Application Note 使用 AM263x MCU 实现 TIDM-02009 参考设计的双向直流/直 流转换器功率级

TEXAS INSTRUMENTS

Shamik Basak

摘要

自从相移全桥整流器 (PSFB) 拓扑推出以来,该拓扑已在电源、通信电源整流器、电池充电系统、可再生能源系统 等工业应用中得到了广泛认可。由于易于控制,PSFB 整流器通常被选为将大量电力从高压 (HV) 直流侧传输到具 有电气隔离功能的低压 (LV) 直流侧的首选方法。在该应用中,可以使用的一种简单控制方案称为峰值电流模式控 制 (PCMC)。当两个桥臂的对角相对开关的导通周期互相重叠时,电力就会从高压侧传输至低压侧。在 PCMC 中,这个重叠周期是通过进行适当的峰值电流值设置来控制的。除此之外,为了将输出电压维持在所需的电平, 还部署了一个外部电压控制环路。在本文中,我们使用德州仪器 (TI) 基于 ARM R5F 内核的 SITARA MCU 来实现 控制机制,从而展示其实时控制能力。此外,在低压侧实施了同步整流功能,以充分利用转换器的优化功率输 出。

内容	
1 通用德州仪器 (TI) 高压评估模块 (TI HV EVM) 用户安全指南	3
2 简介	4
3 系统说明	4
3.1 主要系统规格	4
4 系统概述	4
4.1 方框图	5
4.2 基本操作	5
4.3 系统设计原理	6
5 硬件	9
5.1 硬件概述	9
5.2 所需的硬件和测试仪器	
5.3 TMDSCNCD263 controlCARD™ 更改	
6 软件	11
6.1 固件入门	
6.2 SysConfig 设置	
6.3 增量构建	
7 测试和结果	23
7.1 实验 0:基本 PWM 检查	
7.2 实验 1:采用开路电流和电压环路进行相位重叠检查	24
7.3 实验 2:闭合电流和开路电压环路	24
7.4 实验 3 : 闭合电流和闭合电压环路	25
8 参考资料	
9 修订历史记录	

插图清单

图 4-1. 系统方框图	5
图 4-2. 相移全桥电路	5
图 4-3. PSFB PWM 波形	6
图 4-4. PCMC PSFB 实现	7
图 4-5. 同步整流模式	8
图 5-1. TIDM-02009 PSFB 转换器硬件	9

使用 AM263x MCU 实现 TIDM-02009 参考设计的双向直流/直流转换器功率级

1

图 5-2. controlCARD 电源冲突修复	
图 6-1. DevBoot 模式	
图 6-2. 软件方框图	
图 6-3. 工程结构	13
图 6-4. AM263x controlCARD 中的 ADC 和 DAC 基准开关	
图 6-5. CMPSS 配置	
图 6-6. 实验 1 设置	17
图 6-7. 控制台消息	
图 6-8. 表达式窗口	
图 6-9. 实验 2 软件方框图	20
图 6-10. 实验 2 设置	20
图 6-11. 实验 3 软件方框图	21
图 6-12. 实验 3 设置	22
图 7-1. PWM 波形	23
图 7-2. 在 200V、13W 下测试	
图 7-3. 在 400V、120W 下测试	
图 7-4. 第 1 组	24
图 7-5. 第 2 组	24
图 7-6. 第 1 组	25
图 7-7. 第 2 组	25
图 7-8. 在 120W 时启用 SR 模式	25
图 7-9. 在 240W 时启用 SR 模式	25

表格清单

表 3-1	主要系统规格4	ł
表 5-1	主要信号连接10)
表 6-1	E1 和 E2 controlCARD 与 HSEC 板的 ADC 映射14	

商标

controlCARD[™], C2000[™], and Code Composer Studio[™], and E2E[™] are trademarks of Texas Instruments. 所有商标均为其各自所有者的财产。

1 通用德州仪器 (TI) 高压评估模块 (TI HV EVM) 用户安全指南

务必遵循 TI 的安装和应用说明,包括在建议的电气额定电压和功率限制范围内使用所有接口元件。务必采取电气 安全防护措施,这样有助于确保自身和周围人员的人身安全。如需更多信息,请联系 TI 的产品信息中心 https:// support/ti./com。

保存所有警告和说明以供将来参考。

警告

务必遵循警告和说明,否则可能引发电击和灼伤危险,进而造成财产损失或人员伤亡。

TI HV EVM 一词是指通常以开放式框架、敞开式印刷电路板装配形式提供的电子器件。该器件严格*用于开发实验 室环境,仅供了解开发和应用高压电路相关电气安全风险且接受过专门培训、具有专业知识背景的合格专业用户 使用。德州仪器 (TI) 严禁任何其他不合规的使用和/或应用。如果不满足合格要求,应立即停止进一步使用 HV EVM。*

- 1. 工作区安全
 - a. 保持工作区整洁有序。
 - b. 每次电路通电时,必须有合格的观察员在场监督。
 - c. TI HV EVM 及其接口电子元件通电区域必须设有有效的防护栏和标识,指示可能存在高压作业,以避免意外接触。
 - d. 开发环境中使用的所有接口电路、电源、评估模块、仪器、仪表、示波器和其他相关装置如果超过 50Vrms/75VDC,则必须置于紧急断电 EPO 保护电源板内。
 - e. 使用稳定且不导电的工作台。
 - f. 使用充分绝缘的夹钳和导线来连接测量探针和仪器。尽量不要徒手进行测试。
- 2. 电气安全

作为一项预防措施,工程实践中通常需假定整个 EVM 可能存在用户完全可接触到的高电压。

- a. 执行任何电气测量或其他诊断测量之前,需将 TI HV EVM 及其全部输入、输出和电气负载断电。再次确 认 TI HV EVM 已安全断电。
- b. 确认 EVM 断电后,根据所需的电路配置、接线、测量设备连接和其他应用需求执行进一步操作,同时仍 假定 EVM 电路和测量仪器均带电。
- c. EVM 准备就绪后,根据需要将 EVM 通电。

- 3. 人身安全
 - a. 穿戴人员防护装备 (例如乳胶手套或具有侧护板的安全眼镜) 或将 EVM 放置于带有联锁装置的透明塑料 箱中,避免意外接触。

安全使用限制条件:

勿将 EVM 作为整体或部分生产单元使用。

2 简介

本文档介绍如何使用 AM263x MCU 来控制 *经过 ASIL D 等级功能安全认证的高速牵引和双向直流/直流转换参考设* 计的双向直流/直流转换器功率级。该硬件与采用 HSEC controlCARD™格式的 MCU 兼容。虽然最初为 C2000™ MCU 产品系列而设计,但该参考设计也接受了 AM263x controlCARD (TMDSCNCD263),只需进行少量修改即 可。该参考设计可用于实现数字化峰值电流模式控制型 (PCMC) 相移全桥 (PSFB) 直流/直流转换器,从而将 400V 直流输入转换为稳定的 12V 直流输出或进行反向转换。尽管该设计能够执行双向功率转换,但本应用手册 的讨论范围仅限于说明高压到低压的转换,即降压操作。该设计的亮点是:基于 5 类 PWM 和内部斜坡补偿的全 新 PCMC 波形生成,以及简单的 PCMC 实现。

3 系统说明

相移全桥 (PSFB) 直流/直流转换器经常用于在中高功率应用 (如服务器电源、通信电源整流器、电池充电系统和 可再生能源系统)中降低高直流总线电压并提供隔离。传统上来讲,微控制器已经被限制为仅仅在这些系统中执 行监控或通信任务。随着高性能微控制器器件的出现,除了处理传统微控制器功能外,现在可将微控制器用于这 些系统中的封闭控制环路。向数字电源控制的转换意味着之前在硬件中执行的功能,现在在软件中实现。这除了 增加系统灵活性之外,还极大地简化了系统。这些系统能够实现高级控制策略,以在不同条件下对功率级进行最 优控制,并且提供系统级智能。

PSFB 转换器包含四个在隔离变压器初级侧形成全桥的电力电子开关(例如 MOSFET 或 IGBT),还包含用于次级侧同步整流(SR)的二极管整流器或 MOSFET 开关。该拓扑允许所有开关器件以零电压开关(ZVS)进行开关,从而降低开关损耗并实现高效的转换器。此参考设计中实现了全桥的一个桥臂中开关的 ZVS 和另一桥臂中开关的 零电压或低电压开关。

对于这样一个隔离式拓扑结构,需要在次级测上进行信号校正。对于具有低输出电压或高输出电流额定值的系统,执行同步整流而不执行二极管整流,可通过避免二极管整流损耗来实现最佳性能。此设计在次级侧用不同的 切换方案来执行电流倍增器同步整流,以便在变化的负载条件下实现最佳性能。

可在电压模式控制 (VMC)、平均电流模式控制 (ACMC) 或峰值电流模式控制 (PCMC) 等各种模式下控制直流/直流 转换器系统。PCMC 具备固有的电压前馈、自动逐周期电流限制、磁通平衡和其他优势,因而是电源转换器的理 想控制方案。

3.1 主要系统规格

参数	规格			
输入条件				
输入电压	200V 直流 - 400V 直流			
输入电流	D.1A - 8.75A			
输出条件				
输出电压	12V			
输出电流	292A			
额定功率	3.5kW(在该版本中测试的最高功率为250W)			
系统特性				
效率	需要在满负荷测试时计算			
PWM 开关频率	100kHz			

表 3-1. 主要系统规格

4 系统概述

4 使用 AM263x MCU 实现 TIDM-02009 参考设计的双向直流/直流转换器功率级

4.1 方框图

图 4-1. 系统方框图

4.2 基本操作

PSFB 转换器包含四个可在隔离变压器初级侧形成全桥的电力电子开关(例如 MOSFET 或 IGBT),还包含用于 次级侧同步整流(SR)的二极管整流器或 MOSFET 开关。该拓扑允许开关器件以零电压开关(ZVS)进行开关,从 而降低开关损耗并实现高效的转换器。

对于这样一个隔离式拓扑结构,需要在次级测上进行信号整流。对于具有低输出电压和/或高输出电流额定值的系统,实现同步整流(而非二极管整流)可避免二极管整流损耗,从而实现最佳性能。在这项工作中,在次级侧实现了同步整流。

图 4-2. 相移全桥电路

图 1-1 展示了一个经简化的移相全桥电路。MOSFET 开关 Q₁、Q₄、Q₂ 和 Q₃ 在变压器 T1 的初级侧形成全桥。 Q₁ 和 Q₄ 以 50% 的占空比和彼此之间 180° 的相位差进行切换。同样,Q₂ 和 Q₃ 以 50% 的占空比和彼此之间 180° 的相位差进行切换。全桥桥臂 Q₂ - Q₃ 的 PWM 开关信号相对于桥臂 Q₁ - Q₄ 的 PWM 开关信号发生相移。 该相移的量决定了对角开关之间的重叠量,进而决定了传输的能量大小。D₅、D₆ 在次级侧提供二极管整流(在我 们的设计中针对 SR 使用 MOSFET),而 L₀ 和 C₀形成输出滤波器。匀场电感器 L_R 为变压器漏电感提供助力, 以实现与 MOSFET 电容的谐振操作,并促进零电压开关 (ZVS)。图 1-1 展示了系统的开关波形。

图 4-3. PSFB PWM 波形

4.3 系统设计原理

4.3.1 峰值电流模式控制 (PCMC) 实现

执行针对 PSFB 系统的 PCMC 需要具有精密时序控制的复杂 PWM 波形生成。德州仪器 (TI) 的 Piccolo 系列器件 特有高级片载控制外设,这些外设使得这一实现方案变成可能,并且无需针对此用途的任何外部支持电路。这些 外设包括片上模拟比较器、数模转换器 (DAC)、高级 PWM 源和独特的可编程片上斜率补偿硬件。图 1-1 展示了 PCMC 实现。变压器初级电流与峰值电流基准相比较,此电流基准由片上比较器计算得出。

一个桥臂内 PWM 的复位和置位操作会导致驱动两个桥臂的 PWM 信号间的相移。该相移的量以及对角开关之间的重叠取决于峰值基准电流的大小。峰值基准电流越高,对角开关之间的重叠就越长,从而使得更多的能量传输 至次级。此控制器通过控制峰值基准电流值来控制这个能量传输,进而调节输出。因此,该峰值基准电流是一个 受控参数。

这一实现方案的一个主要特性就是同一个峰值基准电流命令在所有运行条件下被用于开关周期的全部两个半周期。这为变压器初级提供了最优的磁通均衡,从而减少了出现饱和的机会。

图 4-4. PCMC PSFB 实现

EPWM4A 和 EPWM4B 输出是互补的,并且根据动作限定器和死区设置保持 50%的占空比。EPWM3A/B_AQ(动作限定器输出)在 T1U(计数器向上计数时的 T1)事件发生和计数器达到 PRD 时设置为 1。EPWM3A_AQ在 T1D(计数器向下计数时的 T1)事件发生和计数器达到 ZERO 时设置为 0。T1D 和 T1U 事件由 DCAEVT2 触发。

借助 5 类 PWM,可以将死区直接添加到 T1U 和 T1D 事件中,而无需添加额外的代码配置。为 EPWM3A 插入了上升沿延迟。为 EPWM3B 插入了下降沿延迟,并相应地进行了反转。

为了获得最快的响应,使用了跳闸区模块来设置 EPWM3A (具有 TZAD 事件)和 EPWM3B (具有 TZBU 事件) 输出的下降沿。实现了逐周期跳闸,需要在 ZERO 和 PRD 事件上将其清除。

4.3.2 零电压开关 (ZVS) 或低压开关 (LVS)

MOSFET 开关接通前,PSFB 直流/直流转换器使用电路中的寄生元件来为其提供零电压,从而提供了软开关。这 大大减少了与硬开关相关的开关损耗量。

对于这里讨论的系统,针对 Q2-Q3 桥臂内开关的开关转换终止了能量传输间隔。因此,该桥臂被称为*有源至无源* 桥臂。当在这个桥臂中发生开关转换时,初级绕组内的电流接近于该半个 PWM 开关周期的最大振幅。反射负载 电流在这段时间为初级电路内的能量循环提供助力,这使得这个桥臂内的开关间电压有可能接近零伏特。在整个 负载范围内,这个 Q2-Q3 桥臂内的开关有可能实现 ZVS。请注意,由于负载减少,需要增加死区时间来实现和接 近 ZVS。

针对 Q1-Q4 桥臂内开关的开关转换启动电源传输间隔。因此,该桥臂被称为无源至有源桥臂。在这些开关转换期间,初级电流减少。它跨过零电流值并改变方向。这实现了针对 ZVS 的更低可用能量。事实上,对于在低负载条件下的运行,这些开关上的电压可能在其打开之前未变为零。当这些开关上的电压处于最小值时,通过打开这些 开关,可将开关损耗保持在最低。这被称为低电压开关 (LVS)。当负载变化时,打开开关以实现 LVS 变化,从而 要求死区时间调整与 Q2-Q3 桥臂开关相似。

4.3.3 同步整流

图 4-5. 同步整流模式

在任何给定的时间,同步整理器可在以下3种模式之一下运行:

- 模式 0:这是通过将同步整流器保持关闭状态来实现的传统二极管电流倍增器模式。它用于极低负载运行,在 此类运行中,同步整流器开关损耗大于同步整流所节省的电能。
- 模式 1:在该模式下,同步整流器开关的运行方式与理想二极管的运行方式类似。当运行在极低至低负载下, 通常当突发模式被使用时,使用这个模式。在这个模式中,同步整流器 MOSFET 只有当相应的对角桥驱动信 号重叠时才接通。
- 模式 2:用于所有其他负载情况。在这个模式中,同步整流器 MOSFET 只有当相应的反向对角桥驱动信号重 叠时才关闭。

图 1-1 描述了为在这些模式下驱动同步整流器开关而生成的波形。在 PWM 输出上无缝执行模式转换,而不产生 任何毛刺脉冲或任何异常脉冲十分重要,即使在大负载瞬态或意外相移变化指令期间也是如此,这样可使系统安 全运行。

4.3.4 斜率补偿

峰值电流参考命令被写入 RAMPMAXREFS,这是用于斜率补偿的斜坡的起始值。斜率由 RAMPDACVALS 决定。在选择之后,斜坡发生器为高基准 12 位 DAC 生成下降斜坡输入。请注意,在该模式下,基准 12 位 DAC 使用 RAMPSTS 向下计数寄存器的最高有效 12 位作为输入。RAMPSTS 向下计数寄存器的低 4 位有效地用作可通过 RAMPDECVALA 配置的下降斜坡速率的预分频器。

在该参考设计中,斜率的选择基于两个因素:稳定性和瞬态响应。设计中使用的经验值应该能使系统稳定并且不 会牺牲瞬态响应。如果斜率过大,则会限制可用的占空比并降低瞬态响应。如果斜率太小,则会触发次谐波振 荡,从而产生不稳定的条件。

5 硬件

5.1 硬件概述

TIDM-02009 PSFB 转换器硬件展示了主要硬件元件。该硬件使用双向 400V/12V 直流/直流转换器参考设计套件 作为基板并进行了一些修改,以实现峰值电流模式控制。

图 5-1. TIDM-02009 PSFB 转换器硬件

主要信号连接中列出了 controlCARD 与基板之间的主要信号连接。HSEC 引脚编号基于 AM263x controlCARD (TMDSCNCD263) 的 E2 版本。

信号名称	说明	连接到 ControlCARD	HSEC 引脚编号
ePWM-4A	针对全桥开关 Q1 的 PWM 驱动	EPWM4_A	57
ePWM-4B	针对全桥开关 Q4 的 PWM 驱动	EPWM4_B	59
ePWM-3A	针对全桥开关 Q2 的 PWM 驱动	EPWM3_A	54
ePWM-3B	针对全桥开关 Q3 的 PWM 驱动	EPWM3_B	56
ePWM-5A	针对同步整流器/推挽开关 Q5 的 PWM 驱动	EPWM5_A	61
ePWM-5B	针对同步整流器/推挽开关 Q6 的 PWM 驱动	EPWM5_B	63
VLV-FB	低电压总线 - 电压反馈	ADC3_AIN2	34
ILV-FILT	重度滤波低电压电流反馈	ADC1_AIN2	18
VHV-FB	高电压总线 - 电压反馈	ADC3_AIN1	30
IHV-FILT	重度滤波变压器高电压绕组电流	ADC4_AIN0 /ADC_CAL0	25

运行硬件时,必须用跳线将基板中 J19 的引脚 1 和 2 短接。仅当要启用 Q5、Q6 的门控脉冲时,才必须在 J17 连接器的引脚 9 和引脚 7 之间施加 12V 电源。

5.2 所需的硬件和测试仪器

该参考设计包含以下元素:

• 一块 TIDM-02009 直流/直流转换器电源板

以下列表显示了用于控制 MCU 上的功率级的重要资源:

- 两张 TIDM-02009 栅极驱动器卡
- 一块 TMDSCNCD263 controlCARD
- 一个 5V、3A Raspberry Pi 适配器
- Mini USB 电缆
- 用于将软件加载到 AM263x MCU 的计算机

对本设计进行供电和评估需要以下测试设备列表:

• 用作电路板初级电源的 15V、4A 工作台电源

对于直流/直流转换器模式:

- 250W 直流电子负载
- 用于 HVDC 链路输入的 1000V、5A、5kW 电源
- 带有电流和高压探头的示波器

5.3 TMDSCNCD263 controlCARD™ 更改

仅当 AM263x controlCARD (TMDSCNCD263)的 *LD16* 由于电流输入不足而保持闪烁时,才需要进行此更改。在这种情况下,必须移除 TMDSCNCD263 的电源多路复用器电路的 R340 电阻 (如 controlCARD 电源冲突修复中 所示),且必须通过 5V、3A 电源适配器为 controlCARD 供电。

图 5-2. controlCARD 电源冲突修复

6 软件

6.1 固件入门

6.1.1 打开 Code Composer Studio[™] 工程

Digital_Power_SDK_AM263x_tirex 内提供了该设计的软件。使用以下步骤打开工程:

- 1. 如有必要,请按照 AM263x MCU+ SDK 入门指南中的说明安装 Code Composer Studio[™] (CCS) 版本 12.5 或 更高版本。
- 2. 支持的最低 SysConfig 版本为 3.2.0 或更高版本。
- 3. 本演示支持的最低 DIGITAL_POWER_SDK 版本为 digital_power_sdk_am263x_09_01_00_01。
 如果演示不支持最新的 DIGITAL_POWER_SDK,请在 E2E[™] 论坛上报告。
- 4. 如有必要,每个软件包的安装步骤将作为 SDK 和工具设置的一部分提供。
- 5. 从 DIGITAL_POWER_SDK_AM263x 下载页面下载最新的数字电源 SDK。将 SDK 安装到本地 PC 上。
- 6. 打开 CCS 并创建一个新的工作区。
- 7. 在 CCS 中,转到 Project → Import CCS Project。导航至固件的位置,并导 入 .\digital_power_sdk_am263x_09_01_00_01\examples\tidm-02009-dcdc\am263x-cc\r5fss0-0_nortos\tiarm-clang\example.projectspec。
- 8. 要使用 CCS 启动工程,请将 EVM 设置为 DevBOOT 模式。按照入门指南的"EVM 设置"部分中所述的步骤 设置 EVM。

图 6-1. DevBoot 模式

9. 要将代码加载到 EVM 中并运行这些代码,请按照入门指南中加载和运行示例 部分所述的步骤操作。

6.1.2 软件架构

工程流程包含使用 AM263x SysConfig 工具和 MCU_PLUS_SDK_AM263x 对片上系统 (SOC) 的所有外设时钟和 子模块进行初始化的过程。节 6.2 讨论了如何初始化该设计中使用的外设 IP,如 EPWM、ADC、CMPSS 等。

软件中包含一个 ISR 和一个后台任务。图 1-1 中介绍了代码流程。ISR 按计划每 10 µ s 运行一次。ISR 包含节 4.3.1 中所述的主控制环路。

6.1.3 工程文件夹结构

工程结构中显示了工程的总体结构。导入工程之后,CCS内将显示 Project Explorer。

特定于设计并且独立于器件的文件位于 Source 文件夹中,其中含有核心算法代码。与数字电源应用相关的库和 控制算法位于 libraries 文件夹中。特定于电路板和特定于驱动程序的更改在 SysConfig 中配置,此代码由

Release/SysCfg 文件夹中的 SysConfig 自动生成。main.c 文件包含工程的主要框架。该文件包括对电路板和 文件的调用(有助于构建系统框架),以及中断服务例程(ISR)和慢速后台任务。图 1-1 介绍了详细的文件夹结构。

PCMC_PSFB_am263x-cc_r5fss0-0_nortos_ti-arm-clang [Active - Release]

- Image: Second Source Source
- Includes
- > 😕 Release
- > bargetConfigs
- > 🖻 board.c
- i2c_read.c
- > la psfbpcmc_hal.c
- > le psfbpcmc_main.c
- > 🖻 psfbpcmc.c
- > 🖻 Serial_Cmd_HAL.c
- > Serial_Cmd_Monitor.c
- > log tidm_02009_dcdc_am263x_lnk.cmd
 - 📓 device.h
 - makefile_ccs_bootimage_gen
 - 📓 psfbpcmc_hal.h
 - ☑ psfbpcmc_settings.h
 - Spsfbpcmc_user_settings.h
 - 📓 psfbpcmc.h
 - psfbpcmc.syscfg
 - README.html
 - ☑ setupdebugenv_allbuilds_AM263.js
 - syscfg_c.rov.xs

图 6-3. 工程结构

所有变量和函数调用都以 *PSFB* 名称开头 (例如, *PSFB_*vLVBus_sensed_pu)。这种命名规则让用户能够将不同的设计组合在一起,同时避免命名冲突。

6.2 SysConfig 设置

AM263x controlCARD 有两个已发布版本: E1 和 E2。ADC 至 CMPSS 的映射中的版本有所不同。根据使用的电路板版本更新.syscfg 文件。该工程是根据 controlCARD 的 E2 版本开发的。

psfbpcmc.syscfg 用于配置 PSFB 转换器控制中存在的所有模块。要运行控制环路,需要使用 ADC、CMPSS 和 EPWM 模块。下一节将单独介绍这些模块中的每一个。

6.2.1 EPWM 配置

PWM 是逆变器软件配置的核心部分之一。AM263x 的 PWM 模块继承了 TI 经典 C28 控制器的特性。总共需要六 个 PWM 通道来控制逆变器输出。

为了控制高压侧的两个桥臂,创建了两个 EPWM 实例: *PSFB_FB_PWM1、PSFB_FB_PWM2*。为了控制低压侧的 SR 开关,创建了 *PSFB_SR_PWM*。为了从 CMPSS 模块生成 EPWMSYNCPER 信号,创建了 *PSFB_ADC_OVERSAMPLING_PWM*。EPWM 外设时钟以 200MHz 的频率运行。*PSFB_FB_PWM1、 PSFB_FB_PWM2*和 *PSFB_SR_PWM*在向上/向下计数模式下配置为 100kHz 频率。 *PSFB_ADC_OVERSAMPLING_PWM*在向上计数模式下配置为 200kHz 频率。

Time Base Period for Up – Down Count Mode =
$$\frac{\left(\frac{\text{EPWMCLK}}{\text{HSPCLK} \times \text{CLKDIV}}\right)}{2 \times \text{ReqFreq}} = \frac{50\text{MHz}}{100\text{kHz}} = 500$$
 (1)

Time Base Period for Up Count Mode =
$$\frac{\left(\frac{\text{EPWMCLK}}{\text{HSPCLK} \times \text{CLKDIV}}\right)}{\text{ReqFreq}} = \frac{100\text{MHz}}{200\text{kHz}} = 500$$
 (2)

根据方程式 1,当高速时钟分频器和时基时钟分频器为 1 时,PSFB_FB_PWM1、PSFB_FB_PWM2 和 PSFB_SR_PWM 的时基周期为 500。根据方程式 2,当高速时钟分频器和时基时钟分频器为 1 时, PSFB_ADC_OVERSAMPLING_PWM 的时基周期也为 500。仅使用 SysConfig 完成了以下 PWM 实例分配: PSFB_FB_PWM1、PSFB_FB_PWM2。PSFB_SR_PWM 和 PSFB_ADC_OVERSAMPLING_PWM 已分别分配 给 EPWM4、EPWM3、EPWM5 和 EPWM2。节 4.3.1 和节 4.3.3 中讨论的所有其他 PWM 相关配置均在 main() 内的 PSFB_HAL_setupPwms() 中完成。

6.2.2 ADC 配置

本演示使用了四个 ADC 实例来检测高压和低压直流总线侧的所有电压和电流。为主要信号连接中提到的信号分配 了 PSFB_HVBUS_ADC_MODULE、PSFB_LVBUS_ADC_MODULE、PSFB_IHV_FILT_ADC_MODULE和 PSFB_ILV_ADC_MODULE。其余所需的 ADC 相关配置在 main() 内的 PSFB_HAL_setupADC() 和 PSFB_HAL_setupADCSoC() 中完成。

对于 AM263x controlCARD 的 E1 和 E2 版本, ADC HSEC 板引脚排列不同, 如表 6-1 所示。

HSEC 板	E1	E2
12	ADC0_AIN0	ADC1_AIN0
14	ADC0_AIN1	ADC1_AIN1
15	ADC0_AIN2	ADC0_AIN2
18	ADC1_AIN0	ADC1_AIN2
20	ADC1_AIN1	ADC1_AIN3
21	ADC1_AIN2	ADC0_AIN4
23	ADC1_AIN3	ADC0_AIN5
28	ADC2_AIN2	ADC3_AIN0
30	ADC2_AIN3	ADC3_AIN1
31	ADC3_AIN0	ADC2_AIN0
33	ADC3_AIN1	ADC2_AIN1
34	ADC3_AIN2	ADC3_AIN2
37	ADC4_AIN0	ADC2_AIN2
39	ADC4_AIN3	ADC2_AIN3

查看 "ADC 和 DAC 接口"一节中相应的电路板原理图文档,根据应用要求设置 ADC DAC 基准电压开关。

图 6-4. AM263x controlCARD 中的 ADC 和 DAC 基准开关

6.2.3 CMPSS 配置

节 4.3.4 中提到的必要 CMPSS 配置已使用 SysConfig 完成。为 CMPSSA8 分配了 PSFB_PCMC_OCP_CMPSS,所需的配置如图 1-1 所示。

<pre> PSFB_PCMC_OCP_CMPSS </pre>		ē ā
Name	PSFB_PCMC_OCP_CMPSS	
CMPSS Instance	CMPSSA8	*
Enable Module		
High Comparator Configuration		~
Negative Input Source	Input driven by internal DAC	•
Output Is Inverted		
Asynch OR Latch		
Signal Driving CTRIPOUTH	Asynchronous comparator output drives CTRIPOUT	•
Signal Driving CTRIPH	Asynchronous comparator output drives CTRIP	•
Set High Comparator DAC Value	0	
Digital Filter Configuration		^
Ramp Generator Configuration		~
Max Ramp Generator Reference Value	512	
Ramp Generator Decrement Value	8	
Ramp Generator Delay Value	0	
EPWMSYNCPER Source Number	EPWM3SYNCPER	*
Ramp Generator Reset	load the ramp generator from the shadow register	•
Low Comparator Configuration		^
DAC Configuration		v
DAC Value Load	DAC value undated from EDWMSYNCDED	
DAC Reference Voltage	VDDA is the voltage reference	· ·
DAC Value Source	DAC value is updated from the ramp register	
Enable Diode Emulation Mode		
Hysteresis for High Comparator	0 LSB when comparator output is 1	
Hysteresis for Low Comparator	0 LSB when comparator output is 1	•
Blanking Signal	EPWM1BLANK	•
Enable Blanking Signal		

图 6-5. CMPSS 配置

6.3 增量构建

测试高电压参考设计通常在不同的阶段执行,首先是在禁用电路板保护的低电压下进行开环测试。这个阶段测试 的是基本功能,例如,中断和任务切换、ADC 检测、PWM 输出等,不深入研究控制环路功能。基本功能建立 后,会引入电路板保护逻辑以验证高压功能。随着电压升高,系统中的噪声会增加,因此即使在高噪声条件下, 软件也需要保留该功能。同时,如果系统中任何不必要的过压或过流导致设计降级或破坏,则软件需要使 PWM 跳闸。下一个阶段涉及闭合环路,以测试设计的完整功能。

软件旨在这些阶段之间切换,以便于测试和验证固件。以下几节将介绍这些阶段的目标以及如何在这些阶段之间切换。

6.3.1 运行递增构建的过程 - PCMC

6.3.1.1 实验 1:采用开路电流和电压环路进行相位重叠检查

6.3.1.1.1 实验1 的目标

该构建的目的是通过手动调整两条桥臂之间的相移来控制功率流、验证 DAC 和 ADC 驱动器模块、验证电路板上的 MOSFET 驱动器电路和检测电路以及熟悉 Code Composer Studio (CCS) 的操作。由于这个系统以开环方式运行, ADC 测量值只用于这个构建内的仪器仪表用途。研究了构建并运行一个项目所需的步骤。

6.3.1.1.2 实验1 概述

构建 1 中的软件已经过配置,因此用户可以通过在示波器上查看各种波形并观察相移值参考命令变化对输出电压的影响(通过在 CCS 中交互式调整该命令),来快速评估 DAC 驱动器模块。此外,用户可以通过在监视视图中查看 ADC 采样数据来评估 ADC 驱动器模块。ePWM4 模块用作系统的主时基。该模块以向上/向下计数模式运行。ePWM4A 和 ePWM4B 驱动 Q1 和 Q4 全桥开关,而 ePWM3A 和 ePWM3B 驱动 Q2 和 Q3 全桥开关。每当相移值发生变化时,ePWM3 模块的时基相移寄存器就会相应地进行更新,且输出(ePWM3A 和 ePWM3B)开始生成相对于 ePWM4 模块具有相同相位延迟量的脉冲。

6.3.1.1.3 实验1 的过程

6.3.1.1.3.1 启动 CCS 并打开实验1 的工程

若要快速执行该构建,请执行以下步骤:

- 1. 确保按照"硬件"一节列出的方式正确安装或移除板上的所有跳线。
- 2. 硬件设置:将 AM263x controlCARD 插入 100 引脚 DIMM 连接器。以正确的极性在 J17 连接器的引脚 1 和 3 之间连接 5V 直流工作台电源。用跳线将 J19 连接器的引脚 1 和 2 短接。将隔离式 400V 可编程直流电源连接 到 400V 输入连接器,将 12V 电子负载连接到 12V 连接器(确保该负载不超过板额定值)。在 PC 和控制卡 之间连接一条 USB 电缆。此时不要接通任何电源。
- **3.** 打开 Code Composer Studio。将 Code Composer Studio 扩展到铺满整个屏幕。如果欢迎屏幕已打开,请关闭它。
- 4. 找到下载的解决方案包并在 CCS 中导入工程。

6.3.1.1.3.2 为实验1 构建和加载工程

- 1. 点击工程名称 PCMC_PSFB_am263x-cc_r5fss0-0_nortos_ti-arm-clang 左侧的展开符号 (>), 然后打开 psfbpcmc_settings.h (如实验 1 设置中所示)。该设置为 #define INCR_BUILD 1。这将启用构建 1 解决方案。
- 2. 在 psfbpcmc_settings.h 中设置 #define PSFB_PCMC 0。PSFB_PCMC 的默认值定义为 1,用于执行闭合电 流环路(随后的章节将详细讨论该模式)。
- 3. 点击左上角的 View 选项卡。点击 Target Configuration。随后会打开 Target Configuration 窗口。右键点击 user defined,然后选择 Import Target Configuration。浏览至将工程导入到的 CCS 工作区。打开 targetConfigs 文件夹,然后选择 AM263x_Real_Time_debug.ccxml。
- 4. 双击 AM263x_Rea1_Time_debug.ccxm1, 然后执行 *Test Connection* 检查。如果未通过检查,则需要按照 AM263x 实时调试设置中所述的步骤更改 COM 端口号。该 COM 端口号因 controlCARD 而异。仅当成功通 过 *Test Connection* 检查后,才能继续操作。
- 5. 打开 5V 直流工作台电源。将 USB 电缆连接到控制卡并确保 LD7 发出绿光。在 Target Configuration 窗口 中,选择 AM263x_Real_Time_debug.ccxml。点击 Debug 按钮。实验 1 代码成功构建,无任何错误。
- 6. 请注意右上角的 CCS Debug 图标,该图标表明该过程现在是 Debug Perspective 视图中执行。右键点击 Debug 窗口中的 Cortex_R5_0,然后选择 Connect Target。现在点击顶部选项卡中的 Load 图标。加载刚刚 成功构建的.out 文件。现在,.out 已成功加载到 Core_0。程序在 main() 的开始处停止。

🔁 Project Explorer × 🔋 🖻 🖻	■ psfbpcmc_settings.h ×
PCMC_PSFB_am263x-cc_r5fss0-0_nortos_ti-arm-clang	52#define PSFB_PWMSYSCLOCK_FREQ_HZ (100*1000000)
> Ø Generated Source	53
> 😹 Binaries	54/* Project Options*/
> Includes	55// Incremental Build options for System check-out
> 😕 Release	57// Interemental balla optable for System enter out
> 🗁 targetConfigs	58// BUILD 1 Open Loop Check
> 🖻 board.c	5 <mark>P// BUILD 2 Closed Voltag</mark> e Loop Check
> Ri2c read c	60#define PSFB_INCR_BUILD 1
> I psfppcmc bal c	61
> @ psfbpcmc_main c	62/7 PCNC 1 - Closed eurrent open voltage loop mode> Default operating mode
> @ psfbpcmc_maine	6 #define PSFB_PCMC 0
> Serial Cmd HALC	65
Serial Cmd Monitor c	66// SFRA_ENABLE 0 SFRA is disabled> Default Mode
> btidm 02009 dcdc am263x lnk cmd	6/// SFRA_ENABLE I SFRA IS ENABLED
M davica h	69
makefile cos bootimado don	70//Select SR Mode
DCMC DEER am262x-cc r5fcc0-0 portor ti-arm-clang	71#define PSFB_SR_MODE 2
© noffprome hallh	
V nothing and setting a h	/3/* Power Stage Related Values*/ 74#dofing DCCB Dec Dum Sultrethic EDECULENCY H7 ((float32 t)100*1000)
M pstbpcmc_settings.h	75#define PSFB PFC PWM PERIOD TICKS ((PSFB PWMSQLOCK FREO HZ)/(PSFB PFC PWM SWITCHING FREQUENCY HZ))
W nefbrana h	
a psibpenen	
psrbpcmc.syscrg	Console × X ↓ ♥ S ↓ ↓ = 0 ▼ ● ▼ ● □
README.ntmi	CDT Build Console [PCMC_PSFB_am263x-cc_r5fss0-0_nortos_ti-arm-clang]
setupdebugenv_alibulids_Alvi263.js	L:\ti\cc51250\cc5/tools/node/node L:\ti/digital_power_sdx_amz65x_09_01_00_01/mcU_plus_sdk/tools/boot/multicoreima ()\ti\cc51250\cc5/tools/node/node L:\ti/digital_power_sdx_amz65x_09_01_00_01/mcU_plus_sdk/tools/boot/multicoreima
sysctg_c.rov.xs	Boot inage: an263x:r5fss0-0:nortos:ti-arm-clang C:/Users/a0488208/workspace v12.5 test/PCMC PSFB an263x-cc r5fss
	**** Build Finished ****

图 6-6. 实验 1 设置

6.3.1.1.3.3 实验1 的调试环境窗口

通过点击菜单栏中的 *scripting console*,然后使用脚本控制台 *Open File*()命令从工程工作区目录 (PCMC_PSFB_am263x-cc_r5fss0-0_nortos_ti-arm-clang\setupdebugenv_allbuilds_AM263.js)中打开 *setupdebugenv_allbuilds_AM263.js* 文件来填充表达式窗口条目。请注意,主代码中的某些变量此时还未被初始 化,有可能包含一些垃圾值。

6.3.1.1.3.4 运行实验1的代码

- 1. 通过使用 <F8> 键或使用工具栏中的 Run 按钮来运行代码。
- 2. 确保控制台中显示 IO Expander found 消息,如控制台消息中所示。
- 3. 按照 AM263x 实时调试指南的 启动实时调试 中所述, 启用对表达式窗口的实时监控。
- 4. 在 PSFB 系统的直流输出上施加一个适当的电阻负载。建议开始时使用电流消耗约为 3A 至 6A (输出为 12V)的负载。

- 5. 将 PSFB enable 设置为 1。这将启用 PWM 输出。表达式窗口类似于表达式窗口所示。
- 6. 在 J1, J2 上为输入提供 300V DC 电源。观察表达式窗口中的 *PSFB_Phase_Shift_Val* 参数,其在开始时值 为 50 (值为 500 表示 100% 相位重叠)。更新该值为 200。输出约为 6.8V (5A 恒流负载)。
- 7. 将输入电源从 300V 增加到 400V。将恒流负载增加到 12A。以 25 为增量步长缓慢将 PSFB_Phase_Shift_Val 增加到 300。仔细观察输出电压 (PSFB_guiLVbus_Volts),该电压应该逐渐增加到 12V。此值不应超过电路板 的承受能力。诸如 PWM 栅极驱动信号、输入电压和电流以及输出电压等的不同波形也可使用一个示波器进行 探测。在探测这些用于隔离式直流/直流转换器的高压和高电流时应该采取适当的安全防护措施并考虑合适的 接地要求。
- 8. 在实时模式下,完全停止 MCU 需要执行两个步骤。关闭 400V 直流输入,等待几秒钟。首先,通过工具栏上的 STOP 按钮停止处理器。然后,关闭 MCU 的电源。

■ Console ×							🖹 🔝 🔛 🚽 🖻 🔻	- 📬 🔻	
AM263x_Real	_Time debug.c	cxml:CIO							
[Cortex_R ADC2_MUX_S	5_0] [I2C] SEL High!!	IO Expander	found at	device	address	0x20			^
	-								
									~
<									>
<									>

图 6-7. 控制台消息

(X)= Variables def Expressions × 1989 Registers
Name
"PSFB_gui_icommand_Set_Amps"
"PSFB_icommand_Set_pu"
*** "PSFB_enable"
*** "PSFB_start_Flag"
*** "PSFB_Phase_Shift_Val"
*** "PSFB_gui_ocpThreshold_Amps"
*** "PSFB_gui_ovpThreshold_Volts"
*** "PSFB_closeGiLoop"
*** "PSFB_closeGvLoop"
*** "PSFB_guilHV_Amps"
*** "PSFB_guiLVbus_Volts"
[*] *** "PSFB_ovp_Fault"
*** "PSFB_ocp_Fault"
*** "PSFB_slope"
*** "PSFB_guivLVBus_Set_Volts"
*** "PSFB_guivLVBus_SlewedSet_Volts"
*** "PSFB_error_vLVBus_pu"
۲۰۰۲ "PSFB_start_flag"
*** "PSFB_cntlMax"
*** "PSFB_cntlMin"
💱 "PSFB_irampmax_Set"
*** "PSFB_ocpThreshold"
*** "PSFB_cntlMax_adjust"

图 6-8. 表达式窗口

6.3.1.2 实验 2:闭合电流和开路电压环路

该构建的目的是通过使用 CCS 环境提供峰值电流限制作为用户输入来评估系统的峰值电流模式运行情况。

6.3.1.2.2 实验 2 概述

实验 2 中的软件已经过配置,因此用户可以通过在示波器上查看各种波形并观察峰值电流参考命令变化对输出电压的影响(通过在 CCS 中交互式调整该命令),来快速评估 DAC 驱动器模块。此片上模拟比较器将变压器初级电流与斜率补偿峰值电流基准相比较。比较器输出连接到 PWM 模块的跳闸区逻辑。ePWM4 模块用作系统的主时基。该模块以向上/向下计数模式运行。ePWM4A 和 ePWM4B 驱动 Q1 和 Q4 全桥开关,而 ePWM3A 和 ePWM3B 驱动 Q2 和 Q3 全桥开关。ePWM3A 和 ePWM3B 驱动 Q5 和 Q6 同步整流器开关。虽然 Q5 和 Q6 的门控脉冲有效,但除非通过 J17 端口的引脚 9 向基板提供 12V 电源,否则这些开关不会开始工作。只要比较器输出在一个 PWM 半周期内变为高电平,在该瞬间处于高电平的 ePWM3 模块输出(ePWM3A 或 ePWM3B)会立即被拉低,而另一个 PWM3 模块输出在适当的死区窗口 (dbAtoP) 后被拉高。ePWM5A 和 ePWM5B 输出以类似的方式被驱动。请注意,该斜率补偿斜坡生成、比较器操作和 PWM 波形生成都是硬件生成的,没有任何软件参与,如图 1-1 所示。SR 的一些寄存器重配置在 ISR 内部完成。

图 6-9. 实验 2 软件方框图

6.3.1.2.3 实验 2 的过程

6.3.1.2.3.1 为实验 2 构建和加载工程

若要使用预配置的工作环境快速执行此构建,请执行以下步骤:

- 点击工程名称 PCMC_PSFB_am263x-cc_r5fss0-0_nortos_ti-arm-clang 左侧的展开符号 (>),然后打开 psfbpcmc_settings.h (如实验 2 设置中所示)。该设置为 #define INCR_BUILD 1。在 psfbpcmc_settings.h 中设置 #define PSFB_PCMC 1。
- 2. 打开 12V 直流工作台电源。在 *Target Configuration* 窗口中,选择 AM263x_Real_Time_debug.ccxml。点击 *Debug* 按钮。此时会编译并加载实验 2 代码。
- 3. 请注意右上角的 CCS Debug 图标,该图标表明该过程现在是 Debug Perspective 视图中执行。程序在 main() 的开始处停止。

20 使用 AM263x MCU 实现 TIDM-02009 参考设计的双向直流/直流转换器功率级

6.3.1.2.3.2 实验 2 的调试环境窗口

通过点击菜单栏中的 *scripting console*,然后使用脚本控制台 *Open File*()命令从工程工作区目录 (PCMC_PSFB_am263x-cc_r5fss0-0_nortos_ti-arm-clang\setupdebugenv_allbuilds_AM263.js)中打开 *setupdebugenv_allbuilds_AM263.js* 文件来填充表达式窗口条目。请注意,主代码中的某些变量此时还未被初始 化,有可能包含一些垃圾值。

6.3.1.2.3.3 运行实验 2 的代码

- 1. 通过使用 <F8> 键或使用工具栏中的 "Run" 按钮来运行代码。
- 2. 按照 AM263x 实时调试指南的"启动实时调试"中所述, 启用对表达式窗口的实时监控。
- 3. 在 PFC 系统的直流输出上施加一个适当的电阻负载。建议开始时使用电流消耗约为 3A 至 6A (输出为 12V)的负载。
- 4. 将 PSFB_gui_icommand_Set_Amps 设置为 2.3。将 PSFB_enable 设置为 1。
- 5. 在 J1, J2 上为输入提供 400V DC 电源。使用示波器观察变压器初级侧电压。
- 6. 以 0.05 为增量缓慢将 PSFB_gui_icommand_Set_Amps 增加到 2.85。仔细观察输出电压 (PSFB_guiLVbus_Volts),该电压应该逐渐增加到 12V。此值不应超过电路板的承受能力。诸如 PWM 栅极驱 动信号、输入电压和电流以及输出电压等的不同波形也可使用一个示波器进行探测。在探测这些用于隔离式 DC-DC 转换器的高压和高电流时应该采取适当的安全防护措施并考虑合适的接地要求。
- 7. 将 PSFB_slope 设置为 8。用户可以逐渐增大或减小该值以进行测试。
- 8. 在实时模式下,完全停止 MCU 需要执行两个步骤。关闭 400V 直流输入,等待几秒钟。首先,通过工具栏上的 STOP 按钮停止处理器。然后,关闭 MCU 的电源。

6.3.1.3 实验 3:闭合电流和闭合电压环路

6.3.1.3.1 实验 3 的目标

该构建的目的是验证整个基于 PCMC 的 HVPSFB 工程在 CCS 环境下的运行情况。

6.3.1.3.2 实验 3 概述

实验 3 软件方框图展示了该构建中使用的软件块。采用双极点双零点控制器来实现电压环路。如实验 3 软件方框 图中所示,电压环路块的执行频率为 100kHz。DCL_runClamp_C1 函数用于避免控制器饱和情况。

DCL_runDF22_C2 计算预先计算的 DF22 控制器的直接部分。如果该值大于最大阈值或小于最小阈值,使用 DCL_runClamp_C1 函数设置一个标志。这将阻止控制器进一步达到饱和。该标志关闭后,DCL_runDF22_C3 计 算预先计算的 DF22 控制器的部分结果。有关 DCL 函数如何工作的更多信息,请参阅 C2000ware 中的 DCL 用户 指南。

图 6-11. 实验 3 软件方框图

6.3.1.3.3 实验 3 的过程

6.3.1.3.3.1 为实验 3 构建和加载工程

- 1. 点击工程名称 PCMC_PSFB_am263x-cc_r5fss0-0_nortos_ti-arm-clang 左侧的展开符号 (>), 然后打开 psfbpcmc_settings.h (如图 1-1 所示)。在 psfbpcmc_settings.h 中设置 #define INCR_BUILD 2。
- 2. 打开 12V 直流工作台电源。在 Target Configuration 窗口中,选择 AM263x_Real_Time_debug.ccxml。点 击 Debug 按钮。实验 3 代码编译和加载。
- 3. 请注意右上角的 CCS Debug 图标,该图标表明该过程现在是 Debug Perspective 视图中执行。程序在 main() 的开始处停止。

图 6-12. 实验 3 设置

6.3.1.3.3.2 实验3 的调试环境窗口

通过点击菜单栏中的 scripting console,然后使用脚本控制台 Open File()命令从工程工作区目录 (PCMC_PSFB_am263x-cc_r5fss0-0_nortos_ti-arm-clang\setupdebugenv_allbuilds_AM263.js)中打开 setupdebugenv_allbuilds_AM263.js 文件来填充表达式窗口条目。请注意,主代码中的某些变量此时还未被初始 化,可能包含一些垃圾值。

6.3.1.3.3.3 运行实验 3 的代码

- 1. 执行实验 2 过程的步骤 1 至 4 来启用实时模式和针对观察视图的持续刷新,也可在需要时改变观察视图的持续刷新间隔。
- 2. 在 PSFB 系统的直流输出上施加一个适当的负载。建议开始时使用电流消耗约为 3A 至 6A (输出为 12V)的 负载。
- 3. 检查 PSFB_guivLVBus_Set_Volts。开始时, PSFB_guivLVBus_Set_Volts 的目标为 2。
- 4. 使用 400V 直流 (可以选择使用 200V 或 300V)为 J1、J2 的输入供电。输出电压需升高至 2V。
- 5. 将 PSFB_start_flag 设置为 1。输出电压现在开始升至 12V。此处的观察视图对应于输入电压约为 400V、输出电压为 12V、负载约为 5A(恒流负载)的系统运行情况。
- 6. 逐渐将负载(恒流负载)增加至 20A。输出功率约为 250W。
- 7. 默认情况下,同步整流器在模式 2 下运行。您可以通过在观察视图中将 PSFB_SR_mode 变量更改为 0、1 或 2 来更改运行模式。请观察被汲取的输入电流的变化,以及使用不同 SR 模式时输出电压的变化。探测驱动同步整流器开关的 PWM 波形。当在极低负载下运行或者输出电压极低(少于 6V)时,不要在不同的 SR 模式间进行改变。在这些情况下,使用默认 SR 模式 2。要启用 Q5 和 Q6 的门控脉冲,请在 J17 连接器的引脚 10 和 8 之间提供 12V、0.75A 电源。

7 测试和结果

7.1 实验 0: 基本 PWM 检查

实验 0 可在 AM263x controlCARD 和扩展坞上运行。要执行实验 0,请按照节 6.3.1.1.3.2 中所述的步骤构建代 码。

将 controlCARD 扩展坞的 ADC4_AIN0、ADC1_AIN1、ADC3_AIN1、ADC3_AIN2 引脚连接到接地点。将 controlCARD 扩展坞的 EPWM3、EPWM4、EPWM5 引脚连接到逻辑分析仪以查看 PWM 波形。

- ADC4_AIN0 引脚 25
- ADC1_AIN1 引脚 18
- ADC3_AIN1 引脚 30
- ADC3_AIN2 引脚 32
- EPWM3 引脚 54、56
- EPWM4 引脚 57、59
- EPWM5 引脚 61、63

图 1-1 显示了预期的 PWM 波形。

图 7-1. PWM 波形

7.2 实验 1:采用开路电流和电压环路进行相位重叠检查

只有在确保所有波形都符合实验 0 的结果 (如 PWM 波形中所示)后,继续执行实验 1。

执行实验 1 时,先将 controlCARD 放置在电源转换器的基板中。按照节 6.3.1.1.3 中所述的步骤执行本实验练 习。第 1 组和第 2 组中提供了两组波形。黄色、红色、蓝色、粉色、绿色波形分别显示的是 Q4 栅极到源极电 压、Q3 漏极到源极电压、Q4 漏极到源极电压、变压器初级侧电压和变压器初级电流。

7.3 实验 2:闭合电流和开路电压环路

按照节 6.3.1.2.3 中所述的步骤执行实验 2。第 1 组和第 2 组中提供了两组波形。第 1 组的黄色、红色、蓝色、粉 色、绿色波形分别显示的是负载电压、Q3 漏极到源极电压、Q4 漏极到源极电压、变压器初级侧电压和变压器初 级电流。第 2 组的黄色、红色、蓝色、粉色、绿色波形分别显示的是负载电压、Q3 漏极到源极电压、Q4 漏极到 源极电压、变压器初级侧电压和负载电流。

图 7-5. 第 2 组

7.4 实验 3:闭合电流和闭合电压环路

按照节 6.3.1.3.3 中所述的步骤执行实验 3。第 1 组和第 2 组中提供了两组波形。第 1 组的黄色、红色、蓝色、粉 色、绿色波形分别显示的是负载电压、Q3 漏极到源极电压、Q4 漏极到源极电压、变压器初级侧电压和变压器初 级电流。第 2 组的黄色、红色、蓝色、粉色、绿色波形分别显示的是负载电压、Q3 漏极到源极电压、Q4 漏极到 源极电压、变压器初级侧电压和负载电流。

图 7-6. 第1组

图 7-7. 第 2 组

启用 Q5 和 Q6 的门控脉冲后,即可获得在 120W 时启用 SR 模式和在 240W 时启用 SR 模式下显示的波形。在 这两种情况下,红色、蓝色、粉色、黄色、绿色的波形分别显示的是 Q3 漏极到源极电压、Q4 漏极到源极电压、 变压器初级侧电压、Q5 漏极到源极电压以及 Q6 漏极到源极电压。

图 7-8. 在 120W 时启用 SR 模式

8参考资料

- 德州仪器 (TI), TIDM-02000 使用 C2000™ 实时 MCU 的峰值电流模式控制相移全桥参考设计
- 德州仪器 (TI), TIDM-02009 经过 ASIL D 等级功能安全认证的高速牵引和双向直流/直流转换参考设计
- 德州仪器 (TI), 数字电源 SDK 用于 AM263X 的 AM263x 数字电源 SDK

9 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision * (January 2024) to Revision A (April 2024)		Page
•	更新了软件下载路径	
•	更新了图 6-3	
•	更新了图 6-6	17
•	更新了图 6-10	20
•	更新了图 6-12	

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司