

WBMS 统计命令解析及 PDR PS 测试方法

Yue, Tang

FAE/China CM

ABSTRACT

本文介绍了 TI WBMS 的统计功能,并详细说明了如何利用统计功能来测量 WBMS 系统型指标 PDR (Packet Delivery Rate)和 PS (Path Stability)。PDR, PS 指标比传统的 PER 能更好地衡量 WBMS 系统的稳定性。

Contents

1	引言	2
2	PDR 和 PS 的定义	2
	2.1 PDR (Packet Delivery Rate)	2
	2.2 PS (Path Stability)	2
3	TI WBMS SDK 统计命令集	2
	3.1 统计命令及其功能 简介	3
	3.2 基于统计命令的 PDR/PS 计算	4
4	使用 LLCOM 工具测试 WBMS 系统的 PDR、PS	5
	4.1 LLCOM 工具介绍	5
	4.2 测试基本思路及详细步骤	6
	4.3 LLCOM PDR PS 测试的总结	.12
5	参考文献	.12

Figures

	•	
Figure 1.	LLCOM 主界面	5
Figure 2.	LLCOM 脚本页面	6
Figure 3.	TI CSU EVM 框图	6
Figure 4.	测试环境搭建	7
Figure 5.	WM 工程中开启 MANUAL_NETWORK_START	8
Figure 6.	选择串口及波特率	8
Figure 7.	快捷发送页面组网命令序列	9
Figure 8.	组网命令序列及其响应	10
Figure 9.	选择测试脚本	10
Figure 10.	逻辑分析仪测量通信间隔小于 100ms	11

1 引言

PER(Packet Error Rate)是一个重要的射频指标,常用于评估射频芯片的接收灵敏度,但是用于评估 WBMS 整体系统性能时则不够全面,WBMS 系统除了射频芯片,还包含 AFE,HOST MCU 等,实际应用中客户更关心是整体系统是否能在 100ms(FTTI-Fault Tolerant Time Interval)成功读取到电芯电压和温度,重传率是否足够低,因此 PDR(Packet Delivery Rate)和 PS(Path Stability)常被用于衡量 WBMS 系统的稳定性。

如下是本文提到的一些英文缩写的含义:

2 PDR 和 PS 的定义

2.1 PDR (Packet Delivery Rate)

PDR 指的是在 100ms 间隔内读取到电芯数据时的成功率,要求是不低于 99.9%。在 TI WBMS 协议栈中,例如一个 1 WM 对 15WD 的网络,每次电芯数据的读取是由 WM 主节点发起,15 个 WD 依次分时返回各自的数据,如果 15 个 WD 有一个或多个 WD 在这次通讯中返回数据失败,则 WM 会自动重传,直到所有 15 个 WD 均成功返回数据,重传最大次数默认为 5 次,如果超过最大重传次数仍不成功,视为一次通讯失败。考虑到 100ms 间隔要求,并且对于 15WD 的网络,每次通讯需要花费 21ms 左右,因此最大重传次数不能大于 3。实际测试中通常会进行 10000 次电芯采样通讯来衡量这一指标。PDR 也包括系统 PDR 和各个无线节点的 PDR,系统 PDR 如能达到 99.9%,节点 PDR 则一定能达到。

2.2 PS (Path Stability)

PS强调的是点对点通讯成功率,需要指出的是每次重传也被记为一次通讯。例如一个1对3的网络,第一次WM发送电芯采样时,3个WD均成功反馈,第二次采样时,WD2没有成功反馈,因此触发重传,而在这次重传中所有3个WD数据传递均成功。这个例子中,虽然只进行了两次数据采集,但实际发生了三次通讯。对于1,3节点3次通讯都成功,因此他们的PS是100%,而节点2,只有两次成功,因此它的PS是2/3=66.7%。显然PS是用于评估节点的指标,减小重传可有效提升PS,实际应用中客户一般要求在10000次电芯数据采集时,PS需大于85%。

3 TI WBMS SDK 统计命令集

TI 最新的 WBMS SDK 已在底层实现统计功能,用户可以通过 Host 命令来获取这些统计信息,请通过 官网下载 STACK,并仔细阅读,如下是统计功能文档在 SDK 中的位置。

x:/ti/simplelink_wbms_sdk_x_xx_xx/docs/wbms/doxygen/html/group__STATISTICS__COMMAND S.html

TEXAS INSTRUMENTS

3.1 统计命令及其功能简介

目前支持的统计命令如下所示,具体帧格式请仔细阅读开发文档

- (0x30) APP_DIAG_GETFWVERSION
 - 获取 SDK 版本信息
- (0x32) APP_DIAG_GETNETWORKSTATS
 - 获取特定节点的延迟和 PER
- (0x33) APP_DIAG_GETXPACKETS
 - 获取已成功发送的包数 NumTxSuccessPackets 和发送失败的包数 NumTxFailedPackets。
 - NumTxFailedPackets 是发送失败次数的统计
 - NumTxSuccessPackets 是每次发送成功的统计,重传不计入

• (0x34) APP_DIAG_GETHROUGHTPUT

- 获取发送和接收的吞吐量,单位是 kbps
- (0x35) APP_DIAG_GETRXPACKETS
 - 获取特定节点已成功被 WM 接收的包数 NumRxSuccessPackets 和接收失败的包数 NumRxMissedPackets。
 - NumRxSuccessPackets 是 WM 每次成功接收特定节点包数的统计
 - NumRxMissedPackets 是连续多次重传仍未收到特定节点包数的统计
- (0x36) APP_DIAG_GETRSSI
 - 获取特定节点的 RSSI (接收信号强度指示) 值
- (0x37) APP_DIAG_GETJOINPKTCNT
 - 获取 Join 过程中扫描请求的计数
- (0x38) APP_DIAG_GETSTATS
 - 获取1个或多个节点的各次重传次数的统计,每个节点会返回20个字节,每4个字节表示 各次重传的次数,最多5次重传,需要注意各次重传并不会重复统计,比如某次通讯发生 了2次重传,则1次重传计数不会增加。
 - 获取 0-36 个通讯频道的重传次数统计
- (0x3D) APP_DIAG_GETKLVDURATION
 - 获取 Keep Alive 模式的持续时间 (以分钟 为单位)
- (0x3E) APP_DIAG_GETPARAMS

3

■ 获取 WBMS 参数如 Dual Main 的角色, WD 的 MAC 地址及状态, 跳频表等

3.2 基于统计命令的 PDR/PS 计算

首先,是系统 PDR 的计算,如下公式:

$$PDR_{系统} = 1 - \frac{Sum(NumRxMissedPackets 1 to n)}{NumTxSuccessPackets}$$
 (公式 3.2.1)

这里,n是网络中WD节点的数量。

即:累加所有 WD 节点的 NumRxMissedPackets(一次数据采集中 3 次重传没有一次能同时获得所有 WD 的数据),再除以 NumTxSuccessPackets。实际应用中,3 次重传过程中各个节点只需要有一次 成功上传了采样数据,可不认为是失败,因为即使是发生了最大 3 次重传,各个节点的采样数据时间 上的差异仍满足小于 100ms。为此,额外增加统计参数 *txfail*,这个参数在每次采样过程中,在连续 3 次重传后,一次都没有被成功接收到时才累加 1。按照这一设定,系统 PDR 可采用如下公式计算获 得:

$$PDR_{\underline{s}\underline{\kappa}} = 1 - \frac{txfail}{\text{NumTxSuccessPackets}}$$
(公式 3.2.2)

其次,是关于各个WD节点的PS,计算公式如下:

$$PS_{$$
节点} = 1 - Sum(retry 1 to 5) of Node n
NumTxSuccessPackets (公式 3.2.3)

n 是特定节点,总的重传次数按如下方式计算:

retryTotal = 1*st retry* + 2nd *retry* × 2 + 3*rd retry* × 3 + 4*th retry* × 4 + 5*th retry* × 5 发生重传即该节点的数据没有被 WM 接收到,当最大重传次数为 3 时,4th and 5th retry 计数为 0。

但 PS 的计算需要采用实际从物理层发出的包的数量,因此,每次重传时的发送也应该被统计,而 NumTxSuccessPackets 并不统计重传发生时的发送。比如一次数据采集发送时,不论经过几次重传, NumTxSuccessPackets 都只增加 1,因此并不准确。为此,引入新的统计参数 *txActual*,该参数是 从射频物理层角度统计每一次发送,如一次采样命令发送过程中,发生了两次重传,则该参数 计数会增加 3,即:第一次发送加上后面两次的重传。因此,采用如下公式计算节点的 PS:

$$PS_{\text{txActual}} = 1 - \frac{Sum(\text{retry 1 to 5})of Node n}{txActual}$$
 (公式 3.2.4)

最后,关于各个WD节点的PDR,可使用如下公式计算获得

 $PDR_{$ 节点} = 1 - $\frac{\text{NumRxMissedPackets of Node ID}}{\text{NumTxSuccessPackets}}$ (公式 3.2.5)

显然,如果系统 PDR 可以满足 99.9%的要求,则节点 PDR 一定可以满足。

4 使用 LLCOM 工具测试 WBMS 系统的 PDR、PS

4.1 LLCOM 工具介绍

LLCOM 是一个开源的串口工具,它最主要的特点是支持 Lua 语言扩展,除了具备常用串口工具的串口收发,定时发送,及命令序列运行外,它还可以通过 Lua 脚本解析串口数据并执行自动化操作。常用的串口工具如 WINDOWS 自带的串口调试工具也能支持 JavaScript 脚本扩展,但并不是免费开源软件,LLCOM 代码开源,可以定制出高自由度的串口调试工具。

S LLCOM - WBMS PS PDR TEST - 1.1.3.6	- 0	\times
	快捷发送 🖸 运行脚本 🚷 小工具 关于	•
	编号 (未命名0) 内容	HEX
	1 FE 00 00 3A 12 28 复位命	×
	2 FE 01 00 3A 47 00 7C 设置Volatile模	t ×
	3 FE 10 00 3A 40 00 00 0F 00 00 00 00 设置网络参数	3 🗙
	4 FE 01 00 3A 48 01 72 设置加入横	t ×
	5 FE 88 00 3A 49 0F BF 6B 5B 9B A8 设置加入设备表	3 🗙
	6 FE 01 00 3A 42 00 79 启动网络	8 ×
	添加新项目 删除最后一项	
	发送处理的lua脚本,同样对此处发送的数据生效。	
	导入数据到该页 导出该页数据	
	一键清空该页数据	
RTS X DTR X Hex显示 X 发Hex 发末尾加回车换行 强制进入终端模式	一键导入SSCOM数据	
注 清空日志 FE 07 00 5A 0A 00 C0 05 74 23 4A FC 73 发送 串口 再名论题		
刷新串口 串口: XDS110 Class Application/User UART (COM15) · 波特率	状态: 打开 已发送字节: 810301 已接收字节: 9	443549

Figure 1. LLCOM 主界面

ZHCAE70

快捷发送 🖸 运行脚本 🗞 小工具 关于 PSPDR_T_HC - 🙆 🕨 🗁 😂 🥥 🤜 2 --PS PDR Test Script 3 local cmdBQvoltInterval = 70 -- 修改 5 6 wbmsNetId =0xDDDD wbmsNodeNumber = 1 7 8 wbmsMaxRetries =3 10 wbmsNodeRty={{},{},{},{},{}} wbmsChannelRty={} 11 12 wbmsNodeRtyTotal ={} 13 14 NumTxSuccessPackets=0 15 NumTxFailedPackets=0 16 17 NumRxSuccessPackets={} 18 NumRxMissedPackets={} 19 -- 需要重新初始化,才能正确统计 20 21 22 23 24 25 local cmdBQvoltReading= ("FE 07 00 5A 0A 00 C0 05 74 23 4A FC 73"):fromHex() 26 27 local StatisticsIdx =0 local StaticgetTxPackets =("FE 00 00 3A 33 09"):fromHex() --getTxPackets,4B success,4B fail local StaticgetChannel = ("FE 03 00 3A 38 02 00 25 26"):fromHex() --getStats_Channel local StaticgetNode = ("FE 03 00 3A 38 02 00 25 26"):fromHex() --getStats_Node local StaticgetPx_rL 28 29

Figure 2. LLCOM 脚本页面

4.2 测试基本思路及详细步骤

30

首先,需要搭建起一个1对多WBMS网络,在本次测试中,WM采用的是TI的LAUNCHXL-CC26X2R1 评估板,WD 节点则使用 TI 汽车系统设计团队的 CSU EVM,该 EVM 使用了 TI CC2662-Q1 无线 MCU 和 TI 新一代 18 通道高精度汽车级 AFE BQ79718-Q1,如下图所示。请通过您的 TI 业 务代表获得相关的评估板和设计文件。

Figure 3. TI CSU EVM 框图

接下来,使用 LLCOM 发送 Host 控制命令完成 WBMS 1 对 15 网络的组网。组网完成后,运行 Lua 脚本,自动以设定的间隔时间持续发送电芯电压采样命令。当完成 10000 次采样命令发送后,脚本会自动发送如上描述的各项统计命令,并基于统计命令反馈的结果计算出 PDR、PS 的结果并打印出来。

特别说明:可以使用逻辑分析仪监测 LAUNCHXL-CC26X2R1 的串口,已观察串口数据的收发,确保 采样命令的发送间隔小于 100ms,以符合 PDR 测试要求。逻辑分析仪可直接连接 LAUNCHXL-CC26X2R1 的 J1 排针的 DIO2(TX) 和 DIO3(RX)。

Figure 4. 测试环境搭建

以下是详细步骤,操作视频请点击链接:

• Step1 测试所使用的 WM 和 WD 的固件程序,可直接采用 WBMS SDK 中的默认工程编译。 WM 的工程需要在预定义中开启 MANUAL_NETWORK_START,以允许接收来自 Host 的命令 来设置启动网络,如下图所示:

type filter text	Predefined Symbols
 > Resource General > Build > SysConfig > Arm Compiler Processor Options Optimization Include Options > Predefined Symbols > Advanced Options > Arm Linker Arm Hex Utility [Disabled] Arm Objcopy Utility [Disabled] > Debug 	Configuration: Debug [Active] Pre-define NAME (-D) \$(COM TI_SIMPLELINK_WBMS_SDK_SYMBOLS) \$(SYSCONFIG_TOOL_SYMBOLS) DEBUG STATS_ARR_SIZE=32 NVOCMP_NVPAGES=2MPU_PRESENT=1U USE_TIMEBASE_RTC OAD_ONCHIP FEATURE_NATIVE_OAD NPI_USE_BUFFER_MANAGER WBMS_HOST_EXTERNAL DIAG xHOST_ENCRYPTION xEXTERNAL_WDOG xBIM_VERIFY_VERSION_IMAGE BIM_RESTRICTED_ROLLBACK_VERIFY_COMMIT_IMAGE NPI_USE_UART WMAIN SECURITY MANUAL_NETWORK_START xTHRUPUT_TEST BQ_COMMAND_AGGREGATION xDWM_PRIMARY xDUAL_WMAIN DeviceFamily_CC26X2 POWER MEASUREMENT

Figure 5. WM 工程中开启 MANUAL_NETWORK_START

如使用的硬件和前文提到的一致,也可从如下链接下载已编译好的固件 bin 文件用于烧录测试。注意虽然有多个 WD 节点,但固件程序使用同一个。固件链接

- Step 2 搭建好硬件测试环境后,使用 USB 线连接 <u>LAUNCHXL-CC26X2R1</u>和 PC,运行 LLCOM,请通过链接下载这个工具,与本测试相关的命令序列和测试脚本均包含在这个版本的 LLCOM 中。
- Step 3 LLCOM 中选择正确的串口。通常 LAUNCHXL-CC26X2R1 会显示两个串口,选择 "XDS110 Class Application/User UART (COMXX)",串口波特率选择 921600。

Figure 6. 选择串口及波特率

• Step 4 打开串口后,在 LLCOM 的"快捷发送"栏,按顺序 1-6 点击发送预设的命令,完成 WBMS 网络的建立。请特别注意点击命令的顺序。如错误,请点击第 1 条复位命令重新开始, 关于命令的详细说明请参考 SDK 中的文档。

						-	- 0	×
央捷发送 🖸	运行脚本	&	小工具	关于				
编号 (PDR_I	PS_TEST)			内容	点击发:	送 🔪		HE
1 FE 00 00	3A 12 28						复位命令	
2 FE 01 00 3A 47 00 7C 设置Volatile模式)								
3 FE 10 00	3 FE 10 00 3A 40 00 00 0F 00 00 00 00 03 0E 00 00 FF FF FF FF FF 97 设置网络参数-15					;		
4 FE 01 00	3A 48 01 72						设置加入模式	;)
5 FE 88 00 3A 49 0F BF 6B 5B 9B A8 FC FF FF 00 B6 7A 5B 9B A8 FC FF 设置加入设备表-15					; ;			
6 FE 01 00	3 A 4 2 00 79						启动网络	;
」 ¹ 令序号	添加新	顽目			删除最	后一项	Ę	
发送处理的间	ua脚本,同样	对此如	发送的数	据生效。				
	导入数据	到该	页		导出该	页数据	ŝ	
				一键清	空该页数据			
			-	一键导入	SSCOM数据			

Figure 7. 快捷发送页面组网命令序列

请注意: 命令3和命令5需要根据测试的实际情况做调整。命令3用于设定网络的参数,如网络 ID,WD 节点数量,最大重传次数等。命令5则是需要先获得测试所使用的 WD 节点的 MAC 地址。请参考文档 Network Configuration Commands 章节的 0x40 和 0x49 命令,文档位置参考如下链接:

simplelink_wbms_sdk_x_y_z/docs/wbms/doxygen/html/group__NETWORK__CONFIGURATI ON__COMMAND.html

命令 3 示例: FE 10 00 3A 40 00 00 0F 00 00 00 03 0E 00 00 FF FF FF FF FF 97,其中绿 色表示 WD 节点数量为 15 个,红色表示最大重传次数为 3 次,蓝色表示 Keep Alive Interval 为 14,这个值需要根据节点数量调整。

命令 5 示例: FE 88 00 3A 49 **0F BF 6B 5B 9B A8 FC FF FF 00 B6 7A 5B 9B A8 FC FF FF 01** 73 6A 5B 9B A8 FC FF FF 02 9A 7B 5B 9B A8 FC FF FF 03 8A 58 5B 9B A8 FC FF FF 04 A2 7B 5B 9B A8 FC FF FF 05 3D 7F 5B 9B A8 FC FF FF 06 F5 7B 5B 9B A8 FC FF FF 07 A5 7B 5B 9B A8 FC FF FF 08 D9 7A 5B 9B A8 FC FF FF 09 C5 6A 5B 9B A8 FC FF FF 0A DF 7A 5B 9B A8 FC FF FF 0B B8 7B 5B 9B A8 FC FF FF 0C A0 69 5B 9B A8 FC FF FF 0D BC 44 5B 9B A8 FC FF FF 0E CD, 其中红色是节点数量, 绿色为第一个 WD 设备的 MAC 地址, 蓝色表示分配的 ID 为 0, 其他节点按照同样的 8 字节 MAC 地址和 1 字节分配 ID 格式填入, 这里仅用颜色标注了节点 0 和 1。

下图展示了一次成功组网的命令序列及其响应,红色是 LLCOM 发出的命令,绿色则是 WM 的 响应。请确保获得正确的响应("00"表示正确),并且收到的最后一条响应是 5A 26。收到 5A 26 即表示网络已成功组建。

```
ZHCAE70
```


S LLCOM - WBMS PS PDR TEST -	1.1.3.6	- 🗆 X
[2024/06/30 16:07:00.521] +	FE 00 00 3A 12 28	唐发送 口 法行期本 🙈 小丁目 关于 🔮
[2024/06/30 16:07:00.587] →	FE 0C 00 5A 29 02 00 06 00 92 24 F0 73 B6 D8 FF FF 20	2000 D 120044 60 11236 X1
[2024/06/30 16:07:02.097] +	FE 01 00 3A 47 00 7C	号 (PDR PS TEST) 内容 HEX
[2024/06/30 16:07:02.157] →	FE 01 00 7A 47 00 3C	FF 00 00 3A 12 28 复位命令 X
[2024/06/30 16:07:03.040] + 97	FE 10 00 3A 40 00 00 0F 00 00 00 00 03 0E 00 00 FF FF FF FF	
[2024/06/30 16:07:03.187] →	FE 11 00 7A 40 DD DD 0F 46 0E 01 0F 03 0E 28 03 FF FF FF FF FF	FE 01 00 3A 47 00 7C 设置Volatile使式 👗
00 BB	3	FE 10 00 3A 40 00 00 0F 00 00 设置网络参数-15 🗙
[2024/06/30 16:07:04.046] <	FE 01 00 3A 48 01 72 4	FE 01 00 3A 48 01 72 设置加入横式 🗙
[2024/06/30 16:07:04.099] →	FE 01 00 7A 48 00 33	FE 88 00 3A 49 0F BE 6B 5B ()设置加入设备电-15 X
[2024/06/30 16:07:05.003] +	FE 88 00 3A 49 0F BF 6B 5B 9B A8 FC FF FF 00 B6 7A 5B 9B A8 FC	
04 A2 78 58 98 A8 FC FE	FE 05 3D 7E 5B 9B 08 FC FE FE 06 F5 7B 5B 9B 08 FC FF FF 07 05	FE 01 00 3A 42 00 79 启动网络 ×
78 58 98 A8 FC FF FF Ø8	D9 7A 5B 9B A8 FC FF FF 09 C5 6A 5B 9B A8 FC FF FF 0A DF 7A 5B	法加新项目 删除最后一项
9B A8 FC FF FF ØB B8 7B	58 98 A8 FC FF FF 0C A0 69 58 98 A8 FC FF FF 0D BC 44 58 98 A8	
FC FF FF ØE CD		送处理的lua脚争,同样对此处发达的数据主效。
[2024/06/30 16:07:05.053] →	FE 01 00 7A 49 00 32	导入数据到该页 导出该页数据
[2024/06/30 16:07:05.807] +	FE 01 00 3A 42 00 79	
[2024/06/30 16:07:05.868] >	FE 01 00 7A 42 00 39 FE 04 00 54 22 01 86 74 58 98 48 FC FE FE 04 2F FE 04 00 54 22	一鞭洞空族贝戴据
02 73 6A 5B 9B A8 FC FF	FF 04 F9 FE 0A 00 5A 22 03 9A 7B 5B 9B A8 FC FF FF 04 00	一键导入SSCOM数据
[2024/06/30 16:07:05.963] →	FE 0A 00 5A 22 00 BF 6B 5B 9B A8 FC FF FF 04 36 FE 0A 00 5A 22	
04 8A 58 5B 9B A8 FC FF	FF 04 34 FE 0A 00 5A 22 05 A2 7B 5B 9B A8 FC FF FF 04 3E FE 0A	
00 5A 22 06 3D 7F 5B 9B	A8 FC FF FF 04 A6 FE 0A 00 5A 22 07 F5 7B 5B 9B A8 FC FF FF 04	
6B	FE 04 00 FA 33 08 AF 78 FB 08 48 FC FF 64 34 FF 04 00 FA 33	
[2024/06/30 16:07:06.041] +	FE 0A 00 5A 22 08 A5 7B 5B 9B A8 FC FF FF 04 54 FE 0A 00 5A 22	
00 5A 22 0B DF 7A 5B 9B	A8 FC FF FF 04 4C	
[2024/06/30 16:07:06.120] +	FE 0A 00 5A 22 0C B8 7B 5B 9B A8 FC FF FF 04 2D FE 0A 00 5A 22	
0D A0 69 58 98 A8 FC FF	FF 04 26 FE 0A 00 5A 22 0E BC 44 5B 9B A8 FC FF FF 04 14	
[2024/06/30 16:07:06.733] →	FE 0B 00 5A 20 DD DD BF 6B 5B 9B A8 FC FF FF 00 31	
[2024/06/30 16:07:06.778] +	FE 08 00 5A 20 DD DD 86 7A 5B 9B A8 FC FF FF 01 28	
[2024/06/30 16:07:06.846] →	FE 08 00 5A 20 DD DD 73 6A 5B 9B A8 FC FF FF 02 FE FE 08 00 5A	
[2024/06/30 16:07:06.889] +	FE 08 00 5A 20 DD DD 8A 58 5B 9B A8 FC FF FF 04 33 FE 08 00 5A	
20 DD DD A2 78 58 98 A8	FC FF FF 05 39	
[2024/06/30 16:07:06.937] →	FE 0B 00 5A 20 DD DD 3D 7F 5B 9B A8 FC FF FF 06 A1 FE 0B 00 5A	
20 DD DD F5 7B 5B 9B A8	FC FF FF 07 6C	
[2024/06/30 16:07:06.968] →	FE 0B 00 5A 20 DD DD A5 7B 5B 9B A8 FC FF FF 08 33 FE 0B 00 5A	
20 DD DD D9 7A 5B 9B A8	FC FF FF 09 4F	
[2024/06/30 16:07:07.000] +	FE 0B 00 5A 20 DD DD DF 7A 5B 9B A8 FC FF FF 0B 48 FE 0B 00 5A	
20 DD DD B8 78 58 98 A8	FC FF FF ØC 2A	
[2024/06/30 16:07:07.094] →	FE 0B 00 5A 20 DD DD A0 69 5B 9B A8 FC FF FF 0D 21 FE 0B 00 5A	
20 DD DD BC 44 5B 9B A8	FC FF FF ØE 13	
[2024/06/30 16:07:07.188] →	FE 09 00 5A 26 40 E5 F9 4E 00 00 00 00 00 67	
RIS X DTR X Hex显示 X	友Hex 友末尾加回车换行 X 替换不可见字符 停止打印 强制进入终端模式	
关闭 清空日志 FE 07 00	5A 0A 00 C0 05 74 23 4A FC 73	
串口更多设置	友送	
刷新串口 串口: XDS110 Clas	ss Application/User UART (COM15) - 波特率: 921600 -	状态: 打开 已发送字节: 375 已接收字节: 641

Figure 8. 组网命令序列及其响应

• Step 5 成功完成组网后,勾选"停止打印",并进入"运行脚本"页面。选择打开时测试脚本"PSPDR_TEST.lua",测试代码全部可见。请根据网络WD节点数量和统计结果打印频度,修改 cmdBQvoltInterval 和 cmdTestCycle 参数。cmdBQvoltInterval 设置为 70,可以确保发送命令间隔小于 100ms(参见 Figure 10), cmdTestCycle 实际测试时可以设置为 10000。 en_print_GETSTATSE 和 en_print_GERXPACKETS 设置是否开启打印额外的统计信息,默认关闭。

快捷发送 🖸 运行脚本 🚷 小工具 关于				
PSPDR_TEST V 📓 🕨 🔁 😂 🗲				
PS PDR Test Script local cmdBQvoltInterval = 70 local cmdTestCycle = 100 local en_print_GERXPACKETS = 0 local en_print_GETSTATSE = 0	修改, 命令发送间隔, 单位ms 修改, 执行多少次采样命令后, 打印统计结果 修改, 是否打印GERXPACKETS信息, 1是, 0否 修改, 是否打印GETSTATSE信息, 1是, 0否			

Figure 9. 选择测试脚本

Figure 10. 逻辑分析仪测量通信间隔小于 100ms

 Step 6 点击绿色三角箭头,运行脚本,开始测试。当发送次数达到设定的 cmdTestCycle 后, 会自动打印统计结果,如下是一次发送了 10000 包数据后的统计信息:

NumTxSuccessPackets: 10707, NumTxFailedPackets: 0, TotalNumRxMissedPackets: 1

txActual: 12682, txfail: 1

System PDR: 99.99%, actual PDR 99.99%

node PDR:0(100.0%)-1(100.0%)-2(100.0%)-3(100.0%)-4(100.0%)-5(100.0%)-6(100.0%)-7(100.0%)-8(100.0%)-9(100.0%)-10(100.0%)-11(100.0%)-12(100.0%)-13(100.0%)-14(100.0%)

node PS:0(99.3%)-1(99.1%)-2(97.7%)-3(96.9%)-4(99.7%)-5(99.3%)-6(98.9%)-7(96.9%)-8(96.1%)-9(97.1%)-10(97.2%)-11(95.8%)-12(96.4%)-13(94.3%)-14(95.6%)

此打印信息显示:

成功发送了10707包,发送失败0次,总的接收失败是1次

txActual 为统计了重传的发送次数,为 12682, txfail 为 1

System PDR 采用(公式 3.2.1) 计算而来,而 actual PDR 则基于(公式 3.2.2)

node PDR 基于(公式 3.2.5), node PS 则基于(公式 3.2.4)

node PDR 和 PS 的打印格式如 2(98.3%) 表示节点 2, 括号内的是对应的计算结果。

请参考前面 3.2 节的描述。

另外,如果出现一次通讯中多次重传仍失败时,会打印如下信息:

23 fail: 23 01 2

Retry Failed: 0(4)-1(4)-2(4)-3(4)-4(4)-5(4)-6(4)-7(3)-8(3)-9(3)-10(4)-11(**0**)-12(4)-13(3)-14(3) 这条信息显示, 11 号节点在这次数据采集通讯中,数据一次都没有被 WM 接收到。

最后,如果在 Lua 脚本中将 en_print_GETSTATSE 和 en_print_GERXPACKETS 设置为 1,则会 打印出如下额外的信息,这些信息将有助于分析各个节点在各次重传次数、NumRxMissedPackets 及 37 个无线频道重传次数的信息,如下数据所示:

Retry Node n = [r1:1], [r2:0], [r3:0], [r4:0], [r5:0], 其中 r1 表示 1 次重传

Rx Node n = Success: 101, Missed:0Channel 0 = 0

Channel n = 1

4.3 LLCOM PDR PS 测试的总结

LLCOM 支持 Lua 语言扩展,不到 300 行代码即可完成对 WBMS 系统的 PDR 及 PS 的测试。

5 参考文献

- 1. CC2662R-Q1 SimpleLink[™]无线 BMS MCU 数据表 (Rev. C)
- 2. <u>BQ79616-Q1 数据手册</u>
- 3. SIMPLELINK-WBMS-SDK Document and User guide
- 4. BQ79616-Q1 软件设计参考
- 5. <u>The next generation Wireless BMS using the CC2662R-Q1</u>
- 6. More miles, less wires: Revolutionizing automotive battery management
- 7. Using wireless technologies to replace cables in car access and battery management

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司