

# 带有自动方向感测的 2 位双向电压电平转换器

查询样品: TXB0302

### 特性

- 完全对称电源电压
  - A 端口上0.9V 至3.6V 和0.9V 至3.6V
- V<sub>CC</sub> 隔离特性—如果任何一个 V<sub>CC</sub> 输入在接地 (GND) 上,所有输出在高阻抗状态
- 以 V<sub>CCA</sub>为基准的输出使能 (OE) 输入电路
- 低功耗,最大值 5µA Icc
- loff 支持部分断电模式运行
- 锁断性能超过 **100mA** (符合 **JESD 78 Class II** 规 范的要求)
- 静电放电 (ESD) 保护性能超过 JESD 22 规范要求
  - 4000V 人体模型 (A114-A)
  - 1000V 充电器件模型 (C101)

#### 说明

这个 2 位非反向转换器使用两个独立的可配置电源 轨。 A 端口被设计用于跟踪 VCCA。 VCCA 接受从 0.9V 至 3.6V 间的任一电源电压值。B 端口设计用于跟踪 VCCB。 VCCB 接受从 0.9V 至 3.6V 间的任一电源电压值。这可实现 1V,1.2V,1.5V,1.8V,2.5V 和 3.3V 电压节点间的低压双向转换。 对于 TXB0302,当输出使能端 (OE) 输入为低电平时,所有输出均被置于高阻抗状态。 为了确保加电或断电期间的高阻抗状态,OE 应该通过一个下拉电阻器接在 GND 上;此电阻器的最小值由驱动器电流供源能力决定。 TXB0302被设计用于实现 VCCA 对 OE 输入电路供电。 该器件完全符合使用 I<sub>关闭</sub>的部分断电应用的规范要求。 I<sub>关闭</sub>电路禁用输出,从而可防止其断电时破坏性电流从该器件回流。

#### DQM 封装 (顶视图)

| $V_{CCA}$ |     | [8        | $V_{CCB}$ |
|-----------|-----|-----------|-----------|
| A1        | 2_i | <u>[7</u> | B1        |
| A2        | 3   | 6         | B2        |
| GND       | 4   | 5         | OE        |

- A. 不需要在逻辑 I/O 的两侧都安装上拉电阻器。
- B. 如果需要上拉电阻器或者下拉电阻器的话,电阻器的值必须超过 20kΩ。
- C. 20kΩ 是建议的安全值,如果用户能够接受更高 Vol 或者更低 Voh 的话,也允许使用电阻值更小的上拉或者下拉电阻器,粗略的估算值为 Vol=Vccout x 1.5k/(1.5k+Rpu),而 Voh=Vccount x Rdw/(1.5k+Rdw)。
- D. 如果需要上拉电阻器,请参考 TXS0102 或者与 TI 联系。
- E. 更多信息,请参考应用注释释(文献号: SCEA043)。

### 订购信息(1)

| T <sub>A</sub> | 封装 <sup>(2)</sup>             | 可订购部件号      | 正面标记 |
|----------------|-------------------------------|-------------|------|
| -40°C 至 85°C   | DQM – 微型四方扁平无引线<br>(MicroQFN) | TXB0302DQMR | 77A  |

- 1) 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者登录 TI 的网站 www.ti.com.
- (2) 封装图样、热数据和符号可登录 www.ti.com/packaging 获取。



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.





These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

#### PIN DESCRIPTION

| PIN NO. | NAME    | FUNCTION                                                                                |
|---------|---------|-----------------------------------------------------------------------------------------|
| DQM     | TXB0302 | FUNCTION                                                                                |
| 1       | VCCA    | A-port supply voltage 0.9 V ≤ V <sub>CCA</sub> ≤ 3.6 V                                  |
| 2       | A1      | Input/output 1. Referenced to V <sub>CCA</sub> .                                        |
| 3       | A2      | Input/output 2. Referenced to V <sub>CCA</sub> .                                        |
| 4       | GND     | Ground                                                                                  |
| 5       | OE      | 3-state output-mode enable. Pull OE (TXB0302) low to place all outputs in 3-state mode. |
| 6       | B2      | Input/output 2. Referenced to V <sub>CCB</sub> .                                        |
| 7       | B1      | Input/output 1. Referenced to V <sub>CCB</sub> .                                        |
| 8       | VCCB    | B-port supply voltage 0.9 V ≤ V <sub>CCB</sub> ≤ 3.6 V.                                 |

## **ABSOLUTE MAXIMUM RATINGS**(1)

over operating free-air temperature range (unless otherwise noted)

|                  | ·                                                               |        | MIN  | MAX        | UNIT |
|------------------|-----------------------------------------------------------------|--------|------|------------|------|
| $V_{CCA}$        | O and beautiful and an and                                      |        | -0.5 | 4.6        | V    |
| V <sub>CCB</sub> | Supply voltage range                                            |        | -0.5 | 4.6        |      |
| .,               | land desired and an analysis                                    | A port | -0.5 | 4.6        | V    |
| V <sub>I</sub> I | Input voltage range                                             | B port | -0.5 | 6.5        |      |
|                  | Voltage range applied to any output in the high-impedance or    | A port | -0.5 | 4.6        | V    |
| Vo               | power-off state                                                 | B port | -0.5 | 6.5        |      |
|                  | Voltage range applied to any output in the high or low state(2) | A port | -0.5 | VCCA + 0.5 | V    |
| Vo               |                                                                 | B port | -0.5 | VCCB + 0.5 |      |
| I <sub>IK</sub>  | Input clamp current                                             | VI < 0 |      | -50        | mA   |
| lok              | Output clamp current                                            | VO < 0 |      | -50        | mA   |
| lo               | Continuous output current                                       |        |      | ±50        | mA   |
|                  | Continuous current through VCCA, VCCB, or GND                   |        |      | ±100       | mA   |
| T <sub>stg</sub> | Storage temperature range                                       |        | -65  | 150        | °C   |

<sup>(1)</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

## THERMAL IMPEDANCE RATINGS(1)(2)

|               |                           | TXB0302 |      |
|---------------|---------------------------|---------|------|
|               | THERMAL METRIC            | DQM     | UNIT |
|               |                           | 8 PINS  |      |
| $\theta_{JA}$ | Package thermal impedance | 259     | °C/W |

<sup>(1)</sup> The package thermal impedance is calculated in accordance with JESD 51-7.

<sup>(2)</sup> The package thermal impedance is calculated in accordance with JESD 51-5.



## **RECOMMENDED OPERATING CONDITIONS**(1)

|                 |                                        |                | VCCA           | VCCB           | MIN                                    | MAX                                    | UNIT |
|-----------------|----------------------------------------|----------------|----------------|----------------|----------------------------------------|----------------------------------------|------|
| $V_{CCA}$       | Cupply yeltogo                         |                |                |                | 0.9                                    | 3.6                                    | V    |
| $V_{CCB}$       | Supply voltage                         | Supply voltage |                |                | 0.9                                    | 3.6                                    | V    |
| V <sub>IH</sub> | High-level input voltage               | Data inputs    | 0.9 V to 3.6 V | 0.9 V to 3.6 V | V <sub>CCI</sub> <sup>(2)</sup> × 0.65 | V <sub>CCI</sub> <sup>(2)</sup>        | V    |
|                 |                                        | OE             | 0.9 V to 3.6 V | 0.9 V to 3.6 V | V <sub>CCA</sub> × 0.65                | 3.6                                    |      |
| 1/              | Low level input voltage                | Data inputs    | 0.9 V to 3.6 V | 0.9 V to 3.6 V | 0                                      | V <sub>CCI</sub> <sup>(2)</sup> × 0.35 | V    |
| V <sub>IL</sub> | Low-level input voltage                | OE             | 0.9 V to 3.6 V | 0.9 V to 3.6 V | 0                                      | $V_{CCA} \times 0.35$                  | V    |
| \/              | Voltage range applied to any output in | A-port         | 0.9 V to 3.6 V | 0.9 V to 3.6 V | 0                                      | 3.6                                    | V    |
| Vo              | the high-impedance or power-off state  | B-port         | 0.9 V to 3.6 V | 0.9 V to 3.6 V | 0                                      | 3.6                                    | V    |
| ۸4/۸            | land the solition wine on fall note    | A-port inputs  | 0.9 V to 3.6 V | 0.9 V to 3.6 V |                                        | 40                                     | 0/   |
| Δt/Δv           | Input transition rise or fall rate     | B-port inputs  | 0.9 V to 3.6 V | 0.9 V to 3.6 V |                                        | 40                                     | ns/V |
| T <sub>A</sub>  | Operating free-air temperature         |                |                |                | -40                                    | 85                                     | °C   |

 <sup>(1)</sup> The A and B sides of an unused data I/O pair must be held in the same state, i.e., both at V<sub>CCI</sub> or both at GND.
 (2) V<sub>CCI</sub> is the supply voltage associated with the input port.

### **ELECTRICAL CHARACTERISTICS**

|                    | PARAMETER        | TEST CONDITIONS                                              | VCCA           | VCCB           |     | T <sub>A</sub> = 25°C | ;          | −40°C to | 85°C | UNIT |
|--------------------|------------------|--------------------------------------------------------------|----------------|----------------|-----|-----------------------|------------|----------|------|------|
|                    | PARAMETER        | TEST CONDITIONS                                              | VCCA           | VCCB           | MIN | TYP                   | MAX        | MIN      | MAX  | UNII |
| V <sub>OHA</sub>   |                  | I <sub>OH</sub> = -20 μA                                     | 0.9 V to 3.6 V |                |     |                       | 0.9 x VCCA |          |      | V    |
| V <sub>OLA</sub>   |                  | I <sub>O</sub> L = 20 μA                                     | 0.9 V to 3.6 V |                |     |                       |            | 0.2      |      | V    |
| V <sub>OHB</sub>   |                  | I <sub>OH</sub> = -20 μA                                     |                | 0.9 V to 3.6 V |     |                       | 0.9 x VCCB |          |      | V    |
| V <sub>OLB</sub>   |                  | I <sub>OL</sub> = 20 μA                                      | 0.9 V to 3.6 V |                |     |                       |            | 0.2      |      | V    |
| I <sub>I</sub>     | OE               | V <sub>I</sub> = V <sub>CCI</sub> or GND                     | 0.9 V to 3.6 V | 0.9 V to 3.6 V |     |                       | ±1         |          | ±2   | μΑ   |
|                    | A port           | V <sub>I</sub> or V <sub>O</sub> = 0 to 3.6 V                | 0 V            | 0 V to 3.6 V   |     |                       | ±1         |          | ±2   |      |
| off                | B port           | V <sub>I</sub> or V <sub>O</sub> = 0 to 3.6 V                | 0.9 V to 3.6 V | 0 V            |     |                       | ±1         |          | ±2   | μΑ   |
| l <sub>oz</sub>    | A or B port      | OE = GND                                                     | 0.9 V to 3.6 V | 0.9 V to 3.6 V |     |                       | ±1         |          | ±2   | μΑ   |
| I <sub>CCA</sub>   |                  | V <sub>I</sub> = V <sub>CCI</sub> or GND, I <sub>O</sub> = 0 | 0.9 V to 3.6 V | 0.9 V to 3.6 V |     |                       |            |          | 5    | μΑ   |
| I <sub>CCB</sub>   |                  | V <sub>I</sub> = V <sub>CCI</sub> or GND, I <sub>O</sub> = 0 | 0.9 V to 3.6 V | 0.9 V to 3.6 V |     |                       |            |          | 5    | μΑ   |
| I <sub>CCA</sub> + | I <sub>CCB</sub> | V <sub>I</sub> = V <sub>CCI</sub> or GND, I <sub>O</sub> = 0 | 0.9 V to 3.6 V | 0.9 V to 3.6 V |     |                       |            |          | 10   | μΑ   |
| I <sub>CCZA</sub>  |                  | $VI = V_{CCI}$ or GND, $I_O = 0$ , $OE = GND$                | 0.9 V to 3.6 V | 0.9 V to 3.6 V |     |                       |            |          | 5    | μΑ   |
| I <sub>CCZB</sub>  |                  | VI = V <sub>CCI</sub> or GND, I <sub>O</sub> = 0, OE = GND   | 0.9 V to 3.6 V | 0.9 V to 3.6 V |     |                       |            |          | 5    | μΑ   |
| Ci                 | OE               |                                                              | 0.9 V to 3.6 V | 0.9 V to 3.6 V |     | 3                     |            |          |      | pF   |
| _                  | A port           |                                                              | 0.9 V to 3.6 V | 0.9 V to 3.6 V |     | 9                     |            |          |      |      |
| C <sub>io</sub>    | B port           |                                                              |                |                |     | 12                    |            |          |      | pF   |

## **TIMING REQUIREMENTS**

|           |                        | VCCA         | VCCB         | MIN MAX | UNIT |
|-----------|------------------------|--------------|--------------|---------|------|
|           | C <sub>L</sub> = 15 pF | 0.9 to 3.6 V | 0.9 to 3.6 V | 40      | Mbps |
|           | C <sub>L</sub> = 15 pF | 1.2 to 3.6 V | 1.2 to 3.6 V | 100     | Mbps |
|           | C <sub>L</sub> = 15 pF | 1.8 to 3.6 V | 1.8 to 3.6 V | 140     | Mbps |
| Data rate | $C_L = 30 pF$          | 0.9 to 3.6 V | 0.9 to 3.6 V | 40      | Mbps |
| Data Tate | $C_L = 30 pF$          | 1.2 to 3.6 V | 1.2 to 3.6 V | 90      | Mbps |
|           | $C_L = 30 pF$          | 1.8 to 3.6 V | 1.8 to 3.6 V | 120     | Mbps |
|           | $C_L = 50 pF$          | 1.2 to 3.6 V | 1.2 to 3.6 V | 70      | Mbps |
|           | $C_L = 50 pF$          | 1.8 to 3.6 V | 1.8 to 3.6 V | 100     | Mbps |



### **SWITCHING CHARACTERISTICS**

over operating free-air temperature range (unless otherwise noted)

| PARAMETER                         | FROM<br>(INPUT)            | TO<br>(OUTPUT) |                     | VCCA    | VCCB    | MIN | TYP T <sub>A</sub> = 25°C | MAX  | UNIT |
|-----------------------------------|----------------------------|----------------|---------------------|---------|---------|-----|---------------------------|------|------|
|                                   | Α                          | В              | C <sub>L</sub> = 15 | 0.9-3.6 | 0.9-3.6 |     | 18.9                      | 62.5 |      |
|                                   | Α                          | В              | C <sub>L</sub> = 15 | 1.2-3.6 | 1.2-3.6 |     | 7.5                       | 15.5 |      |
|                                   | Α                          | В              | C <sub>L</sub> = 15 | 1.8-3.6 | 1.8-3.6 |     | 3.7                       | 5.8  |      |
|                                   | Α                          | В              | C <sub>L</sub> = 30 | 0.9-3.6 | 0.9-3.6 |     | 19.5                      | 64.5 |      |
|                                   | Α                          | В              | C <sub>L</sub> = 30 | 1.2-3.6 | 1.2-3.6 |     | 7.8                       | 16.1 | ns   |
|                                   | Α                          | В              | C <sub>L</sub> = 30 | 1.8-3.6 | 1.8-3.6 |     | 3.8                       | 6.1  |      |
|                                   | Α                          | В              | C <sub>L</sub> = 50 | 1.2-3.6 | 1.2-3.6 |     | 8                         | 16.8 |      |
|                                   | Α                          | В              | C <sub>L</sub> = 50 | 1.8-3.6 | 1.8-3.6 |     | 4                         | 6.5  |      |
| $t_{pd}$                          | В                          | А              | C <sub>L</sub> = 15 | 0.9-3.6 | 0.9-3.6 |     | 18.9                      | 62.6 |      |
|                                   | В                          | Α              | C <sub>L</sub> = 15 | 1.2-3.6 | 1.2-3.6 |     | 7.5                       | 15.4 |      |
|                                   | В                          | А              | C <sub>L</sub> = 15 | 1.8-3.6 | 1.8-3.6 |     | 3.7                       | 5.8  |      |
|                                   | В                          | А              | C <sub>L</sub> = 30 | 0.9-3.6 | 0.9-3.6 |     | 19.5                      | 64.5 |      |
|                                   | В                          | А              | C <sub>L</sub> = 30 | 1.2-3.6 | 1.2-3.6 |     | 7.8                       | 16.1 | ns   |
|                                   | В                          | Α              | C <sub>L</sub> = 30 | 1.8-3.6 | 1.8-3.6 |     | 3.8                       | 5.2  |      |
|                                   | В                          | А              | $C_{L} = 50$        | 1.2-3.6 | 1.2-3.6 |     | 8                         | 16.9 |      |
|                                   | В                          | Α              | C <sub>L</sub> = 50 | 1.8-3.6 | 1.8-3.6 |     | 4                         | 6.6  |      |
|                                   | 05                         | Α              | C <sub>L</sub> = 15 | 0.9-3.6 | 0.9-3.6 |     |                           | 504  |      |
| t <sub>en</sub>                   | OE                         | В              | C <sub>L</sub> = 15 | 0.9-3.6 | 0.9-3.6 |     |                           | 356  | ns   |
|                                   | 05                         | Α              | C <sub>L</sub> = 15 | 0.9-3.6 | 0.9-3.6 |     |                           | 200  | ns   |
| t <sub>dis</sub>                  | OE                         | В              | C <sub>L</sub> = 15 | 0.9-3.6 | 0.9-3.6 |     |                           | 200  | ns   |
| t <sub>rB</sub> , t <sub>fB</sub> | B-port rise and fall times |                | C <sub>L</sub> = 15 | 0.9-3.6 | 0.9-3.6 |     | 2.95                      |      | ns   |
| t <sub>s</sub> , t <sub>s</sub>   | A-port rise and fall times |                | C <sub>L</sub> = 15 | 0.9-3.6 | 0.9-3.6 |     | 3.1                       |      | ns   |
| t <sub>SK(O)</sub>                | Channel-to-channel skew    |                | C <sub>L</sub> = 15 | 0.9-3.6 | 0.9-3.6 |     |                           | 0.5  | ns   |

## **OPERATING CHARACTERISTICS**

 $T_A = 25^{\circ}C$ 

|                  | PARAMETER                   | TEST CONDITIONS                               | VCCA, VCCB 0.9 V to 3.6 V | UNIT |
|------------------|-----------------------------|-----------------------------------------------|---------------------------|------|
|                  | PARAMETER                   | TEST CONDITIONS                               | TYP                       | UNII |
| C                | A-port input, B-port output |                                               | 40                        | pF   |
| C <sub>pdA</sub> | B-port input, A-port output | $C_L = 0$ , $f = 10$ MHz, $t_r = t_f = 1$ ns, | 40                        | pΓ   |
| 0                | A-port input, B-port output | OE = V <sub>CCA</sub> (outputs enabled)       | 40                        | ~F   |
| C <sub>pdB</sub> | B-port input, A-port output |                                               | 40                        | pF   |
| C                | A-port input, B-port output |                                               | 0.01                      | nE   |
| C <sub>pdA</sub> | B-port input, A-port output | $C_L = 0$ , $f = 10$ MHz, $t_r = t_f = 1$ ns, | 0.01                      | pF   |
| 0                | A-port input, B-port output | OE = GND (outputs disabled)                   | 0.01                      | ~_   |
| C <sub>pdB</sub> | B-port input, A-port output |                                               | 0.01                      | pF   |



#### PRINCIPLES OF OPERATION

#### **Applications**

The TXB0302 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another.

#### **Architecture**

The TXB0302 architecture (see Figure 1) does not require a direction-control signal to control the direction of data flow from A to B or from B to A. In a dc state, the output drivers of the TXB0302 can maintain a high or low, but are designed to be weak, so that they can be over driven by an external driver when data on the bus starts flowing the opposite direction. The output one shots detect rising or falling edges on the A or B ports. During a rising edge, the one shot turns on the PMOS transistors (T1, T3) for a short duration, which speeds up the low-to-high transition. Similarly, during a falling edge, the one shot turns on the NMOS transistors (T2, T4) for a short duration, which speeds up the high-to-low transition. The typical output impedance during output transition is 35  $\Omega$  at  $V_{CCO} = 0.9$  V to 1.1 V, 25  $\Omega$  at  $V_{CCO} = 1.2$  V to 3.3 V.

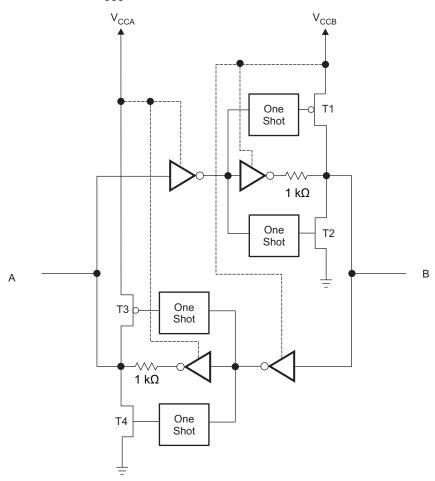
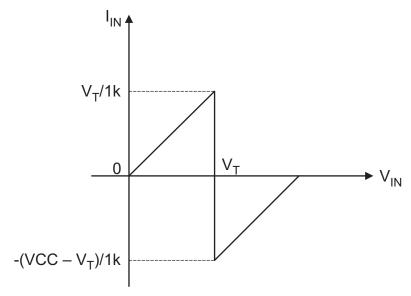




Figure 1. Architecture of TXB0302 I/O Cell

#### **Input Driver Requirements**

Typical  $I_{IN}$  vs  $V_{IN}$  characteristics of the TXB0302 are shown in Figure 2. For proper operation, the device driving the data I/Os of the TXB0302 must have drive strength of at least  $\pm 3$  mA.





- (1) V<sub>T</sub> is the input threshold voltage of the TXB0302 (typical VCCI/2).
- (2) VD is the supply voltage of the external driver.

Figure 2. Typical I<sub>IN</sub> vs V<sub>IN</sub> Curve

#### **Power Up**

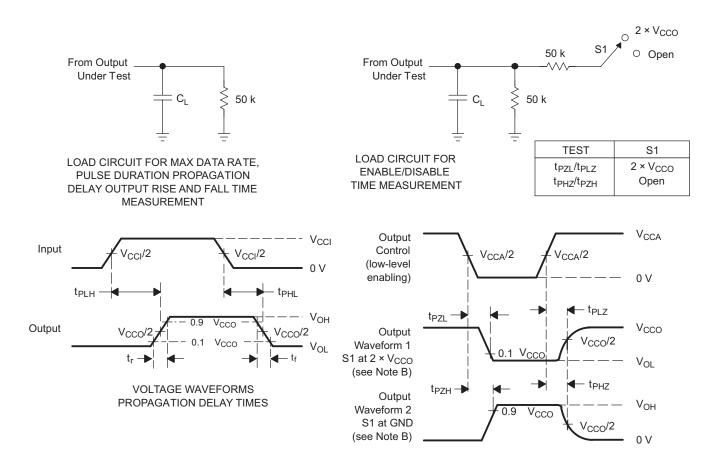
There is no requirement for the power sequence. During operation, TXB0302 can work at both  $V_{CCA} \le V_{CCB}$  and  $V_{CCA} \ge V_{CCB}$ , During power-up sequencing, any power supply can be ramped up first. The TXB0302 has circuitry that disables all output ports when either  $V_{CC}$  is switched off ( $V_{CCA/B} = 0$  V).

#### **Enable and Disable**

The TXB0302 has an OE input that is used to disable the device by setting OE = low, which places all I/Os in the high-impedance (Hi-Z) state. The disable time ( $t_{dis}$ ) indicates the delay between when OE goes low and when the outputs actually get disabled (Hi-Z). The enable time ( $t_{en}$ ) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

#### Pullup or Pulldown Resistor on I/O Lines

The TXB0302 is designed to drive capacitive loads of up to 50 pF. The output drivers of the TXB0302 have low dc drive strength. If pullup or pulldown resistors are connected externally to the data I/Os, their values must be kept higher than 20 k $\Omega$  to ensure that they do not contend with the output drivers of the TXB0302. but if the receiver is integrated with the smaller pull down or pull up resistor, below formula can be used for estimation to evaluate the Voh and Vol.


$$V_{ol} = V_{CCout} \times \frac{1.5k\Omega}{1.5k\Omega + R_{pu}}$$
 (1)

$$V_{oh} = V_{CCout} \times \frac{R_{pd}}{1.5k\Omega + R_{pd}}$$
(2)

For the same reason, the TXB0302 should not be used in applications such as I<sup>2</sup>C or 1-Wire where an opendrain driver is connected on the bidirectional data I/O. For these applications, use a device from the TI TXS01xx series of level translators.



#### PARAMETER MEASUREMENT INFORMATION



VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

- A. C<sub>L</sub> includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z<sub>O</sub> = 50 Ω, dv/dt ≥ 1 V/ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .
- E. V<sub>CCI</sub> is the V<sub>CC</sub> associated with the input port.
- F.  $V_{CCO}$  is the  $V_{CC}$  associated with the output port.
- G. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuits and Voltage Waveforms



## **REVISION HISTORY**

| Changes from Original (March 2012) to Revision A | Page |
|--------------------------------------------------|------|
| Changes from Revision A (May 2012) to Revision B | Page |
| Added Application Information Section            | 5    |

11-Nov-2025 www.ti.com

#### PACKAGING INFORMATION

| Orderable part number | Status | Material type | Package   Pins  | Package qty   Carrier | RoHS | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking |
|-----------------------|--------|---------------|-----------------|-----------------------|------|-------------------------------|----------------------------|--------------|--------------|
|                       | (1)    | (2)           |                 |                       | (3)  | (4)                           | (5)                        |              | (6)          |
| TXB0302DQMR           | Active | Production    | X2SON (DQM)   8 | 3000   LARGE T&R      | Yes  | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 85    | 77A          |
| TXB0302DQMR.B         | Active | Production    | X2SON (DQM)   8 | 3000   LARGE T&R      | Yes  | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 85    | 77A          |
| TXB0302DQMRG4         | Active | Production    | X2SON (DQM)   8 | 3000   LARGE T&R      | Yes  | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 85    | 77A          |
| TXB0302DQMRG4.B       | Active | Production    | X2SON (DQM)   8 | 3000   LARGE T&R      | Yes  | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 85    | 77A          |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

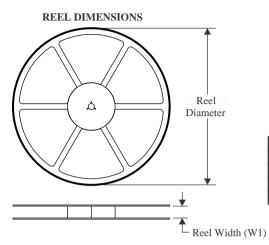
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

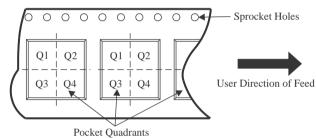
<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

## **PACKAGE MATERIALS INFORMATION**

www.ti.com 18-Jun-2025

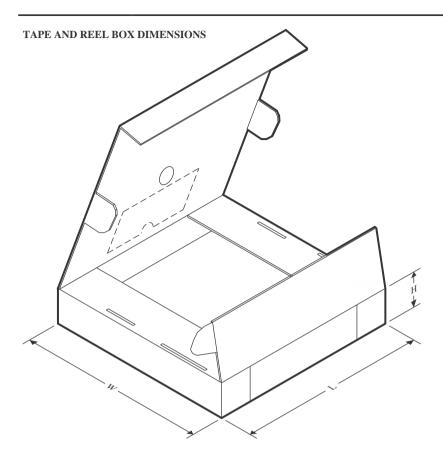

### TAPE AND REEL INFORMATION





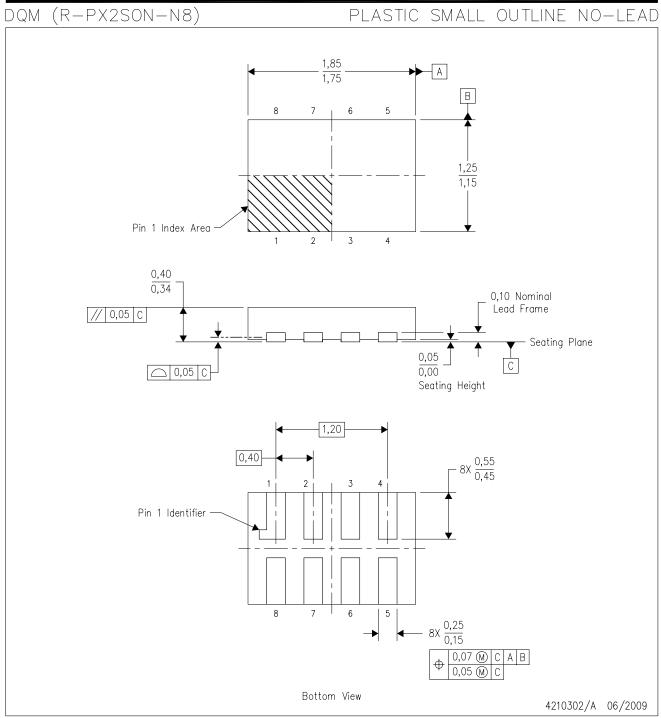
|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




#### \*All dimensions are nominal

| Device        | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TXB0302DQMR   | X2SON           | DQM                | 8 | 3000 | 180.0                    | 9.5                      | 1.4        | 2.0        | 0.5        | 4.0        | 8.0       | Q1               |
| TXB0302DQMRG4 | X2SON           | DQM                | 8 | 3000 | 180.0                    | 9.5                      | 1.4        | 2.0        | 0.5        | 4.0        | 8.0       | Q1               |


## **PACKAGE MATERIALS INFORMATION**

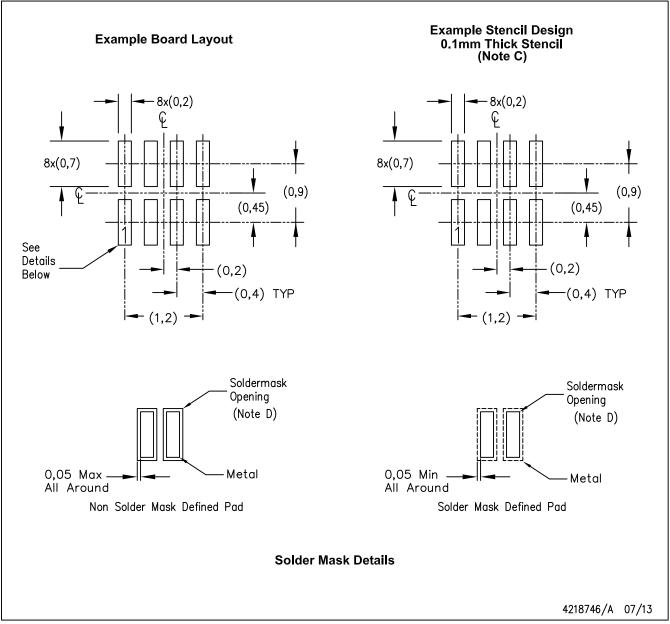
www.ti.com 18-Jun-2025



#### \*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TXB0302DQMR   | X2SON        | DQM             | 8    | 3000 | 184.0       | 184.0      | 19.0        |
| TXB0302DQMRG4 | X2SON        | DQM             | 8    | 3000 | 184.0       | 184.0      | 19.0        |




NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.C. SON (Small Outline No-Lead) package configuration.



## DQM (R-PX2SON-N8)

## PLASTIC SMALL OUTLINE NO-LEAD



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- D. Customers should contact their board fabrication site for recommended solder mask tolerances.



## 重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月