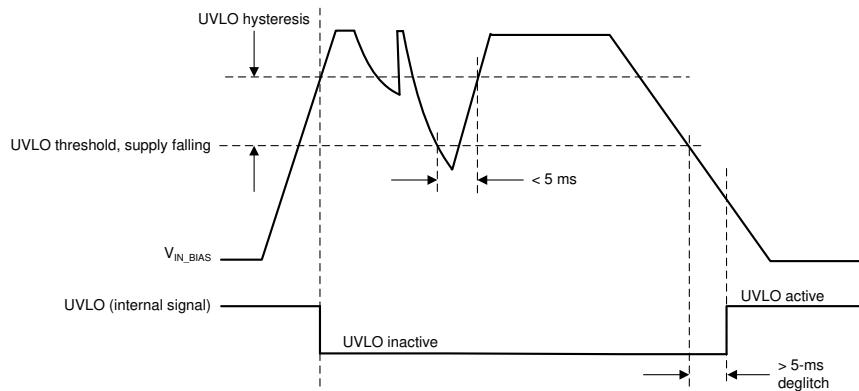


图 6-11. UVLO 和迟滞的定义

在 UVLO 触发后，内部 LDO 会阻止电流从其输出电容器流回 IN_BIAS 引脚，从而使数字内核和放电电路在有限的时间内保持通电状态，以便正确关断和对输出轨放电。保持时间由连接到 INT_LDO 的电容器的值决定。更多详细信息，请参阅内部 LDO (INT_LDO)。

6.3.1.9 电源故障比较器

电源故障比较器在系统电源电压下降且系统有关断风险时会通知系统主机。该比较器采用 800mV 内部阈值，跳变点通过外部电阻分压器进行调节。

默认情况下，电源故障比较器对任何电源轨或负载开关都没有影响。负载开关可以配置为在 PFI 比较器跳闸时禁用，以减少系统负载并延长保持时间。电源故障比较器还会触发断电序列发生器，以使全部或选择的电源轨在系统电压出现故障时断电。要将电源故障比较器连接到断电序列中，必须将 CONTROL 寄存器中的 OFFnPFO 位设置为 1。

电源故障比较器无法通过软件进行监测，因此没有中断或状态位与该功能相关联。

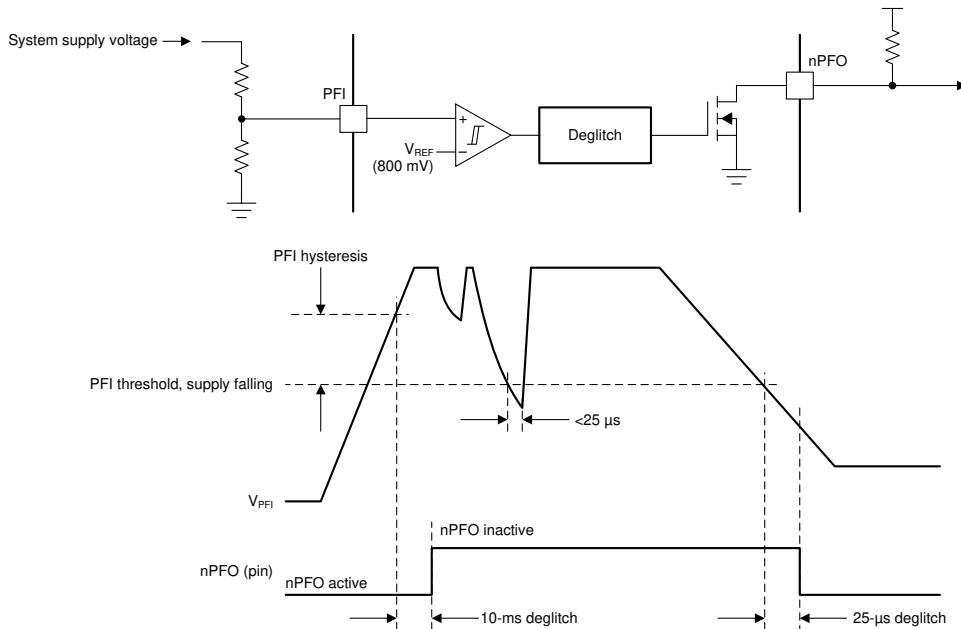


图 6-12. 电源故障比较器简化电路和时序图

6.3.1.10 DCDC3 和 DCDC4 上电默认选择

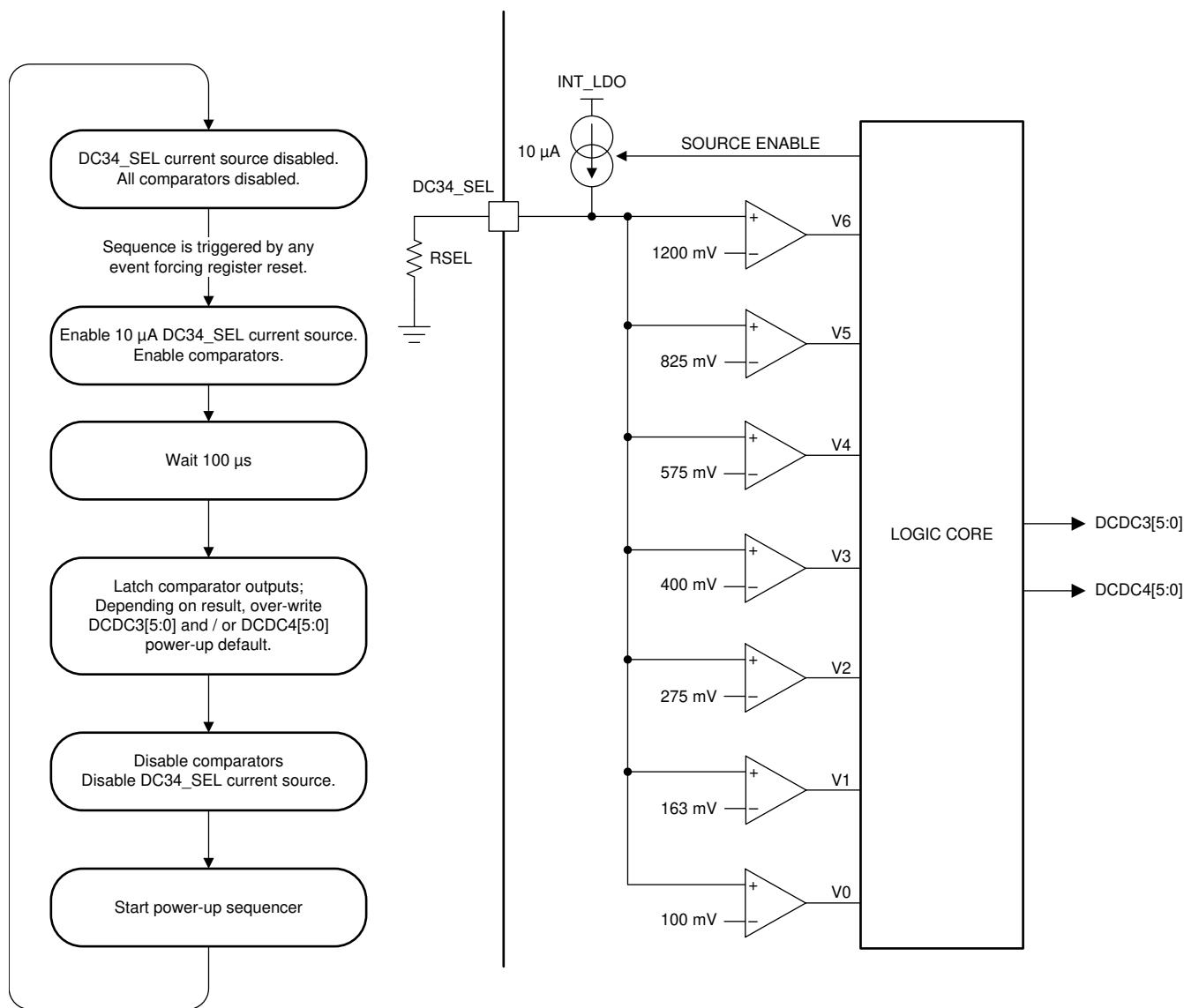


图 6-13. 左：选择 DCDC 上电默认电压的流程图 右：比较器电路

表 6-2. DCDC3 和 DCDC4 的上电默认值

RSEL [K Ω]			上电默认值	
最小值	典型值	最大值	DCDC3[5:0]	DCDC4[5:0]
0	0	7.7	编程默认值 (1.2V)	编程默认值 (3.3V)
	12.1		0x12 (1.35V)	编程默认值 (3.3V)
	20		0x18 (1.5V)	编程默认值 (3.3V)
30.9	31.6	32.3	0x1F (1.8V)	编程默认值 (3.3V)
	45.3		0x3D (3.3V)	0x01 (1.2V)
			编程默认值 (1.2V)	0x07 (1.35V)
	95.3		编程默认值 (1.2V)	0x0D (1.5V)
150	连接至 INT_LDO		编程默认值 (1.2V)	0x14 (1.8V)

6.3.1.11 I/O 配置

器件具有两个 GPIO 引脚，配置如下：

- **GPIO1 :**
 - 通用开漏输出由 GPO1 用户位或序列发生器控制。
- **GPIO2 :**
 - 通用开漏输出 ID 由 GPO2 用户位或序列发生器控制。
 - DCDC1 和 DCDC2 的复位输入信号。

表 6-3. GPIO1 配置

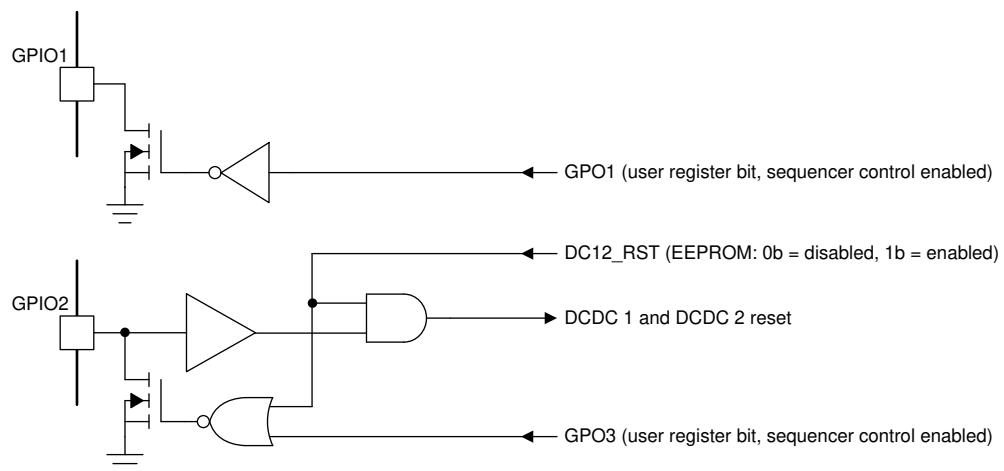

GPIO1 (用户位)	GPIO1 (I/O 引脚)	注释
0	0	开漏输出，驱动至低电平
1	HiZ	开漏输出，HiZ

表 6-4. GPIO2 配置

DC12_RST (EEPROM)	GPIO2 (用户位)	GPIO2 (I/O 引脚)	注释
0	0	0	开漏输出，驱动至低电平
0	1	HiZ	开漏输出，HiZ
1	X	低电平有效	GPIO2 是向 PMIC 输入的 DCDC1 和 DCDC2 复位信号 (低电平有效)。有关详细信息，请参阅 使用 GPIO2 作为 DCDC1 和 DCDC2 的复位信号 。

6.3.1.11.1 使用 GPIO2 作为 DCDC1 和 DCDC2 的复位信号

当 DC12_RST 位设置为 1 时，GPIO2 是 PMIC 的边沿敏感复位输入。复位信号仅影响 DCDC1 和 DCDC2，因此只要 GPIO2 输入从高电平转换为低电平，同时所有其他寄存器保持其当前值，就只有这两个寄存器复位为上电默认值。DCDC1 和 DCDC2 在经过 SLEW 设置后转换回默认值，未进行下电上电。在低功耗模式下，此功能可使处理器从复位事件中恢复。

图 6-14. I/O 引脚逻辑

6.3.1.12 按钮输入 (PB)

PB 引脚是用于为 PMIC 上电的 CMOS 类型输入。通常情况下，PB 引脚连接到一个接地的瞬时开关和一个外部上拉电阻器。如果 PB 输入保持低电平 600ms，则会触发上电序列。

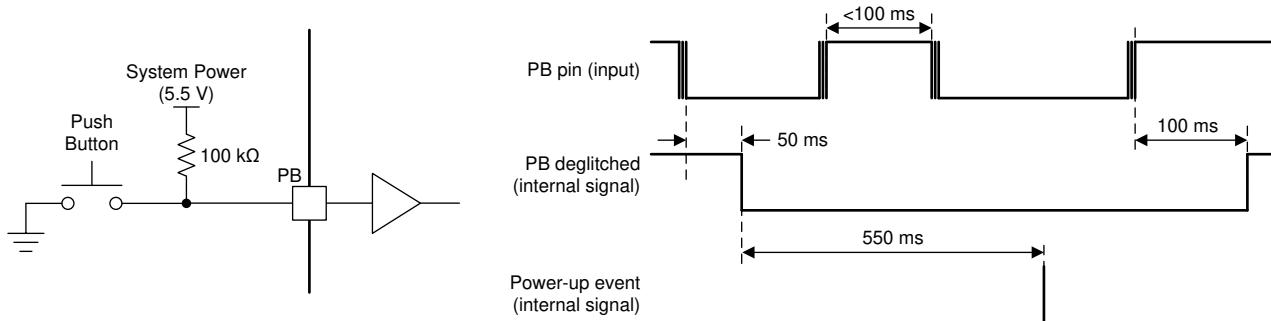


图 6-15. 左：典型 PB 输入电路 右：按钮输入 (PB) 抗尖峰脉冲与上电时序

在 ACTIVE 模式下，TPS65216 监测 PB 输入，并在引脚状态发生变化时（例如，降至低于或升至高于 PB 输入低电平或输入高电平阈值时）发出中断。中断被 INT_MASK1 寄存器中的 PBM 位屏蔽。

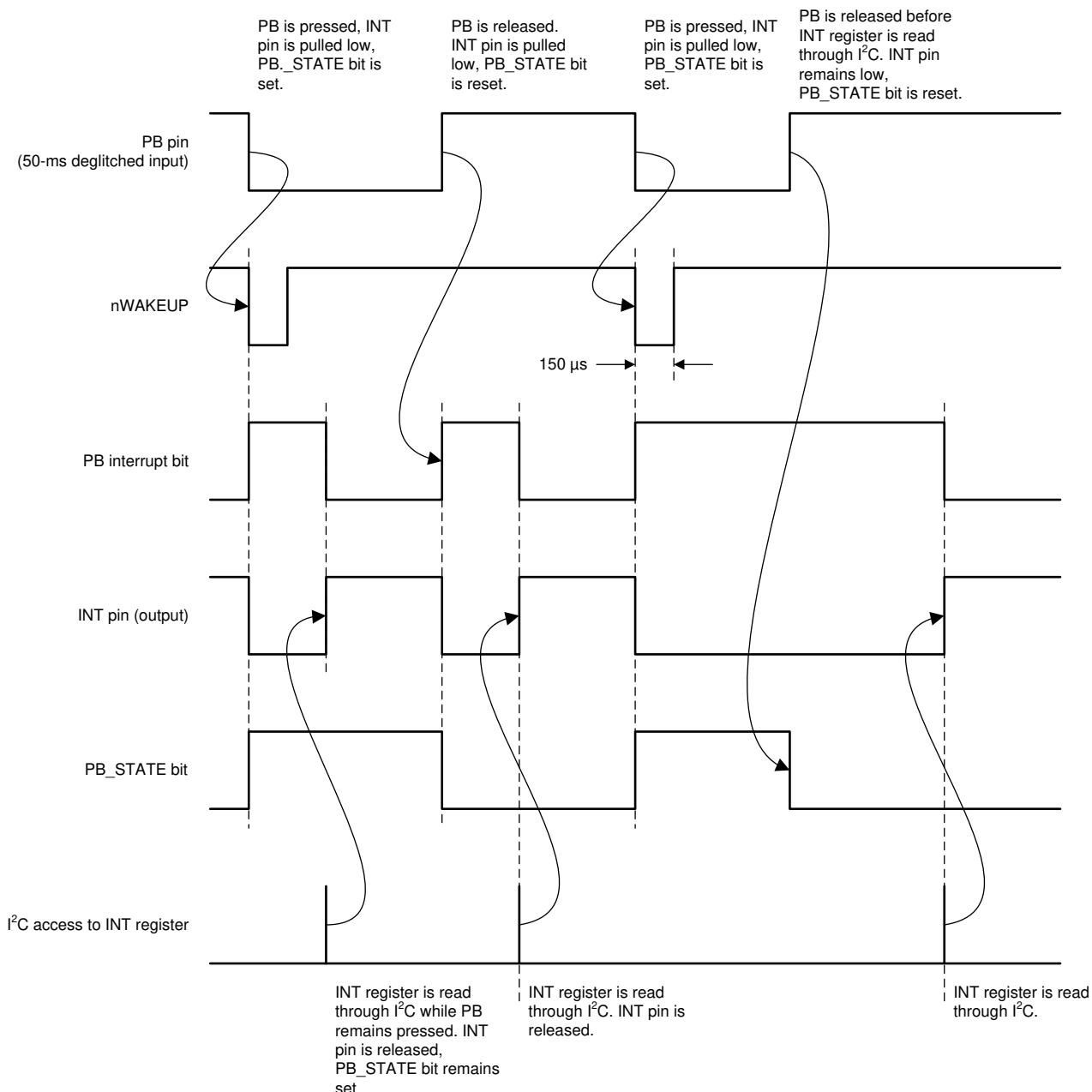


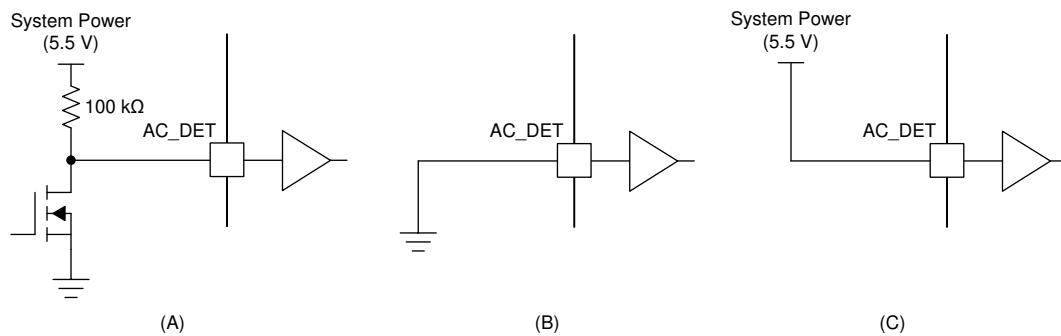
图 6-16. PB 输入低电平或输入高电平阈值

备注

每当 PB 引脚状态发生变化时，就会发出中断。PB_STATE 位反映按钮输入的当前状态。在 PB 的每个下降沿，nWAKEUP 被拉至低电平 150 μ s。

6.3.1.12.1 指示 nWAKEUP 引脚上的 PB 低电平事件

在 ACTIVE 状态下，只要检测到 PB 输入上出现下降沿，nWAKEUP 引脚就会拉至低电平并持续五个 32kHz 时钟周期（约为 150μs）。这样可将主机处理器从深度睡眠工作模式中唤醒。建议通过上拉电阻器将 nWAKEUP 引脚上拉至 I/O 电源。为了使 nWAKEUP 在 SUSPEND 状态下正常工作，必须将该引脚上拉至在进入 SUSPEND 状态之前与序列发生器断开的电源。


6.3.1.12.2 按钮复位

如果 PB 输入被拉至低电平达 8s（如果 TRST = 1b 则为 15s）或更长时间，则所有电源轨都被禁用，器件进入 RECOVERY 状态。无论 PB 输入的状态如何，器件都会在 500ms 断电序列之后自动上电。将 PB 引脚保持为低电平 8 秒（如果 TRST = 1b 则为 15 秒），仅暂时关闭器件并强制系统重新启动，这不是断电功能。如果 PB 持续保持低电平，器件会以 8s 和 15s 的间隔进行下电上电。

6.3.1.13 AC_DET 输入 (AC_DET)

AC_DET 引脚是 CMOS 类型输入，用于通过三种不同的方法来控制 PMIC 的上电：

- 在电池供电的系统中，AC_DET 通常连接到外部电池充电器，并且当有效的充电器电源连接到系统时，开漏电源正常输出拉至低电平。AC_DET 引脚上的下降沿会导致 PMIC 上电。
- 在非便携式系统中，AC_DET 引脚可能会短接至地，并且只要向芯片施加系统电源器件就会上电。
- 如果不需要上述任何行为，可以将 AC_DET 连接到系统电源 (IN_BIAS)。然后，通过按钮输入或 PWR_EN 输入控制上电。

- A. 便携式系统
- B. 非便携式系统
- C. 禁用

图 6-17. AC_DET 引脚配置

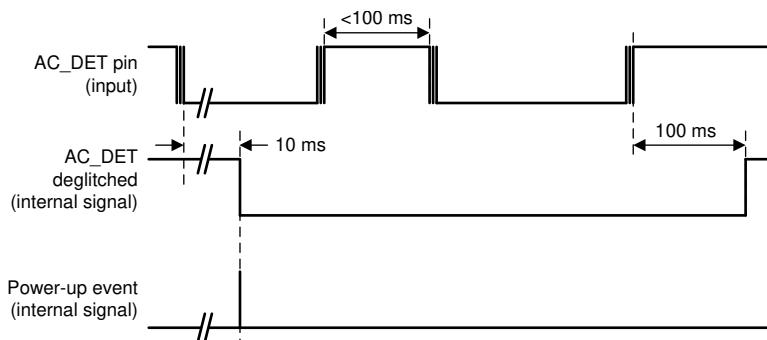


图 6-18. AC_DET 输入抗尖峰脉冲和上电时序 (便携式系统)

在 ACTIVE 状态下，TPS65216 监测 AC_DET 输入，并在引脚状态发生变化时（例如，降至低于或升至高于 AC_DET 输入低电平或输入高电平阈值时）发出中断。中断被 INT_MASK1 寄存器中的 ACM 位屏蔽。

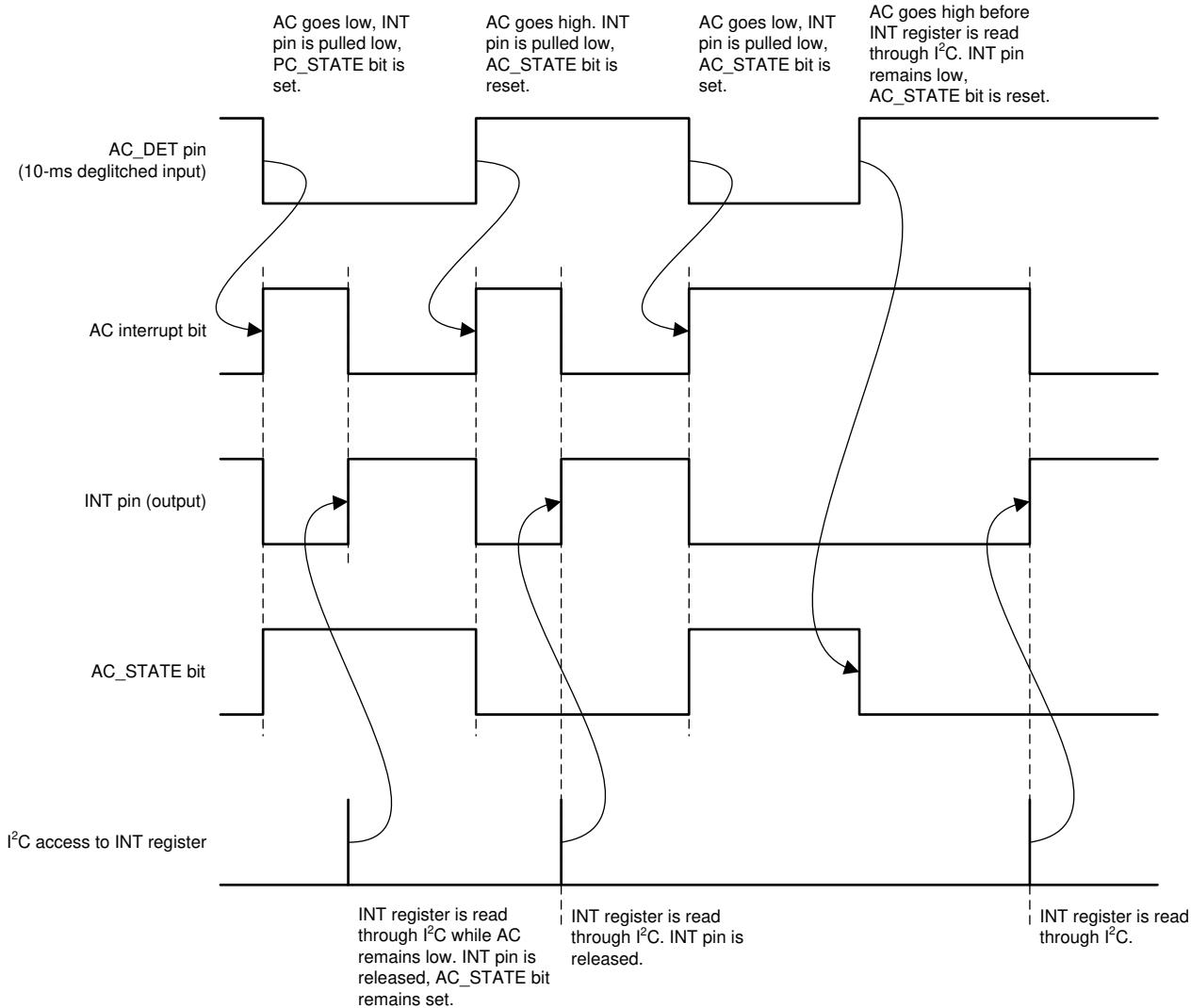


图 6-19. AC_STATE 引脚

备注

每当 AC_DET 引脚状态发生变化时，就会发出中断。AC_STATE 位反映 AC_DET 输入的当前状态。

6.3.1.14 中断引脚 (INT)

中断引脚会将任何事件或故障情况发信号通知主机处理器。每当器件中发生故障或事件时，就会在 INT 寄存器中设置相应的中断位，并且开漏输出被拉至低电平。当主机读取 INT 寄存器时，INT 引脚被释放（返回 Hi-Z 状态），故障位被清除。如果故障仍然存在，相应的 INT 位将保持置位状态，并且在最多 32 μ s 后 INT 引脚再次被拉至低电平。

MASK 寄存器可屏蔽事件，使其不生成中断。MASK 设置仅影响 INT 引脚，对保护和监测电路没有影响。

6.3.1.15 I²C 总线运行

TPS65216 集成有从器件 I²C 接口 (地址 0x24) , 该接口支持高达 400kbps 的数据速率和自动递增寻址。¹

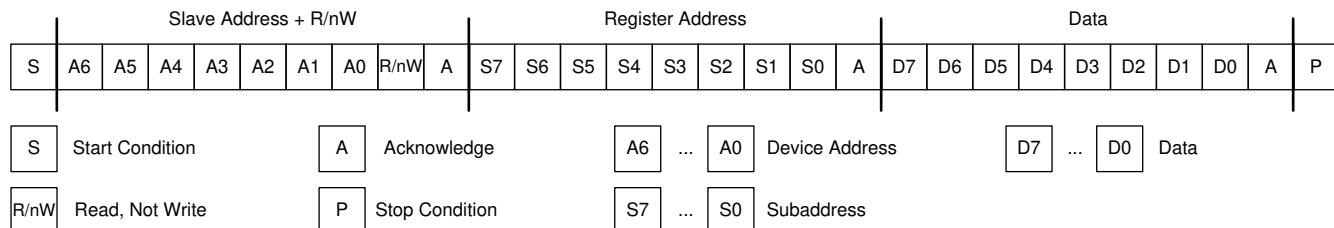
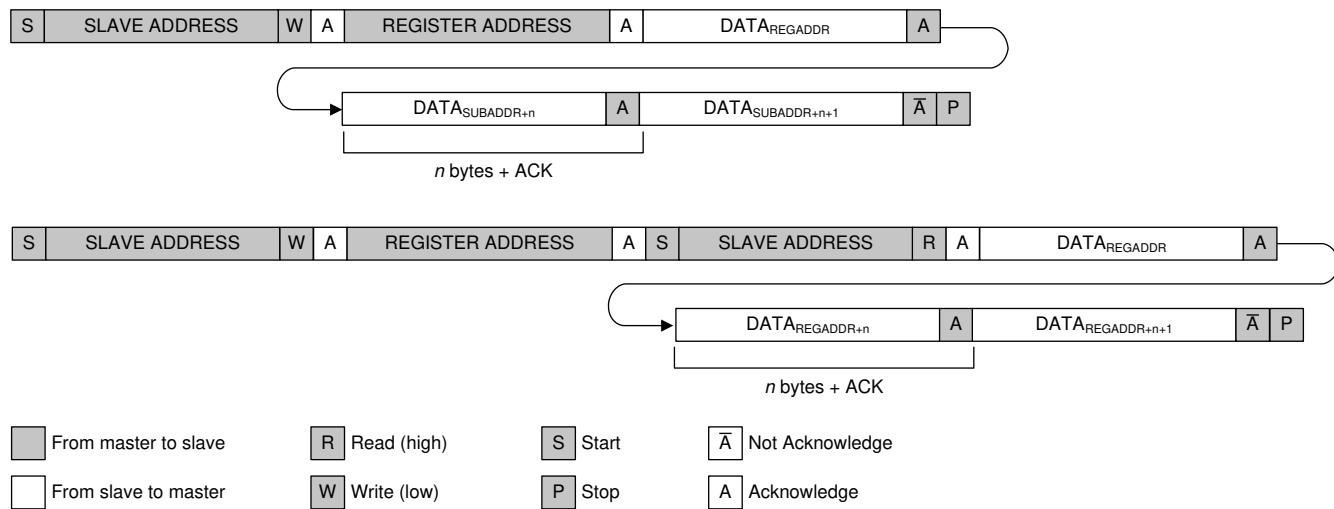



图 6-20. I²C 传输中的子地址

I²C 总线是控制器与一系列从终端之间的通信链路。该链路是使用一条双线总线建立的，这条总线包含串行时钟信号 (SCL) 和串行数据信号 (SDA)。在串行数据线路用于控制器与从终端之间双向数据通信的所有情况下，串行时钟均来源于控制器。每个器件都有一个开漏输出可用于在串行数据线路上传输数据。为了在数据传输期间将漏极输出拉至高电平，必须在串行数据线路上放置一个外部上拉电阻器。

如图 6-22 所示，数据传输由一个来自控制器的起始位启动。在 SCL 信号的高电平期间，当 SDA 线路从高电平转换为低电平时，会识别到启动条件。接收到起始位后，该器件将在 SDA 输入端接收串行数据，并检查是否存在有效地址和控制信息。如果为器件设置了适当的从器件地址，器件会发出确认脉冲并准备接收寄存器地址和数据。在接收到停止条件或接收到发送给器件的数据字时，数据传输即完成。停止条件是指在 SCL 信号的高电平期间，SDA 输入从低电平转换到高电平。SDA 线路的所有其他转换必须在 SCL 信号的低电平期间完成。在接收到有效从器件地址、寄存器地址和数据字后，会发出确认。I²C 接口通过寄存器地址实现自动定序，以便在一次给定的 I²C 传输中可以发送多个数据字。有关详细信息，请参阅图 6-21 和图 6-22。

顶层：主器件向从器件写入数据

底层：主器件从从器件读取数据

图 6-21. I²C 数据协议

¹ 注意：400kHz 时的 SCL 占空比必须 >40%。

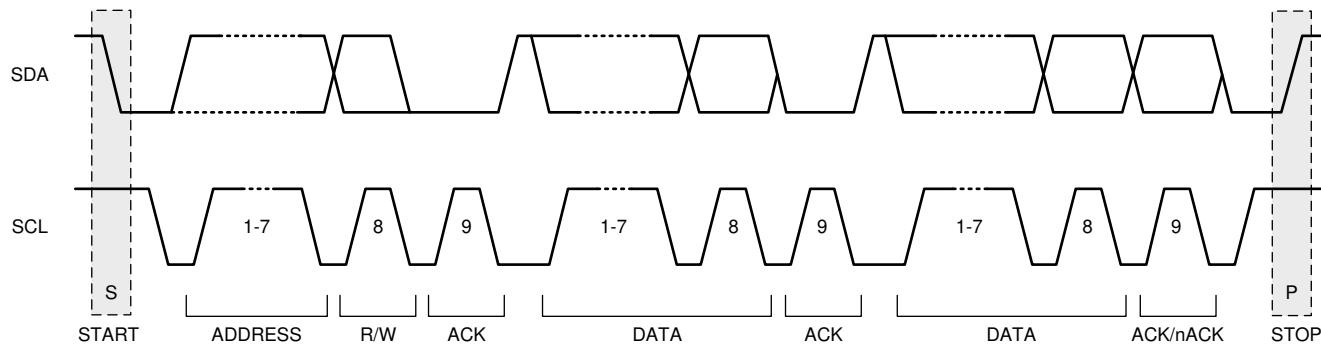


图 6-22. I²C 协议和传输时序 I²C 启动停止和确认协议

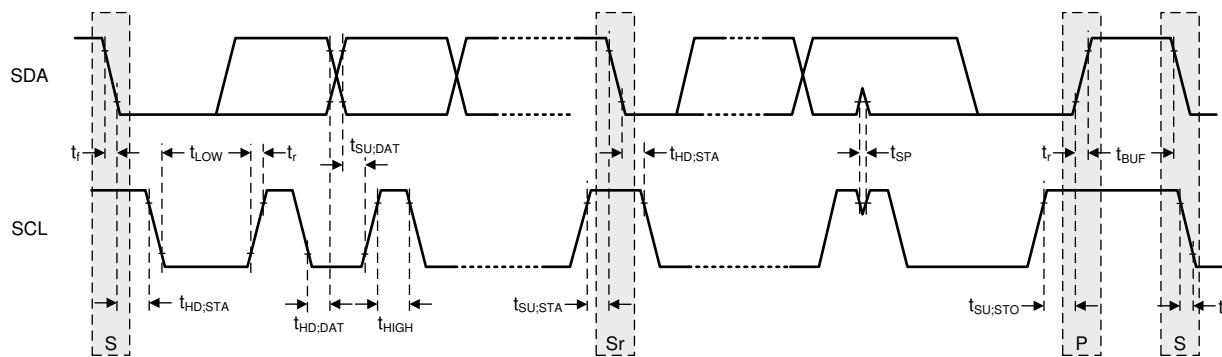


图 6-23. I²C 协议和传输时序 I²C 数据传输时序

6.4 器件功能模式

6.4.1 运行模式



图 6-24. 运行模式图

6.4.2 关断

在关断模式下，除了几个用于监测 AC_DET、PWR_EN 和 PB 输入的电路外，PMIC 完全关闭。所有电源轨均关断，寄存器复位为其默认值。I²C 通信接口关闭。这是最低功耗运行模式。要退出关断模式，V_{IN_BIAS} 必须超过 UVLO 阈值，并且必须发生以下唤醒事件之一：

- PB 输入被拉至低电平。
- AC_DET 输入被拉至低电平。
- PWR_EN 输入被拉至高电平。

要进入关断状态，请确保所有电源轨都分配给序列发生器，然后将 PWR_EN 引脚拉至低电平。此外，如果 OFFnPFO 位设置为 1b 且 PFI 输入低于电源故障阈值，则器件会转换到关断状态。如果在 ACTIVE 状态下发生 PGOOD 或 OTS 故障，TPS65216 将转换到 RESET 状态。

6.4.3 ACTIVE

这是系统启动并运行时的典型工作模式。所有 DCDC 转换器、LDO 和负载开关都可以正常运行并可通过 I²C 接口控制。唤醒事件后，PMIC 会启用由序列发生器控制的所有电源轨，并将 nWAKEUP 引脚拉至低电平以向主机处理器发送该事件的信号。仅当主机在唤醒事件后 20 秒内将 PWR_EN 引脚置为有效时，器件才会进入 ACTIVE 状态。否则，它将进入 OFF 状态。在 PWR_EN 引脚置为有效后，nWAKEUP 引脚返回 HiZ 模式。通过将 PWR_EN 引脚拉至高电平，也可以直接从 SUSPEND 状态进入 ACTIVE 状态。有关详细信息，请参阅 SUSPEND 状态说明。要退出 ACTIVE 模式，必须将 PWR_EN 引脚拉至低电平。

6.4.4 挂起

SUSPEND 状态是一种低功耗运行模式，用于支持系统的待机功能。通常，除了 SEQ 寄存器设置为 0h 的任何电源轨外，所有电源轨都关闭。要进入 SUSPEND 状态，请将 PWR_EN 引脚拉至低电平。所有由断电序列发生器控制的电源轨均关断，500ms 后器件进入 SUSPEND 状态。所有不受断电序列发生器控制的电源轨都将保持其状态。注意：当器件进入 SUSPEND 状态时，所有寄存器值都将复位。在检测到前面几节中所述的唤醒事件后，器件进入 ACTIVE 状态。

6.4.5 复位

TPS65216 可通过将 PB 引脚保持为低电平超过 8 秒或 15 秒来复位，具体取决于 TRST 位的值。所有电源轨均由序列发生器关断，所有寄存器值复位为其默认值。另外还会关断不受序列发生器控制的电源轨。注意：RESET 功能对器件进行下电上电，并且仅暂时关闭输出轨。复位器件不会导致关断状态。如果 PB_IN 引脚长时间保持低电平，则器件会继续在 ACTIVE 和 RESET 状态之间循环，每 8 秒或 15 秒进入 RESET 状态一次。

如果发生 PGOOD 或 OTS 故障，器件也会复位。TPS65216 会保持 RECOVERY 状态，直到故障消除，此时它会转换回 ACTIVE 状态。

7 寄存器映射

7.1 密码保护

寄存器 0x11 至 0x26 通过 8 位密码进行保护，以防止意外写入。必须在写入受保护的寄存器之前写入密码，并且无论访问的寄存器或事务类型（读取或写入）为如何，密码都必须在下一个 I²C 事务后自动复位为 0x00。只有写入访问需要密码，读取访问不需要密码。

若要写入受保护的寄存器：

1. 将目标寄存器的地址与保护密码 (0x7D) 进行异或运算后写入 PASSWORD 寄存器 (0x10)。
2. 将数据写入受密码保护的寄存器。
3. 如果 PASSWORD 寄存器的内容进行异或运算，并且发送的地址与 0x7D 匹配，则数据将传输到受保护寄存器。否则，事务将被忽略。在任何一种情况下，PASSWORD 寄存器在事务后都会复位为 0x00。

对于 Level1 写保护的任何其他寄存器，必须重复该周期。

7.2 FLAG 寄存器

FLAG 寄存器为每个电源轨和 GPO 都分配了一个位，用于在系统挂起时跟踪电源轨的使能状态。以下规则适用于 FLAG 寄存器：

- 任何标志位的上电默认值均为 0。
- 标志位为只读，无法写入。
- 进入 SUSPEND 状态后，标志位将设置为与其相应的 ENABLE 位相同的值。电源轨以及在 SUSPEND 状态下启用的 GPO 将标志位设置为 1，而所有其他标志位都设置为 0。在处于 SUSPEND 状态或退出 SUSPEND 状态时，标志位不会更新。
- FLAG 寄存器在 WAIT_PWR_EN 和 ACTIVE 状态下为静态。FLAG 寄存器反映 DCDC1、DCDC2、DCDC3、DCDC4 和 LDO1 的使能状态；并且在最后一次 SUSPEND 状态期间反映 GPO1、GPO2 和 GPO3 的使能状态。

主机处理器读取 FLAG 寄存器以确定系统是从 OFF 状态还是 SUSPEND 状态上电。在 SUSPEND 状态下，DDR 存储器通常保持自刷新模式，因此设置了 DC3_FLG 或 DC4_FLG 位。

7.3 TPS65216 寄存器

表 7-1 列出了 TPS65216 寄存器的存储器映射寄存器。表 7-1 中未列出的所有寄存器偏移地址都应视为保留的存储单元，并且不应修改寄存器内容。

表 7-1. TPS65216 寄存器

子地址	首字母缩写词	寄存器名称	R/W	密码保护	章节
0x00	CHIPID	芯片 ID	R	否	转到
0x01	INT1	中断 1	R	否	转到
0x02	INT2	中断 2	R	否	转到
0x03	INT_MASK1	中断屏蔽 1	R/W	否	转到
0x04	INT_MASK2	中断屏蔽 2	R/W	否	转到
0x05	状态	状态	R	否	转到
0x06	控制	控制	R/W	否	转到
0x07	标志	标志	R	否	转到
0x10	PASSWORD	PASSWORD	R/W	否	转到
0x11	ENABLE1	ENABLE 1	R/W	是	转到
0x12	ENABLE2	ENABLE 2	R/W	是	转到
0x13	CONFIG1	配置 1	R/W	是	转到
0x14	CONFIG2	配置 2	R/W	是	转到
0x15	CONFIG3	配置 3	R/W	是	转到
0x16	DCDC1	DCDC1 控制	R/W	是	转到
0x17	DCDC2	DCDC2 控制	R/W	是	转到
0x18	DCDC3	DCDC3 控制	R/W	是	转到
0x19	DCDC4	DCDC4 控制	R/W	是	转到
0x1A	SLEW	转换率控制	R/W	是	转到
0x1B	LDO1	LDO1 控制	R/W	是	转到
0x20	SEQ1	序列发生器 1	R/W	是	转到
0x21	SEQ2	序列发生器 2	R/W	是	转到
0x22	SEQ3	序列发生器 3	R/W	是	转到
0x23	SEQ4	序列发生器 4	R/W	是	转到
0x24	SEQ5	序列发生器 5	R/W	是	转到
0x25	SEQ6	序列发生器 6	R/W	是	转到
0x26	SEQ7	序列发生器 7	R/W	是	转到

表 7-2 解释了本节中使用的常见缩写。

表 7-2. 常见缩写

缩写	说明
R	读取
W	写入
R/W	支持读写
E2	由 EEPROM 支持
h	一组位的十六进制表示法
b	一个或一组位的十六进制表示法
X	不考虑复位值

7.4 CHIPID 寄存器 (子地址 = 0x00) [复位 = 0x05]

图 7-1 展示了 CHIPID，表 7-3 中对此进行了介绍。

返回 [汇总表](#)。

图 7-1. CHIPID 寄存器

7	6	5	4	3	2	1	0
芯片						版本	
R-0h						R-5h	

表 7-3. CHIPID 寄存器字段说明

位	字段	类型	复位	说明
7-3	芯片	R	0h	芯片 ID： 0h = TPS65216 1h = 将来使用 ... 1Fh = 将来使用
2-0	版本	R	5h	版本代码： 0h = 版本 1.0 1h = 版本 1.1 2h = 版本 2.0 3h = 版本 2.1 4h = 版本 3.0 5h = 版本 4.0 (D0) 6h = 将来使用 7h = 将来使用

7.5 INT1 寄存器 (子地址 = 0x01) [复位 = 0x00]

图 7-2 展示了 INT1，表 7-4 中对此进行了介绍。

返回[汇总表](#)。

图 7-2. INT1 寄存器

7	6	5	4	3	2	1	0
RESERVED	VPRG	AC	PB	HOT	RESERVED	PRGC	
R-00b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 7-4. INT1 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	00b	
5	VPRG	R	0b	编程电压中断： 0b = 无特殊含义。 1b = 输入电压过低，无法对上电默认值进行编程。
4	AC	R	0b	AC_DET 引脚状态变化中断。注意：状态信息在 STATUS 寄存器中提供。 0b = 状态无变化。 1b = AC_DET 状态变化 (AC_DET 引脚从高电平变为低电平或从低电平变为高电平)。
3	PB	R	0b	按钮状态变化中断。注意：状态信息在 STATUS 寄存器中提供 0b = 状态无变化。 1b = 按钮状态变化 (按钮从高电平变为低电平或从低电平变为高电平)。
2	HOT	R	0b	热关断过早警告： 0b = 芯片温度低于 HOT 阈值。 1b = 芯片温度超过 HOT 阈值。
1	RESERVED	R	0b	
0	PRGC	R	0b	EEPROM 编程完成中断： 0b = 无特殊含义。 1b = 上电默认设置的编程已成功完成。

7.6 INT2 寄存器 (子地址 = 0x02) [复位 = 0x00]

图 7-3 展示了 INT2，表 7-5 中对此进行了介绍。

返回[汇总表](#)。

图 7-3. INT2 寄存器

7	6	5	4	3	2	1	0
RESERVED	LS_F	RESERVED	RESERVED	LS_I	RESERVED	RESERVED	RESERVED
R-00b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 7-5. INT2 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	00b	
5	LS_F	R	0b	负载开关 故障中断： 0b = 无故障。开关工作正常。 1b = 负载开关超出工作温度限值，暂时禁用。
4	RESERVED	R	0b	
3	RESERVED	R	0b	
2	LS_I	R	0b	负载开关 电流限制中断： 0b = 负载开关已禁用或未处于电流限制状态。 1b = 负载开关主动限制输出电流 (输出负载超过电流限制值)。
1	RESERVED	R	0b	
0	RESERVED	R	0b	

7.7 INT_MASK1 寄存器 (子地址 = 0x03) [复位 = 0x00]

图 7-4 展示了 INT_MASK1，表 7-6 中对此进行了介绍。

返回[汇总表](#)。

图 7-4. INT_MASK1 寄存器

7	6	5	4	3	2	1	0
RESERVED	VPRGM	ACM	PBM	HOTM	RESERVED	PRGCM	
R-00b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	

表 7-6. INT_MASK1 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	00b	
5	VPRGM	R/W	0b	编程电压中断屏蔽位。注意：屏蔽位对监测功能没有影响： 0b = 中断未被屏蔽 (中断事件将 nINT 引脚拉至低电平)。 1b = 中断被屏蔽 (中断对 nINT 引脚没有影响)。
4	ACM	R/W	0b	AC_DET 中断屏蔽位： 0b = 中断未被屏蔽 (中断事件将 nINT 引脚拉至低电平)。 1b = 中断被屏蔽 (中断对 nINT 引脚没有影响)。 注意：屏蔽位对监测功能没有影响。
3	PBM	R/W	0b	PB 中断屏蔽位。注意：屏蔽位对监测功能没有影响。 0b = 中断未被屏蔽 (中断事件将 nINT 引脚拉至低电平)。 1b = 中断被屏蔽 (中断对 nINT 引脚没有影响)。
2	HOTM	R/W	0b	HOT 中断屏蔽位。注意：屏蔽位对监测功能没有影响。 0b = 中断未被屏蔽 (中断事件将 nINT 引脚拉至低电平)。 1b = 中断被屏蔽 (中断对 nINT 引脚没有影响)。
1	RESERVED	R/W	0b	
0	PRGCM	R/W	0b	PRGC 中断屏蔽位。注意：屏蔽位对监测功能没有影响。 0b = 中断未被屏蔽 (中断事件将 nINT 引脚拉至低电平)。 1b = 中断被屏蔽 (中断对 nINT 引脚没有影响)。

7.8 INT_MASK2 寄存器 (子地址 = 0x04) [复位 = 0x00]

表 7-7 展示了 INT_MASK2，表 7-8 中对此进行了介绍。

返回[汇总表](#)。

表 7-7. INT_MASK2 寄存器

7	6	5	4	3	2	1	0
RESERVED	LS_FM	RESERVED	RESERVED	LS_IM	RESERVED	RESERVED	RESERVED
R-00b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-8. INT_MASK2 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	00b	
5	LS_FM	R/W	0b	LS 故障中断屏蔽位。注意：屏蔽位对监测功能没有影响。 0b = 中断未被屏蔽 (中断事件将 nINT 引脚拉至低电平)。 1b = 中断被屏蔽 (中断对 nINT 引脚没有影响)。
4	RESERVED	R/W	0b	
3	RESERVED	R/W	0b	
2	LS_IM	R/W	0b	LS 电流限制中断屏蔽位。注意：屏蔽位对监测功能没有影响。 0b = 中断未被屏蔽 (中断事件将 nINT 引脚拉至低电平)。 1b = 中断被屏蔽 (中断对 nINT 引脚没有影响)。
1	RESERVED	R/W	0b	
0	RESERVED	R/W	0b	

7.9 STATUS 寄存器 (子地址 = 0x05) [复位 = 00XXXXXXb]

寄存器掩码 : C0h

STATUS 在 [表 7-9](#) 中展示并在 [表 7-10](#) 中进行介绍。

返回[汇总表](#)。

表 7-9. STATUS 寄存器

7	6	5	4	3	2	1	0
RESERVED	EE	AC_STATE	PB_STATE	STATE		RESERVED	
R-0b	R-0b	R-X	R-X	R-X		R-X	

表 7-10. 状态寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0b	
6	EE	R	0b	EEPROM 状态： 0b = EEPROM 值未从出厂默认设置更改为其他值。 1b = EEPROM 值已从出厂默认设置更改为其他值。
5	AC_STATE	R	X	AC_DET 输入状态位： 0b = AC_DET 输入无效 (AC_DET 输入引脚为高电平)。 1b = AC_DET 输入有效 (AC_DET 输入为低电平)。
4	PB_STATE	R	X	PB 输入状态位： 0b = 按钮输入无效 (PB 输入引脚为高电平)。 1b = 按钮输入有效 (PB 输入引脚为低电平)。
3-2	STATE	R	X	状态机 STATE 指示： 0h = PMIC 处于转换状态。 1h = PMIC 处于 WAIT_PWR_EN 状态。 2h = PMIC 处于 ACTIVE 状态。 3h = PMIC 处于 SUSPEND 状态。
1-0	RESERVED	R	X	

7.10 CONTROL 寄存器 (子地址 = 0x06) [复位 = 0x00]

图 7-5 展示了 CONTROL , 表 7-11 中对此进行了介绍。

返回[汇总表](#)。

图 7-5. CONTROL 寄存器

7	6	5	4	3	2	1	0
RESERVED						OFFnPFO	RESERVED
R-0000 00b					R/W-0b	R/W-0b	

表 7-11. CONTROL 寄存器字段说明

位	字段	类型	复位	说明
7-2	RESERVED	R	0000 00b	
1	OFFnPFO	R/W	0b	电源故障关断位： 0b = nPFO 对 PMIC 状态没有影响。 1b = 当 PFI 比较器跳闸 (nPFO 为低电平) 时 , 所有电源轨都关断且 PMIC 进入 OFF 状态。
0	RESERVED	R/W	0b	

7.11 FLAG 寄存器 (子地址 = 0x07) [复位 = 0x00]

图 7-6 展示了 FLAG , 表 7-12 中对此进行了介绍。

返回[汇总表](#)。

图 7-6. FLAG 寄存器

7	6	5	4	3	2	1	0
GPO2_FLG	RESERVED	GPO1_FLG	LDO1_FLG	DC4_FLG	DC3_FLG	DC2_FLG	DC1_FLG
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 7-12. FLAG 寄存器字段说明

位	字段	类型	复位	说明
7	GPO2_FLG	R	0b	GPO2 标志位： 0b = 器件从 OFF 或 SUSPEND 状态上电 , GPO2 在 SUSPEND 状态下被禁用。 1b = 器件从 SUSPEND 状态上电 , GPO2 在 SUSPEND 状态下已启用。
6	RESERVED	R	0b	
5	GPO1_FLG	R	0b	GPO1 标志位： 0b = 器件从 OFF 或 SUSPEND 状态上电 , GPO1 在 SUSPEND 状态下被禁用。 1b = 器件从 SUSPEND 状态上电 , GPO1 在 SUSPEND 状态下已启用。
4	LDO1_FLG	R	0b	LDO1 标志位： 0b = 器件从 OFF 或 SUSPEND 状态上电 , LDO1 在 SUSPEND 状态下被禁用。 1b = 器件从 SUSPEND 状态上电 , LDO1 在 SUSPEND 状态下已启用。
3	DC4_FLG	R	0b	DCDC4 标志位： 0b = 器件从 OFF 或 SUSPEND 状态上电 , DCDC4 在 SUSPEND 状态下被禁用。 1b = 器件从 SUSPEND 状态上电 , DCDC4 在 SUSPEND 状态下已启用。
2	DC3_FLG	R	0b	DCDC3 标志位： 0b = 器件从 OFF 或 SUSPEND 状态上电 , DCDC3 在 SUSPEND 状态下被禁用。 1b = 器件从 SUSPEND 状态上电 , DCDC3 在 SUSPEND 状态下已启用。
1	DC2_FLG	R	0b	DCDC2 标志位： 0b = 器件从 OFF 或 SUSPEND 状态上电 , DCDC2 在 SUSPEND 状态下被禁用。 1b = 器件从 SUSPEND 状态上电 , DCDC2 在 SUSPEND 状态下已启用。
0	DC1_FLG	R	0b	DCDC1 标志位： 0b = 器件从 OFF 或 SUSPEND 状态上电 , DCDC1 在 SUSPEND 状态下被禁用。 1b = 器件从 SUSPEND 状态上电 , DCDC1 在 SUSPEND 状态下已启用。

7.12 PASSWORD 寄存器 (子地址 = 0x10) [复位 = 0x00]

图 7-7 展示了 PASSWORD , 表 7-13 中对此进行了介绍。

返回[汇总表](#)。

图 7-7. PASSWORD 寄存器

7	6	5	4	3	2	1	0
PWRD							
R/W-00h							

表 7-13. PASSWORD 寄存器字段说明

位	字段	类型	复位	说明
7-0	PWRD	R/W	00h	寄存器用于访问受密码保护的寄存器 (有关详细信息 , 请参阅 密码保护) 。 。 读回始终会产生 0x00。

7.13 ENABLE1 寄存器 (子地址 = 0x11) [复位 = 0x00]

图 7-8 展示了 ENABLE1，表 7-14 中对此进行了介绍。

返回[汇总表](#)。

密码保护。

图 7-8. ENABLE1 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED		DC4_EN	DC3_EN	DC2_EN	DC1_EN
R-00b	R/W-0b	R/W-0b		R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-14. ENABLE1 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	00b	
5	RESERVED	R/W	0b	
4	RESERVED	R/W	0b	
3	DC4_EN	R/W	0b	DCDC4 使能位。注意：上电和断电时，该位由内部电源序列发生器自动更新。 0b = 禁用 1b = 启用
2	DC3_EN	R/W	0b	DCDC3 使能位。注意：上电和断电时，该位由内部电源序列发生器自动更新。 0b = 禁用 1b = 启用
1	DC2_EN	R/W	0b	DCDC2 使能位。注意：上电和断电时，该位由内部电源序列发生器自动更新。 0b = 禁用 1b = 启用
0	DC1_EN	R/W	0b	DCDC1 使能位。注意：上电和断电时，该位由内部电源序列发生器自动更新。 0b = 禁用 1b = 启用

7.14 ENABLE2 寄存器 (子地址 = 0x12) [复位 = 0x00]

图 7-9 展示了 ENABLE2，表 7-15 中对此进行了介绍。

返回[汇总表](#)。

密码保护。

图 7-9. ENABLE2 寄存器

7	6	5	4	3	2	1	0
RESERVED	GPIO2	RESERVED	GPIO1	LS_EN	RESERVED	RESERVED	LDO1_EN
R-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-15. ENABLE2 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0b	
6	GPIO2	R/W	0b	通用输出 2 / 复位极性。注意：如果将 DC12_RST 位（寄存器 0x14）设置为 1，则该位没有任何作用。 0b = GPIO2 输出被驱动为低电平。 1b = GPIO2 输出为 HiZ。
5	RESERVED	R/W	0b	
4	GPIO1	R/W	0b	通用输出 1。注意：如果将 IO_SEL 位（寄存器 0x13）设置为 1，则该位没有任何作用。 0b = GPIO1 输出被驱动为低电平。 1b = GPIO1 输出为 HiZ。
3	LS_EN	R/W	0b	负载开关 (LS) 使能位。 0b = 禁用 1b = 启用
2	RESERVED	R/W	0b	
1	RESERVED	R/W	0b	
0	LDO1_EN	R/W	0b	LDO1 使能位。 0b = 禁用 1b = 启用 注意：上电和断电时，该位由内部电源序列发生器自动更新。

7.15 CONFIG1 寄存器 (地址 = 0x13) [复位 = 0x04C]

图 7-10 展示了 CONFIG1，表 7-16 中对此进行了介绍。

返回[汇总表](#)。

密码保护。

图 7-10. CONFIG1 寄存器

7	6	5	4	3	2	1	0
TRST	RESERVED	RESERVED		PGDLY	STRICT		UVLO
R/W-0b	R/W-1b	R/W-0b		R/W-01b	R/W-1b		R/W-00b

表 7-16. CONFIG1 寄存器字段说明

位	字段	类型	复位	说明
7	TRST	R/W、E2	0b	按钮复位时间常数： 0b = 8s 1b = 15s
6	RESERVED	R/W	1b	
5	RESERVED	R/W	0b	
4-3	PGDLY	R/W、E2	01b	电源正常延迟。注意：电源正常延迟仅适用于上升沿（上电），不适用于下降沿（断电或故障）。 00b = 10ms 01b = 20ms 10b = 50ms 11b = 150ms
2	STRICT	R/W、E2	1b	电源电压监控器灵敏度选择。有关详细信息，请参阅 电气特性 。 0b = 电源正常阈值 (VOUT 下降) 具有更宽的限值。不监测过压。 1b = 电源正常阈值 (VOUT 下降) 具有严格的限制。监测过压。
1-0	UVLO	R/W、E2	00b	UVLO 设置 00b = 2.75V 01b = 2.95V 10b = 3.25V 11b = 3.35V

7.16 CONFIG2 寄存器 (地址 = 0x14) [复位 = 0xC0]

图 7-11 展示了 CONFIG2，表 7-17 中对此进行了介绍。

返回[汇总表](#)。

密码保护。

图 7-11. CONFIG2 寄存器

7	6	5	4	3	2	1	0
DC12_RST	UVLOHYS	RESERVED		LSILIM		RESERVED	
R/W-1b	R/W-1b		R-00b		R/W-00b		R/W-00b

表 7-17. CONFIG2 寄存器字段说明

位	字段	类型	复位	说明
7	DC12_RST	R/W、E2	1b	DCDC1 和 DCDC2 复位引脚使能： 0b = GPIO2 配置为通用输出。 1b = GPIO2 配置为 DCDC1 和 DCDC2 的热复位输入。
6	UVLOHYS	R/W、E2	1b	UVLO 迟滞： 0b = 200 mV 1b = 400mV
5-4	RESERVED	R	00b	
3-2	LSILIM	R/W	00b	负载开关 (LS) 电流限制选择： 00b = 100mA (最小值 = 98mA) 01b = 200 mA (最小值 = 194 mA) 10b = 500 mA (最小值 = 475 mA) 11b = 1000 mA (最小值 = 900 mA) 更多详细信息，请参阅 电气特性 中的 LS 电流限制规格。
1-0	RESERVED	R/W	00b	

7.17 CONFIG3 寄存器 (子地址 = 0x15) [复位 = 0x0]

图 7-12 展示了 CONFIG3，表 7-18 中对此进行了介绍。

返回[汇总表](#)。

密码保护。

图 7-12. CONFIG3 寄存器

7	6	5	4	3	2	1	0
RESERVED	LSnPFO	RESERVED	RESERVED	LSDCHRG	RESERVED	RESERVED	RESERVED
R-00b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-18. CONFIG3 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	00b	
5	LSnPFO	R/W	0b	负载开关电源故障禁用位： 0b = 负载开关状态不受电源故障比较器影响。 1b = 如果电源故障比较器跳闸 (nPFO 为低电平)，则禁用负载开关。
4	RESERVED	R/W	0b	
3	RESERVED	R/W	0b	
2	LSDCHRG	R/W	0b	负载开关放电使能位： 0b = 禁用主动放电。 1b = 启用主动放电 (开关处于关闭状态时负载开关输出主动放电)。
1	RESERVED	R/W	0b	
0	RESERVED	R/W	0b	

7.18 DCDC1 寄存器 (偏移 = 0x16) [复位 = 0x99]

图 7-13 展示了 DCDC1，表 7-19 中对此进行了介绍。

返回[汇总表](#)。

注释 1：此寄存器受密码保护。如需更多信息，请参阅[密码保护](#)。

注释 2：对 DCDC1 寄存器执行写入操作时，过压和欠压监测会进入时长 5ms 的消隐状态。

注 3：要更改 DCDC1 的输出电压，必须将寄存器 0x1A 中的 GO 位或 GODSBL 位设置为 1b。

图 7-13. DCDC1 寄存器

7	6	5	4	3	2	1	0
PFM	RESERVED						DCDC1
R/W-1b	R-0b						R/W-19h

表 7-19. DCDC1 寄存器字段说明

位	字段	类型	复位	说明
7	PFM	R/W	1b	脉冲频率调制 (PFM，又称为脉冲跳跃模式) 使能。PFM 模式可提高轻负载效率。实际 PFM 模式运行取决于负载条件。 0b = 禁用 (强制 PWM) 1b = 启用
6	RESERVED	R	0b	

表 7-19. DCDC1 寄存器字段说明 (续)

位	字段	类型	复位	说明
5-0	DCDC1	R/W、E2	19h	DCDC1 输出电压设置： 0h = 0.850 1h = 0.860 2h = 0.870 3h = 0.880 4h = 0.890 5h = 0.900 6h = 0.910 7h = 0.920 8h = 0.930 9h = 0.940 Ah = 0.950 Bh = 0.960 Ch = 0.970 Dh = 0.980 Eh = 0.990 Fh = 1.000 10h = 1.010 11h = 1.020 12h = 1.030 13h = 1.040 14h = 1.050 15h = 1.060 16h = 1.070 17h = 1.080 18h = 1.090 19h = 1.100 1Ah = 1.110 1Bh = 1.120 1Ch = 1.130 1Dh = 1.140 1Eh = 1.150 1Fh = 1.160 20h = 1.170 21h = 1.180 22h = 1.190 23h = 1.200

表 7-19. DCDC1 寄存器字段说明 (续)

位	字段	类型	复位	说明
				24h = 1.210 25h = 1.220 26h = 1.230 27h = 1.240 28h = 1.250 29h = 1.260 2Ah = 1.270 2Bh = 1.280 2Ch = 1.290 2Dh = 1.300 2Eh = 1.310 2Fh = 1.320 30h = 1.330 31h = 1.340 32h = 1.350 33h = 1.375 34h = 1.400 35h = 1.425 36h = 1.450 37h = 1.475 38h = 1.500 39h = 1.525 3Ah = 1.550 3Bh = 1.575 3Ch = 1.600 3Dh = 1.625 3Eh = 1.650 3Fh = 1.675

7.19 DCDC2 寄存器 (地址 = 0x17) [复位 = 0x99]

图 7-14 展示了 DCDC2，表 7-20 中对此进行了介绍。

返回[汇总表](#)。

注释 1：此寄存器受密码保护。如需更多信息，请参阅[密码保护](#)。

注释 2：对 DCDC2 寄存器执行写入操作时，过压和欠压监测会进入时长 5ms 的消隐状态。

注 3：要更改 DCDC2 的输出电压，必须将寄存器 0x1A 中的 GO 位或 GODSBL 位设置为 1b。

图 7-14. DCDC2 寄存器

7	6	5	4	3	2	1	0
PFM	RESERVED						DCDC2
R/W-1b	R-0b						R/W-19h

表 7-20. DCDC2 寄存器字段说明

位	字段	类型	复位	说明
7	PFM	R/W	1b	脉冲频率调制 (PFM，又称为脉冲跳跃模式) 使能。PFM 模式可提高轻负载效率。实际 PFM 模式运行取决于负载条件。 0b = 禁用 (强制 PWM) 1b = 启用
6	RESERVED	R	0b	

表 7-20. DCDC2 寄存器字段说明 (续)

位	字段	类型	复位	说明
5-0	DCDC2	R/W、E2	19h	DCDC2 输出电压设置： 0h = 0.850 1h = 0.860 2h = 0.870 3h = 0.880 4h = 0.890 5h = 0.900 6h = 0.910 7h = 0.920 8h = 0.930 9h = 0.940 Ah = 0.950 Bh = 0.960 Ch = 0.970 Dh = 0.980 Eh = 0.990 Fh = 1.000 10h = 1.010 11h = 1.020 12h = 1.030 13h = 1.040 14h = 1.050 15h = 1.060 16h = 1.070 17h = 1.080 18h = 1.090 19h = 1.100 1Ah = 1.110 1Bh = 1.120 1Ch = 1.130 1Dh = 1.140 1Eh = 1.150 1Fh = 1.160 20h = 1.170 21h = 1.180 22h = 1.190 23h = 1.200

表 7-20. DCDC2 寄存器字段说明 (续)

位	字段	类型	复位	说明
				24h = 1.210 25h = 1.220 26h = 1.230 27h = 1.240 28h = 1.250 29h = 1.260 2Ah = 1.270 2Bh = 1.280 2Ch = 1.290 2Dh = 1.300 2Eh = 1.310 2Fh = 1.320 30h = 1.330 31h = 1.340 32h = 1.350 33h = 1.375 34h = 1.400 35h = 1.425 36h = 1.450 37h = 1.475 38h = 1.500 39h = 1.525 3Ah = 1.550 3Bh = 1.575 3Ch = 1.600 3Dh = 1.625 3Eh = 1.650 3Fh = 1.675

7.20 DCDC3 寄存器 (地址 = 0x18) [复位 = 0x8C]

图 7-15 展示了 DCDC3，表 7-21 中对此进行了介绍。

返回 [汇总表](#)。

注释 1：此寄存器受密码保护。如需更多信息，请参阅[密码保护](#)。

注释 2：对 DCDC3 寄存器执行写入操作时，过压和欠压监测会进入时长 5ms 的消隐状态。

备注

上电默认值可能因 RSEL 值而异。有关详细信息，请参阅 [DCDC3 和 DCDC4 上电默认选择](#)。

图 7-15. DCDC3 寄存器

7	6	5	4	3	2	1	0
PFM	RESERVED				DCDC3		
R/W-1b	R-0b				R/W-Ch		

表 7-21. DCDC3 寄存器字段说明

位	字段	类型	复位	说明
7	PFM	R/W	1b	脉冲频率调制 (PFM，又称为脉冲跳跃模式) 使能。PFM 模式可提高轻负载效率。实际 PFM 模式运行取决于负载条件。 0b = 禁用 (强制 PWM) 1b = 启用
6	RESERVED	R	0b	

表 7-21. DCDC3 寄存器字段说明 (续)

位	字段	类型	复位	说明
5-0	DCDC3	R/W、E2	Ch	DCDC3 输出电压设置： 0h = 0.900 1h = 0.925 2h = 0.950 3h = 0.975 4h = 1.000 5h = 1.025 6h = 1.050 7h = 1.075 8h = 1.100 9h = 1.125 Ah = 1.150 Bh = 1.175 Ch = 1.200 Dh = 1.225 Eh = 1.250 Fh = 1.275 10h = 1.300 11h = 1.325 12h = 1.350 13h = 1.375 14h = 1.400 15h = 1.425 16h = 1.450 17h = 1.475 18h = 1.500 19h = 1.525 1Ah = 1.550 1Bh = 1.600 1Ch = 1.650 1Dh = 1.700 1Eh = 1.750 1Fh = 1.800 20h = 1.850 21h = 1.900 22h = 1.950 23h = 2.000

表 7-21. DCDC3 寄存器字段说明 (续)

位	字段	类型	复位	说明
				24h = 2.050 25h = 2.100 26h = 2.150 27h = 2.200 28h = 2.250 29h = 2.300 2Ah = 2.350 2Bh = 2.400 2Ch = 2.450 2Dh = 2.500 2Eh = 2.550 2Fh = 2.600 30h = 2.650 31h = 2.700 32h = 2.750 33h = 2.800 34h = 2.850 35h = 2.900 36h = 2.950 37h = 3.000 38h = 3.050 39h = 3.100 3Ah = 3.150 3Bh = 3.200 3Ch = 3.250 3Dh = 3.300 3Eh = 3.350 3Fh = 3.400

7.21 DCDC4 寄存器 (地址 = 0x19) [复位 = 0xB2]

图 7-16 展示了 DCDC4，表 7-22 中对此进行了介绍。

返回 [汇总表](#)。

注释 1：此寄存器受密码保护。如需更多信息，请参阅 [密码保护](#)。

注释 2：对 DCDC4 寄存器执行写入操作时，过压和欠压监测会进入时长 5ms 的消隐状态。

备注

上电默认值可能因 RSEL 值而异。有关详细信息，请参阅 [DCDC3 和 DCDC4 上电默认选择](#)。不应选择“保留”设置，并且在转换器运行时不应修改输出电压设置。

图 7-16. DCDC4 寄存器

7	6	5	4	3	2	1	0
PFM	RESERVED						DCDC4
R/W-1b	R-0b						R/W-32h

表 7-22. DCDC4 寄存器字段说明

位	字段	类型	复位	说明
7	PFM	R/W	1b	脉冲频率调制 (PFM，又称为脉冲跳跃模式) 使能。PFM 模式可提高轻负载效率。实际 PFM 模式运行取决于负载条件。 0b = 禁用 (强制 PWM) 1b = 启用
6	RESERVED	R	0b	

表 7-22. DCDC4 寄存器字段说明 (续)

位	字段	类型	复位	说明
5-0	DCDC4	R/W、E2	32h	DCDC4 输出电压设置： 0h = 1.175 1h = 1.200 2h = 1.225 3h = 1.250 4h = 1.275 5h = 1.300 6h = 1.325 7h = 1.350 8h = 1.375 9h = 1.400 Ah = 1.425 Bh = 1.450 Ch = 1.475 Dh = 1.500 Eh = 1.525 Fh = 1.550 10h = 1.600 11h = 1.650 12h = 1.700 13h = 1.750 14h = 1.800 15h = 1.850 16h = 1.900 17h = 1.950 18h = 2.000 19h = 2.050 1Ah = 2.100 1Bh = 2.150 1Ch = 2.200 1Dh = 2.250 1Eh = 2.300 1Fh = 2.3500 20h = 2.400 21h = 2.450 22h = 2.500 23h = 2.550

表 7-22. DCDC4 寄存器字段说明 (续)

位	字段	类型	复位	说明
				24h = 2.600 25h = 2.650 26h = 2.700 27h = 2.750 28h = 2.800 29h = 2.850 2Ah = 2.900 2Bh = 2.950 2Ch = 3.000 2Dh = 3.050 2Eh = 3.100 2Fh = 3.150 30h = 3.200 31h = 3.250 32h = 3.300 33h = 3.350 34h = 3.400 35h = 保留 36h = 保留 37h = 保留 38h = 保留 39h = 保留 3Ah = 保留 3Bh = 保留 3Ch = 保留 3Dh = 保留 3Eh = 保留 3Fh = 保留

7.22 SLEW 寄存器 (子地址 = 0x1A) [复位 = 0x06]

图 7-17 展示了 SLEW , 表 7-23 中对此进行了介绍。

返回[汇总表](#)。

备注

压摆率控制仅适用于 DCDC1 和 DCDC2。如果在 STRICT = 1 且转换器处于空载状态时从较高电压变为较低电压，则 DCDC1 和 DCDC2 的 PFM 位必须设置为 0。

图 7-17. SLEW 寄存器

7	6	5	4	3	2	1	0
GO	GODSBL		RESERVED			SLEW	
R/W-0b	R/W-0b		R-000b			R/W-6h	

表 7-23. SLEW 寄存器字段说明

位	字段	类型	复位	说明
7	GO	R/W	0b	Go 位。注意：该位在电压转换结束时自动复位。 0b = 无变化 1b = 启动从当前状态到 DCDC1 和 DCDC2 寄存器中当前存储的输出电压设置的转换。SLEW 设置适用。
6	GODSBL	R/W	0b	GO 禁用位 0b = 启用 1b = 禁用；只要更新 DCDC1 和 DCDC2 寄存器中的设定点，DCDC1 和 DCDC2 输出电压就会发生变化，无需写入 GO 位。 SLEW 设置适用。
5-3	RESERVED	R	000b	
2-0	SLEW	R/W	6h	输出压摆率设置： 0h = 160 μ s/步 (步长 10mV 的条件下为 0.0625mV/ μ s) 1h = 80 μ s/步 (步长 10mV 的条件下为 0.125mV/ μ s) 2h = 40 μ s/步 (步长 10mV 的条件下为 0.250mV/ μ s) 3h = 20 μ s/步 (步长 10mV 的条件下为 0.500mV/ μ s) 4h = 10 μ s/步 (步长 10mV 的条件下为 1.0mV/ μ s) 5h = 5 μ s/步 (步长 10mV 的条件下为 2.0mV/ μ s) 6h = 2.5 μ s/步 (步长 10mV 的条件下为 4.0mV/ μ s) 7h = 立即；压摆率仅受控制环路响应时间限制。注意：实际压摆率取决于每个代码的电压阶跃。请参阅 DCDCx 寄存器以了解详细信息。

7.23 LDO1 寄存器 (地址 = 0x1B) [复位 = 0x1F]

图 7-18 展示了 LDO1，表 7-24 中对此进行了介绍。

返回 [汇总表](#)。

注释 1：此寄存器受密码保护。如需更多信息，请参阅 [密码保护](#)。

注释 2：对 LDO1 寄存器执行写入操作时，过压和欠压监测会进入时长 5ms 的消隐状态。

图 7-18. LDO1 寄存器

7	6	5	4	3	2	1	0
RESERVED					LDO1		
R-00b					R/W-1Fh		

表 7-24. LDO1 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	00b	
5-0	LDO1	R/W、E2	1Fh	LDO1 输出电压设置： 0h = 0.900 1h = 0.925 2h = 0.950 3h = 0.975 4h = 1.000 5h = 1.025 6h = 1.050 7h = 1.075 8h = 1.100 9h = 1.125 Ah = 1.150 Bh = 1.175 Ch = 1.200 Dh = 1.225 Eh = 1.250 Fh = 1.275 10h = 1.300 11h = 1.325 12h = 1.350 13h = 1.375 14h = 1.400 15h = 1.425 16h = 1.450 17h = 1.475 18h = 1.500 19h = 1.525

表 7-24. LDO1 寄存器字段说明 (续)

位	字段	类型	复位	说明
				1Ah = 1.550 1Bh = 1.600 1Ch = 1.650 1Dh = 1.700 1Eh = 1.750 1Fh = 1.800 20h = 1.850 21h = 1.900 22h = 1.950 23h = 2.000 24h = 2.050 25h = 2.100 26h = 2.150 27h = 2.200 28h = 2.250 29h = 2.300 2Ah = 2.350 2Bh = 2.400 2Ch = 2.450 2Dh = 2.500 2Eh = 2.550 2Fh = 2.600 30h = 2.650 31h = 2.700 32h = 2.750 33h = 2.800 34h = 2.850 35h = 2.900 36h = 2.950 37h = 3.000 38h = 3.050 39h = 3.100 3Ah = 3.150 3Bh = 3.200 3Ch = 3.250 3Dh = 3.300 3Eh = 3.350 3Fh = 3.400

7.24 SEQ1 寄存器 (地址 = 0x20) [复位 = 0x00]

图 7-19 展示了 SEQ1，表 7-25 中对此进行了介绍。

返回[汇总表](#)。

密码保护。

图 7-19. SEQ1 寄存器

7	6	5	4	3	2	1	0
DLY8	DLY7	DLY6	DLY5	DLY4	DLY3	DLY2	DLY1
R/W-0b							

表 7-25. SEQ1 寄存器字段说明

位	字段	类型	复位	说明
7	DLY8	R/W、E2	0b	延迟 8 (出现在选通 8 之后、选通 9 之前。) 0b = 2ms 1b = 5ms
6	DLY7	R/W、E2	0b	延迟 7 (出现在选通 7 之后、选通 8 之前。) 0b = 2ms 1b = 5ms
5	DLY6	R/W、E2	0b	延迟 6 (出现在选通 6 之后、选通 7 之前。) 0b = 2ms 1b = 5ms
4	DLY5	R/W、E2	0b	延迟 5 (出现在选通 5 之后、选通 6 之前。) 0b = 2ms 1b = 5ms
3	DLY4	R/W、E2	0b	延迟 4 (出现在选通 4 之后、选通 5 之前。) 0b = 2ms 1b = 5ms
2	DLY3	R/W、E2	0b	延迟 3 (出现在选通 3 之后、选通 4 之前。) 0b = 2ms 1b = 5ms
1	DLY2	R/W、E2	0b	延迟 2 (出现在选通 2 之后、选通 3 之前。) 0b = 2ms 1b = 5ms
0	DLY1	R/W、E2	0b	延迟 1 (出现在选通 1 之后、选通 2 之前。) 0b = 2ms 1b = 5ms

7.25 SEQ2 寄存器 (子地址 = 0x21) [复位 = 0x00]

图 7-20 展示了 SEQ2，表 7-26 中对此进行了介绍。

返回[汇总表](#)。

密码保护。

图 7-20. SEQ2 寄存器

7	6	5	4	3	2	1	0
DLYFCTR			RESERVED			DLY9	
R/W -0b			R-000 000b			R/W -0b	

表 7-26. SEQ2 寄存器字段说明

位	字段	类型	复位	说明
7	DLYFCTR	R/W、E2	0b	断电延迟因子： 0b = 1x 1b = 10x (断电期间延迟时间乘以 10 倍。) 注意：DLYFCTR 对上电时序没有影响。
6-1	RESERVED	R	000 000b	
0	DLY9	R/W、E2	0b	延迟 9 (出现在选通 9 之后、选通 10 之前。) 0b = 2ms 1b = 5ms

7.26 SEQ3 寄存器 (地址 = 0x22) [复位 = 0x98]

图 7-21 展示了 SEQ3，表 7-27 中对此进行了介绍。

返回 [汇总表](#)。

密码保护。

图 7-21. SEQ3 寄存器

7	6	5	4	3	2	1	0
			DC2_SEQ			DC1_SEQ	
			R/W-9h			R/W-8h	

表 7-27. SEQ3 寄存器字段说明

位	字段	类型	复位	说明
7-4	DC2_SEQ	R/W、E2	9h	DCDC2 使能选通： 0h = 电源轨不受序列发生器控制。 1h = 电源轨不受序列发生器控制。 2h = 电源轨不受序列发生器控制。 3h = 在选通 3 处启用。 4h = 在选通 4 处启用。 5h = 在选通 5 处启用。 6h = 在选通 6 处启用。 7h = 在选通 7 处启用。 8h = 在选通 8 处启用。 9h = 在选通 9 处启用。 Ah = 在选通 10 处启用。 Bh = 电源轨不受序列发生器控制。 Ch = 电源轨不受序列发生器控制。 Dh = 电源轨不受序列发生器控制。 Eh = 电源轨不受序列发生器控制。 Fh = 电源轨不受序列发生器控制。
3-0	DC1_SEQ	R/W、E2	8h	DCDC1 使能选通： 0h = 电源轨不受序列发生器控制。 1h = 电源轨不受序列发生器控制。 2h = 电源轨不受序列发生器控制。 3h = 在选通 3 处启用。 4h = 在选通 4 处启用。 5h = 在选通 5 处启用。 6h = 在选通 6 处启用。 7h = 在选通 7 处启用。 8h = 在选通 8 处启用。 9h = 在选通 9 处启用。 Ah = 在选通 10 处启用。 Bh = 电源轨不受序列发生器控制。 Ch = 电源轨不受序列发生器控制。 Dh = 电源轨不受序列发生器控制。 Eh = 电源轨不受序列发生器控制。 Fh = 电源轨不受序列发生器控制。

7.27 SEQ4 寄存器 (地址 = 0x23) [复位 = 0x75]

图 7-22 展示了 SEQ4，表 7-28 中对此进行了介绍。

返回 [汇总表](#)。

密码保护。

图 7-22. SEQ4 寄存器

7	6	5	4	3	2	1	0
			DC4_SEQ			DC3_SEQ	
			R/W-7h			R/W-5h	

表 7-28. SEQ4 寄存器字段说明

位	字段	类型	复位	说明
7-4	DC4_SEQ	R/W、E2	7h	DCDC4 使能选通： 0h = 电源轨不受序列发生器控制。 1h = 电源轨不受序列发生器控制。 2h = 电源轨不受序列发生器控制。 3h = 在选通 3 处启用。 4h = 在选通 4 处启用。 5h = 在选通 5 处启用。 6h = 在选通 6 处启用。 7h = 在选通 7 处启用。 8h = 在选通 8 处启用。 9h = 在选通 9 处启用。 Ah = 在选通 10 处启用。 Bh = 电源轨不受序列发生器控制。 Ch = 电源轨不受序列发生器控制。 Dh = 电源轨不受序列发生器控制。 Eh = 电源轨不受序列发生器控制。 Fh = 电源轨不受序列发生器控制。
3-0	DC3_SEQ	R/W、E2	5h	DCDC3 使能选通： 0h = 电源轨不受序列发生器控制。 1h = 电源轨不受序列发生器控制。 2h = 电源轨不受序列发生器控制。 3h = 在选通 3 处启用。 4h = 在选通 4 处启用。 5h = 在选通 5 处启用。 6h = 在选通 6 处启用。 7h = 在选通 7 处启用。 8h = 在选通 8 处启用。 9h = 在选通 9 处启用。 Ah = 在选通 10 处启用。 Bh = 电源轨不受序列发生器控制。 Ch = 电源轨不受序列发生器控制。 Dh = 电源轨不受序列发生器控制。 Eh = 电源轨不受序列发生器控制。 Fh = 电源轨不受序列发生器控制。

7.28 SEQ5 寄存器 (地址 = 0x24) [复位 = 0x12]

图 7-23 展示了 SEQ5，表 7-29 中对此进行了介绍。

返回[汇总表](#)。

密码保护。

图 7-23. SEQ5 寄存器

7	6	5	4	3	2	1	0
RESERVED		RESERVED		RESERVED		RESERVED	
R-0h		R/W-1h		R-0h		R/W-2h	

表 7-29. SEQ5 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0h	
5-4	RESERVED	R/W、E2	1h	
3-2	RESERVED	R	0h	
1-0	RESERVED	R/W、E2	2h	

7.29 SEQ6 寄存器 (地址 = 0x25) [复位 = 0x63]

图 7-24 展示了 SEQ6，表 7-30 中对此进行了介绍。

返回[汇总表](#)。

密码保护。

图 7-24. SEQ6 寄存器

7	6	5	4	3	2	1	0
保留						LDO1_SEQ	
R/W-6h						R/W-3h	

表 7-30. SEQ6 寄存器字段说明

位	字段	类型	复位	说明
7-4	保留	R/W	6h	保留
3-0	LDO1_SEQ	R/W、E2	3h	<p>LDO1 使能选通：</p> <p>0h = 电源轨不受序列发生器控制。</p> <p>1h = 电源轨不受序列发生器控制。</p> <p>2h = 电源轨不受序列发生器控制。</p> <p>3h = 在选通 3 处启用。</p> <p>4h = 在选通 4 处启用。</p> <p>5h = 在选通 5 处启用。</p> <p>6h = 在选通 6 处启用。</p> <p>7h = 在选通 7 处启用。</p> <p>8h = 在选通 8 处启用。</p> <p>9h = 在选通 9 处启用。</p> <p>Ah = 在选通 10 处启用。</p> <p>Bh = 电源轨不受序列发生器控制。</p> <p>Ch = 电源轨不受序列发生器控制。</p> <p>Dh = 电源轨不受序列发生器控制。</p> <p>Eh = 电源轨不受序列发生器控制。</p> <p>Fh = 电源轨不受序列发生器控制。</p>

7.30 SEQ7 寄存器 (地址 = 0x26) [复位 = 0x03]

图 7-25 展示了 SEQ7，表 7-31 中对此进行了介绍。

返回[汇总表](#)。

密码保护。

图 7-25. SEQ7 寄存器

7	6	5	4	3	2	1	0
GPO2_SEQ				GPO1_SEQ			
R/W-0h				R/W-3h			

表 7-31. SEQ7 寄存器字段说明

位	字段	类型	复位	说明
7-4	GPO2_SEQ	R/W、E2	0h	<p>GPO2 使能选通：</p> <p>0h = 电源轨不受序列发生器控制。</p> <p>1h = 电源轨不受序列发生器控制。</p> <p>2h = 电源轨不受序列发生器控制。</p> <p>3h = 在选通 3 处启用。</p> <p>4h = 在选通 4 处启用。</p> <p>5h = 在选通 5 处启用。</p> <p>6h = 在选通 6 处启用。</p> <p>7h = 在选通 7 处启用。</p> <p>8h = 在选通 8 处启用。</p> <p>9h = 在选通 9 处启用。</p> <p>Ah = 在选通 10 处启用。</p> <p>Bh = 电源轨不受序列发生器控制。</p> <p>Ch = 电源轨不受序列发生器控制。</p> <p>Dh = 电源轨不受序列发生器控制。</p> <p>Eh = 电源轨不受序列发生器控制。</p> <p>Fh = 电源轨不受序列发生器控制。</p>
3-0	GPO1_SEQ	R/W、E2	3h	<p>GPO1 使能选通：</p> <p>0h = 电源轨不受序列发生器控制。</p> <p>1h = 电源轨不受序列发生器控制。</p> <p>2h = 电源轨不受序列发生器控制。</p> <p>3h = 在选通 3 处启用。</p> <p>4h = 在选通 4 处启用。</p> <p>5h = 在选通 5 处启用。</p> <p>6h = 在选通 6 处启用。</p> <p>7h = 在选通 7 处启用。</p> <p>8h = 在选通 8 处启用。</p> <p>9h = 在选通 9 处启用。</p> <p>Ah = 在选通 10 处启用。</p> <p>Bh = 电源轨不受序列发生器控制。</p> <p>Ch = 电源轨不受序列发生器控制。</p> <p>Dh = 电源轨不受序列发生器控制。</p> <p>Eh = 电源轨不受序列发生器控制。</p> <p>Fh = 电源轨不受序列发生器控制。</p>

8 应用和实施

备注

以下应用部分中的信息不属于 TI 器件规格的范围，TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计，以确保系统功能。

8.1 应用信息

TPS65216 设计为与各种应用配合使用。有关将 TPS65216 与 Sitara™ AMIC110、AMIC120、AM335x 或 AM437x 处理器配合使用详细信息，请参阅[使用 TPS65216 为 AMIC110、AMIC120、AM335x 和 AM437x 供电](#)。典型应用中的典型应用基于 Sitara™ 系列处理器，并使用与之一致的术语。

8.2 典型应用

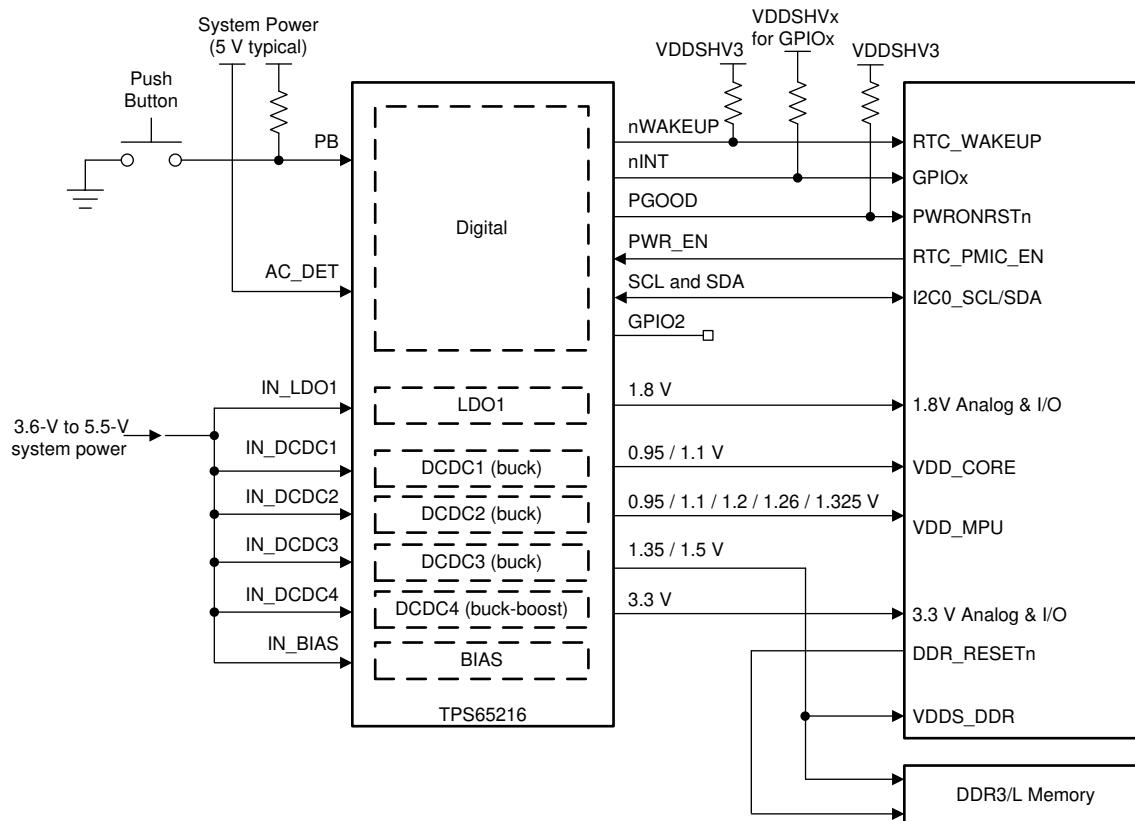


图 8-1. 典型应用原理图

8.2.1 设计要求

表 8-1 列出了设计要求。

表 8-1. 设计参数

	电压	序列
DCDC1	1.1V	8
DCDC2	1.1V	9
DCDC3	1.2V	5
DCDC4	3.3V	7
LDO1	1.8V	3

8.2.2 详细设计过程

8.2.2.1 输出滤波器设计

TPS65216 上的降压转换器 (DCDC1、DCDC2 和 DCDC3) 设计为以 1 至 $2.2\mu\text{H}$ 范围内的有效电感值和 10 至 $100\mu\text{F}$ 范围内的有效输出电容运行。内部补偿经过优化，可与 $L = 1.5\mu\text{H}$ 、 $C_{\text{OUT}} = 10\mu\text{F}$ 的输出滤波器一起运行。

TPS65216 上的降压/升压转换器 (DCDC4) 设计为以 1.2 至 $2.2\mu\text{H}$ 范围内的有效电感值运行。内部补偿经过优化，可与 $L = 1.5\mu\text{H}$ 、 $C_{\text{OUT}} = 47\mu\text{F}$ 的输出滤波器一起运行。

可使用更大或更小的电感/电容值来优化器件在特定工作条件下的性能。

8.2.2.2 降压转换器的电感器选择

电感器值会影响其峰值间纹波电流、PWM 至 PFM 转换点、输出电压纹波和效率。所选择的电感器的额定值必须适合其直流电阻和饱和电流。电感器纹波电流 (ΔI_L) 随着电感的升高而减小，随着 V_{IN} 或 V_{OUT} 的升高而增大。[方程式 1](#) 计算静态负载条件下的最大电感器纹波电流。电感器的饱和电流额定值应高于通过 [方程式 2](#) 计算得出的最大电感器电流。建议采用这种方法，因为在重负载瞬态期间，电感器电流将会上升到计算值以上。

$$\Delta I_L = V_{\text{OUT}} \times \frac{1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}}{L \times f} \quad (1)$$

$$I_{L\text{max}} = I_{\text{OUTmax}} + \frac{\Delta I_L}{2} \quad (2)$$

其中

- F = 开关频率
- L = 电感器值
- ΔI_L = 峰值间电感器纹波电流
- $I_{L\text{max}}$ = 最大电感器电流

TPS65216 使用了以下电感器 (请参阅表 8-2)。

表 8-2. 推荐电感器列表

器件型号	值	尺寸 (mm) [长 × 宽 × 高]	制造商
适用于 DCDC1、DCDC2、DCDC3、DCDC4 的电感器			
SPM3012T-1R5M	1.5 μH ，2.8A，77m Ω	3.2 × 3.0 × 1.2	TDK
IHLP1212BZER1R5M11	1.5 μH ，4.0A，28.5m Ω	3.6 × 3.0 × 2.0	Vishay

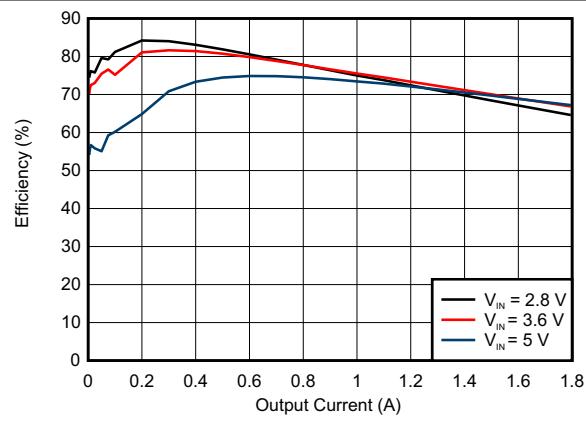
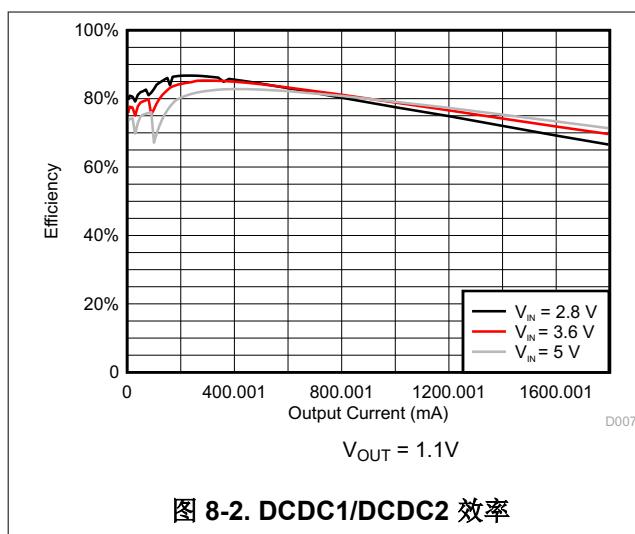
8.2.2.3 输出电容器选型

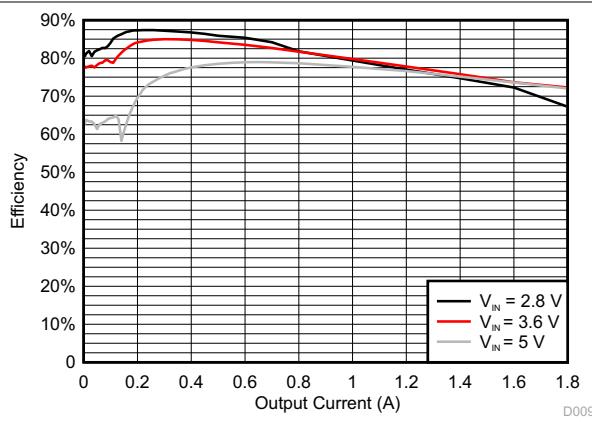
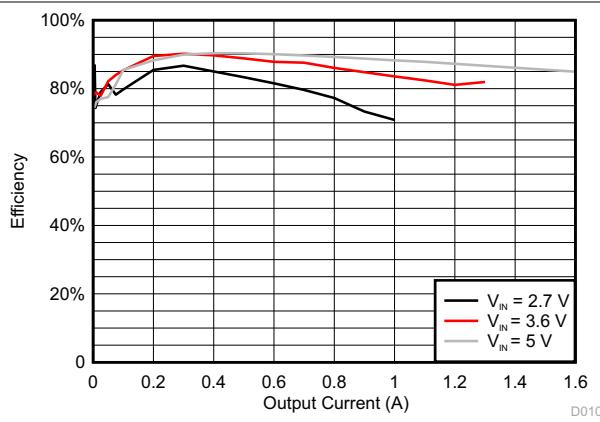
TPS65216 开关转换器的迟滞 PWM 控制方案允许使用微型陶瓷电容器。具有低 ESR 值的陶瓷电容器可获得极低的输出电压纹波，因此建议使用此类电容器。输出电容器需要 X7R 或 X5R 电介质。

轻负载电流时，转换器运行在节能模式，并且输出电压纹波取决于输出电容器值和 PFM 峰值电感器电流。较高的输出电容器值可最大限度地减少 PFM 模式下的电压纹波，并在 PFM 模式下提高直流输出精度。

降压/升压转换器需要额外的输出电容，以帮助在高负载条件下保持转换器的稳定性。建议使用至少 $40\mu\text{F}$ 的输出电容，并且可以添加额外的 100nF 电容器，以进一步滤除较高频率下的输出纹波。

表 8-2 列出了推荐的电容器。



表 8-3. 推荐电容器列表



器件型号	值	尺寸 (mm) [长 × 宽 × 高]	制造商
电压高达 5.5V 时适用的电容器⁽¹⁾			
GRM188R60J105K	1 μF	1608 / 0603 (1.6 × 0.8 × 0.8)	Murata
GRM21BR60J475K	4.7 μF	2012 / 0805 (2.0 × 1.25 × 1.25)	Murata
GRM31MR60J106K	10 μF	3216 / 1206 (3.2 × 1.6 × 1.6)	Murata
GRM31CR60J226K	22 μF	3216 / 1206 (3.2 × 1.6 × 1.6)	Murata

(1) 选择电容器时，必须考虑陶瓷电容器的直流偏置效应。

8.2.3 应用曲线

条件为 $T_J = 25^\circ\text{C}$ ，除非另有说明

图 8-4. DCDC3 效率

图 8-5. DCDC4 效率

8.3 电源相关建议

该器件设计为在 3.6V 至 5.5V 的输入电源电压范围内工作。此输入电源可来自外部稳压电源。如果输入电源距离 TPS65216 超过几英寸，那么除了陶瓷旁路电容器之外，还需要额外的大容量电容。通常，选择电容值为 47 μF 的电解电容。

8.4 布局

8.4.1 布局指南

请遵循以下布局指南：

- 应当使用低 ESR 陶瓷旁路电容器将 **IN_X** 引脚旁路至接地。建议的典型旁路电容为采用 X5R 或 X7R 电介质的 4.7 μF 电容器。
- 放置位置越靠近器件的 **IN_X** 引脚越好。请注意，应尽可能缩减由旁路电容器连线、器件 **IN_X** 引脚和散热焊盘组成的环路面积。
- 散热焊盘应通过至少 25 个过孔连接到 PCB 接地平面。请参阅图 8-7 中的示例。
- LX** 布线应保持在 PCB 顶层，没有任何过孔。
- FBX** 布线应远离任何潜在噪声源，以避免发生耦合。
- DCDC4 输出电容应直接放置在 DCDC4 引脚上。电容与 DCDC4 引脚之间的距离过大可能会导致转换器性能不佳。

8.4.2 布局示例

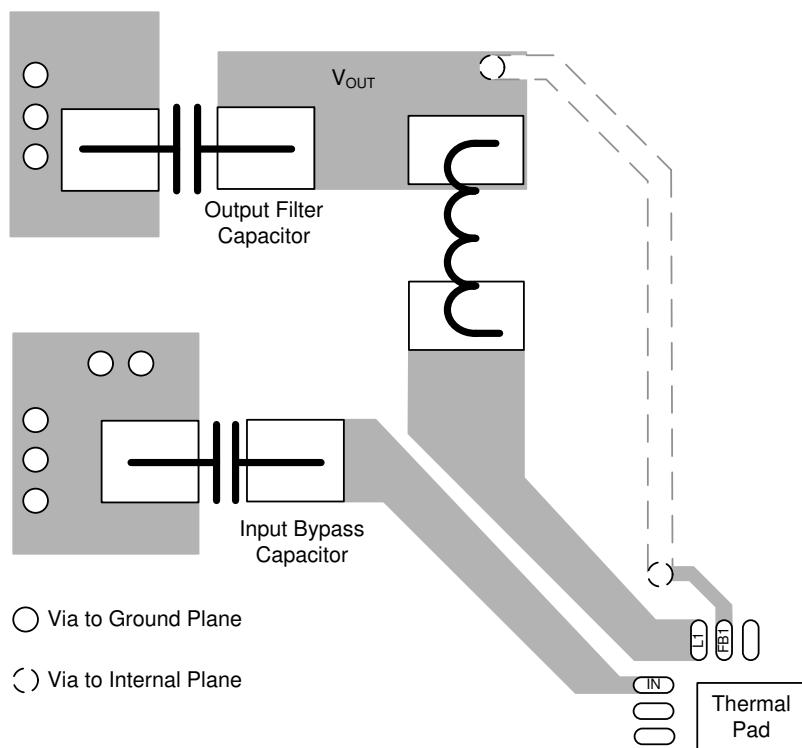


图 8-6. 布局建议

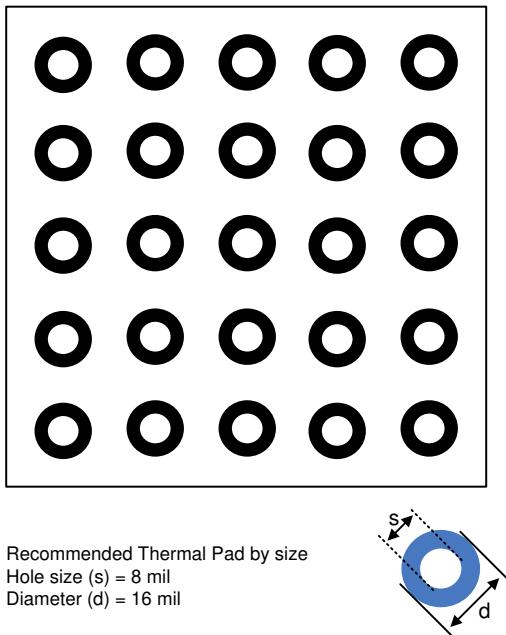


图 8-7. 散热焊盘布局建议

9 器件和文档支持

9.1 器件支持

9.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息，不能构成与此类产品或服务或保修的适用性有关的认可，不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

9.2 文档支持

9.2.1 相关文档

请参阅以下相关文档：

- 德州仪器 (TI) , [降压转换器功率级的基本计算应用报告](#)
- 德州仪器 (TI) , [降压/升压转换器的设计计算应用报告](#)
- 德州仪器 (TI) , [通过适用于处理器应用的电源管理 IC \(PMIC\) 赋能设计应用报告](#)
- 德州仪器 (TI) , [TPS65218EVM 用户指南](#)
- 德州仪器 (TI) , [TPS65218 适用于工业应用的电源管理集成电路 \(PMIC\) 应用报告](#)

9.3 接收文档更新通知

要接收文档更新通知，请导航至 ti.com.cn 上的器件产品文件夹。点击右上角的 [提醒我](#) 进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

9.4 支持资源

[TI E2E™ 中文支持论坛](#)是工程师的重要参考资料，可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题，获得所需的快速设计帮助。

链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的 [使用条款](#)。

9.5 商标

Sitara™ and TI E2E™ are trademarks of Texas Instruments.

所有商标均为其各自所有者的财产。

9.6 静电放电警告

 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序，可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级，大至整个器件故障。精密的集成电路可能更容易受到损坏，这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.7 术语表

TI 术语表

本术语表列出并解释了术语、首字母缩略词和定义。

10 修订历史记录

注：以前版本的页码可能与当前版本的页码不同

Changes from Revision A (December 2019) to Revision B (January 2026)	Page
• 更新了整个文档中的表格、图和交叉参考的编号格式.....	1
• 在说明部分中，将 DCDC3 行为的“睡眠”模式更新为“暂停”模式.....	1
• 删除了 PASSWORD 寄存器字段说明中的失效链接.....	40
• 将 ENABLE2 中的 GPIO2 位字段说明从通用输出 3 更新为 2.....	40
• 将封装信息中的器件标识从 TPS65216D0 更改为 T65216D0.....	85

Changes from Revision * (October 2018) to Revision A (December 2019)	Page
• 更新了标题和说明部分.....	1

11 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件可用的最新数据。数据如有变更，恕不另行通知，且不会对此文档进行修订。有关此数据表的浏览器版本，请查阅左侧的导航栏。

11.1 封装选项附录

11.1.1 封装信息

可订购器件	状态 ⁽¹⁾	封装类型	封装图	引脚	包装数量	环保计划 ⁽²⁾	铅/焊球镀层 ⁽³⁾	MSL 峰值温度 ⁽⁴⁾	工作温度 (°C)	器件标识 ^{(5) (6)}
TPS65216D0RSLR	ACTIVE	VQFN	RSL	48	2500	绿色环保 (RoHS , 无 铅/溴)	CU NIPDAU	Level-3-260C-168 HR	-40 至 105	T65216D0
TPS65216D0RSLT	ACTIVE	VQFN	RSL	48	250	绿色环保 (RoHS , 无 铅/溴)	CU NIPDAU	Level-3-260C-168 HR	-40 至 105	T65216D0

(1) 销售状态值定义如下：

正在供货：建议用于新设计的产品器件。

限期购买：TI 已宣布器件即将停产，但仍在购买期限内。

NRND：不推荐用于新设计。为支持现有客户，器件仍在生产，但 TI 不建议在新设计中使用此器件。

PRE_PROD：器件未发布，尚未量产，未向大众市场供货，也未在网络上供应，未提供样片。

预发布：器件已发布，但未量产。可能提供样片，也可能无法提供样片。

已停产：TI 已停止生产该器件。

(2) 环保计划 - 规划的环保分级包括：无铅 (RoHS) , 无铅 (RoHS 豁免) 或绿色环保 (RoHS , 无铅/溴) - 如需了解最新供货信息及更多产品内容详情，请访问 <http://www.ti.com/productcontent>。

待定：无铅/绿色环保转换计划尚未确定。

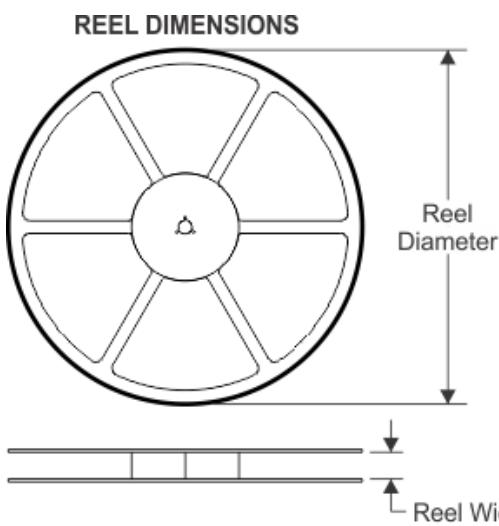
无铅 (RoHS)：TI 所说的“无铅”或“无 Pb”是指半导体产品符合针对所有 6 种物质的现行 RoHS 要求，包括要求铅的重量不超过同质材料总重量的 0.1%。因在设计时就考虑到了高温焊接要求，因此 TI 的无铅产品适用于指定的无铅作业。

无铅 (RoHS 豁免)：该元件在以下两种情况下可享受 RoHS 豁免：1) 芯片和封装之间使用铅基倒装芯片焊接凸点；2) 芯片和引线框之间使用铅基芯片粘合剂。否则，元件将根据上述规定视为无铅 (符合 RoHS)。

绿色环保 (RoHS , 无铅/溴)：TI 将“绿色环保”定义为无铅 (符合 RoHS 标准) 、无溴 (Br) 和无锑 (Sb) 基阻燃剂 (Br 或 Sb 在同质材料中的质量不超过总质量的 0.1%)

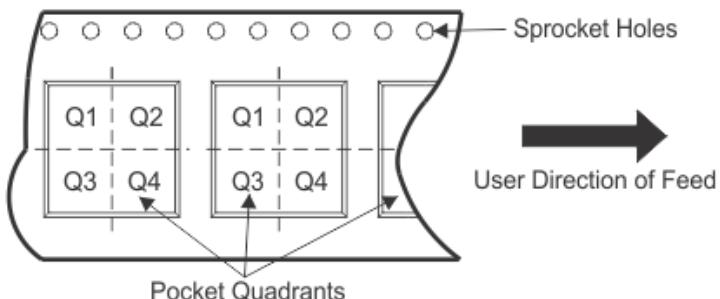
(3) 铅/焊球镀层 - 可订购器件可能有多种镀层材料选项。各镀层选项用垂直线隔开。如果铅/焊球镀层值超出最大列宽，则会折为两行。

(4) MSL , 峰值温度-- 湿敏等级额定值 (符合 JEDEC 工业标准分级) 和峰值焊接温度。

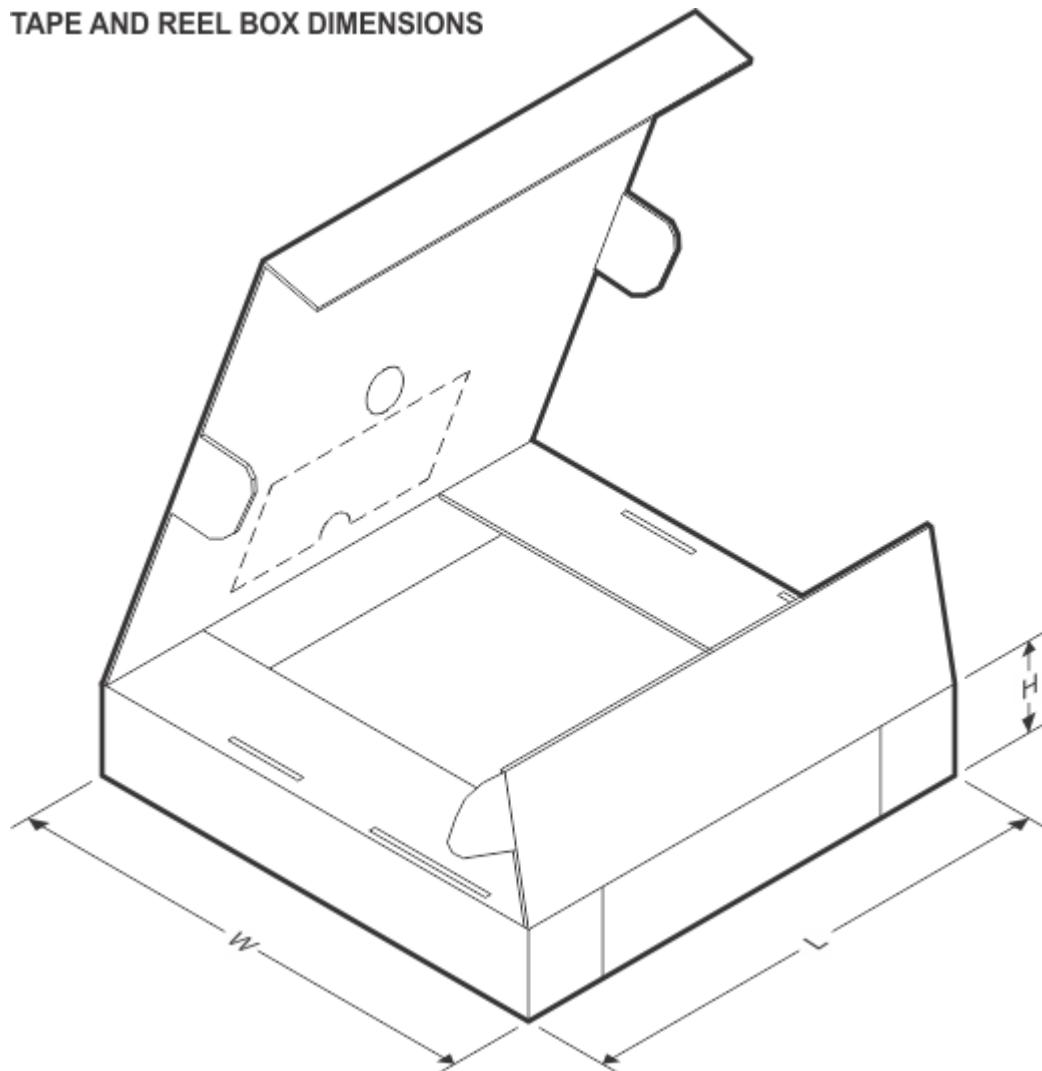

(5) 器件上可能还有与标识、批次跟踪代码信息或环境分级相关的标记

(6) 如有多个器件标识，将用括号括起来。不过，器件上仅显示括号中以“~”隔开的器件标识。如果某一行缩进，说明该行续接上一行，这两行合在一起表示该器件的完整器件标识。

重要信息和免责声明：本页面上提供的信息代表 TI 在提供该信息之日的认知和观点。TI 的认知和观点基于第三方提供的信息，TI 不对此类信息的正确性做任何声明或保证。TI 正在致力于更好地整合第三方信息。TI 已经并将继续采取合理的措施来提供有代表性且准确的信息，但是可能尚未对引入的原料和化学制品进行破坏性测试或化学分析。TI 和 TI 供应商认为某些信息属于专有信息，因此可能不会公布其 CAS 编号及其他受限制的信息。


在任何情况下，TI 因此类信息产生的责任决不超过 TI 每年向客户销售的本文档所述 TI 器件的总购买价。

11.1.2 卷带包装信息


A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

器件	封装类型	封装图	引脚	SPQ	卷带直径 (mm)	卷带宽度 W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 象限
TPS65216D0RSLR	VQFN	RSL	48	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
TPS65216D0RSLT	VQFN	RSL	48	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2

TAPE AND REEL BOX DIMENSIONS

器件	封装类型	封装图	引脚	SPQ	长度 (mm)	宽度 (mm)	高度 (mm)
TPS65216D0RSLR	VQFN	RSL	48	2500	367.0	367.0	38.0
TPS65216D0RSLT	VQFN	RSL	48	250	210.0	185.0	35.0

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TPS65216D0RSLR	Active	Production	VQFN (RSL) 48	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	T65216D0
TPS65216D0RSLR.A	Active	Production	VQFN (RSL) 48	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	T65216D0
TPS65216D0RSLRG4	Active	Production	VQFN (RSL) 48	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	T65216D0
TPS65216D0RSLRG4.A	Active	Production	VQFN (RSL) 48	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	T65216D0
TPS65216D0RSLT	Active	Production	VQFN (RSL) 48	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	T65216D0
TPS65216D0RSLT.A	Active	Production	VQFN (RSL) 48	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	T65216D0

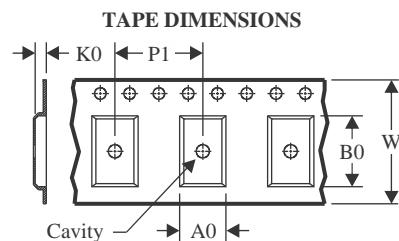
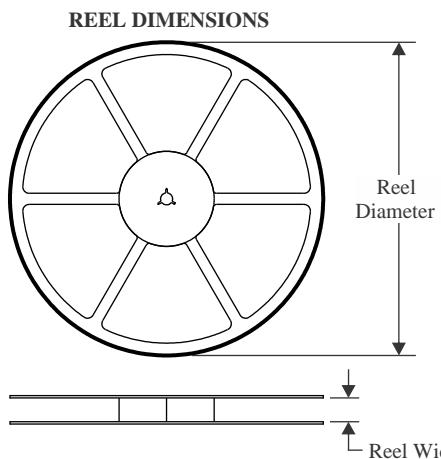
⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

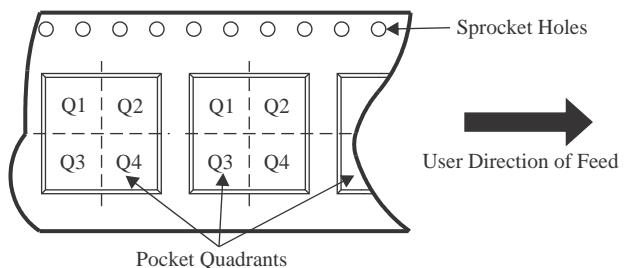
⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

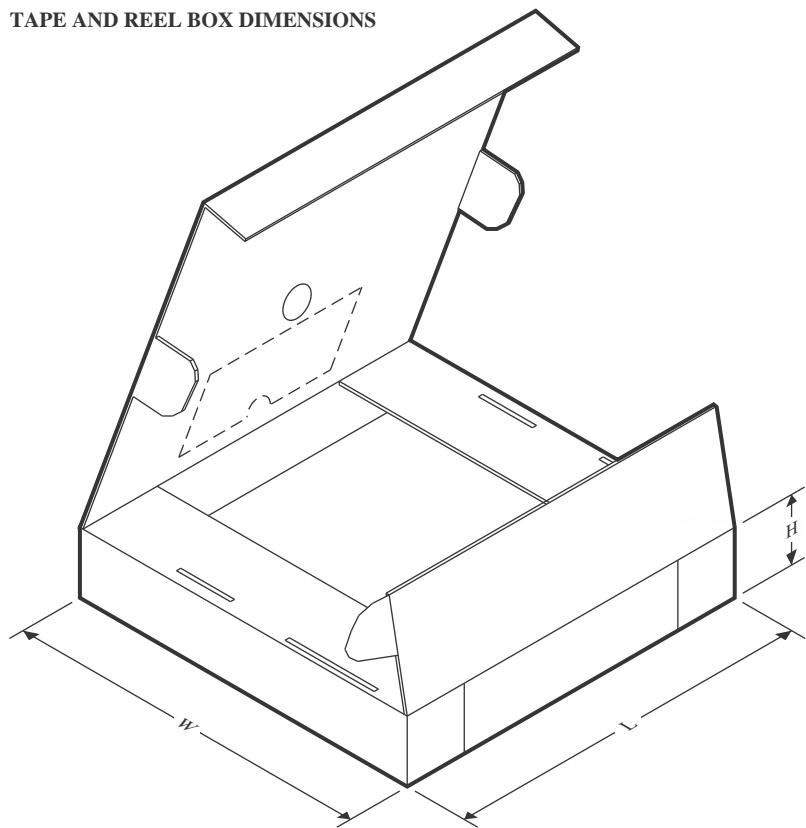
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.



⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

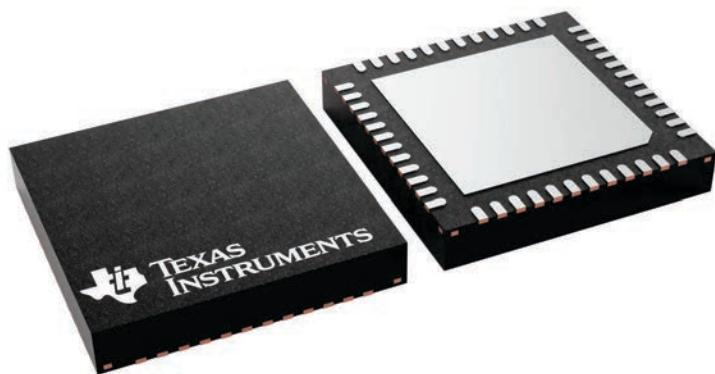
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS65216D0RSLR	VQFN	RSL	48	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
TPS65216D0RSLRG4	VQFN	RSL	48	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
TPS65216D0RSLT	VQFN	RSL	48	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS65216D0RSLR	VQFN	RSL	48	2500	367.0	367.0	38.0
TPS65216D0RSLRG4	VQFN	RSL	48	2500	367.0	367.0	38.0
TPS65216D0RSLT	VQFN	RSL	48	250	210.0	185.0	35.0

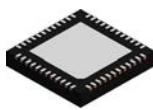
GENERIC PACKAGE VIEW


RSL 48

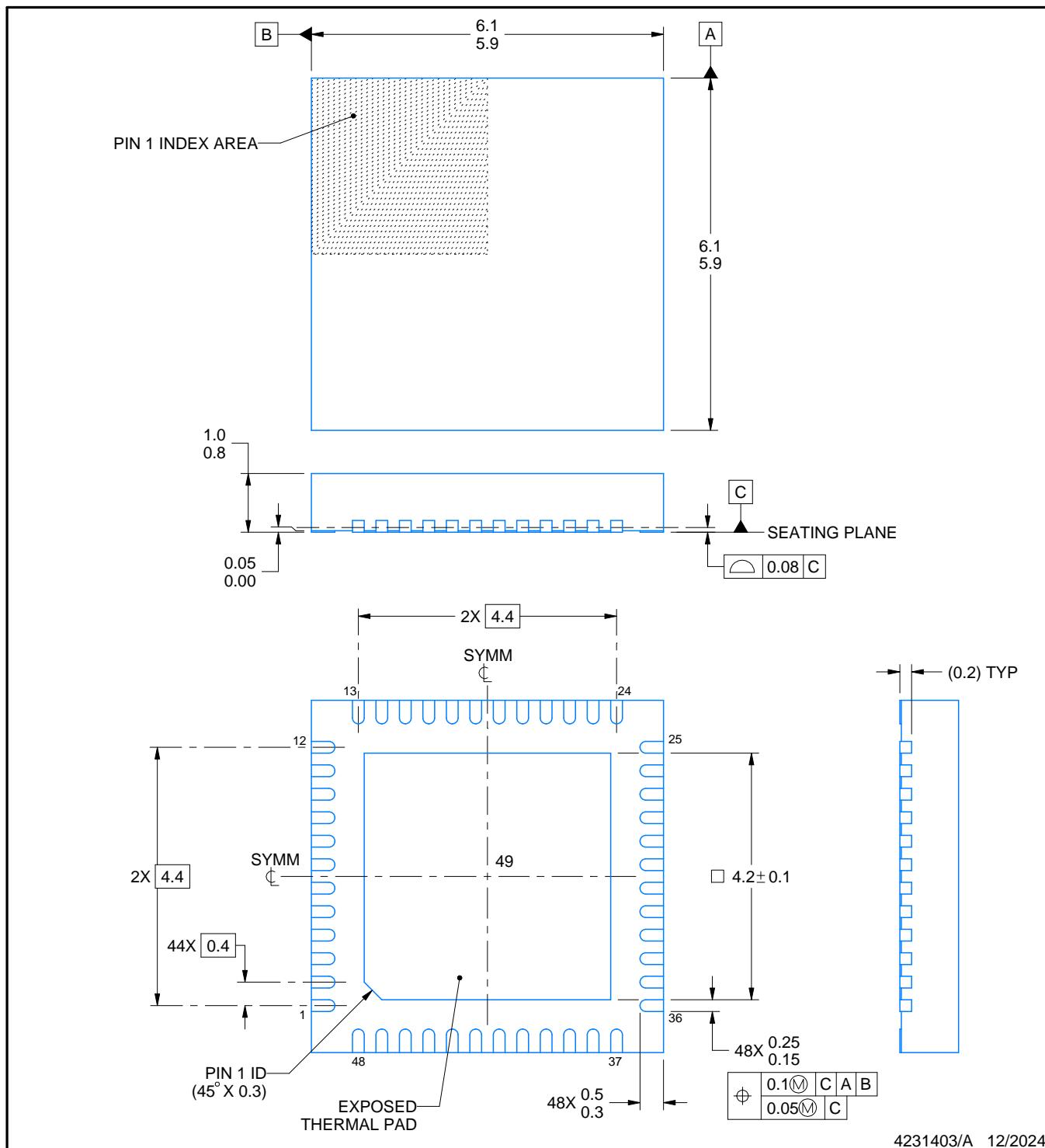
VQFN - 1 mm max height

6 x 6, 0.4 mm pitch

QUAD FLATPACK - NO LEAD


This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4225749/A


PACKAGE OUTLINE

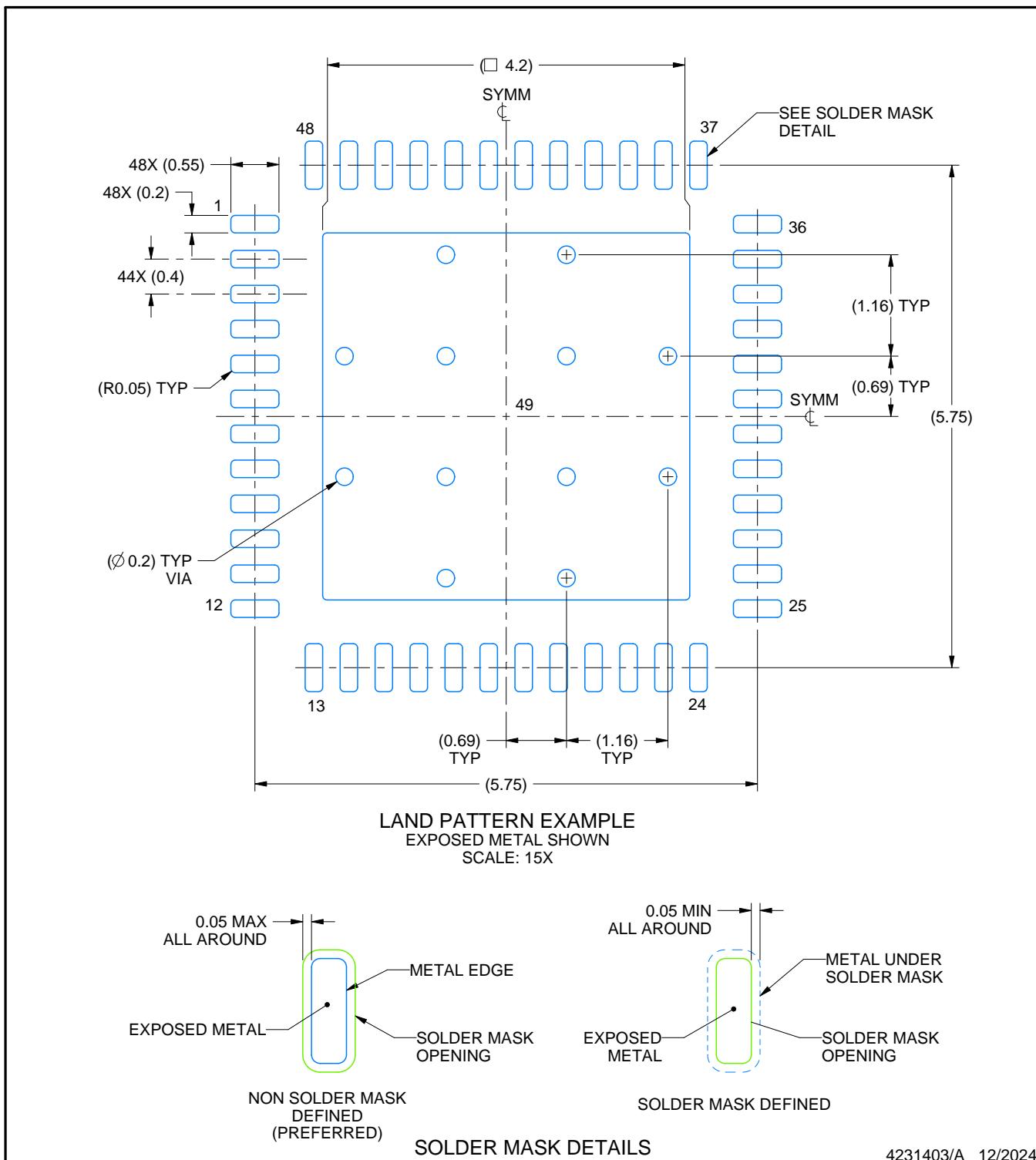
RSL0048G

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

4231403/A 12/2024

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

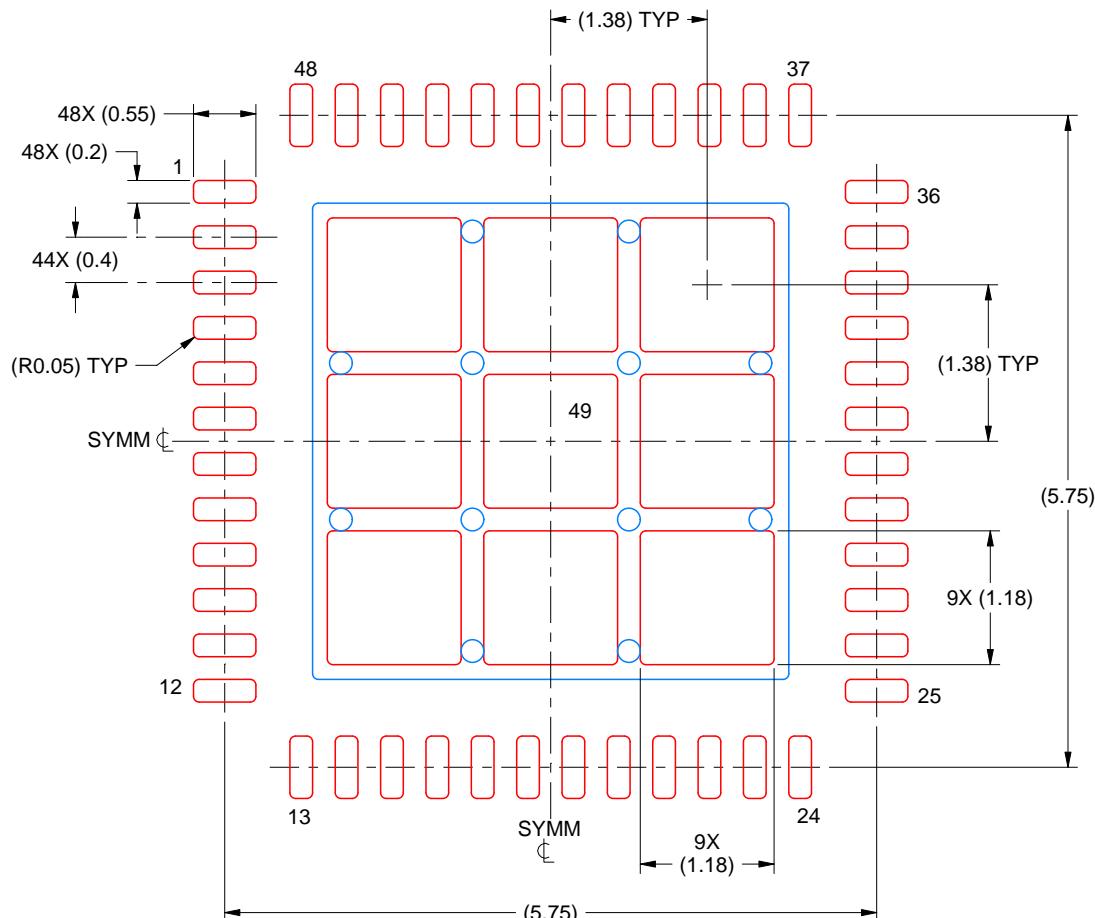
EXAMPLE BOARD LAYOUT

RSL0048G

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RSL0048G

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

4231403/A 12/2024

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务，您将全额赔偿，TI 对此概不负责。

TI 提供的产品受 [TI 销售条款](#)、[TI 通用质量指南](#) 或 [ti.com](#) 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品，否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2026，德州仪器 (TI) 公司

最后更新日期：2025 年 10 月