Functional Safety Information

LMQ664x0 and LMQ664x0-Q1 Functional Safety FIT Rate, FMD and Pin FMA

Table of Contents

1 Overview	2
2 Functional Safety Failure In Time (FIT) Rates	3
2.1 LMQ66430 Functional Safety Failure In Time (FIT) Rates	
2.2 LMQ66420 Functional Safety Failure In Time (FIT) Rates	
2.3 LMQ66410 Functional Safety Failure In Time (FIT) Rates	
3 Failure Mode Distribution (FMD)	
4 Pin Failure Mode Analysis (Pin FMA)	
5 Revision History	

Trademarks

All trademarks are the property of their respective owners.

NSTRUMENTS Overview www.ti.com

1 Overview

This document contains information for LMQ664x0 and LMQ664x0-Q1 (VQFN package) to aid in a functional safety system design. Information provided are:

- Functional safety failure in time (FIT) rates of the semiconductor component estimated by the application of industry reliability standards
- Component failure modes and their distribution (FMD) based on the primary function of the device
- Pin failure mode analysis (pin FMA)

Figure 1-1 shows the device functional block diagram for reference.

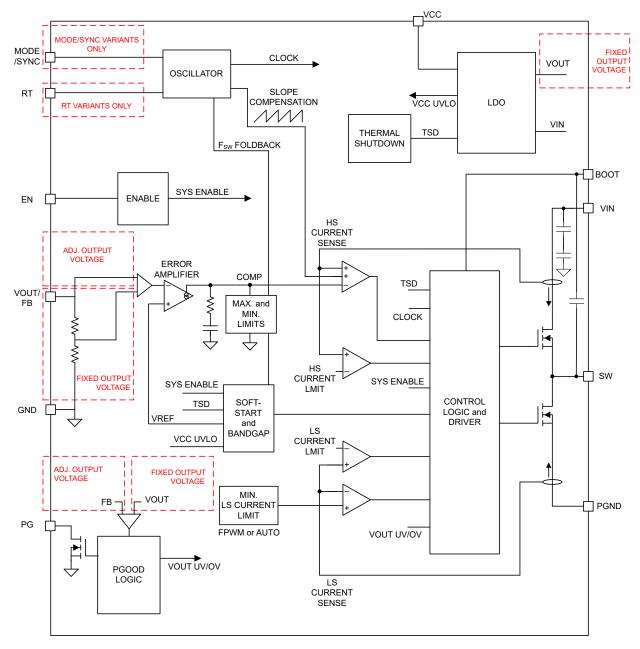


Figure 1-1. Functional Block Diagram

LMQ664x0 and LMQ664x0-Q1 were developed using a quality-managed development process, but were not developed in accordance with the IEC 61508 or ISO 26262 standards.

2 Functional Safety Failure In Time (FIT) Rates

2.1 LMQ66430 Functional Safety Failure In Time (FIT) Rates

This section provides functional safety failure in time (FIT) rates for the VQFN package of the LMQ66430 based on two different industry-wide used reliability standards:

- Table 2-1 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-2 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-1. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total component FIT rate	12
Die FIT rate	4
Package FIT rate	8

The failure rate and mission profile information in Table 2-1 comes from the reliability data handbook IEC TR 62380 / ISO 26262 part 11:

- Mission profile: Motor control from table 11
- Power dissipation: 270mW
- Climate type: World-wide table 8
- · Package factor (lambda 3): Table 17b
- Substrate material: FR4
- EOS FIT rate assumed: 0 FIT

Table 2-2. Component Failure Rates per Siemens Norm SN 29500-2

Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS, BICMOS ASICs Analog and Mixed = < 50-V supply	25 FIT	55°C

The reference FIT rate and reference virtual T_J (junction temperature) in Table 2-2 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

2.2 LMQ66420 Functional Safety Failure In Time (FIT) Rates

This section provides functional safety failure in time (FIT) rates for the VQFN package of the LMQ66420 based on two different industry-wide used reliability standards:

- Table 2-3 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-4 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-3. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total component FIT rate	11
Die FIT rate	3
Package FIT rate	8

The failure rate and mission profile information in Table 2-3 comes from the reliability data handbook IEC TR 62380 / ISO 26262 part 11:

- Mission profile: Motor control from table 11
- Power dissipation: 225mW
- Climate type: World-wide table 8
- Package factor (lambda 3): Table 17b
- · Substrate material: FR4
- EOS FIT rate assumed: 0 FIT

Table 2-4. Component Failure Rates per Siemens Norm SN 29500-2

Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS, BICMOS ASICs Analog and Mixed = < 50-V supply	25 FIT	55°C

The reference FIT rate and reference virtual T_J (junction temperature) in Table 2-4 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

2.3 LMQ66410 Functional Safety Failure In Time (FIT) Rates

This section provides functional safety failure in time (FIT) rates for the VQFN package of the LMQ66410 based on two different industry-wide used reliability standards:

- Table 2-5 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-6 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-5. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total component FIT rate	11
Die FIT rate	3
Package FIT rate	8

The failure rate and mission profile information in Table 2-5 comes from the reliability data handbook IEC TR 62380 / ISO 26262 part 11:

Mission profile: Motor control from table 11

Power dissipation: 120mW
Climate type: World-wide table 8
Package factor (lambda 3): Table 17b

Substrate material: FR4EOS FIT rate assumed: 0 FIT

Table 2-6. Component Failure Rates per Siemens Norm SN 29500-2

Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS, BICMOS ASICs Analog and Mixed = < 50-V supply	25 FIT	55°C

The reference FIT rate and reference virtual T_J (junction temperature) in Table 2-6 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

3 Failure Mode Distribution (FMD)

The failure mode distribution estimation for LMQ664x0 and LMQ664x0-Q1 in Table 3-1 comes from the combination of common failure modes listed in standards such as IEC 61508 and ISO 26262, the ratio of sub-circuit function size and complexity and from best engineering judgment.

The failure modes listed in this section reflect random failure events and do not include failures resulting from misuse or overstress.

Table 3-1. Die Failure Modes and Distribution

Die Failure Modes	Failure Mode Distribution (%)
No output voltage	60
Output not in specification - voltage or timing	25
Gate driver stuck on	5
Power Good - false trip or failure to trip	5
Short circuit between any two pins	5

The FMD in Table 3-1 excludes short circuit faults across the isolation barrier. Faults for short circuit across the isolation barrier can be excluded according to ISO 61800-5-2:2016 if the following requirements are fulfilled:

- 1. The signal isolation component is OVC III according to IEC 61800-5-1. If a SELV/PELV power supply is used, pollution degree 2/OVC II applies. All requirements of IEC 61800-5-1:2007, 4.3.6 apply.
- 2. Measures are taken to ensure that an internal failure of the signal isolation component cannot result in excessive temperature of its insulating material.

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance.

4 Pin Failure Mode Analysis (Pin FMA)

This section provides a failure mode analysis (FMA) for the pins of the LMQ664x0 and LMQ664x0-Q1. The failure modes covered in this document include the typical pin-by-pin failure scenarios:

- Pin short-circuited to ground (see Table 4-2)
- Pin open-circuited (see Table 4-3)
- Pin short-circuited to an adjacent pin (see Table 4-4)
- Pin short-circuited to supply (see Table 4-5)

Table 4-2 through Table 4-5 also indicate how these pin conditions can affect the device as per the failure effects classification in Table 4-1.

Table 4-1. TI Classification of Failure Effects

Class	Failure Effects
А	Potential device damage that affects functionality.
В	No device damage, but loss of functionality.
С	No device damage, but performance degradation.
D	No device damage, no impact to functionality or performance.

Figure 4-1 shows the LMQ664x0 and LMQ664x0-Q1 pin diagram. For a detailed description of the device pins please refer to the *Pin Configuration and Functions* section in the LMQ664x0 and LMQ664x0-Q1 data sheet.

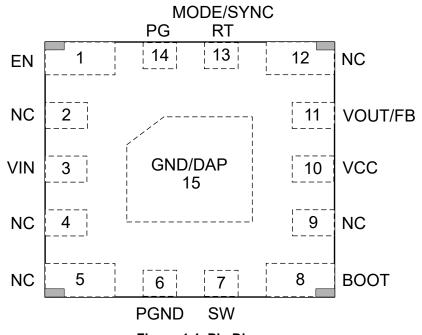


Figure 4-1. Pin Diagram

Following are the assumptions of use and the device configuration assumed for the pin FMA in this section:

Application circuit, as per the LMQ664x0 and LMQ664x0-Q1 data sheets are used.

Table 4-2. Pin FMA for Device Pins Short-Circuited to Ground

Pin Name	Pin No.	Description of Potential Failure Effects	
EN/UVLO	1	VOUT = 0V, the part is disabled.	D
NC	2	VOUT is normal.	D
VIN	3	VOUT = 0V.	В
NC	4	VOUT is normal.	D
NC	5	VOUT is normal.	D
PGND	6	VOUT is normal.	D
SW	7	nage to HSFET.	
BOOT	8	OUT = 0V, high-side MOSFET does not turn on.	
NC	9	_{UT} is normal.	
VCC	10	OUT = 0V.	
VOUT/FB	11	VOUT = 0V.	В
NC	12	VOUT is normal.	D
RT or MODE/ SYNC	13	Switching frequency is 2.2MHz.	D
PGOOD	14	When this pin is not in use the pin can be left grounded. PGOOD signal is not a valid signal, VOUT is normal.	D

Table 4-3. Pin FMA for Device Pins Open-Circuited

Pin Name	Pin No.	Description of Potential Failure Effects	Failure Effect Class
EN/UVLO	1	Pin cannot be left floating.	В
NC	2	VOUT is normal.	D
VIN	3	VOUT = 0V.	В
NC	4	VOUT is normal.	D
NC	5	VOUT is normal.	D
PGND	6	T can be abnormal because the reference voltage is not fixed.	
SW	7	UT = 0V.	
BOOT	8	OUT = 0V, high-side MOSFET does not turn on.	
NC	9	VOUT is normal.	D
VCC	10	VCC output is unstable, can increase above 5.5V.	Α
VOUT/FB	11	VOUT = 0V. Do not float this pin.	В
NC	12	VOUT is normal.	D
RT or MODE/ SYNC	13	If an RT part, then the frequency is not defined. If a MODE/SYNC part, then the part can go back and forth between FPWM and PFM. Part is up, part is functional.	D
PGOOD	14	When not in use, PGOOD can be left open. PGOOD is not a valid signal, VOUT is normal.	

Revision History Www.ti.com

Table 4-4. Pin FMA for Device Pins Short-Circuited to Adjacent Pin

Pin Name	Pin No.	Shorted to	Description of Potential Failure Effects	Failure Effect Class
EN/UVLO	1	NC	VOUT is normal.	D
NC	2	VIN	VOUT is normal.	D
VIN	3	NC	VOUT is normal.	D
NC	4	NC	VOUT is normal.	D
NC	5	PGND	VOUT is normal.	D
PGND	6	SW	Damage to HSFET.	Α
SW	7	воот	VOUT = 0V, high-side MOSFET does not turn on, CBOOT capacitor is shorted.	В
BOOT	8	NC	VOUT is normal.	D
NC	9	VCC	VOUT is normal.	D
VCC	10	VOUT/FB	The part can be functional, no damage occurs.	В
VOUT/FB	11	NC	VOUT is normal.	D
NC	12	RT of MODE/ SYNC	VOUT is normal.	D
RT or MODE/ SYNC	13	PGOOD	The absolute maximum voltage rating of this pin is 20V. This pin can be damaged if PGOOD goes to 20V.	Α
PGOOD	14	EN/UVLO	If EN/UVLO > 20V, this damages devices connected to the PGOOD pin.	Α

Table 4-5. Pin FMA for Device Pins Short-Circuited to Supply

Pin Name	Pin No.	Description of Potential Failure Effects	Failure Effect Class
EN/UVLO	1	VOUT is normal.	D
NC	2	VOUT is normal.	D
VIN	3	VOUT is normal.	D
NC	4	VOUT is normal.	D
NC	5	VOUT is normal.	D
PGND	6	VOUT = 0V.	A
SW	7	Damage to LSFET.	A
BOOT	8	Damage occurs, BOOT ESD clamp is damaged.	A
NC	9	VOUT is normal.	D
VCC	10	If VIN > 5.5V, damage occurs.	A
VOUT/FB	11	If VIN > 20V, damage occurs.	A
NC	12	VOUT is normal.	D
RT or MODE/ SYNC	13	If VIN > 5.5V, damage occurs. If VIN < 5.5V, the switching frequency is 1MHz.	А
PGOOD	14	IF VIN > 20V, damage occurs.	A

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (December 2022) to Revision A (November 2024)			
•	Updated document to new template	2	
•	Updated the Functional Safety Failure In Time section and tables	3	

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated