

🕳 Order

Now

TPS92610-Q1

ZHCSH65B-OCTOBER 2017-REVISED JANUARY 2020

TPS92610-Q1 汽车单通道线性 LED 驱动器

1 特性

• 符合汽车类应用 要求

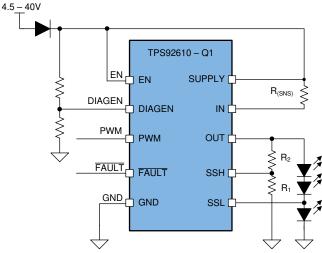
INSTRUMENTS

Texas

- 具有符合 AEC-Q100 标准的下列特性:
 - 温度等级 1: -40℃ 至 125℃ 的环境工作温度 范围
 - 器件 HBM ESD 分类等级 H2
 - 器件 CDM ESD 分类等级 C3B
- 提供功能安全
 - 可帮助创建功能安全系统设计的文档
- 具有 PWM 调光功能的单通道恒定电流 LED 驱动器
- 宽输入电压范围: 4.5V 40V
- 可由检测电阻器进行调节的恒定输出电流
- 精密电流调节,在 -40°C 至 150°C 的结温范围内 具有 ±4.6% 的容差
- 最大电流: 450mA
- 与外部电阻器实现热共享
- 低压降电压(包含检测电阻器压降)
 - 最大压降: 10mA 时为 150mV
 - 最大压降: 70mA 时为 400mV
 - 最大压降: 150mA 时为 700mV
 - 最大压降: 300mA 时为 1.3V
- 诊断和保护
 - 单 LED 短路检测及自动恢复
 - LED 开路与短路检测及自动恢复
 - 在低压降运行情况下支持诊断并具有可调阈值
 - 多达 15 个器件的故障总线,可配置为"连带失效"或"仅失效的通道关闭"
 - 较低的静态电流和故障模式电流(每个器件小于 250μA)
- 工作结温范围: -40°C 至 150°C
- 2 应用
- 汽车便利照明:座舱顶灯、车门把手、阅读灯和其 他灯具
- 汽车尾灯、中央高位刹车灯、侧面标志灯、盲点监测指示灯、充电口指示灯
- 通用 LED 驱动器应用

3 说明

随着 LED 在汽车 应用中广泛使用,简单的 LED 驱动 器越来越受欢迎。与分立式解决方案相比,低成本单片 解决方案可降低系统级组件数量,并显著提高电流精度 和可靠性。


TPS92610-Q1 器件是一款简单的单通道高侧 LED 驱动器,由汽车蓄电池供电。这是一种简单而巧妙的解决方案,能够为单个 LED 灯串提供恒定电流,并具有全面的 LED 诊断功能。此器件的"连带失效"功能可与其他 LED 驱动器(如 TPS9261x-Q1、TPS9263x-Q1和TPS9283x-Q1器件)一起工作,从而满足不同的要求。

器件信息⁽¹⁾

器件型号	封装	封装尺寸(标称值)
TPS92610-Q1	HTSSOP (14)	5mm × 4.4mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

典型应用图

Copyright © 2017, Texas Instruments Incorporated

7.4

8.1

9.1

10.4

10.5

10.6

目录

8

9

11

1	特性	
2	应用	1
3	说明	1
4	修订	历史记录 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 3
	6.1	Absolute Maximum Ratings 3
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics 4
	6.6	Timing Requirements 6
	6.7	Typical Characteristics 7
7	Deta	ailed Description 10
	7.1	Overview 10
	7.2	Functional Block Diagram 10

4 修订历史记录

Changes from Revision A (December 2017) to Revision B Page 向<u>特性</u> 部分添加了提供功能安全的链接......1 Changes from Original (November 2017) to Revision A Page 产品说明书从"预告信息"更改为"生产数据"......1

7.3 Feature Description..... 10 Device Functional Modes..... 14

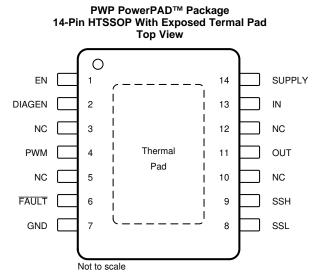
Application and Implementation 16

Layout 21

Application Information..... 16 8.2 Typical Application 16

Layout Guidelines 21 9.2 Layout Example 21 10 器件和文档支持 22 10.1 文档支持 22 10.2 接收文档更新通知 22 10.3 社区资源...... 22

静电放电警告...... 22


Glossary 22

机械、封装和可订购信息......23

www.ti.com.cn

5 Pin Configuration and Functions

NC – No internal connection

Pin Functions

	PIN	1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
DIAGEN	2	I	Diagnostics enable, to avoid false open-circuit diagnostics during low-voltage operation
EN	1	I	Device enable
FAULT	6	I/O	One-fails–all-fail fault bus
GND	7	_	Ground
IN	13	I	Current input
NC	3, 5, 10, 12	_	Not connected
OUT	11	0	Constant-current output
PWM	4	I	PWM input
SSH	9	I	Single-LED short high-side reference
SSL	8	I	Single-LED short low-side reference
SUPPLY	14	I	Device supply voltage

6 Specifications

6.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
High-voltage input	DIAGEN, EN ,IN, PWM, SSH, SSL, SUPPLY	-0.3	45	V
High-voltage output	OUT	-0.3	45	V
Fault bus	FAULT	-0.3	22	V
IN to OUT	$V_{(IN)} - V_{(OUT)}$	-0.3	45	V
SUPPLY to IN	$V_{(SUPPLY)} - V_{(IN)}$	-0.3	1	V
Operating junction temper	rature, T _J	-40	150	°C
Storage temperature, Tstg		-40	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ZHCSH65B-OCTOBER 2017-REVISED JANUARY 2020

www.ti.com.cn

TRUMENTS

EXAS

6.2 ESD Ratings

TPS92610-Q1					UNIT	
	Electrostatic discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	All pins	±2000		
V _(ESD)		Charged-device model (CDM), per AEC Q100-011	All pins	±500	V	
			Corner pins (1, 7, 8, and 14)	±750		

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
SUPPLY	Device supply voltage	4.5	40	V
IN	Sense voltage	4.4	40	V
PWM	PWM input	0	40	V
DIAGEN	Diagnostics enable pin	0	40	V
OUT	Driver output	0	40	V
SSH	Single LED short high-side reference	0	5	V
SSL	Single LED short low-side reference	0	5	V
EN	Device enable	0	40	V
FAULT	Fault bus	0	7	V
T _A	Operating ambient temperature	-40	125	°C

6.4 Thermal Information

		TPS92610-Q1	
	THERMAL METRIC ⁽¹⁾	PWP (HTSSOP)	UNIT
		14 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	52.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	43.5	°C/W
R_{\thetaJB}	Junction-to-board thermal resistance	22	°C/W
ΨJT	Junction-to-top characterization parameter	1.6	°C/W
ΨЈВ	Junction-to-board characterization parameter	22.3	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	6.5	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

6.5 Electrical Characteristics

 $V_{(SUPPLY)} = 5 \text{ V} - 40 \text{ V}, T_J = -40^{\circ}\text{C}-150^{\circ}\text{C}$ unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BIAS						
V _(POR_rising)	Supply voltage POR rising threshold			3.2	4	V
V _(POR_falling)	Supply voltage POR falling threshold		2.2	3		V
I _(Shutdown)	Device shutdown current	EN = LOW		5	10	μA
I(Quiescent)	Device quiescent current	PWM = HIGH, EN = HIGH	0.1	0.2	0.25	mA
I _(FAULT)	Device current in fault mode	EN = HIGH, PWM = HIGH, FAULT externally pulled LOW	0.1	0.2	0.25	mA

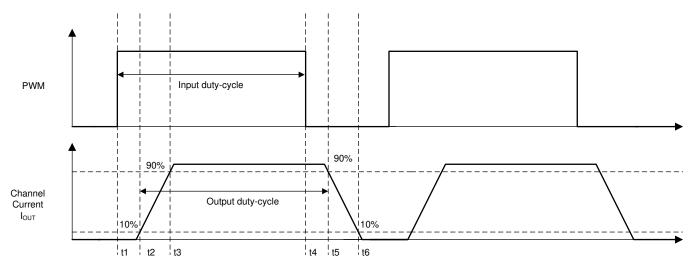
Electrical Characteristics (continued)

$V_{(SUPPLY)} =$	5 V – 40 V.	T ₁ = -40°C-150°C ι	unless otherwise noted
\bullet (SUPPLY) =	o • • • • • • • • • • • • • • • • • • •		

(SUPPLY) - O V	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LOGIC INPUTS	(DIAGEN, PWM, EN)	· · · ·				
VIL(DIAGEN)	Input logic-low voltage, DIAGEN		1.045	1.1	1.155	V
VIH(DIAGEN)	Input logic-high voltage, DIAGEN		1.14	1.2	1.26	V
VIL(PWM)	Input logic-low voltage, PWM		1.045	1.1	1.155	V
V _{IH(PWM)}	Input logic-high voltage, PWM		1.14	1.2	1.26	V
V _{IL(EN)}	Input logic-low voltage, EN				0.7	V
V _{IH(EN)}	Input logic-high voltage, EN		2			V
I _{PD(EN)}	EN pin pulldown current	V _(EN) = 12 V	1.5	3.3	4.5	μA
CONSTANT-CU	RRENT DRIVER					
I _(OUT)	Device output-current range	100% duty-cycle	4		450	mA
		$T_A = 25^{\circ}C, V_{(SUPPLY)} = 4.5 V \text{ to } 18 V$	94	98	102	
$V_{(CS_REG)}$	Sense-resistor regulation voltage	$T_A = -40^{\circ}$ C to 125°C, $V_{(SUPPLY)} = 4.5$ V to 18 V	93.5	98	102.5	mV
R _(SNS)	Sense-resistor range				24.5	Ω
		$V_{(CS_{REG})}$ voltage included, current setting = 10 mA		120	150	
N/	Voltage dropout from SUPPLY to	V _(CS_REG) voltage included, current setting = 70 mA		250	400	
V _(DROPOUT)	OUT	$V_{(CS_{REG})}$ voltage included, current setting = 150 mA		430	700	mV
		V _(CS_REG) voltage included, current setting = 300 mA		800	1300	
DIAGNOSTICS		· · ·				
$V_{(OPEN_th_rising)}$	LED open rising threshold, $V_{(\text{IN})} - V_{(\text{OUT})}$		70	100	135	mV
V _(OPEN_th_falling)	LED open falling threshold, $V_{(\text{IN})} - V_{(\text{OUT})}$		235	290	335	mV
V _(SG_th_falling)	Channel output V _(OUT) short-to- ground falling threshold		1.14	1.2	1.26	V
$V_{(SG_th_rising)}$	Channel output V _(OUT) short-to- ground rising threshold		0.82	0.865	0.91	V
I _(Retry)	Channel output retry current	$V_{(OUT)} = 0 V$	0.64	1.08	1.528	mA
V _(SSH_th)	Single-LED short-detection high- side threshold	$V_{(SSL)} - V_{(SSH)}$	140	190	235	mV
$V_{(SSL_th)}$	Single-LED short-detection low- side threshold		0.8	0.86	0.91	V
FAULT		I				
VIL(FAULT)	Logic-input low threshold				0.7	V
VIH(FAULT)	Logic-input high threshold		2			V
VOL(FAULT)	Logic-output low voltage	With 500-µA external pullup			0.4	V
V _{OH(FAULT)}	Logic-output high voltage	With 1- μ A external pulldown, V _(SUPPLY) = 12 V	5		7	V
I(FAULT_pulldown)	FAULT internal pulldown current		500	750	1000	μA
(FAULT_pullup)	FAULT internal pullup current		5	8	12	μA
I DERIVAL PRO						
T _(TSD)	Thermal shutdown junction temperature threshold		167	172	178	°C
T _(TSD_HYS)	Thermal shutdown junction temperature hysteresis			15		°C

TPS92610-Q1

ZHCSH65B-OCTOBER 2017-REVISED JANUARY 2020

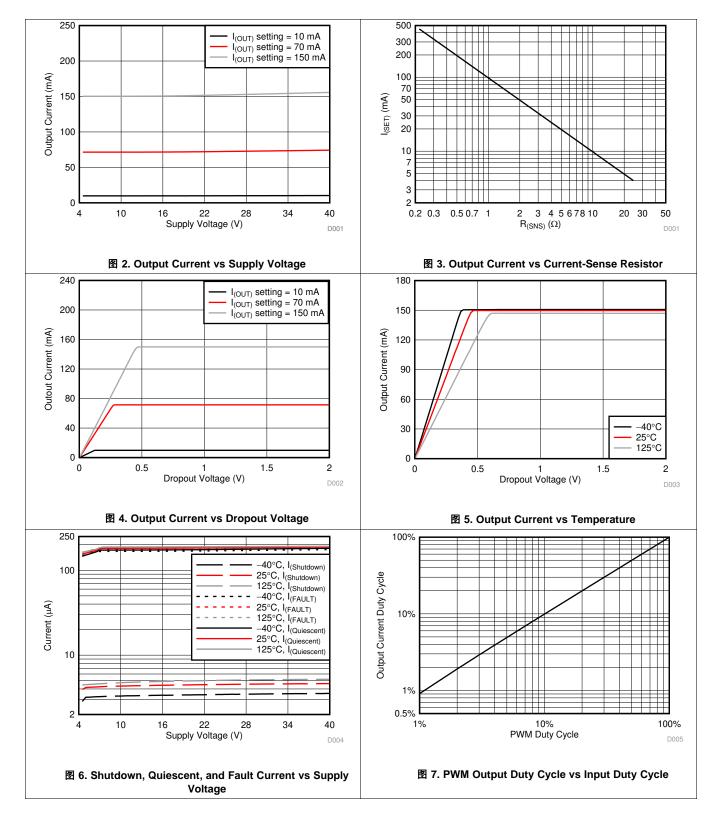

www.ti.com.cn

NSTRUMENTS

ÈXAS

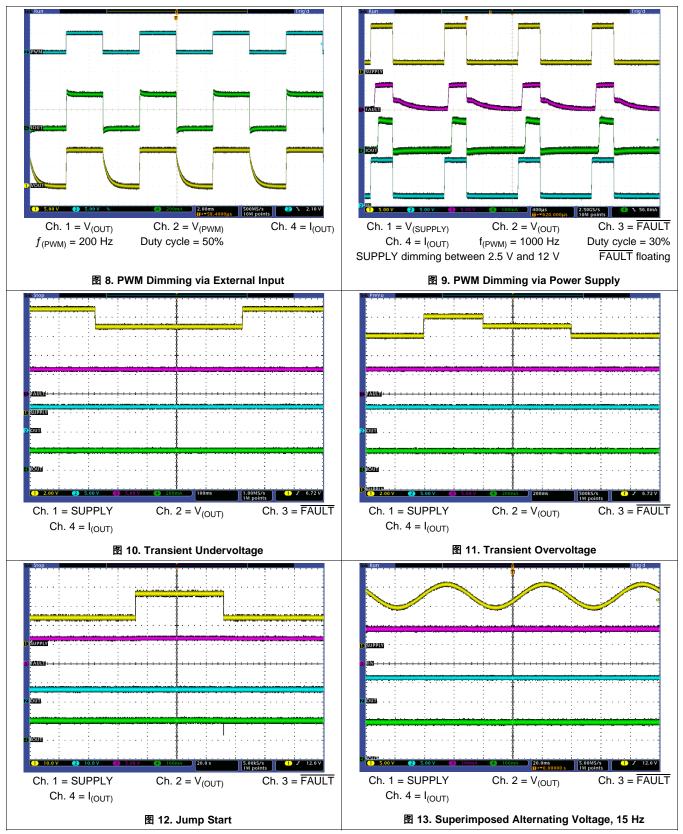
6.6 Timing Requirements

		MIN	NOM	MAX	UNIT
t _(PWM_delay_rising)	PWM rising edge delay, 50% PWM voltage to 10% of output current, t2 – t1 as shown in 图 1	10	17	25	μs
t _(PWM_delay_falling)	PWM falling edge delay, 50% PWM voltage to 90% of output current, t5 – t4 as shown in 🔀 1	15	21	30	μs
t _(TSD_deg)	Thermal overtemperature deglitch time		60		μs
t(DEVICE_STARTUP)	EN rising edge to 10% output current at 150-mA set current and 12-V supply voltage		100	150	μs
t _(OPEN_deg)	LED open-circuit fault-deglitch time	80	125	175	μs
t _(SG_deg)	Channel-output short-to-ground detection deglitch time	80	125	175	μs
t _(SS_deg)	Single-LED short-detection deglitch time	80	125	175	μs
t _(Recover_deg)	Recovery deglitch time		16		μs

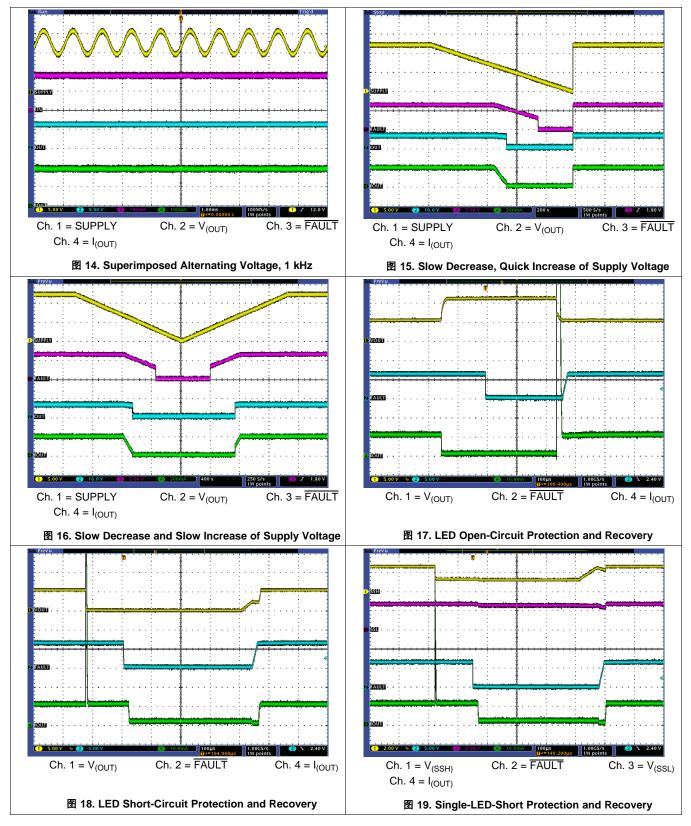


Copyright © 2017, Texas Instruments Incorporated

6.7 Typical Characteristics



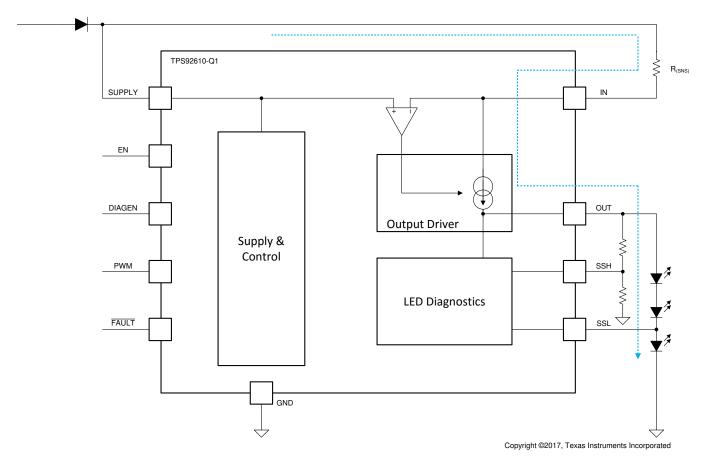
ZHCSH65B-OCTOBER 2017-REVISED JANUARY 2020


www.ti.com.cn

Typical Characteristics (接下页)

Typical Characteristics (接下页)

TEXAS INSTRUMENTS


7 Detailed Description

7.1 Overview

The TPS92610-Q1 device is one of a family of single-channel linear LED drivers. The family provides a simple solution for automotive LED applications. Different package options in the family provide a variety of current ranges and diagnostic options. The TPS92610-Q1 device in an HTSSOP-14 package supports LED open-circuit detection and short-to-ground detection. Unique single-LED-short detection in the TPS92610-Q1 device can help diagnose if one LED within a string is shorted. A one-fails–all-fail fault bus allows the TPS92610-Q1 device to be used together with the TPS9261x-Q1, TPS9263x-Q1, and TPS9283x-Q1 families.

The output current can be set by an external $R_{(SNS)}$ resistor. Current flows from the supply through the $R_{(SNS)}$ resistor into the internal current source and to the LEDs.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Device Bias

7.3.1.1 Power-On Reset (POR)

The TPS92610-Q1 device has an internal power-on-reset (POR) function. When power is applied to SUPPLY, the internal POR holds the device in the reset state until $V_{(SUPPLY)}$ is above $V_{(POR \ rising)}$.

7.3.1.2 Low-Quiescent-Current Fault Mode

The TPS92610-Q1 device consumes minimal quiescent current when its FAULT pin is externally pulled LOW. At the same time, the device shuts down the output driver.

Feature Description (接下页)

If device detects an internal fault, it pulls the FAULT output LOW with constant current to signal a fault alarm on the one-fails–all-fail fault bus.

7.3.2 Constant-Current Driver

The TPS92610-Q1 device has a high-side constant-current integrated driver. The device senses channel current with an external high-side current-sense resistor, $R_{(SNS)}$. A current regulation loop drives an internal transistor and regulates the current-sense voltage at the current-sense resistor to $V_{(CS_REG)}$. When the output driver is in regulation, the output current can be set using the following equation.

$$I_{(OUT)} = \frac{V_{(CS_REG)}}{R_{(SNS)}}$$

(1)

7.3.3 Device Enable

The TPS92610-Q1 device has an enable input, EN. When EN is low, the device is in sleep mode with ultralow quiescent current $I_{(Shutdown)}$. This low current helps to save system-level current consumption in applications where battery voltage directly connects to the device without high-side switches.

7.3.4 PWM Dimming

The TPS92610-Q1 device supports PWM output dimming via PWM input dimming and supply dimming.

The PWM input functions as an enable for the output current. When the PWM input is low, the device also disables the diagnostic features.

Supply dimming applies PWM dimming on the power input. For an accurate PWM threshold, TI recommends using a resistor divider on the PWM input to set the PWM threshold higher than V_(POR rising).

7.3.5 Diagnostics

The TPS92610-Q1 device provides advanced diagnostics and fault protection features for automotive exterior lighting systems. The device is able to detect and protect from LED string short-to-GND, LED string open-circuit, and single-LED-short scenarios. It also supports a one-fails–all-fail fault bus that could flexibly fit different legislative requirements.

7.3.5.1 DIAGEN

The TPS92610-Q1 device supports the DIAGEN pin with an accurate threshold to disable the open-circuit and single-LED-short diagnostic functions. With a resistor divider, the DIAGEN pin can be used to sense SUPPLY voltage with a resistor-programmable threshold. With the DIAGEN feature, the device is able to avoid false error reports due to low-dropout voltage and to drive maximum current in low-dropout mode when the input voltage is not high enough for current regulation.

When $V_{(DIAGEN)}$ is higher than the threshold $V_{IH(DIAGEN)}$, the device enables LED open-circuit and single-LED-short diagnostics. When $V_{(DIAGEN)}$ is lower than the threshold $V_{IL(DIAGEN)}$, the device disables LED-open-circuit and single-LED-short diagnostics.

7.3.5.2 Low-Dropout Mode

When the supply voltage drops, the TPS92610-Q1 device tries to regulate current by driving internal transistors in the linear region, also known as low-dropout mode, because the voltage across the sense resistor fails to reach the regulation target.

In low-dropout mode, the open-circuit diagnostic must be disabled. Otherwise, the device treats the low-dropout mode as an open-circuit fault. The DIAGEN pin is used to avoid false diagnostics on the output channel due to low supply voltage.

When the DIAGEN voltage is low, single-LED short- and open-circuit detection is ignored. When the DIAGEN voltage is high, single-LED short- and open-circuit detection return to normal operation.

In dropout mode, a diode in parallel with the sense resistor is recommended to clamp the voltage between SUPPLY and IN (across the sense resistor) in case of a large current pulse during recovery.

Feature Description (接下页)

7.3.5.3 Open-Circuit Detection

The TPS92610-Q1 device has LED open-circuit detection. Open-circuit detection monitors the output voltage when the channel is in the ON state. Open-circuit detection is only enabled when DIAGEN is HIGH. A short-to-battery fault is also detected as an LED open-circuit fault.

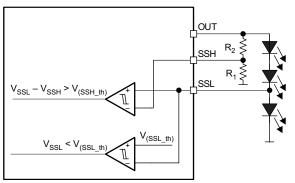
The device monitors dropout-voltage differences between the IN and OUT pins when PWM is HIGH. The voltage difference $V_{(IN)} - V_{(OUT)}$ is compared with the internal reference voltage $V_{(OPEN_th_rising)}$ to detect an LED open-circuit failure. If $V_{(IN)} - V_{(OUT)}$ falls below the $V_{(OPEN_th_rising)}$ voltage longer than the deglitch time of $t_{(OPEN_deg)}$, the device asserts an open-circuit fault. Once an LED open-circuit failure is detected, the constant-current source pulls the fault bus down. During the deglitch time period, if $V_{(IN)} - V_{(OUT)}$ rises above $V_{(OPEN_th_falling)}$, the deglitch time ris reset.

When the device is in auto-retry, the device keeps the output ON to retry if the PWM input is HIGH; the device sources a small current $I_{(retry)}$ from IN to OUT when PWM input is LOW. In either scenario, once a faulty channel recovers, the device resumes normal operation and releases the FAULT pulldown.

7.3.5.4 Short-to-GND Detection

The TPS92610-Q1 device has LED short-to-GND detection. Short-to-GND detection monitors the output voltage when the channel is in the ON state. Once a short-to-GND LED failure is detected, the device turns off the output channel and retries automatically, ignoring the PWM input. If the retry mechanism detects removal of the LED short-to-GND fault, the device resumes normal operation.

The device monitors the V_(OUT) voltage and compares it with the internal reference voltage to detect a short-to-GND failure. If V_(OUT) falls below V_(SG_th_rising) longer than the deglitch time of t_(SG_deg), the device asserts the short-to-GND fault and pulls FAULT low. During the deglitching time period, if V_(OUT) rises above V_(SG_th_falling), the timer is reset.


Once the device has asserted a short-to-GND fault, the device turns OFF the output channel and retries automatically with a small current. When retrying, the device sources a small current $I_{(retry)}$ from IN to OUT to pull up the LED loads continuously. Once auto-retry detects output voltage rising above $V_{(SG_th_falling)}$, it clears the short-to-GND fault and resumes normal operation.

7.3.5.5 Single-LED-Short Detection

The TPS92610-Q1 device supports single-LED-short detection by using the SSH and SSL pins. In case there is no need of this feature, SSH and SSL must be tied together to a resistor divider to avoid false alarms as shown in 🛛 21.

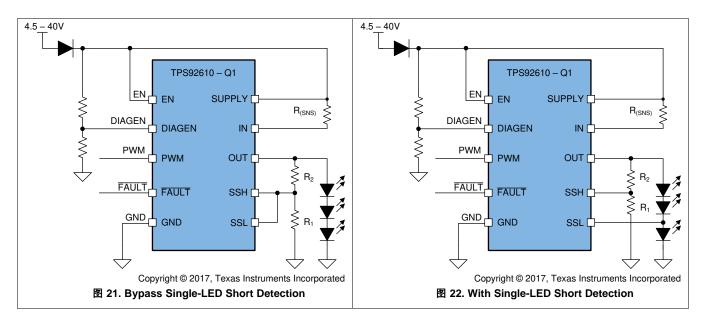
The TPS92610-Q1 device has integrated a precision comparator to monitor a single-LED-short failure. The comparator uses the bottom LED forward voltage $V_{(SSL)}$ as a reference and monitors the string voltage $V_{(OUT)}$ with resistor divider R_1 and R_2 at $V_{(SSH)}$.

If a single-LED short is detected, the device turns off the output channel and retries with a small current $I_{(RETRY)}$. Once the fault is removed, the device automatically resumes normal operation.

Copyright © 2017, Texas Instruments Incorporated

图 20. Single-LED Short Detection

Feature Description (接下页)


Use the following equation to calculate the ratio of R1 and R2.

 $R_2 = (No. of LEDs - 1) \times R_1$

By using the resistor divider with values calculated in $\Delta \pm 2$, the voltages of SSH and SSL are then equal to the forward voltage of a single LED. With built-in comparators, the device can report failure if any of the LEDs is shorted within this string.

An internal resistor string on SSL and resistors R_1 and R_2 draw current from OUT. TI recommends total resistance of R_1 and R_2 greater than 100-k Ω , so the current has negligible effect on LED luminance.

Even within the same batch of LEDs, the LED forward voltage may vary from one to another. Taking account of forward voltage differences is necessary to avoid any false faults.

7.3.5.6 Overtemperature Protection

The TPS92610-Q1 device monitors device junction temperature. When the junction temperature reaches thermal shutdown threshold $T_{(TSD)}$, the output shuts down. Once the junction temperature falls below $T_{(TSD)} - T_{(TSD_HYS)}$, the device resumes normal operation. During overtemperature protection, the FAULT bus is pulled low.

7.3.6 FAULT Bus Output With One-Fails–All-Fail

The TPS92610-Q1 device has a FAULT bus for diagnostics output. In normal operation, FAULT is weakly pulled up by an internal pullup current source $I_{(FAULT_pullup)}$ higher than $V_{OH(FAULT)}$. If any fault scenario occurs, the FAULT bus is strongly pulled low by the internal pulldown current source $I_{(FAULT_pulldown)}$. Once $V_{(FAULT)}$ falls below $V_{IL(FAULT)}$, all outputs shut down for protection. The faulty channel keeps retrying until the fault scenario is removed.

If FAULT is externally pulled up with a current larger than I_(FAULT_pulldown), the one-fails–all-fail function is disabled and only the faulty channel is turned off.

The FAULT bus is able to support up to 15 pieces of TPS9261x-Q1, TPS9263x-Q1, or TPS9283x-Q1 devices.

TPS92610-Q1

ZHCSH65B-OCTOBER 2017-REVISED JANUARY 2020

13

Feature Description (接下页)

FAULT BUS STATUS	FAULT TYPE	DETECTION MECHANISM	CHANNEL STATE	DEGLITCH TIME	FAULT BUS	FAULT HANDLING ROUTINE	FAULT RECOVERY
FAULT floating or externally pulled up	Open-circuit or short-to-supply	V _(IN) - V _(OUT) < V _(OPEN_th_rising)	On	^t (OPEN_deg)	Constant- current pulldown	Device works normally with FAULT pin pulled low. Device sources I _(retry) current when PWM is LOW. Device keeps output normal when PWM is HIGH.	Auto recover
	Short-to-ground	V _(OUT) < V _(SG_th_rising)	On	t _(SG_deg)	Constant- current pulldown	Device turns output off and retries with constant current I _(retry) , ignoring the PWM input.	Auto recover
	Single-LED short	$ \begin{array}{l} V_{(SSL)} - V_{(SSH)} \\ > V_{(SS_th)} \text{ or } \\ V_{(SSL)} < \\ V_{(SSL_th)} \end{array} $	On	t _(SS_deg)	Constant- current pulldown	Device turns output off and retry with constant current I _(retry) , ignoring the PWM input.	Auto recover
	Overtemperatur e	$T_J > T_{(TSD)}$	On or off	t _(TSD_deg)	Constant- current pulldown	Devices turns output off.	Auto recover
Externally pulled low			D	evice turns output	off		

表 1. Fault Table With DIAGEN = HIGH

表 2. Fault Table With DIAGEN = LOW

FAULT BUS STATUS	FAULT TYPE	DETECTION MECHANISM	CHANNEL STATE	DEGLITCH TIME	FAULT BUS	FAULT HANDLING ROUTINE	FAULT RECOVERY					
FAULT floating or externally pulled up	Open-circuit or short-to-supply	Ignored										
	Short-to-ground	V _{OUT} < V _(SG_th_rising)	On	t(SG_deg)	Constant- current pulldown	Device turns output off and retries with constant current I _(retry) , ignoring the PWM input.	Auto recover					
	Single-LED short	Ignored										
	Overtemperatur e	$\label{eq:tsdef} T_{J} > T_{(TSD)} \qquad \mbox{On or off} \qquad t_{(TSD_deg)} \qquad \mbox{Constant-} \\ current \\ pulldown \qquad \mbox{Output off.} \qquad \mbox{Auto}$										
Externally pulled low			De	evice turns output	off							

7.4 Device Functional Modes

7.4.1 Undervoltage Lockout, V_(SUPPLY)<V_(POR_rising)

When the device is in undervoltage lockout mode, the TPS92610-Q1 device disables all functions until the supply rises above the UVLO-rising threshold.

Device Functional Modes (接下页)

7.4.2 Normal Operation V_(SUPPLY) ≥ 4.5 V

The device drives an LED string in normal operation. With enough voltage drop across SUPPLY and OUT, the device is able to drive the output in constant-current mode.

7.4.3 Low-Voltage Dropout

When the device drives an LED string in low-dropout mode, if the voltage drop is less than open-circuit detection threshold, the device may report a false open-circuit fault. Set the DIAGEN threshold higher than LED string voltage to avoid a false open-circuit detection.

7.4.4 Fault Mode

When the device detects an open circuit or a shorted LED, the device tries to pull down the \overline{FAULT} pin with a constant current. If the FAULT bus is pulled down, the device switches to fault mode and consumes a fault current of $I_{(FAULT)}$.

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

In automotive lighting applications, thermal performance and LED diagnostics are always design challenges for linear LED drivers.

The TPS92610-Q1 device is capable of detecting LED open-circuit, LED short-circuit and single-LED short failures. To increase current-driving capability, the TPS92610-Q1 device supports using an external a parallel resistor to help dissipate heat as shown in the following application, 🕅 25. This technique provides the low-cost solution of using external resistors to dissipate heat due to high input voltage, and still keeps high accuracy of the total current output. Note that the one-fails–all-fail feature is not supported by this topology.

8.2 Typical Application

8.2.1 Single-Channel LED Driver With Full Diagnostics

The TPS92610-Q1 device is a potential choice for LED driver for applications with diagnostics requirements. In many cases, single-LED short diagnostics are mandatory for applications such as sequential turn indicators.

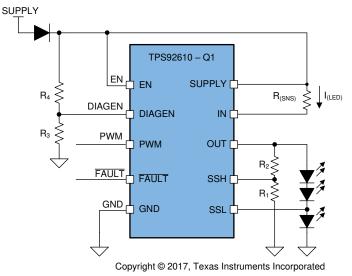


图 23. Typical Application Diagram

8.2.1.1 Design Requirements

Input voltage ranges from 9 V to 16 V, LED maximum forward voltage V_{fmax} = 2.5 V, minimum forward voltage V_{fmin} = 1.9 V, current $I_{(LED)}$ = 50 mA.

8.2.1.2 Detailed Design Procedure

Current setting by sense resistor is as described in公式 1.

$$\mathsf{R}_{(\mathsf{SNS})} = \frac{\mathsf{R}_{(\mathsf{CS}_\mathsf{REG})}}{\mathsf{I}_{(\mathsf{LED})}} = 1.96 \ \Omega$$

LED-string maximum forward voltage = $3 \times 2.5 \text{ V} = 7.5 \text{ V}$.

Typical Application (接下页)

With 400-mV headroom reserved for the TPS92610-Q1 device between SUPPLY and OUT, the TPS92610-Q1 device must disable open-circuit detection when the supply voltage is below 7.9 V by using the DIAGEN feature.

$$V_{IL(DIAG,min)} = \frac{7.9 \times R_3}{R_3 + R_4}$$

Set $R_4 = 10 \text{ k}\Omega$, $R_3 = 65.6 \text{ k}\Omega$.

The single-LED short-detection resistor ratio can be calculated as follows.

$$\frac{\mathsf{R}_2}{\mathsf{R}_1} = 2 \tag{5}$$

If $R_1 = 50 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$

Total device power consumption at worst case is with 16-V input and LEDs at minimal froward voltage.

$$P_{(Max)} = (V_{(SUPPLY)} - V_{(CS_REG)} - V_{(OUT)}) \times I_{(LED)} + V_{(SUPPLY)} \times I_{(Quiescent)}$$
$$= (16 - 3 \times 1.9 - 0.098) \times 0.05 + 16 \times 0.00025 = 0.5141 W$$

8.2.1.3 Application Curve

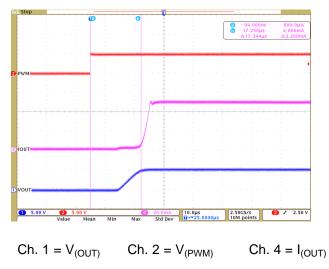


图 24. Output Current With PWM Input

(4)

(6)

Typical Application (接下页)

8.2.2 Single-Channel LED Driver With Heat Sharing

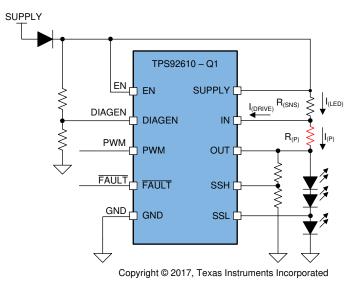


图 25. Heat Sharing With a Parallel Resistor

8.2.2.1 Design Requirements

Input voltage range is 9 V to 16 V, LED maximum forward voltage V_{fmax} = 2.5 V, minimum forward voltage V_{fmin} = 1.9 V, current $I_{(LED)}$ = 200 mA.

8.2.2.2 Detailed Design Procedure

Using parallel resistors, thermal performance can be improved by balancing current between the TPS92610-Q1 device and the external resistors as follows. As the current-sense resistor controls the total LED string current, the LED string current $I_{(LED)}$ is set by $V_{(CS_REG)}$ / $R_{(SNS)}$, while the TPS92610-Q1 current $I_{(DRIVE)}$ and parallel resistor current $I_{(P)}$ combine to the total current.

Note that the parallel resistor path cannot be shut down by PWM or fault protection. If PWM or one-fails–all-fail feature is required, TI recommends an application circuit as described in Single-Channel LED Driver With Full Diagnostics.

In linear LED driver applications, the input voltage variation contributes to most of the thermal concerns. The resistor current, as indicated by Ohm's law, depends on the voltage across the external resistors. The TPS92610-Q1 controls the driver current $I_{(DRIVE)}$ to attain the desired total current. If $I_{(P)}$ increases, the TPS92610-Q1 device decreases $I_{(DRIVE)}$ to compensate, and vice versa.

While in low-dropout mode, the voltage across the $R_{(P)}$ resistor may be close to zero, so that almost no current can flow through the external resistor $R_{(P)}$.

When the input voltage is high, the parallel-resistor current $I_{(P)}$ is proportional to the voltage across the parallel resistor $R_{(P)}$. The parallel resistor $R_{(P)}$ takes the majority of the total string current, generating maximum heat. The device must prevent current from draining out to ensure current regulation capability.

In this case, the parallel resistor value must be carefully calculated to ensure that 1) enough output current is achieved in low-dropout mode, 2) thermal dissipation for both the TPS92610-Q1 device and the resistor is within their thermal dissipation limits, and 3) device current in the high-voltage mode is above the minimal output-current requirement.

Current setting by sense resistor is as described in 公式 7.

Typical Application (接下页)

 $R_{(SNS)} = \frac{V_{(CS_REG)}}{I_{(LED)}} = 0.49 \Omega$

(7)

LED-string maximum forward voltage = $3 \times 2.5 \text{ V} = 7.5 \text{ V}$.

Parallel resistor $R_{(P)}$ is recommended to consume 50% of the total current at maximum supply voltage.

$$\mathsf{R}_{(\mathsf{P})} = \frac{\mathsf{V}_{(\mathsf{SUPPLY})} - \mathsf{V}_{(\mathsf{CS}_\mathsf{REG})} - \mathsf{V}_{(\mathsf{OUT})}}{0.5 \times \mathsf{I}_{(\mathsf{LED})}} = \frac{16 - 3 \times 1.9 - 0.098}{0.5 \times 0.2} \approx 100\Omega$$
(8)

Total device power consumption is maximum at 16 V input and LED minimal forward voltage.

$$P_{(DEV_MAX)} = (V_{(SUPPLY)} - V_{(CS_REG)} - V_{(OUT)}) \times \left(I_{(LED)} - \frac{V_{(SUPPLY)} - V_{(CS_REG)} - V_{(OUT)}}{R_{(P)}}\right) + V_{(SUPPLY)} \times I_{(Quiescent)} = (16 - 3 \times 1.9 - 0.098) \times 0.1 + 16 \times 0.00025 = 1.0242 \text{ W}$$

(9)

Resistor R_(P) maximum power consumption is at 16-V input.

$$P_{(\text{RP}_M\text{AX})} = \frac{\left(V_{(\text{SUPPLY})} - V_{(\text{CS}_R\text{EG})} - V_{(\text{OUT})}\right)^2}{R_{(\text{P})}} = \frac{\left(16 - 3 \times 1.9 - 0.098\right)^2}{100} = 1.04\text{W}$$
(10)

Users must consider the maximum power of both of the device and the parallel resistor.

Typical Application (接下页)

8.2.2.3 Application Curve

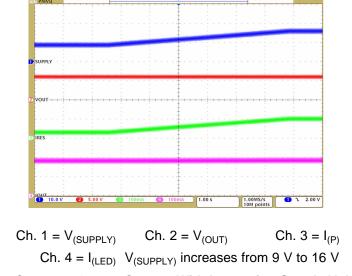


图 26. Constant Output Current With Increasing Supply Voltage

9 Layout

9.1 Layout Guidelines

Thermal dissipation is the primary consideration for TPS92610-Q1 layout. TI recommends good thermal dissipation area connected to thermal pads with thermal vias.

9.2 Layout Example

SUPPLY											
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
		0	TPS9	2610-Q1	1						
		1 EN			UPPLY	14	2				
		2 DIA	GEN C		IN	13	Ş				
		3 NC			NC	12			00		00
		4 PW	мС		OUT	11			$\bigcirc \bigcirc$	₩ 🌾	$\circ \circ$
		5 NC			NC	10 /	w w	v	00	Τ'	$\circ \circ$
		6 FAU			SSH	9			00	₩4	00
		7 GN	D		SSL	8			00	+-/	$\cap \cap$
GND									00	₩4	00
										+/	
0	0	0	0	\bigcirc	\bigcirc	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Copyright © 2017, Texas Instruments Incorporated

图 27. TPS92610-Q1 Example Layout Diagram

INSTRUMENTS

Texas

www.ti.com.cn

10 器件和文档支持

10.1 文档支持

10.1.1 相关文档

请参阅如下相关文档:

- 《TPS92610-Q1 EVM 用户指南》
- 《如何在汽车外部照明应用中计算 TPS92630-Q1 最大输出 电流》
- 《适用于中央高位刹车灯 (CHMSL) 的汽车线性 LED 驱动器参考设计》
- 《用户指南:适用于中央高位刹车灯 (CHMSL) 的汽车线性 LED 驱动器参考设计》

10.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

10.3 社区资源

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 商标

PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

10.5 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

10.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

11 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是适用于指定器件的最新数据。数据如有变更, 恕不另行通知, 且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航面板。

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPS92610QPWPRQ1	ACTIVE	HTSSOP	PWP	14	2000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	TP92610	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

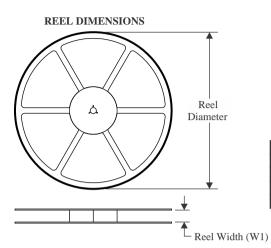
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

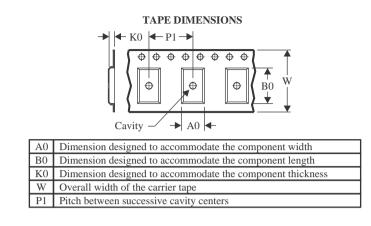
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

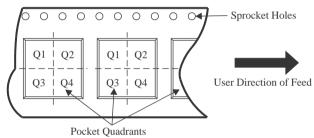
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

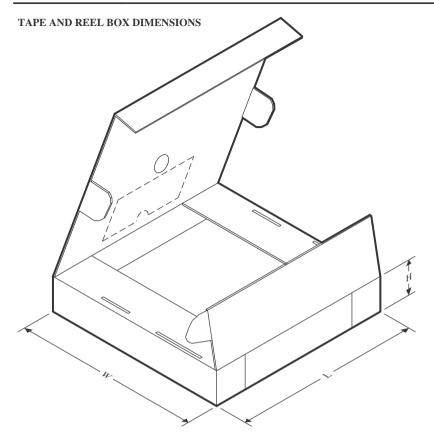

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS92610QPWPRQ1	HTSSOP	PWP	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

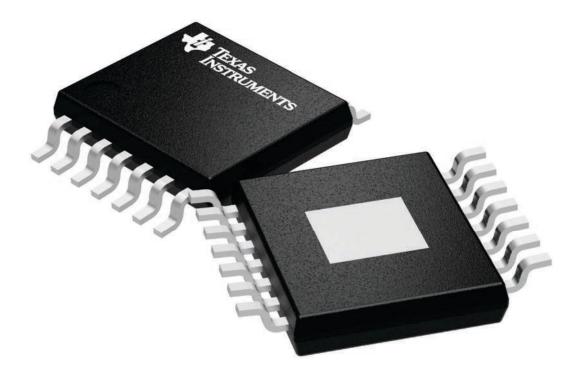
PACKAGE MATERIALS INFORMATION

5-Dec-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS92610QPWPRQ1	HTSSOP	PWP	14	2000	350.0	350.0	43.0

PWP 14


GENERIC PACKAGE VIEW

PowerPAD TSSOP - 1.2 mm max height

4.4 x 5.0, 0.65 mm pitch

PLASTIC SMALL OUTLINE

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司