

ABSTRACT

This user's guide assists with migrating from the NXP's Arm[®] Cortex[®]-M0+ MCU platform to the Texas Instruments Arm Cortex-M0+ MSPM0 MCU ecosystem. This guide introduces the MSPM0 development and tool ecosystem, core architecture, peripheral considerations, and software development kit. The intent is highlight the differences between the two families and to leverage existing knowledge of the NXP Arm Cortex ecosystem to quickly ramp with the MSPM0 series of MCUs.

Table of Contents

1 MSPMU Portfolio Overview	2
1.1 Introduction	2
1.2 Portfolio Comparison of NXP M0 MCUs to MSPM0	2
2 Ecosystem and Migration	3
2.1 Software Ecosystem Comparison	3
2.2 Hardware Ecosystem	4
2.3 Debug Tools	<mark>5</mark>
2.4 Migration Process	6
2.5 Migration and Porting Example	
3 Core Architecture Comparison	13
3.1 CPU	
3.2 Embedded Memory Comparison	
3.3 Power Up and Reset Summary and Comparison	
3.4 Clocks Summary and Comparison	
3.5 MSPM0 Operating Modes Summary and Comparison	19
3.6 Interrupt and Events Comparison	
3.7 Debug and Programming Comparison	
4 Digital Peripheral Comparison	
4.1 General-Purpose I/O (GPIO, IOMUX)	
4.2 Universal Asynchronous Receiver-Transmitter (UART)	
4.3 Serial Peripheral Interface (SPI)	
4.4 I2C	
4.5 Timers (TIMGx, TIMAx)	
4.6 Windowed Watchdog Timer (WWDT)	
4.7 Real-Time Clock (RTC)	
5 Analog Peripheral Comparison	
5.1 Analog-to-Digital Converter (ADC)	
5.2 Comparator (COMP)	
5.3 Digital-to-Analog Converter (DAC)	
5.4 Operational Amplifier (OPA)	
5.5 Voltage References (VREF)	
6 References	34

Trademarks

TI E2E[™], Code Composer Studio[™], LaunchPad[™], EnergyTrace[™], and BoosterPack[™] are trademarks of Texas Instruments.

Arm[®] and Cortex[®] are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All trademarks are the property of their respective owners.

1 MSPM0 Portfolio Overview

1.1 Introduction

The MSP430[™] MCUs have nearly 30 years of history as TI's classic microcontroller. The latest generation introduces the MSPM0 family. MSPM0 microcontrollers (MCUs) are part of the MSP highly-integrated ultra-low-power 32-bit MCU family based on the enhanced Arm Cortex-M0+ 32-bit core platform. These cost-optimized MCUs offer high-performance analog peripheral integration, support extended temperature ranges, and offer small footprint packages. The TI MSPM0 family of low-power MCUs consists of devices with varying degrees of analog and digital integration, allowing engineers to find the MCU that meets their project's needs. The MSPM0 MCU family combines the Arm Cortex-M0+ platform with ultra-low-power system architecture, allowing system designers to increase performance while reducing energy consumption.

MSPM0 MCUs offer a competitive alternative to NXP's M0 MCUs. This document compares device features and ecosystems to assist with migration from these NXP M0 MCUs to TI MSPM0 MCUs.

	Table 1-1. Comparison of the MSPM0 and NXP M0 MCUs									
	32K1xx Series	KEA128x Series	KM35x Series	MSPM0Gx Series	MSPM0Lx Series	MSPM0Cx Series				
Core / Frequency	CM0+ / 48MHz	CM0+ / 48MHz	CM0+ / 75MHz	CM0+ / 32-80MHz	CM0+ / 32MHz	CM0+ / 24MHz				
Supply Voltage	2.7V to 5.5V	2.7V to 5.5V	2.7V to 3.6V	1.62V to 3.6V	1.62V to 3.6V	1.62V to 3.6V				
Temperature	-40°C to 150°C	-40°C to 125°C	-40°C to 105°C	-40°C to 125°C	-40°C to 125°C	-40°C to 125°C				
Memory	256 KB to 128KB	128KB	512KB	128KB to 32KB	64KB to 8KB	16KB to 8KB				
RAM	Up to 25KB	Up to 16KB	Up to 64KB	Up to 32KB	Up to 4KB	1KB				
EEPROM	Up to 2KB	Up to 256B	N/A	Emulated up to 32KB or entire FLASH if device has < 32KB	Emulated up to 32KB or entire FLASH if device has < 32KB	Emulated up to 32KB or entire FLASH if device has < 32KB				
GPIO (max)	28/43/58	58/71	72/99	Up to 60	Up to 28	Up to 18				
Analog	1x 1Msps, 12-bit ADC , 1x comparator, 1x8-bit DAC	1x 340Ksps, 12-bit ADC 2x comparator, 2x6-bit DAC	4x AFE 1x 4.75Msps, 16- bit ADC 3x Comparator, 3x6-bit DAC	2x 4-Msps, 12-bit ADC 3x high-speed comparator 2x op amp 1x general purpose amp 1x 12-bit DAC	1x 1.68-Msps, 12- bit ADC 1x high-speed comparator 1x general purpose amp 2x OPA	1x 1.5-Msps, 12- bit ADC				
Communication (max)	1/2x SPI 1x I2C 2x UART 1x FlexCAN 1x FlexIO	2x SPI 2x I2C 3x UART 1x MSCAN	3x SPI 2x I2C 5x UART	2x SPI 2x I2C Fast+ 3x UART 1x UART -LIN 1x CAN-FD	1x SPI 2x I2C Fast+ 1x UART 1x UART (LIN)	1x SPI 2x I2C Fast+ 1x UART (LIN)				
Timers	2x 16bit	3x 16bit	6x 16-bit	6x 16bit, 1x 32bit	4x 16bit	3x 16bit				
Advance Timers	No	No	No	2x 16-bit Advanced	No	No				
Hardware Accelerator	N/A	N/A	RNGA	MATHACL	N/A	N/A				
Security	CSEc	Unique ID, CRC	Unique ID, MMCAU, RNGA, PRCR	CRC, TRNG, AES256	CRC	CRC				
Low power	Active: 422.92/447.92μΑ/ MHz Standby 26/27μΑ	Active: 236.170μA/MHz Standby 2μA	Active: 165.07μΑ/MHz Standby 6.5μΑ	Active: 96µA/MHz Standby: 1.5µA	Active: 71µA/MHz Standby: 1µA	Active: 71µA/MHz Standby: 1µA				

1.2 Portfolio Comparison of NXP M0 MCUs to MSPM0

2 Ecosystem and Migration

MSPM0 MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get designs started quickly. MSPM0 MCUs are also supported by online resources, trainings with MSP Academy, and online support through the TI E2E[™] support forums.

2.1 Software Ecosystem Comparison

Table 2-1. NXP Software T	ool Equivalents for MSPM0
---------------------------	---------------------------

	NXP	MSPM0
IDE	MCUXpresso IDE	Code Composer Studio™ Theia
Software Configuration	MCUXpresso Code Configuration Tools	SysConfig
Stand-alone programming	N/A	UniFlash
Display/Demo GUI Editor	GUI Guider	GuiComposer

2.1.1 MSPM0 Software Development Kit (MSPM0 SDK)

The MSPM0 SDK delivers software APIs, examples, documentation, and libraries that help engineers quickly develop applications on Texas Instruments MSPM0+ microcontroller devices. Examples are provided to demonstrate the use of each functional area on every supported device and are a starting point for your own projects. Additionally, interactive MSP Academy trainings are included in the MSPM0 SDK to provide a guided learning path.

The examples folder is divided into RTOS and non-RTOS subfolders. These folders contain examples for each LaunchPad[™] development kit and are organized categories such as lower-level DriverLib examples, higher-level TI Drivers examples, and examples for middleware such as GUI Composer, LIN, IQMath, and others. For details, see the MSPM0 SDK User's Guide.

2.1.2 MCUXpresso IDE vs Code Composer Studio IDE (CCS)

Code Composer Studio Theia IDE (CCS) is TI's equivalent of NXP's MCUXpresso IDE. Both CCS and MCUXpresso are free Eclipse-based IDE that supports their respective MCUs and embedded processor portfolios. CCS comprises a suite of tools used to develop and debug embedded applications including an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler and many other features. CCS is available as both a desktop or cloud-based IDE.

CCS integrates MSPM0 device configuration and auto-code generation from SysConfig as well as MSPM0 code examples and academy trainings in the integrated TI Resource explorer. CCS offers an all-in-one development tool experience.

In addition to CCS, MSPM0 devices are also supported in industry-standard IDEs listed in Table 2-2.

IDE	MSPM0				
CCS	✓				
IAR	\checkmark				
Keil	√				

Table 2-2. MSPM0 Supported IDEs

2.1.3 MCUXpresso Code Configuration Tool vs SysConfig

SysConfig is an intuitive and comprehensive collection of graphical utilities for configuring pins, peripherals, radios, subsystems, and other components. It is TI's equivalent of NXPs MCUXpresso Code Configuration Tool. SysConfig helps manage, expose, and resolve conflicts visually so that you have more time to create differentiated applications. The tool's output includes C header and code files that can be used with MSPM0 SDK examples or used to configure custom software. SysConfig is integrated into CCS but can also be used as a standalone program.

For details, see the MSPM0 SysConfig Guide.

§ SysConfig					– 01 ×
ABOUT					
			Welcome To SysConfig		
	() Start a new Software Produ Board: Device: Part: Package:	Design © MSPM0 SDK (2.00 00.01) MSPM0G3507 LaunchPad MSPM0G350X Default LQFP-64(PM)	START	* G	
	Dpen an Exi	sting Design	BROWSE		
	🖲 Recent Desig	gns	No saved projects available		
	C Quick Links	SYSCONFIG INFO	RELEASE NOTES	GETTING STARTED	
	↓ Update		INSTALL AVAILABLE UPDATES		

Figure 2-1. MSPM0 SysConfig

2.2 Hardware Ecosystem

LaunchPad development kits are the only evaluation modules for the MSPM0. LaunchPad kits are easy-to-use EVMs that contain everything needed to start developing on the MSPM0. This includes an onboard debug probe for programming, debugging, and measuring power consumption with EnergyTrace[™] technology. MSPM0 LaunchPad kits also feature onboard buttons, LEDs, and temperature sensors among other circuitry. Rapid prototyping is simplified by the 40-pin BoosterPack[™] plug-in module headers, which support a wide range of available BoosterPack plug-in modules. You can quickly add features like wireless connectivity, graphical displays, environmental sensing, and more.

- LP-MSPM0G3507 LaunchPad development kit
- LP-MSPM0L1306 LaunchPad development kit
- LP-MSPM0C1104 Launchpad development kit

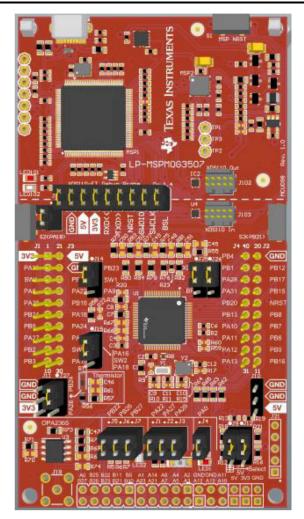


Figure 2-2. LP-MSPM0G3507 LaunchPad Development Kit

2.3 Debug Tools

The debug subsystem (DEBUGSS) interfaces the serial wire debug (SWD) two-wire physical interface to multiple debug functions within the device. MSPM0 devices support debugging of processor execution, the device state, and the power state (using EnergyTrace technology). Figure 2-3 shows the connection of the debugger.

MSPM0 support XDS110 and J-Link debugger for standard serial wire debug.

The Texas Instruments XDS110 is designed for TI embedded processors. XDS110 connects to the target board through a TI 20-pin connector (with multiple adapters for TI 14-pin and Arm 10-pin and Arm 20-pin) and to the host PC through USB2.0 High Speed (480 Mbps). It supports a wider variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a single pod. All XDS debug probes support Core and System Trace in all Arm and DSP processors that feature an Embedded Trace Buffer (ETB). For details,see XDS110 Debug Probe.

J-Link debug probes are the most popular choice for optimizing the debugging and flash programming experience. Benefit from record-breaking flash loaders, up to 3-MiB/s RAM download speed and the ability to set an unlimited number of breakpoints in the flash memory of MCUs. J-Link also supports a wide range of CPUs and architectures included Cortex M0+. For details, visit the Segger J-Link Debug Probes page.

Figure 2-3 shows a high-level diagram of the major functional areas and interfaces of the XDS110 probe to MSPM0 target.

Ecosystem and Migration

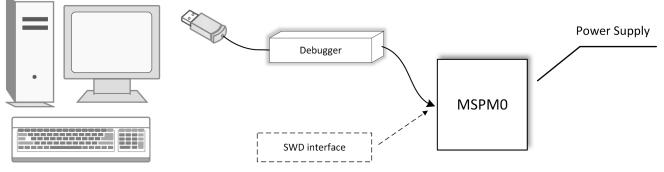


Figure 2-3. MSPM0 Debugging

2.4 Migration Process

The first step in migrating is to review the portfolio and choose the best MSPM0 MCU. After an MSPM0 MCU has been selected, choose a development kit. Development kits include a LaunchPad kit available for purchase and design files for a Target-Socket Board. TI also provides a free MSPM0 Software Development Kit (SDK), which is available as a component of Code Composer Studio Theia IDE desktop and cloud version within the TI Resource Explorer. Use the peripheral sections of this application note for help with porting software from NXP to MSPM0. Finally, once the software ported, download and debug the application with our debugging tools.

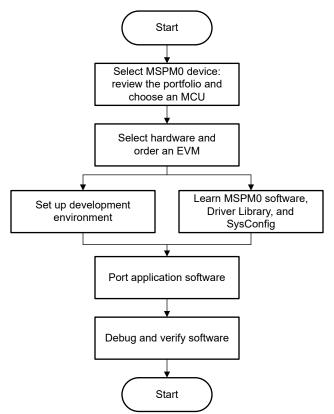


Figure 2-4. MSPM0 Migration Flowchart

2.5 Migration and Porting Example

To become more familiar with the TI ecosystem and explain how to best get started with MSPM0, this section describes the step-by-step migration process of a basic application.

To demonstrate the process of porting from NXP to MSPM0, this description includes the steps to port a basic low-power UART application from an NXP device to a MSPM0 device using an existing UART example as the starting point. This example starts with a UART example for an NXP KM35x device with a UART module.

1. Chose the right MSPM0 MCU.

The first step of migration is to choose the correct MSPM0 device for the application. To do this, the portfolio section of this guide can be used to choose a MSPM0 family. To narrow down to a specific device use the product selection tool. When choosing a replacement for a NXP KM35x part, MSPM0 devices can match just about any functionality, so long as the correct replacement device is selected. It is important to ensure that the MSPM0 that you have selected has the peripheral set available for the code you want to migrate over. MSPM0 also offers many pin-to-pin scalable options, providing the ability to easily scale to larger or smaller memory devices without changing anything else in the system.

For purposes of this example, we have chosen the MSPM0G3507 as the best fit for his application. 2. Select hardware and order an EVM.

Using an evaluation module (EVM) can expedite the migration process. For the MSPM0 MCUs, a LaunchPad kit is the easiest hardware to begin on. LaunchPad kits are easy to use because they come with a built-in programmer and are designed to enable rapid development.

The MSPM0L1105 has a LaunchPad development kit (LP-MSPM0G3507) that can be used for porting the software.

3. Setup software IDE and SDK.

Before the software can be ported, a software development environment must be chosen and setup. Figure 2-5 shows all of the IDEs supported by MSPM0. The migration and porting process is similar for any IDE that is chosen. The latest version of the MSPM0 SDK should be used.

For this example, TI's CCS-Theia is the chosen IDE.

50	File Edit Selection View Go Project Run			Code Composer Stud	tio Theia	- 0
2	EXPLORER ····			c uart_echo_interrupts_standby.c		
	> OPEN EDITORS	E	<pre>workspace_screenshots > uart_ecl</pre>	o_interrupts_standby_LP_MSPM0C1104_nortos_ticlang > D	uart_echo_interrupts_standby.syscfg	
)	> UNTITLED-218 (WORKSPACE) □ □ □ □ □ □ □		\Xi Type Filter Text 🗙 🕊	← → Software → Board		() <> ⊕ -(S) :
2	✓ E Folder: workspace_screenshots (1 pr ✓ E uart_echo_interrupts_standby_LP_MSPM0C	•	✓ PROJECT CONFIGURATION (1) Project Configurat 1/1 ♥ ⊕	Board 🗇		⊕ ADD ■# REMOVE ALI
	> Eb Generated Source > Eb Referenced Source	Åå E	 MSPM0 DRIVER LIBRARY (6) SYSTEM (7) 	Debug Configuration		^
	> E Debug > E targetConfigs		Beeper Board 1/1 Geo	Debug Enable On SWD Pins		
	README.html README.md		DMA ⊕ GPIO 1 ⊘ ⊕	Global Pin Configuration		^
	c uart_echo_interrupts_standby.c		Configuration NVM	Enable Global Fast-Wake		
	uart_echo_interrupts_standby.syscfg		SYSCTL 1/1 🔮 🕀 WWDT 💮	Configure Unused Pins		
	1		WWDT ⊕ ✓ ANALOG (2) ADC12 ⊕	Unused Pin Configuration		^
			VREF ()	Direction	Output	·
			V COMMUNICATIONS (5)	Configure Output	Low	
			12C ⊕ 12C - SMBUS ⊕	Generate Peripherals & Pin Assignments File		
			SPI ⊕ UART 1/1 ♥ ⊕	Initialization Priority Configuration		~
			UART - LIN (+)	Initialization Priority 0	SYSCTL - active	Ψ
			TIMER - CAPTURE ()	Initialization Priority 1	BEEPER	•
			TIMER - COMPARE (+)	Initialization Priority 2	PWM	Ψ
			TIMER - PWM	Initialization Priority 3	QEI	*
			TIMER - QEI 💮	Initialization Priority 4	CAPTURE	v
			TIMER ①	Initialization Priority 5	COMPARE	.*
			Timer Fault	Initialization Priority 6	TIMER	*
			CRC (+)	Initialization Priority 7	120	*
			V READ-ONLY (1)	Initialization Priority 8	12cSMBUS	÷
			EVENT 1/1 🥑 🕀	Initialization Priority 9	UART - active	.
				Initialization Priority 10	uartLIN	*
				Initialization Priority 11	SPI	+
				Initialization Priority 12	ADC12	
				Initialization Priority 13	VREF	•
				Initialization Priority 14	EVENT	.
				Initialization Priority 15	DMA	•
				Initialization Priority 16	GPIO - active	•
				Initialization Priority 17	CRC	*
				Initialization Priority 18	WWDT	
				PinMux Peripheral and Pin Configuration		v

Figure 2-5. Code Composer Studio IDE

4. Software porting.

When the environment is ready, start using the MSPM0 SDK. The MSPM0 SDK offers different layers for software development. For equivalents to NXP's device drivers, take a look at MSPM0's TI Drivers and Driverlib support. Most MSPM0 users find DriverLib level software is the best fit for their applications, so most MSPM0 software examples are also DriverLib based. This example uses DriverLib.

7

One option when porting a project is to try to replace each section of code with equivalent MSPM0 DriverLib APIs, but this is not generally the easiest path. Generally, it is best to first understand the application code being ported. Then start with the closest MSPM0 example project and modify it to match the original code functionality. This process is going to be shown below using a UART terminal example project from the MCUXpresso SDK_2.x_TWR-KM35Z75M, version 2.16.00.00 SDK. For more complex projects using many peripherals, this process is typically repeated for each peripheral.

a. Understand the application.

The following description is from the NXP's SDK example "twrkm35z75m_lpuart_interrupt".

The lpuart_functioncal_interrupt example shows how to use lpuart driver functional API to receive data with interrupt method: In this example, one lpuart instance connect to PC, the board will send back all characters that PC send to the board.

The first step is to understand the main settings for the MCU. This is generally clock speeds and power policies. In this example, the device does not utilize a low power mode. The specified system clock frequency is 72MHz and is generated from the device's 'OSC' or System oscillator. The UART peripheral clock is derived from the OSC. It is divided down to allow the UART to operate at 15200 baud, 8 data bits, 1 start and stop bit, no parity. No hardware flow control is used.

b. Find the closest MSPM0 example.

Next step is to understand any differences between the UART modules for KM35x and MSPM0 and then find the closest example in the MSPM0 SDK. This is easily accomplished by referring to the UART section in Section 4. This section highlights differences between the UART modules and links to the UART-related MSPM0 SDK code examples. The closest example in the SDK for this example is probably uart_echo_interrupts_standby where the "UART RX/TX echos using interrupts while device is in STANDBY mode".

This MSPM0 example is similar, but not identical to the being ported. This example simply echoes the data received back on the device's TX pin. A small adjustment to the C code will allow us to match the original example.

c. Import and modify the example.

Once a similar example is found, Open CCS and import the code example by going to Project > Import CCS Projects... and navigate it to the MSPM0 SDK example folder. Import the example. Here is the uart_echo_interrupts_standby example imported. This is a SysConfig project, so the main C file is simple. It first calls the SysConfig driverlib initialization which is a function autogenerated by SysConfig to configures the device. Then, it enables the UART interrupt. Finally, it goes to sleep waiting for any UART transaction. If it receives a UART transaction, it responds with "Hello World!".

Figure 2-6. uart_echo_interrupts_standby

To see the SysConfig configuration, open the .syscfg file, which opens on the SYSCTL tab by default. For detailed guide on using SysConfig, see the SysConfig Guide in the in the MSPM0 SDK.

This example already has the UART peripheral set up, so there is no need to change any of the configurations found in this file. If desirable, it is possible to change the settings like the clock source, clock divider, the target baud rate, or others. For this migration demonstration, the configuration will be left the same.

\Xi Type Filter Text 🗙 🕊	← → Software → UART	① <> 尊 ④
PROJECT CONFIGURATION (1)	Quick Profiles	0
Project Configur 1/1 🛇 (+)	UART Profiles	Custom
MSPM0 DRIVER LIBRARY (6)	UART PTOTILES	Custom
V SYSTEM (7)		
Beeper	Basic Configuration	
Board 1/1 🥑 🕀		
DMA 🕀	UART Initialization Configuration	
GPIO 1 🥑 🕀	Clock Source	LECLK
Configuration NVM	Clock Divider	Divide by 1
SYSCTL 1/1 🔮 🕀	Calculated Clock Source	
WWDT ANALOG (2)		32.77 kHz
	Target Baud Rate	9600
ADC12 VREF	Calculated Baud Rate	9576.04
V COMMUNICATIONS (5)	Calculated Error (%)	0.2496
12C 🕀		Using 3x oversampling with LFCLK can result in significant deviation in the actual baud rate.
I2C - SMBUS	Word Length	8 bits
SPI ①	Parity	None
UART 1/1 🛇 🕀	Stop Bits	One
UART - LIN 🕀	HW Flow Control	Disable HW flow control
V TIMERS (6)		
TIMER - CAPTURE		
TIMER - COMPARE	Advanced Configuration	
TIMER - PWM		
TIMER - QEI	Extend Configuration	
Timer Fault	Interrupt Configuration	
CRC READ-ONLY (1)	Pin Configuration	

This example also utilizes some GPIOs that are not featured in the NXP example. These GPIOs are simply used for debugging purposes, and one of them drives and LED. These can be left in for the sake of the demonstration, or removed if this is preferable.

╤ Type Filter Text 🗙 ≪	← → Software → GPIO		() <> @ 4)
✓ PROJECT CONFIGURATION (1) Project Configur 1/1 ♥ ④	GPIO (1 Added) ⊚		⊕ ADD ∎= REMOVE
MSPM0 DRIVER LIBRARY (6)	♥ GPI0_LEDS		
Beeper	Name	GPIO_LEDS	
Board 1/1 🤡 🕀	Port	Any	
DMA (+) GPIO 1 (2) (+)	Port Segment	Any	
Configuration NVM ↔ SYSCTL 1/1 ⊘ ↔	Group Pins		2
WWDT 🕀	2 added		⊕ ADD 📑 REMOVE A
V ANALOG (2)	ØUSER_LED_1		
ADC12	VOSEN_LED_1		U
VREF VREF	⊘USER_TEST		Ô
12C 🕀	Name	USER_LED_1	
I2C - SMBUS	Direction	Output	
SPI 🕀	Initial Value	Set	
UART 1/1 🤡 🕀 UART - LIN 🕀	IO Structure	Any	
✓ TIMERS (6) TIMER - CAPTURE ⊕	Digital IOMUX Features		~
TIMER - COMPARE 🕀	Assigned Port	Any	
TIMER - PWM 🕀	Assigned Port Segment	Any	
TIMER - QEI 🕀	Assigned Pin	22	
TIMER 🕀	Assigned 1 m	22	
Timer Fault	Interrupts/Events		^
CRC ①	Event Subscribing Channel	Disabled (0)	.
V READ-ONLY (1)	Output Policy	Bit will be Set	

Figure 2-8. Sysconfig GPIO Tab

When the project is saved and rebuilt, SysConfig updates the ti_msp_dl_config.c and ti_msp_dl_config.h files for the example. At this point, the example hardware configuration has been modified to match the full functionality of the original software being ported. The only remaining effort is application-level software to check for incoming UART bytes to toggle the LED and respond with "Hello World!". This is accomplished by editing a small amount of code in the uart_echo_interrupts_standby.c file.

```
README.md
Suart_echo_interrupts_standby.syscfg
                                                    uart_echo_interrupts_standby.c ×
26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
27 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
28 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
    * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29
30
     * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include "ti_msp_dl_config.h"
34
35 volatile uint8_t gEchoData = 0;
36 static uint8_t gMessage[12] = {'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd', '!'};
37
38 int main(void)
39 {
40
       SYSCFG_DL_init();
41
       NVIC ClearPendingIRQ(UART 0 INST INT IRQN);
42
43
       NVIC EnableIRQ(UART 0 INST INT IRQN);
44
       DL SYSCTL enableSleepOnExit();
45
46
       while (1) {
47
             _WFI();
48
       }
49 }
50
51 void UART 0 INST IRQHandler(void)
52 {
       switch (DL UART_Main_getPendingInterrupt(UART_0_INST)) {
53
54
           case DL UART MAIN IIDX RX:
55
               DL GPIO togglePins(GPIO LEDS PORT,
                   GPIO LEDS USER LED 1 PIN | GPIO LEDS USER TEST PIN);
56
57
               gEchoData = DL_UART_Main_receiveData(UART_0_INST);
58
               for(int i = 0; i < 12; i++){</pre>
59
                   DL_UART_Main_transmitDataBlocking(UART_0_INST, gMessage[i]);
60
               break;
61
           default:
62
63
               break;
       }
64
65 }
66
```

Figure 2-9. uart_echo_interrupts_standby.c

Two changes are made to the application code. First, the message array must be initialized so the device can respond to UART messages properly. For this, the following line is inserted below the initialization of gEchoData:

static uint8_t gMessage[12] = {'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd', '!'};

The second step actually processes the data send using a for loop and a blocking version of the UART transmit function, so only one character is sent at a time and there is no data collision in the Tx buffer. This is accomplished by adding the below code to the UART RX ISR:

5. Debug and verify.

The following figures demonstrate the correct functionality of the code example. As shown in the first image, when a UART character is sent to the LP-MSPM0G3507 using a terminal program on a PC, the device responds with "Hello World!".

In the second image, logic analyzer captures show the device's RX and TX line, showing the incoming character, then the outgoing "Hello World!".

With each received character, the on-board LED will toggle on and off.

File Control View	Window					
Export Rec. Data M	asurements Logging Counter Cu	rsors Notes				
Config	tecord Mode: Record Buffer: 6	→ Trigger: Normal	 ✓ ↑ ✓ Sommary 1 	Simple 5 bits V DIO 015	Pulse	
🔶 . — . 🛛 . Т.	<					
Name	Pin T Done 262144 sar	mples at 1.5625 MHz 2024-03-25 14:19:0	6.969.154.850			
- тх 📉	7	H e l	l •	W o r	H Ha H	
Data	DIO 0					
- RX 📉	↘━━━┣]				
Data	DIO 1					

Figure 2-10. Logic Analyzer Capture

PuTTY	_	×
Hello World!Hello World!Hello World!Hello World!Hello World!Hello	World!	\sim
		\sim

Figure 2-11. Serial Terminal

The software has successfully been ported! If this was just the first peripheral of many, continue to repeat this process and use SysConfig to combine each block.

3 Core Architecture Comparison

3.1 CPU

The NXP and MSPM0 families both utilize the Arm M0+ 32-bit core. Table 3-1 provides a high-level overview of the general features of the CPUs in the MSPM0G, MSPM0L and MSPM0C devices compared to the NXP devices. Section 3.6.1 provide a comparison of the interrupts and exceptions and how they are mapped in the Nested Vectored Interrupt Controller (NVIC) peripheral included in the M0 architecture for each device.

Table 3-1. Comparison of CPU Feature Sets								
Feature	S32K1xx	KEA128x	KM35x	MSPM0G	MSPMOL	MSPM0C		
Architecture	Arm Cortex-M0+	Arm Cortex-M0+	Arm Cortex-M0+	Arm Cortex-M0+	Arm Cortex-M0+	Arm Cortex-M0+		
Maximum MCLK	112MHz	20MHz	75MHz	32MHz - 80MHz	32MHz	24MHz		
CPU instruction cache	Up to 4KB	No	64-bit	4 x 64-bit lines (32 bytes)	2 x 64-bit lines (16 bytes)	No		
Processor trace capabilities	Yes, integrated micro trace buffer	No	Yes, integrated micro trace buffer	Yes, integrated micro trace buffer	No	No		
Memory protection unit (MPU)	Yes	No	Yes	Yes	No	No		
System timer (SYSTICK)	No	Yes	No	Yes (24 bit)	Yes (24 bit)	No		
Hardware multiply	Yes	Yes	Yes	Yes	Yes	No		
Hardware breakpoint / watchpoints	No	2/0	2/0	4/2	4/2	4/2		
Boot routine	ROM	ROM	ROM	ROM	ROM	ROM		
Bootstrap loader storage	Flash (system memory)	ROM	Flash (system memory)	ROM	ROM	Flash (system memory)		
Bootloader interface support ^{(1) (2)}	Available for all data interfaces	Available for all data interfaces	Available for all data interfaces	UART, I2C, user extendable	UART, I2C, user extendable	User defined		
DMA	Yes -16 ch	No	Yes - 4 ch	Yes - 7 ch	Yes - 3 ch	Yes - 1ch		

Table 3-1. Comparison of CPU Feature Sets

(1) For availability, see the device-specific data sheet.

(2) Other interfaces to be made available in later device releases.

3.2 Embedded Memory Comparison

3.2.1 Flash Features

The MSPM0 and NXP family of MCUs feature nonvolatile Flash memory used for storing executable program code and application data.

Table 3-2. Comparison of	Flash Feature
--------------------------	---------------

Features	S32K1xx	KEA128x	KM35	MSPM0G	MSPM0L	MSPM0C	
Flash memory	Up to 2MB program/ 64KB FlexNVM data	64KB	Up to 512KB	128KB to 32KB	64KB to 8KB	16KB to 8KB	
Memory organization	1 to 3 Blocks	Single	Block	Single Block			
Block (bank) size	Up to 512KB	64KB	Up to 512KB		256KB		
Sector size	2KB	512B	2KB		1KB		
Flash word size	128 / 64 bits	64 bits		64 bits plus 8 ECC bits 64-bit, Refer to device-specific dates and the second			
Programming resolution	32-, 16-, or	32-, 16-, or 8-bit (byte) 64-bit Flash word		64-bit Flash word, (32-, 16-, or 8-bit, see the device- specific Technical Reference Manual)			

Table 3-2. Comparison of Flash Feature (continued)								
Features	S32K1xx	KEA128x	КМ35	MSPM0G	MSPMOL	MSPM0C		
Erase	Page Erase Chip erase (all banks)	N/A	Sector 2KB	Sector Erase 1KB / Bank Erase (up to 256KB)				
Write protection		Yes, static		Ye	es, static and dynam	iic		
Read protection	No	Yes	No		Yes			
Flash memory read operations	128-bit Flash word	128-bit Flash word	64-bit Flash word	64-bit Flash word size plus 8 ECC bits				
Flash memory write operations	Yes	Yes	Yes	64-bit Flash word size + 8 ECC bits data sheet				
FlexNVM (Data and EEPROM emulation)	Read / Write 32-, 16-, or 8-bit	N/A	N/A	N/A				
Error code correction (ECC)	Yes	Yes	No	8 bits for 64 bits Refer to device specific datasheet i ECC is supported				
Prefetch	Yes	No	No	Yes No		No		

In addition to the Flash memory features listed in the previous table, the MSPM0 Flash memory also has the following features:

- In-circuit program and erase supported across the entire supply voltage range
- Internal programming voltage generation
- Support for EEPROM emulation with up to 100 000 program/erase cycles on the lower 32KB of the Flash memory, with up to 10 000 program/erase cycles on the remaining Flash memory (devices with 32KB support 100 000 cycles on the entire Flash memory)

3.2.2 Flash Organization

The Flash memory is used for storing application code and data, the device boot configuration, and parameters that are preprogrammed by TI from the factory. The Flash memory is organized into one or more banks, and the memory in each bank is further mapped into one or more logical memory regions and assigned system address space for use by the application.

3.2.2.1 Memory Banks

Most MSPM0 devices implement a single flash bank (BANK0). On devices with a single flash bank, an ongoing program/erase operation stalls all read requests to the flash memory until the operation has completed and the flash controller has released control of the bank. On devices with more than one flash bank, a program/erase operation on a bank also stalls read requests issued to the bank that is executing the program/erase operation but does not stall read requests issued to another bank. Therefore, the presence of multiple banks enables application cases such as:

- Dual-image firmware updates (an application can execute code out of one flash bank while a second image is programmed to a second symmetrical flash bank without stalling the application execution)
- EEPROM emulation (an application can execute code out of one flash bank while a second flash bank is used for writing data without stalling the application execution)

3.2.2.2 Flash Memory Regions

The memory within each bank is mapped to one or more logical regions based upon the functions that the memory in each bank supports. There are four regions:

- FACTORY Device Id and other parameters
- NONMAIN Device boot configuration (BCR and BSL)
- MAIN Application code and data
- DATA Data or EEPROM emulation

Devices with one bank implement the FACTORY, NONMAIN, and MAIN regions on BANK0 (the only bank present), and the data region is not available. Devices with multiple banks also implement FACTORY,

NONMAIN, and MAIN regions on BANK0, but include additional banks (BANK1 through BANK4) that can implement MAIN or DATA regions.

3.2.2.3 NONMAIN Memory

The NONMAIN is a dedicated region of flash memory that stores the configuration data used by the BCR and BSL to boot the device. The region is not used for any other purpose. The BCR and BSL both have configuration policies that can be left at their default values (as is typical during development and evaluation) or modified for specific purposes (as is typical during production programming) by altering the values programmed into the NONMAIN flash region.

3.3 Power Up and Reset Summary and Comparison

Similar to NXP M0 devices, MSPM0 devices have a minimum operating voltage and have modules in place to make sure that the device starts up properly by holding the device or portions of the device in a reset state. Table 3-3 shows a comparison on how this is done between the two families and what modules control the power up process and reset across the families.

Feature	S32K1xx	KEA128x	KM35x	N	ISPM0 Devices			
Modules governing power up and resets	Reset Control Module			Module governing power up and resets	PMCU (Power Management and Clock Unit)			
	Voltage-Level Based Resets							
POR (Power-On Reset)	Complete device reset. Firs level for power down	wer up. Lowest voltage	POR (Power-On Reset)	Complete device reset. First level voltage release for power up. Lowest voltage level for power down.				
BOR (Brownout Reset) with configurable levels	Programmable Threshold fo	Configurable BOR (Brownout Reset)	Can be configured as a reset or interrupt, with different voltage thresholds.					

Table 3-3. Comparison of Power Up

NXP defines different reset types, while MSPM0 devices have different levels of reset states. For MSPM0 devices, the reset levels have a set order, and when a level is triggered, all subsequent levels are reset until the device is released into RUN mode. Table 3-4 gives a brief description of MSPM0 reset states. Figure 3-1 shows the relationship between all of the MSPM0 reset states.

Table 3-4. Comparison of Reset Domains

S32K1	xx, KEA128x, KM35 Reset Domains	MSPM0 Reset States ⁽¹⁾		
Power reset domain Typical triggers are POR, BOR ⁽³⁾		POR	existing content	
No equivalent		Boot reset (BOOTRST) (2)	existing content	
System reset domain	ystem reset domain Typical triggers are external pin reset, low voltage detect, WDT reset ⁽³⁾		existing content	
No equivalent		CPU-only reset (CPURST)	existing content	
RTC domain (3)			existing content	

(1) Not all reset triggers are described. Refer to the PMCU chapter of the device TRM for all available reset triggers.

(2) If BOOTRST cause was through NRST or software trigger, RTC, LFCLK, and LFXT/LFLCK_IN configurations and IOMUX settings are NOT reset to allow RTC to maintain operation through external reset.

(3) For specific reset triggers, see the Reset and Boot chapter of the NXP device-specific TRM.

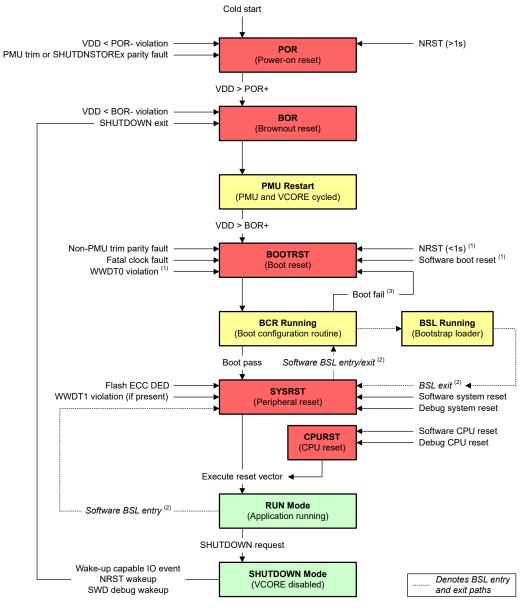


Figure 3-1. MSPM0 Reset Levels

3.4 Clocks Summary and Comparison

NXP's MCUs and MSPM0 both contain internal oscillators that source primary clocks. The clocks can be divided to source other clocks and be distributed across the multitude of peripherals.

Oscillator	S32K1xx	KEA128x	KM35x	MSPM0G/L	MSPM0C			
Internal RC	Fast IRC, Slow IRC	N/A	Internal RC (4MHz)	SYSOSC ⁽¹⁾	SYSOSC (24MHz)			
Full Swing Crystal	SOSC	OSC	CLK	HFXT	N/A			
Internal RC	LP0 128kHZ	IRC 3	32kHz	LFOSC 32kHz				
Low Frequency Crystal	N/A	N/A	OSC32K	LFXT - 32kHz	N/A			
Low Power Crystal	N/A	1kHZ LPO	N/A	LFXT - 32kHz	N/A			

Table	3-5	Oscillator	Comparisons
Table	U - U .	OScinator	0011120113

(1) SYSOSC is programmable to be 32MHz, 24MHz, 16MHz, or 4MHz.

Table 3-6. Clock Comparison								
Clock	S32K1xx	KEA128x	KM35	MSPM0G	MSPM0L/C			
	SOSC	ICSOUTCLK	MCGOUTCLK	SYSOSC (4-32MHz)	SYSOSC (24MHz)			
System	SPLLDIV1	N/A	MCGPLLCLK	SYSPLLCLK1	N/A			
System SPLLDIV2	SPLLDIV2	PLLDIV2 N/A MCGFLLCLK		SYSPLLCLK0	N/A			
	N/A			SYSPLLCLK2x1	N/A			
Core / Bus Clock	CORE_CLK	ICSOUTCLK	MCGOUTCLK	BUSCLK/ULPCLK2	BUSCLK/ULPCLK2			
Slow Internal Clock	SIRC (8MHz)	IRC (37.5kHz)	IRC (32kHz)	LFOSC	(32kHz)			
Fast Internal Clock	FIRC (48MHz)	N/A	IRC (4MHz)	SYSOSC				
Low Power Clock	LPO (128 kHz)	LP0CLK	LPO (1kHz)	LFCLK (32kHz)				
RTC Clock	N/A	OSCERCLK	IRTC/OSC32KCLK	RTCCLK	N/A			

1. SYSPLLCLK2x is twice the speed of the output of the PLL module and can be divided down.

2. BUSCLK depends on the Power Domain. For Power Domain 0, BUSCLK is ULPCLK. For Power Domain 1, BUSCLK is MCLK.

Peripheral	S32K1xx	KEA128x	KM35x	MSPM0G	MSPM0L/C
		-			
RTC	LP01K_CLK, RTC_CLK	BUS_CLK,LPOCLK,I CSIRCLK,OSCERCL K	EXTAL32	LFCLK (LFOSC, LFXT)	N/A
UART	BUSCLK,SOSCDIV2 _CLK,FIRCDIV2_CLK _SPLLDIV2_CLK	BUSCLK	BUSCLK	BUSCLK, ULPCLK,MFCLK, LFCLK	BUSCLK, ULPCLK,MFCLK, LFCLK
SPI		BUSCLK	BUSCLK	BUSCLK, MFCLK, LFCLK	BUSCLK, ULPCLK,MFCLK, LFCLK
I2C	BUSCLK,SOSCDIV2 _CLK,FIRCDIV2_CLK	BUSCLK	BUSCLK	BUSCLK, MFCLK	BUSCLK, ULPCLK,MFCLK, LFCLK
ADC	,SPLLDIV2_CLK	BUSCLK,OSCERCLK ,ADACK	OSCERCLK,MCGPL LCLK	ULPCLK, HFCLK, SYSOSC	SYSOSC, ULPCLK
LPTIM 1/2		TIMER_CLK	LPO, OSCERCLK,MCGIRC LK,ERCLK32K	LFCLK, ULPCLK, LFCLK_IN	ULPCLK, LFCLK
TIMERS	SYS_CLK,SOSCDIV1 _CLK,FIRCDIV1_CLK _SPLLDIV1_CLK	TIMER_CLK,ICSFFC LK	BUSCLK	BUSCLK, MFCLK, LFCLK	BUSCLK, ULPCLK,MFCLK, LFCLK

Table 3-7. Peripheral Clock Sources

The device-specific TRM for each family has a clock tree to help visualize the clock system. Sysconfig can assist with the options for clock division and sourcing for peripherals.

3.5 MSPM0 Operating Modes Summary and Comparison

MSPM0 MCUs provide five main operating modes (power modes) to allow for optimization of the device power consumption based on application requirements. In order of decreasing power, the modes are: RUN, SLEEP, STOP, STANDBY, and SHUTDOWN. The CPU is active executing code in RUN mode. Peripheral interrupt events can wake the device from SLEEP, STOP, or STANDBY mode to the RUN mode. SHUTDOWN mode completely disables the internal core regulator to minimize power consumption, and wake is only possible via NRST, SWD, or a logic level match on certain IOs. RUN, SLEEP, STOP, and STANDBY modes also include several configurable policy options (for example, RUN.x) for balancing performance with power consumption.

To further balance performance and power consumption, MSPM0 devices implement two power domains: PD1 (for the CPU, memories, and high performance peripherals), and PD0 (for low speed, low power peripherals). PD1 is always powered in RUN and SLEEP modes, but is disabled in all other modes. PD0 is always powered in RUN, SLEEP, STOP, and STANDBY modes. PD1 and PD0 are both disabled in SHUTDOWN mode.

Low-power mode code examples

Navigate to the SDK installation and find low-power mode code examples in examples > nortos > LP name > driverlib

3.5.1 Operating Modes Comparison

NXP devices have similar operating modes. Table 3-8 gives a brief comparison between NXP and MSPM0 devices.

S32K1XX Series		KEA128x		KM35x		MSPM0								
Mode	Description	Mode	Description	Mode	Description	Mode	Descript	ion						
						Run	0	Full clocking and peripherals available						
Run/High Speed Run	Speed peripherals	Run	Full clocking and peripherals available	Run	Full clocking and peripherals available		1	SYSOSC at set frequency; CPUCLK and MCLK limit to 32kHz						
available							2	SYSOSC disabled; CPUCLK and MCLK limit to 32kHz						
VLPR	Reduced clock speed; Most peripherals remain enabled	N/A	N/A	N/A	N/A	N/A								
VLPS	CPU stopped; Some clocks	NORMAL WAIT	CPU stopped; peripherals	NORMAL WAIT	CPU stopped; peripherals	Sleep	0	CPU not clocked						
	and peripherals remain enabled		individually enabled	,		,	,	,	,	,	individually enabled		1	Same as Run1, but CPU not clocked
		Jied					2	Same as Run2, but CPU not clocked						
STOP	CPU and system clocks	tem clocks system clocks stopped; stopped; Some peripherals remain enabled remain enabled stopped; Some peripherals stopped; Some			system clocks STOP	stem clocks STOP system clocks	ystem clocks system clocks STOP system clocks	system clocks	Stop	0	Sleep 0 + PD1 disabled			
	stopped; Some peripherals remain			stopped; Some peripherals remain enabled		1	Sleep 1 + SYSOSC gear shifted to 4MHz							
	remain enabled						2	Sleep 2 + ULPCLK limited to 32kHz						

S32K1X	X Series	KEA128x			KM35x		MSPM0	
Mode	Description	Mode	Description	Mode	Description	Mode	Descript	ion
						Standby	0	Lowest power with BOR capability; all PD0 peripherals can receive ULPCLK and LFCLK at 32kHz; RTC available with RTCCLK
							1	Only TIMG0 and TIMG1 car receive ULPCLK or LFCLK at 32kHz; RTC available with RTCCLK
						Shutdown	No clocks, BOR, or RTC. Core regulation off. PD1 And PD0 disabled. Exit triggers reset level BOR.	

Table 3-8 Operating Modes Comparison Between NXP and MSPM0 Devices (continued)

3.5.2 MSPM0 Capabilities in Lower Power Modes

As seen in Table 3-8, MSPM0 peripherals or peripheral modes can be limited in availability or operating speed in lower power operating modes. For specific details, see the Supported Functionality by Operating Mode table found in the MSPM0 device-specific data sheet, for example:

MSPM0G350x Mixed-Signal Microcontrollers data sheet

MSPM0L134x, MSPM0L130x Mixed-Signal Microcontrollers data sheet

MSPM0C110x Mixed-Signal Microcontrollers data sheet

An additional capability of the MSPM0 devices is the ability for some peripherals to perform an Asynchronous Fast Clock Request. This allows MSPM0 device to be in a lower power mode where a peripheral is not active, but allows a peripheral to be triggered or activated. When an Asynchronous Fast Clock Request happens, the MSPM0 device has the ability to quickly ramp up an internal oscillator to a higher speed or temporarily go into a higher operating mode to process the impending action. This allows for fast wake up of the CPU from timers, comparator, general-purpose input/output (GPIO), and RTC; receive SPI, UART, and I2C; or trigger DMA transfers and ADC conversions, while sleeping in the lowest power modes. For details on implementation of Asynchronous Clock Requests as well as peripheral support and purpose, see the appropriate chapter in the device-specific MSPM0 TRMs.

MSPM0 G-Series 80-MHz Microcontrollers Technical Reference Manual

MSPM0 L-Series 32-MHz Microcontrollers Technical Reference Manual

MSPM0 C-Series 24-MHz Microcontrollers Technical Reference Manual

3.5.3 Entering Lower-Power Modes

Like the NXP devices, the MSPM0 devices go into a lower-power mode when executing the wait for event, ___WFE();, or wait for interrupt, __WFI();, instruction. The low-power mode is determined by the current power policy settings. The device power policy is set by a driver library function. The following function call sets that power policy to Standby 0.

DL_SYSCTL_setPowerPolicySTANDBY0();

STANDBYO can be replaced with the operating mode of choice. For a full list of driverlib APIs that govern power policy, see this section of the MSPMO SDK DriverLib API guide. Also see the following code examples that demonstrate entering different operating modes. Similar examples are available for every MSPMO device.

3.6 Interrupt and Events Comparison

3.6.1 Interrupts and Exceptions

The MSPM0 and NXP MCUs both register and map interrupt and exception vectors depending on the device's available peripherals. A summary and comparison of the interrupt vectors for each family of devices is included in Table 3-9. A lower value of priority for an interrupt or exception is given higher precedence over interrupts with a higher priority value. For some of these vectors the priority is user-selectable, and for others it is fixed.

For both MSPM0 and NXP MCUs, exceptions such as NMI, reset, and hard fault handlers are given negative priority values to indicate that they always have the highest precedence over peripheral interrupts. For peripherals with selectable interrupt priorities, up to four programmable priority levels are available on both families of devices.

IRQ Number	NXP		MSPM0		
	Interrupt/Exception Priorit		Interrupt/Exception	Priority	
-	Reset		Re	Fixed: -3	
-	NMI Handler		NMI Handler	Fixed: -2	
-	Hard Fault Handler		Hard Fault Handler	Fixed: -1	
-	SVCall Handler		SVCall Handler	Selectable	
-	PendSV		PendSV	Selectable	
-	SysTick		SysTick	Selectable	
			INT_GROUP0-6 [WWDT0, DEBUGSS, FLASHCTL, WUC FSUBx, and SYSCTL]: M0G		
0	DMA0: KM35x	Selectable	INT_GROUP0,2-6 [WWDT0, DEBUGSS, FLASHCTL, WUC FSUBx, and SYSCTL]: M0L	Selectable	
			INT_GROUP0-6 [WWDT0, DEBUGSS, FLASHCTL, and SYSCTL]: M0C		
		Selectable	INT_GROUP0-5 [GPIO0, GPIO1, COMP0,COMP1,COMP2,TRNG]: M0G		
1	DMA1: KM35x		INT_GROUP0,2 [GPIO0, COMP0]: M0L	Selectable	
			GPIO0: M0C		
0		0.1.1.1	TIMG8:M0G, M0C	O a la stalida	
2	DMA2: KM35x	Selectable	TIMG1: M0L	Selectable	
3	DM3: KM35x	Selectable	UART3:M0G	Selectable	
			ADC0: M0G		
4	SPI0/SPI1/SPI2: KM35x	Selectable	ADC: M0L, M0C	Selectable	
E	FTMRE: KEA128x	Selectable		Colestable	
5 —	PDB0:KM35x	Selectable	ADC1: M0G	Selectable	
6	PMC: KE128x/KM35x	Selectable	CANFD0: M0G	Selectable	
	TMR0: KM35x	Octostali	D400 M00	O al a stal l	
7	EXT IRQ: KE128x	 Selectable 	DAC0: M0G	Selectable	
0	TMR1: KM35x	Calestable	Description	Only state!	
8	I2C0: KEA128x	- Selectable	Reserved	Selectable	

Table 3-9. Interrupt Comparison

IRQ Number	NXP	rrupt Comparis	MSPM0	
	Interrupt/Exception	Priority	Interrupt/Exception	Priority
•	TMR2: KM35x			
9	I2C1: KEA128x	Selectable	SPI0: M0G, M0L, M0C	Selectable
	TMR3: KM35x			
10	SPI0: KEA128x	Selectable	SPI1: M0G, M0L, M0C	Selectable
	PIT0/PIT1: KM35x			
11	SPI1: KEA128x	Selectable	Reserved	Selectable
10	LLWU: KM35x			
12	UART0: KEA128x	Selectable	Reserved	Selectable
40	FLASH: KM35x			
13	UART1: KEA128x	Selectable	UART1: M0G, M0L	Selectable
4.4	ACMP0/ACMP1/ACMP2: KM35x	Outestable		O a la atabla
14	UART2: KEA128x	Selectable	UART2	Selectable
	SLCD: KM35x			0.1.1.1
15	ADC0: KEA128x	Selectable	UART0: M0G, M0L, M0C	Selectable
40	ADC: KM35x	Outestable	TIMG0: M0G, M0L	O a la atabla
16	ACMP0: KEA128x	Selectable	TIMG14: M0C	 Selectable
47	PTx: KM35x	Coloctoble	TIMOS	Selectable
17	FTM0: KEA128x	Selectable	TIMG6: M0G	Selectable
18	RNGA: KM35x	Selectable	TIMA0: M0G	
			TIMG2: M0L	Selectable
	FTM1: KEA128x		TIMA0: M0C	
19	UARTx: KM35x	Selectable	TIMA1: M0G	Selectable
19	FTM2: KEA128x	Selectable	TIMAT. MOG	Geleciable
20	MMAU: KM35x	Selectable	TIMG7: M0G	Selectable
20	RTC: KEA128x	Gelectable	TIMG4: MOL	Gelectable
21	AFE_CH0: KM35x	Selectable	TIMG12: M0G	Selectable
21	ACMP1: KEA128x	Colociable		Selectable
22	AFE_CH1: KM35x	Selectable	Reserved	Selectable
	PIT_CH0: KEA128x			
23	AFE_CH2: KM35x	Selectable	Reserved	Selectable
	PIT_CH1: KEA128x			
24	AFE_CH3: KM35x	Selectable	I2C0: M0G, M0L, M0C	Selectable
	KBIO: KEA128x			
25	iRTC: KM35x	Selectable	I2C1: M0G, M0L, M0C	Selectable
	KBI1: KEA128x			
26	I2C0/I2C1: KM35x	Selectable	Reserved	Selectable
	Reserved: KEA128x			
27	LPUART0: KM35x	Selectable	Reserved	Selectable
	ICS: KEA128x			
28	MCG: KM35x	Selectable	AES: M0G	Selectable
	WDOG: KEA128x			
29	WDOG/EWM: KM35x	Selectable	Reserved	Selectable
	PWT: KEA128x			
30	LPTMR0/LPTRM1: KM35x	Selectable	RTC: M0G	Selectable
	MSCAN_RX: KEA128x			

Table 3-9. Interrupt Comparison (continued)

Table 3-9. Interrupt Comparison (continued)						
IRQ Number	NXP MSPM0					
	Interrupt/Exception	Priority	Interrupt/Exception	Priority		
31	XBAR: KM35x	Selectable	DMA : M0G. M0L. M0C	Selectable		
51	MSCAN_TX: KEA128x	Geleciable	DMA . MOG, MOE, MOC	Selectable		

3.6.2 Event Handler and Extended Interrupt and Event Controller (EXTI)

The MSPM0 devices include a dedicated event manager peripheral, which extends the concept of the NVIC to allow digital events from a peripheral to be transferred to the CPU as interrupts, to the DMA as a trigger, or to another peripheral to trigger a hardware action. The event manager can also perform handshaking with the power management and clock unit (PMCU), to make sure that the necessary clock and power domain are present for triggered event actions to take place.

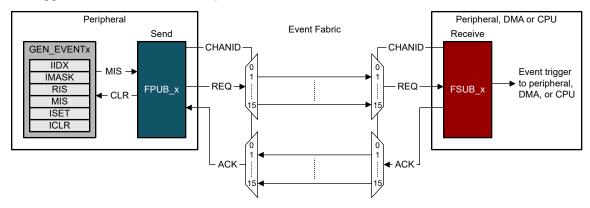


Figure 3-2. Generic Event Route

In the MSPM0 event manager, the peripheral that generates the event is known as a publisher, and the peripheral, DMA, or CPU that acts based on the publisher is known as the subscriber. The potential combinations of available publisher and subscriber are extremely flexible and can be used when migrating software to replace functionality previously handled by interrupt vectors and the CPU, to bypass the CPU entirely. For example, an I2C-to-UART bridge may previously have triggered a UART transmission upon receipt of an I2C STOP, using an ISR to set a flag, or load the UART TX buffer directly. With the MSPM0 Event handler, the I2C transaction complete event could trigger the DMA to load the UART TX buffer directly, and therefore eliminate the need for any action by the CPU.

To get more details on the use of the event handler in MSPM0, see the Events section of the MSPM0 G-Series 80-MHz Microcontrollers Technical Reference Manual or the MSPM0 L-Series 32-MHz Microcontrollers Technical Reference Manual.

3.7 Debug and Programming Comparison

The Arm SWD 2-wire JTAG port is the main debug and programming interface for both MSPM0 and NXP. This interface is typically used during application development, and during production programming. Table 3-10 compares the features between the two device families. For additional information about security features of the MSPM0 debug interface, see the Cybersecurity Enablers in MSPM0 MCUs.

Table 3-10. Program/Debug Interface Feature Comparison					
	S32K1xx	KEA128x	KM35x	MSPM0	
Debug port		Arm SWD port (2-wire)		Arm SWD port (2-wire)	
Break Point Unit (BPU)	Two hardware br	eakpoints; unlimited user sof	tware breakpoints	Four hardware breakpoints	
Data Watch Unit (DWT)	Four watchpoints	Two wat	chpoints	Two watchpoints	
Micro-Trace Buffer (MTB)	Yes	No	Yes	MTB support with 4 trace packets#none#	
Low-power debug support	No	N/A	No	Yes	
EnergyTrace support	N/A	N/A	N/A	EnergyTrace+ support (CPU states with power profiling)	
Peripheral run support during debug	Yes	N/A	Yes	Yes	
Debug interface locking	Yes	N/A	Yes	Can permanently disable debug capabilities, or can lock with password	

3.7.1 Bootstrap Loader (BSL) Programming Options

The bootstrap loader (BSL) programming interface is an alternative programming interface to the Arm SWD. This interface offers programming capabilities only, and typically is utilized through a standard embedded communication interface. This allows for firmware updates through existing connections to other embedded devices in system or external ports. Although programming updates is the main purpose of this interface, it can also be utilized for initial production programming as well. Table 3-11 shows a comparison of the different options and features between MSPM0 and NXP device families.

BSL Features	S32K1xx	KEA128x	KM35x	MSPM0
BSL started on blank device	No	N	/A	Yes
Auto detection of programming interface	No	N	/A	Yes
Security	Yes	N/A		Secure boot options; CRC protections
Customizable	No	N/A		Yes, configurable invoke pin and plug-in feature
Invoke methods	Jump/call instruction	N/A		1 pin high at BOOTRST, SW entry
Interfaces Supported				
UART	Yes	N	/A	Yes
I2C	Yes	N	/A	Yes
SPI	Yes ⁽¹⁾	N	/A	Custom plug-in needed
CAN	Yes ⁽¹⁾	Ν	/A	Plug-in planned ⁽¹⁾

Table 3-11. BSL Feature Comparison

(1) Pattern option availability is device dependent.

4 Digital Peripheral Comparison

4.1 General-Purpose I/O (GPIO, IOMUX)

MSPM0 GPIO functionality covers all of the features offered by the S32K1xx , KEA128x devices, and KM35x with additional functionality. NXP uses the term GPIO to refer to the pins that can be set, reset, or toggle. However, MSPM0 uses a slightly different nomenclature, namely:

- MSPM0 GPIO refers to the hardware capable of reading and writing IO, generating interrupts, and so forth.
- MSPM0 IOMUX refers to the hardware responsible for connecting different internal digital peripherals to a pin. IOMUX services many different digital peripherals, including, but not limited to, GPIO.

The MSPM0 GPIO and IOMUX modules cover the same functionality as NXP's GPIO, PORT, and TRGMUX/SMU modules. MSPM0 devices also offer several additional functions that are unavailable for NXP S32K1xx, KEA128x, and KM35x devices.

Feature	S32K1xx	KEA128x	KM35x	MSPM0G, MSPM0L,MSPM0C
Output modes	Push-pull Open drain with pullup or pulldown	Push-pull Open drain with pullup	Push-pull Open drain with pullup or pulldown	Push-pull Open drain with pullup or pulldown
GPIO speed selection	Synchronous path 1.5*tmax = 31.25ns @48MHz Asynchronous path: 50ns	10.2ns rise time, 9.5ns fall time	8.0ns rise time, 5.0ns fall time	ODIO pins: 120ns All others: 0.3*fmax = 3.75ns @ 80MHz
High-drive GPIO	12mA Per High drive port pin	20mA	Yes	Equivalent, called High Drive IO (HDIO)
Input modes	Floating Pull-up/Pull-down Analog	Floating Pull-up Analog	Floating Pull-up/Pull-down Analog	Equivalent
Atomic bit set and reset	Yes	Yes	Yes	Equivalent
Alternate functions	Configured with Signal Multiplexing Unit	Configured with PORT module	Configured with PORT module	Equivalent MSPM0 uses IOMUX
Wake-up	GPIO pin interrupt	N/A	Equivalent	Equivalent
GPIO controlled by DMA	Yes	No	Yes	Yes
User controlled input filtering to reject glitches less than 1, 3, or 8 ULPCLK periods	Equivalent	Equivalent	Equivalent	Yes
User controllable input hysteresis	Yes	Yes	No	Yes

Table 4-1. GPIO Feature Comparison

GPIO code examples

Information about GPIO code examples can be found in the MSPM0 SDK examples guide.

4.2 Universal Asynchronous Receiver-Transmitter (UART)

MSPM0 and NXP's M0 MCUs offer peripherals for asynchronous (clockless) communication. The S32K1xx and KM35x family offers a low-powered UART that supports basic UART, while the KEA128x and KM35x offer a regular UART module. In MSPM0, these UART peripherals come in two variants: one with standard features and one with advanced features. In NXP's devices, the UART comes in one singular version. Table 4-2 shows a comparison of MSPM0's UART against NXP's S32K1xx, KEA128x, and KM35x UART.

Feature	S32K1xx	KEA128x	KM35x	MSPM0
Hardware flow control	Yes	No	Yes	Yes
Continuous communication using DMA	Yes	No	Yes	Yes
Multiprocessor	No	No	No	Yes

Table 4-2	UART	Feature	Set	Comparison
-----------	------	---------	-----	------------

Table 4-2. UART Feature Set Comparison (continued)					
Feature	S32K1xx	KEA128x	KM35x	MSPM0	
Synchronous mode	No	No	No	No	
Single-wire half duplex communication	Yes	Yes	Yes	Yes ⁽¹⁾	
Wakeup from low-power mode	Yes	Yes	Yes	Yes	
Data length	7,8,9,10	8,9	8,9	5, 6, 7, 8	
Tx/Rx FIFO Depth	4	N/A	8	4	
IrDA Support	Yes	No	Yes	Extended UART only	
LIN Support	Yes	Yes	Yes	Extended UART only	
DALI Support	No	No	No	Extended UART only	
Manchester Code Support	No	No	No	Extended UART only	

(1) Requires reconfiguration of the peripheral between transmission and reception

UART code examples

Information about UART code examples can be found in the MSPM0 SDK examples guide.

4.3 Serial Peripheral Interface (SPI)

MSPM0 and NXP's M0 MCUs both support serial peripheral interface (SPI). Overall, MSPM0 and S32K1xx/ KEA128x/KM35x SPI support is comparable with the difference listed in Table 4-3.

Feature	S32K1xx	KEA128x	KM35x	MSPM0
Controller or peripheral operation	Yes	Yes	Yes	Yes
Data bit width (controller mode)	8 bits	8 bits	8 to 16 bits	4 to 16 bits
Data bit width (peripheral mode)	8 bits	8 bits	8 to 16 bits	7 to 16 bits
				MSPM0C: 12 MHz
Maximum speed	10MHz	12MHz	37.5 MHz	MSPM0L: 16MHz
				MSPM0G: 32MHz
Full-duplex transfers	Yes	Yes	Yes	Yes
Half-duplex transfer (bidirectional data line)	Yes	No	Yes	No
Simplex transfers (unidirectional data line)	Yes	Yes	Yes	Yes
Hardware chip select management	Equivalent	Equivalent	Equivalent	Yes
Programmable clock polarity and phase	Yes	Yes	Yes	Yes
Programmable data order with MSB-first or LSB-first shifting	Yes	Yes	Yes	Yes
SPI format support	N/A	N/A	N/A	Motorola, TI, MICROWIRE
Hardware CRC	No	No	No	No, MSPM0 offers SPI parity mode
TX FIFO depth	4	N/A	8	4

Table 4-3. SPI Feature Comparison

Table 4-3. SPI Feature Comparison (continued)

Feature	S32K1xx	KEA128x	KM35x	MSPM0
RX FIFO depth	4	N/A	8	4

SPI code examples

Information about SPI code examples can be found in the MSPM0 SDK examples guide.

4.4 I2C

MSPM0 and NXP's M0 MCUs both support I2C. In both MSPM0 and NXP's M0 MCUs, the I2C functionality is handled by the I2C module.

Feature	S32K1xx	KEA128x	KM35x	MSPM0
Controller and target modes	Yes	Yes	Yes	Yes
Multi-controller capability	Yes	Yes	Yes	Yes
Standard-mode (up to 100 kHz)	Yes	Yes	Yes	Yes
Fast-mode (up to 400 kHz)	Yes	Yes	Yes	Yes
Fast-mode Plus (up to 1 MHz)	Yes	Yes	Yes	Yes
Addressing mode	7 or 10 bit	7 or 10 bit	7 or 10 bit	7 or 10 bit
Peripheral addresses	1 address (later)	1 address	1 address	2 addresses
General call	Yes	Yes	Yes	Yes
Programmable setup and hold times	Yes	Yes	Yes	No
Event management	No	No	No	Yes
Clock stretching	Yes	Yes	Yes	Yes
Software reset	Yes	Yes	Yes	Yes
EIEO/Duffer	Vec (Centreller Only)	NI/A	NI/A	TX: 8 byte
FIFO/Buffer	Yes (Controller Only)	N/A	N/A	RX: 8 byte
DMA	Yes (Target Only)	No	No	Yes
Programmable analog and digital noise filters	No	Equivalent	Equivalent	Yes

Table 4-4. I2C Feature Comparison

I2C code examples

Information about I2C code examples can be found in the MSPM0 SDK examples guide.

4.5 Timers (TIMGx, TIMAx)

MSPM0 and NXP's M0 MCUs both offer various timers. MSPM0 offers timers with varying features that support use cases from low-power monitoring to advanced motor control.

Feature	S32K1xx Timers	KEA128x Timers	KM35x Timers	MSPM0G Timers	MSPM0L and MSPM0C Timers	
Resolution	16 bit	16 bit	16 bit	16 bit, 32 bit	16 bit	
PWM	Yes	Yes	Yes	Yes	Yes	
Capture	Yes	Yes	Yes	Yes	Yes	
Compare	Yes	Yes	Yes	Yes	Yes	
One-shot	Yes	Yes	Yes	Yes	Yes	
Up down count functionality	Yes	Yes	Yes	Yes	Yes	

Feature	S32K1xx Timers	KEA128x Timers	KM35x Timers	MSPM0G Timers	MSPM0L and MSPM0C Timers
Power Modes	Yes	Yes	Yes	Yes	Yes
QEI support	No	No	No	Yes	No
Programmable prescaler	Yes	Yes	Yes	Yes	Yes
Shadow register mode	No	No	No	Yes	Yes
Events/Interrupt	Yes	Yes	Yes	Yes	Yes
Fault Event Mechanism	Equivalent	Equivalent	Equivalent	Yes	No
Auto reload functionality	Yes	Yes	Yes	Yes	Yes

Table 4-5. Timer Feature Comparison (continued)

Timer code examples

Information about timer code examples can be found in the MSPM0 SDK examples guide.

- . .

4.6 Windowed Watchdog Timer (WWDT)

MSPM0 and NXP's M0 MCUs both offer Window Watchdog Timers. The window watchdog timer (WWDT) initiates a system reset when the application fails to check in during a specified window of time.

Table 4-6. WWDT Naming					
Кеу	S32K1xx/ KEA128x/KM35x	MSPM0			
Name	Watchdog Timer	Windowed watchdog timer			
Abbreviated name (same order)	WDOG	WWDT			

Table 4-7. WDT Feature Comparison

Feature	S32K1xx	KEA128x	KM35x	MSPM0
Window mode	Yes	Yes	Yes	Yes
Interval timer mode	No	No	No	Yes
LFCLK source	Yes	Yes	Yes	Yes
Interrupts	Yes	Yes	Yes	Yes
Counter resolution	16 bit	16 bit	32 bit	25 bit
Clock divider	Yes	Yes	Yes	Yes

WWDT code examples

Information about WWDT code examples can be found in the MSPM0 SDK examples guide.

. .

4.7 Real-Time Clock (RTC)

MSPM0¹ and some NXP's M0 MCUs offer a real-time clock (RTC). The S32K1xx/KEA128x/KM35x devices contain a dedicated RTC module. The real-time clock (RTC) module provides time tracking for the application, with counters for seconds, minutes, hours, day of the week, day of the month, and year in selectable binary or binary-coded decimal format.

Table 4-8. RTC Feature Comparison							
Feature	S32K1xx	KEA128x	KM35x	MSPM0G			
Power modes	Yes	Yes	Yes	Yes			
Binary coded format	No	No	No	Yes			
Leap year correction	No	No	Yes	Yes			
Number of customizable alarms	1	1	1	2			
Internal or/and External crystal	N/A	N/A	Yes	Yes			
Crystal offset calibration	No	No	No	Yes			

¹ Only MSPM0G devices support RTC.

Table 4-8. RTC Feature Comparison (continued) KEA128x MSPM0G Feature S32K1xx KM35x **Prescaler blocks** Equivalent Yes No Yes Interrupts Yes Yes Yes Yes

RTC code examples

Information about RTC code examples can be found in the MSPM0 SDK examples guide.

5 Analog Peripheral Comparison

5.1 Analog-to-Digital Converter (ADC)

MSPM0 and NXP's M0 MCUs both offer ADC peripherals to convert analog signals to a digital equivalent. Table 5-1 compares the different features and modes of the ADCs.

Feature	NXP S32K1xx	NXP KEA128x	NXP KM35x	MSPM0
Resolution (Bits)	12	12	16	12/10/8
				MSPM0Gx - 4
Conversion Rate (Msps) (12-bit)	1.16	0.340	4.75	MSPM0Lx - 1.68
(12-510)				MSPM0Cx - 1.5
Oversampling (Bits)	No	No	No	14
Hardware Oversampling	No	No	No	128x
FIFO	No	Yes	No	Yes
ADC Reference (V)	Alternate: $2.7 \le V_{REF} \le V_{DDA}+0.1$	Internal: V _{SSA} to V _{DDA}	Alternate: V _{SSA} to V _{DDA}	Internal:1.4,2.5 VDD
ADC Reference (V)	Primary:	External:	External:	External:
	$2.7 \le V_{REF} \le V_{DDA} + 0.1$	V _{SSA} to V _{DDA}	V _{SSA} to V _{DDA}	$1.4 \le V_{REF} \le V_{DD}$
Operating Power Modes	VLPR, STOP2, RUN	RUN, WAIT, STOP	RUN, WAIT, VLPS	Run, Sleep, Stop, Standby (1)
Auto Power Down	Equivalent	Equivalent	Equivalent	Yes
External Input Channels	S32K118-Up to 16	- Up to 16	Up to 16	MSPM0Gx - up to 17
(2)	S32K116-Up to 13			MSPM0Lx/Cx up to 10
Internal Input Channels	Supply Monitoring	Internal gap, Temperature Sensor	Internal gap, Temperature Sensor	Temperature Sensor, Supply Monitoring, Analog Signal Chain
DMA Support	Yes	No	Yes	Yes
ADC Window Comparator Unit	No	No	No	Yes
Simultanaaua Samalina	No	No	No	MSPM0Gx - Yes
Simultaneous Sampling	INU			MSPM0Lx/Cx - No
Number of ADCs ⁽³⁾	1	4	4	MSPM0Gx - 2
	1	1	1	MSPM0Lx/Cx - 1

Table 5-1. Feature Set Comparison

(1) ADC can be triggered in standby mode, which changes the operating mode.

(2) The number of external input channels varies per device.

(3) The number of ADCs varies per device.

Table 5-2. C	Conversion	Modes
--------------	------------	-------

Mode	S32K1xx	NXP KEA128x	NXP KM35x	MSPM0	Comments
Single Conversion Mode	Yes	Yes	Yes	Single Channel Single Conversion	ADC samples and converts a single channel once
Scan a Sequence of Channels	No	No	No	Sequence of Channels Conversion	ADC samples a sequence of channels and converts once.

Table 5-2. Conversion Modes (continued)						
Mode	S32K1xx	NXP KEA128x	NXP KM35x	MSPM0	Comments	
Continuous Conversion Mode	Yes	Yes	Yes	Repeat Single Channel Conversion	Repeat single channel continuously samples and converts one channel	
	No	No	No	Repeat Sequence of Channels Conversion	Samples and converts a sequence of channels then repeats the same sequence	
Discontinuous Mode	No	No	No	Repeat Sequence of Channels Conversion	Samples and converts a discontinuous set of channels. This can be done on MSPM0 by mapping the MEMCTRLx to different channels.	

Table 5-2 Conversion Modes (continued)

ADC code examples

Information about ADC code examples can be found in the MSPM0 SDK examples guide.

5.2 Comparator (COMP)

MSPM0 and NXP's M0 MCUs both offer integrated comparators as optional peripherals on some devices. In the MSPM0 family, comparators are denoted as COMPx, where the 'x' final character refers to the specific comparator module being considered. The S32K1xx family features a COMP module with an internal single comparator with six to eight inputs, the KEA128x family supports up to four inputs, and the KM35x Up to six inputs. The MSPM0 comparator module provides a windowed comparator functionality using its DAC with two programmable levels. Both MSPM0 and NXP's M0 MCUs have multiple channels that can take inputs from various internal and external sources and can be used to trigger changes in power mode or truncate/control PWM signals. A summary of how the MSPM0 and NXP M0 comparator modules compare feature-by-feature is included in Table 5-3.

Feature	S32K1xx	KEA128x	KM35x	MSPM0G	MSPM0L	
Available comparators	1	2	3	Up to 3	1	
Number of positive	Up to 6 pos, up to 6 neg	Up to 4 pos, up to 4	Up to 6 pos, up to 6	Up to 4 pos, up to 3	Up to 2 pos, up to 2	
and negative inputs	Up to 8 pos, Up to 8 neg	pos	neg	neg	neg	
	Multiplexed I/0 Pins	Multiplexed I/O Pins	Multiplexed I/O Pins	Multiplexed I/O Pins	Multiplexed I/O Pins	
Output routing	Interrupt	Interrupt	Interrupt	Interrupt/Event Interface	Interrupt/Event Interface	
	Multiplexed I/O Dipe		Multiplexed I/O Pins	Multiplexed I/O Pins	Multiplexed I/O Pins	
	Multiplexed I/O Pins	Multiplexed I/O Pins		DAC12 output ⁽¹⁾	DAC8 output	
Noninverting input				DAC8 output		
sources	DAC8 output	DAC6 output	DAC6 output	Internal V _{REF} : 1.4 V and 2.5 V	OPA1 Output ⁽²⁾	
				OPA1 output ⁽²⁾		

Table 5-3. COMP Feature Set Comparison

	Table 5-5	Table 5-3. COMP Feature Set Comparison (continued)					
Feature	S32K1xx	KEA128x	KM35x	MSPM0G	MSPM0L		
Inverting input sources	Multiplexed I/O Pins	Multiplexed I/O Pins	Multiplexed I/O Pins	Multiplexed I/O pins	Multiplexed I/O Pins		
	No	No	No	Internal temperature sensor	Internal temperature sensor		
	DAC8 output	DAC6 output	DAC6 output	Internal V _{REF} : 1.4V and 2.5V	DAC8 output		
	No	No	No	DAC8 output			
	No	No	No	OPA0 output ⁽³⁾	OPA0 ⁽³⁾ output		
Programmable hysteresis	None, 15mV/19mV, 23mV/34mV, 32mV/ 46mV		5mV, 10mV, 20mV, 30mV	None, 10mV, 20mV, 30mV	None, 10mV, 20mV, 30mV		
		None, 15mV,20mV, 30mV		Other values from 0V to V _{REF} /V _{DD} using DAC8	Other values from 0V to V _{DD} using DAC8		
Register lock	No	No	No	Yes, some COMP registers (writes require key)	Yes, some COMP registers (writes require key)		
Window comparator configuration	Yes	No	Yes	Yes	No (single COMP)		
Input short mode	No	No	No	Yes	Yes		
Operating modes	VLPR (LS compare only),STOP1,STOP2, RUN	RUN, WAIT, STOP	RUN, WAIT, VLPS	High speed, low power	High speed, low power		
Fast PWM shutdowns	No	No	No	Yes (through TIMA fault handler)	No		
Output filtering	Low-pass filter No			Blanking filter	Blanking filter		
		No	Yes	Adjustable analog filter	Adjustable analog filter		
Output polarity control	Yes	Yes	Yes	Yes	Yes		
Interrupts	Rising edge	Rising edge	Rising edge	Rising edge	Rising edge		
	Falling edge	Falling edge	Falling edge	Falling edge	Falling edge		
	Both edges	Both edges	Both edges	Output ready	Output ready		
Exchange inputs mode	Yes	Yes	Yes	Yes	Yes		

 Table 5-3. COMP Feature Set Comparison (continued)

(1) Only on devices with DAC12 peripheral

(2) Only on devices with OPA1 peripheral

(3) Only on devices with OPA0 peripheral

COMP code examples

Information about COMP code examples can be found in the MSPM0 SDK examples guide.

5.3 Digital-to-Analog Converter (DAC)

The S32K1xx, KEA128x, and KM35x MCU families offers a basic DAC inside its COMP module. However, when migrating from the M0 family to the MSPM0 family, you can make use of the MSPM0 internal 12-bit DAC to generate analog voltages. The MSPM0 family offers a 12-bit DAC peripheral to perform digital-to-analog conversion for various applications. In the MSPM0 G-Series 80-MHz Microcontrollers Technical Reference Manual, the MSPM0 series data sheets, and the MSPM0 SDK, the 12-bit DAC peripheral is referred to as the DAC12. This differentiates the DAC12 from the 8-bit DACs that are available for use with each comparator peripheral included in a given MSPM0 device. Those additional 8-bit DACs are covered in the comparator section of this document. This DAC12 peripheral is only available on the MSPM0G family of devices.

The features of the 12-bit DAC peripherals for the MSPM0G are summarized in Table 5-4.

	Table 5-4	. DAC Feature Set Co	Table 5-4. DAC Feature Set Comparison						
Feature	S32K1xx	KEA128x	KM35x	MSPM0G					
Resolution	8-bit	6-bit	6-bit	12 bits (11 ENOB)					
Output rate	N/A	N/A	N/A	1 MSPS					
Output channels	1	1	1	1 (1)					
Data formats	N/A	N/A	N/A	8-bit right aligned, 12- bit right aligned, two's complement or straight binary					
DMA integration	No	No	No	Yes					
			DAC Output	External Pins					
Output routing	Internal peripheral connection only: CMP	Internal peripheral connection only: CMP	Internal peripheral connection: CMP	Internal peripheral connections: OPA IN+, COMP IN+, ADC0					
Internal reference voltage	Yes, 1V or VDDA	Yes, 1.2V or VDDA	Yes, 1.2V or VDDA	Yes, 2.5V or 1.4V					
External reference voltage	No	No	No	Yes					
FIFO	No	No	No	Yes					
Output buffer	No	No	No	Yes					
Configurable output offset	No	No	No	Yes					
Self-calibration mode	No	No	No	Yes					
Automatic waveform generation	No	No	No	No					
Sample and hold mode	No	No	No	No					
Trigger sources	Operation clock, trigger start signal	N/A	Trigger start signal	Internal dedicated sample time generator, DMA interrupts/events, FIFO threshold interrupts/ events, two hardware triggers (available from event fabric)					

(1) Dual DAC channels are planned for future MSPM0G devices.

DAC12 code examples

Information about DAC12 code examples can be found in the MSPM0 SDK examples guide.

5.4 Operational Amplifier (OPA)

The NXP S32K1XX, KEA128x, and MK35x MCU families do not offer an integrated Operational Amplifier (OPA) peripheral, but when migrating from the S32K1XX, KEA128x and KM35x families to the MSPM0 family, you can make use of the MSPM0 internal OPAs to replace external discrete devices, or to buffer internal signals as necessary. The MSPM0 OPA modules are completely flexible and can, individually or in combination, replace many discrete amplifiers in sensing or control applications. The primary features of the MSPM0 OPA modules are included in Table 5-5, and examples of common OPA configurations you can recreate are included in the OPA code examples mentioned below.

Feature	MSPM0 Implementation		
Input type	Rail to rail (can be enabled or disabled)		
Gain bandwidth	1MHz (low-power mode)		
	6MHz (standard mode)		

Table 5-5. MSPM0 OPA Feature Set

Table 5-5. MSPM0 OPA Feature Set (continued)			
Feature	MSPM0 Implementation		
	General-purpose mode		
	Buffer mode		
Amplifier configurations	PGA mode (inverting or noninverting)		
	Differential amplifier mode		
	Cascade amplifier mode		
	External pin routing		
Input/output routing	Internal connections to ADC and COMP modules		
Fault detection	Burnout current source (BCS)		
	Standard (selectable chopping frequency)		
Chopper stabilization	ADC assisted chop		
	Disabled		
	Internal VREF (MSPM0G devices only)		
Reference voltages	DAC12 (MSPM0G devices only)		
	DAC8 (devices with COMP module only)		

OPA code examples

Information about OPA code examples can be found in the MSPM0 SDK examples guide.

5.5 Voltage References (VREF)

MSPM0 and NXP's M0 MCUs both have internal references that can be used to supply a reference voltage to internal peripherals and output to external peripherals.

Feature	S32K1xx	KEA128x	KM35x	MSPM0G	MSPM0L MSPM0C
Internal Reference (V)	2.7, 5.5	2.7, 5.5	2.7, 3.6	1.4, 2.5	1.4, 2.5
External Reference (V)	Up to VDD	Up to VDD	Up to VDD	External: 1.4 ≤ V _{REF} ≤ V _{DD}	External: 1.4 ≤ V _{REF} ≤ V _{DD}
Output Internal Reference	No	No	No	Yes	Yes
Internally Connect to ADC	Yes	Yes	Yes	Yes	Yes
Internally Connect to DAC	Yes	Yes	Yes	Yes	No
Internally Connect to COMP	Yes	Yes	Yes	Yes	No
Internally Connect to OPA	N/A	N/A	N/A	Yes	No

Table 5-6. Feature Set Comparison

For the MSPM0 VREF, you must enable the power bit, PWREN Bit0 (ENABLE).

VREF code examples

Code examples that use VREF can be found in the MSPM0 SDK examples guide.

6 References

- MSPM0 SDK User Guide
- SysConfig Guide for MSPM0
- LP-MSPM0G3507
- LP-MSPM0L1306
- MSPM0C1104
- TMDSEMU110-U
- Texas Instruments: MSPM0G350x Mixed-Signal Microcontrollers With CAN-FD Interface Data Sheet
- Texas Instruments: MSPM0L130x Mixed-Signal Microcontrollers Data Sheet
- Texas Instruments: MSPM0C110x, MSPS003 Mixed-Signal Microcontrollers Data Sheet
- Texas Instruments: MSPM0 G-Series 80MHz Microcontrollers Technical Reference Manual
- Texas Instruments: MSPM0 L-Series 32MHz Microcontrollers Technical Reference Manual
- Texas Instruments: MSPM0 C-Series 24-MHz Microcontrollers Technical Reference Manual
- MSPM0 Driver Library Overview
- Texas Instruments: Cybersecurity Enablers in MSPM0 MCUs

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated