Technical Article SN65DSI8x 系列视频信号转换芯片选型方法和初始化配置指南

W Texas Instruments

Xiaoxiang Liu

摘要

随着系统级芯片 (SoC) 和显示屏技术的不断进步,两者间视频信号的兼容性成为设计挑战。为解决这一问题,视频信号桥接芯片 (Bridge) 应运而生,它们作为中介,将 SoC 或图形处理单元 (GPU) 产生的视频信号转换为显示 屏所能接收的格式,确保信号的顺利传输与显示。 TI 作为世界领先的半导体器件公司,其产品 SN65DSI8x 系列 桥接芯片不仅解决了现代电子设备中信号转换的难题,更为设计者提供了构建高质量显示系统的有力工具。本文 总结了 SN65DSI8x 系列选型方法,软件使用指南,有助于工程师更高效地设计出更具竞争力的显示产品。

SN65DSI8x 的分类

SN65DSI8x 包含 SN65DSI83, SN65DSI84, SN65DSI85 三个不同的型号, SN65DSI83-Q1, SN65DSI84-Q1, SN65DSI85-Q1 为对应的车规版本。

三者主要特点如下:

SN65DSI83:

- 单通道 MIPI DSI 输入,单通道 LVDS 输出
- 输入 DSI 时钟: 40 500 MHz; LVDS 输出时钟范围: 25 154 MHz
- DSI 支持最多 4 个通道, 每个通道 1 Gbps

SN65DSI84:

- 单通道 MIPI DSI 输入,双通道 LVDS 输出
- 输入 DSI 时钟: 40 500 MHz; 每个 LVDS 输出时钟范围: 25 154 MHz
- DSI 支持最多 4 个通道,每个通道 1 Gbps

SN65DSI85:

- 双通道 MIPI DSI 输入,双通道 LVDS 输出
- 输入 DSI 时钟: 40 500 MHz; 每个 LVDS 输出时钟范围: 25 154 MHz
- 两个 DSI 通道,每个 DSI 通道支持最多 4 个通道,每个通道 1 Gbps;

三者主要区别如图 1 所示:

Video Configurations	DSI Input Option – Left/Right(LR), Odd/Even(OE)	Number of DSI Input Channels	Number of DSI Output Channels	SN65DSI83	SN65DSI84	SN65DSI85
1 Ch DSI to 1 Ch LVDS	N/A	1	1	x	x	x
1 Ch DSI to 2 Ch LVDS	N/A	1	2	N/A	x	x
2 Ch LR DSI to 1 Ch LVDS	LR	2	1	N/A	N/A	x
2 Ch OE DSI to 1 Ch LVDS	OE	2	1	N/A	N/A	x
2 Ch LR DSI to 2 Ch LVDS	LR	2	2	N/A	N/A	x
2 Ch OE DSI to 2 Ch LVDS	OE	2	2	N/A	N/A	x

图 1. SN65DSI83/84/85 区别

1

根据应用场景选择对应的 SN65DSI8x 型号

应用 1:SN65DSI83 单通道输入,单通道输出 Single-channel DSI to Single-channel LVDS

选型前,需要了解屏幕的具体参数信息,以应用1屏幕参数示例,其屏幕刷新率为60Hz所示的屏幕参数为例,先确认屏幕分辨率和 Blanking 等信息。

Parameter	Symbol	Min.	Тур.	Max	Unit	Note
Horizontal Display Area	thd	-	1024	-	DCLK	
DCLK frequency	fclk	40.8	51.2	67.2	MHz	
HSD Period	th	1114	1344	1400	DCLK	
HSD Blanking	Thb+thfp	90	320	376	DCLK	
Vertical Display Area	tvd		600		Тн	
VSD Period	th	610	635	800	Тн	
VSD Blanking	Thb+thfp	10	35	200	Тн	

图 2. 应用 1 屏幕参数示例,其屏幕刷新率为 60Hz

根据屏幕参数,能够计算出输出的 LVDS LCK。根据应用 1 屏幕参数示例,其屏幕刷新率为 60Hz 的参数可以计算 出 LVDS CLK = Htotal × Vtotal × 60 = 51.2MHz,如果没有 Total 值可以用公式(1),Blanking 取 20%,建议能 够拿到完整的 blanking 信息,这样计算才准确。而 SN65DSI83 的输出时钟频率范围是 25-154 MHz,所以满足 SN65DSI83 的输出要求。

 $LVDS \ CLK = HActive \times Vactive \times frame \ rate \times (1 + \% blanking)$

对应的输入要求呢, SN65DSI83-Q1 为单通道输出, bpp 取 24, 需要用到公式(2):

$$DSI \ CLK = \frac{2 \times LVDS \ CLK \ \times \ bpp}{2 \times \# \ of \ DSI \ DataLanes}$$

假设 LVDS CLK 频率为之前提供的 51.2 MHz,同时假设屏幕是 24 bpp(使用 4 个 LVDS 数据通道)并且 SN65DSI83 上的所有 4 个 DSI 数据通道都将被使用。将这些数据代入公式,我们得到 DSI CLK 频率为 153.6 MHz。SN65DSI83 支持的 DSI CLK 输入范围是 40-500 MHz,所以输入也满足 SN65DSI83 要求。

应用 2:SN65DSI84 单通道输入,双通道输出 Single-channel DSI to dual-channel LVDS

单通道输入双 LVDS 显示的应用场景时,选择 SN65DSI84 桥接芯片。基于按照应用 2 屏幕参数示例,其屏幕刷新 率为 60Hz 给的屏幕参数来计算,对于双 LVDS 显示器,这种情况下,显示器有两组 LVDS 时钟。如果需要的频 率是 45.3 MHz.

Item	Symbol	Min.	Тур.	Max.	Unit
Frame Rate		55	60	65	Hz
Vertical Total Time	Τv	730	738	764	line
Vertical Display Time	Tvd				
Vertical Blanking Time	Тив	10	18	44	line
Horizontal Total Time	Тн	1022	1024	1080	clock
Horizontal Display Time	Тно	960			
Horizontal Blanking Time	Тнв	62	64	120	clock
Clock Rate	1/ TClock	45.4	45.3	48.5	MHz

图 3. 应用 2 屏幕参数示例,其屏幕刷新率为 60Hz

在 DSI 到双通道 LVDS 的应用场景下, DSI CLK 频率的计算与单通道应用不同,因为当涉及到双通道 LVDS 时, DSI CLK 需要同时支持两个 LVDS CLK 的需求,DSI CLK 需要参考公式(3)。带入应用 2 屏幕参数示例,其屏幕 刷新率为 60Hz 的参数进行计算,得到 DSI 时钟频率大约是 271.8 MHz。SN65DSI84 支持的 DSI 时钟频率范围 是 40 MHz 到 500 MHz,所以 271.8 MHz 在这个范围内符合芯片要求。

$DSI \ CLK = \frac{2 \times LVDS \ CLK \ \times bpp}{2 \times \# \ of \ DSI \ DataLanes}$

应用 3: SN65DSI85 双通道输入,双通道输出 Dual-channel DSI to dual-channel LVDS

Item	Symbol	Min.	Тур.	Max.	Unit
Frame Rate		55	60	65	Hz
Vertical Total Time	Τv	730	738	764	line
Vertical Display Time	Tvd		720	-	
Vertical Blanking Time	Тив	10	18	44	line
Horizontal Total Time	Тн	1022	1024	1080	clock
Horizontal Display Time	Тно		960		
Horizontal Blanking Time	Тнв	62	64	120	clock
Clock Rate	1/ TClock	45.4	45.3	48.5	MHz

图 4. 应用 3 屏幕参数示例,其屏幕刷新率为 60Hz(同应用 2)

使用与单通道 DSI 到双通道 LVDS 部分相同的情况相同,都涉及到双 LVDS 显示屏,但是输入部分变成双 DSI,这时就要选择 SN65DSI85,且 SN65DSI85 的两个时钟每一个都能支持 25 - 154 MHz 范围内的频率。由于现在有两个 LVDS 时钟,DSI CLK 频率的计算公式将与单通道 DSI 转双通道 LVDS 部分的公式相同,参考公式(4),计算得出 DSI CLK 为 135.9 MHz。

$DSI \ CLK = \frac{2 \times LVDS \ CLK \ \times \ bpp}{2 \times \# \ of \ DSI \ DataLanes}$

通过 DSI-TUNER 生产对应配置代码

下面以 SN65DSI83 为例说明,如何使用 DSI Tuner 软件工具来完成 SN65DSI8x 的软件配置,并完成初始化代码 的导出。其中 DSI Tuner 生成的代码能够直接用于视频信息和相关寄存器的配置。SN65DSI83 初始化流程 是其 初始化流程,需要对应规格书中正确的推荐顺序来设置,在 int seq5 的时候需要对寄存器 Control and Status Registers (CSR) 进行配置,此步骤可以直接使用 DSI Tuner 生成的代码。

INITIALIZATION SEQUENCE NUMBER	INITIALIZATION SEQUENCE DESCRIPTION			
Init seq 1	Power on			
Init seq 2	After power is applied and stable, the DSI CLK lanes MUST be in HS state and the DSI data lanes MUST be driven to LP11 state			
Init seq 3	Set EN pin to Low			
Wait 10 ms ⁽¹⁾				
Init seq 4	Tie EN pin to High			
Wait 10 ms ⁽¹⁾				
Init seq 5	Initialize all CSR registers to their appropriate values based on the implementation (The SN65DSI8x is not functional until the CSR registers are initialized)			
Init seq 6	Set the PLL_EN bit (CSR 0x0D.0)			
Wait 10 ms ⁽¹⁾				
Init seq 7	Set the SOFT_RESET bit (CSR 0x09.0)			
Wait 10 ms ⁽¹⁾				
Init seq 8	Change DSI data lanes to HS state and start DSI video stream			
Wait 5 ms ⁽¹⁾				
Init seq 9	Read back all resisters and confirm they were correctly written			
Init seq 10	Write 0xFF to CSR 0xE5 to clear the error registers			
Wait 1 ms ⁽¹⁾				
Init seq 11	Read CSR 0xE5. If CSR 0xE5I= 0x00, then go back to step #2 and re-initialize			

图 5. SN65DSI83 初始化流程

DSI Tuner 使用流程详解

1. 打开软件后,选择对应的器件,并点击 OK,如图 2 所示。

Device	×	Device	×
DSI	Please select a target device:	DSI	Please select a target device:
	SN65DSI83		SN65DSI83 V
			SN65DSI83
OK Cancel		SN65DSI84	
			SN65DSI85
			SN65DSI86

图 6. 设备选择

2. 输入屏幕信息,如图3所示。

Pariel Into			_	
	Channel A			
Panel Vendor	Texas		TEXAS I	NSTRUMENTS
Panel Model	Cowboy Panel			
Resolution	800 pixels x 1280 lines			
LVDS Mode	Single 👻			
Test Pattern				
Divola		Lines		
Pixels	LVDS Channel A LVDS Channel B	Lines	LVDS Channel A	
	16		1	
	32	LVDS_VPW		
	16	LVDS_VEP	5	
LVDS_HActive	800	LVDS_VActive	1280	
Htotal	864 0	Vtotal	1288 0	
Additional Par FORMAT Data Enable Pa Horizontal Syn Vertical Sync P Bits Per Pixel	channel A Format 2 colarity Positive colarity Negative Polarity Negative 18bpp			

图 7. 屏幕信息输入

Panel Vendor& Panel Model: 输入屏幕供应商和屏幕型号。

Resolution:水平像素数×垂直线数。 当输入分辨率后,LVDS_HActive (水平有效像素数)和 LVDS_VActive (垂直有效行数)会自动更新。

LVDS Mode:选择 LVDS 输出为单通道或双通道。对于 SN65DSI83, 仅支持"单通道" LVDS 模式。

Test Pattern:勾选这里会启用测试图案生成功能,仅用于调试。如果不需要发送测试图案,不需要勾选。

4

3. Pixels and Lines $输\lambda$

输入对应的 LVDS 参数,需要根据屏幕的实际情况来填写。这个信息在屏幕的规格书中能够找到。

Pixels	LVDS Channel A	LVDS Channel B	Lines	LVDS Channel A	
LVDS_HPW	16		LVDS_VPW	1	
LVDS_HBP	32		LVDS_VBP	2	
LVDS_HFP	16		LVDS_VFP	5	
LVDS_HActive	800		LVDS_VActive	1280	
Htotal	864	0	Vtotal	1288	0

图 8. LVDS 信息输入

4. Additional Panel Info

FORMAT(格式):在 Format 1 和 Format 2 之间选择。如果选择了 RGB666 数据作为 DSI 视频模式,则必 须选择 Format 2,如图 5。如果从 DSI 接收到的是 RGB888 24 bpp 数据,并且选择了 18 bpp 的屏幕,同时 CH*_24BPP_MODE 为 0(默认值),则必须选择 Format 1。关于 Format 的详细描述,见参考资料中的 SN65DSI83-Q1 的规格书。

图 9. 其他信息输入

DE = Data Enable

DE = Data Enable

图 11. LVDS Output Data (Format1); Single-Link 24 bpp

Data Enable Polarity (数据使能极性)、Horizontal Sync Polarity (水平同步极性)、Vertical Sync Polarity (垂直同步极性)和 Bits per Pixel (每像素位数)需要根据屏幕要求来选择。

1-5 输入完成后选择 5. DSI 参数输入

所有与 DSI 相关的输入信息都在这个窗口中输入,如 DSI Input 窗口 所示。

Panel Resolution DSI Ch Mode Left right or even odd LR CROP Enable	800x1280 Single v No v	LP Al Burst Mode Bu Sync Mode Ev	I Channel A DSI I vite All Inst v Bui Vent v Evi	Channel B		
Vixels DSI_HPW 16 DSI_HBP 32 DSI_HEP 16 DSI_HActive 800 DSI_Htotal 864	nel A Inputs DSI C	nannel B Inputs	Lines DSI_VPW DSI_VBP DSI_VFP DSI_VActive DSI_Vtotal	DSI Channel A Inputs D 1	SI Channel B Inputs	
Additional Channel inf DSI DDR CLK rate(MHz) DSI # of lanes 4 DSI Video Mode RG LEFT_CROP	o Channel A input 3.2 B888 RIGHT_CR	DSI Channe	ded v	CLK LVDS CLK(MHz) - nomina LVDS CLK source Ref CLK(MHz) Multiplier(1-4) DSI Ch A CLK Divisor(1-25) LVDS CLK(MHz) - Actual	66.4 DSI CLK ↓ 1 ↓ 199.2 1 ↓ 199.2	

6. DSI Info 输入

- 根据屏幕要求输入窗口中的 LVDS 信息。
- 选择 DSI 通道模式:单通道、双通道或两个单通道。对于 SN65DSI83 和 SN65DSI84,只有单通道模式是 有效的。
- 选择左右 (LR) 或偶奇 (OE): 注意如果 DSI 通道模式不是双通道,将会无法选择。
- 选择是否启用 LR CROP:是或否。通常需要禁用 LR CROP(选择否)。
- 7. Pixels & Lines 输入

如 Pixels & Lines 输入 所示。

Pixels	DSI Channel A Inputs	DSI Channel B Innuts	Lines	DSI Channel & Innuts	DSI Channel B Inputs
DSI_HPW	16		DSI_VPW	1	
DSI_HBP	32		DSI_VBP	2	
DSI_HFP	16		DSI_VFP	5	
DSI_HActive	800		DSI_VActive	1280	
DSI_Htotal	864		DSI_Vtotal	1288	0

图 13. Pixels & Lines 输入

8. Additional Channel Info

Additional Channel info		CLK		
DSI Channel A input	DSI Channel B Input	LVDS CLK(MHz) - nominal		
CLK rate(MHz)		LVDS CLK source	DSI CLK	\sim
DSI # of lanes 1 🗸	1 ~	Ref CLK(MHz)		
DSI Video Mode RGB666 packed \checkmark	RGB666 packed \sim	Multiplier (1-4)	1	
LEFT_CROP RIGHT_CROP		DSI Ch A CLK		
		Divisor(1-25)	1	~
		LVDS CLK(MHz) – Actual	123.0 🌔	

图 14. Additional Channel Info 输入

- DSI DDR CLK rate (CLK) 这栏输入 DSI Channel A 的速率,其速率默认等于 CLK 栏中的 DSI CH A CLK 的值(此时 LVDS CLK 输出参考 DSI CLK)。如果 CLK 中选择 Ref CLK(LVDS CLK 参考外部时 钟),则 DSI DDR CLK rate (CLK) 这栏需要手动写对应的 DSI CLOCK 值。
- DSI #of Lanes 选择对应的 DSI 通道数量:1~4。
- DSI Video Mode 选择 DSI 视频模式:RGB666、RGB666 或 RGB888。
- 时钟配置

此栏需输入时钟配置信息。DSI_TUNNR 软件根据非突发模式的选择计算 LVDS 时钟速率(MHz)及建议的 最低 DSI 时钟速率。SN65DSI8x 可以配置为使用外部参考时钟或 DSI Ch A CLK 作为 LVDS 时钟源。如时钟 配置 所示。

7

CLK	
LVDS CLK(MHz) - nominal	66.4
LVDS CLK source	DSI CLK 🚽
Ref CLK(MHz)	
Multiplier (1-4)	1 -
Suggested DSI CLK	199.2000
DSI Ch A CLK	199.2
Divisor(1-25)	3 🗸
LVDS CLK rate(MHz)	66.4 🊹

图 15. 时钟配置

- 在 "LVDS CLK (MHz)-nominal" 处输入屏幕的 LVDS PCLK。
- 选择 LVDS 时钟源: DSI 时钟或参考时钟。
- 如果选择了参考时钟,需在"Ref CLK(MHz)"栏中输入参考时钟频率,然后选择倍数(1-4):参考时 钟(MHz)×倍数=LVDS CLK。如果选择了DSI时钟,需在"DSI Ch A CLK"栏中输入DSI 通道 A 的 时钟频率,然后选择分频(1-25),DSI DDR CLK rate (MHz)会根据前面输入的值自动计算出结果。 完

成所有信息输入后,点击 440 确认。

10. 输出 Outputs

所有参数都完成输入后,点击计算器图标,将会跳转到输出窗口。输出窗口将输出行时间(从 SYNC 到 SYNC)要求、最小 DSI 通道时钟要求和基于实际 DSI 通道时钟和实际速率的突发时间。这些结果对确保显示器正确配置和时序同步至关重要,如输出窗口所示。

图 16. 输出窗口

• Line Time (SYNC to SYNC) Requirement (us) 行时间

Line time 代表了 DSI 输入端从一个 HSYNC (或 VSYNC)到下一个 HSYNC 行的时间要求。SoC 或者 GPU 等 DSI 信号源必须确保行时间符合本窗口计算出的行时间要求。

• MIN DSI Ch* CLK REQUIREMENT (MHz) 最小 DSI 通道时钟

最小 DSI 通道时钟需是指在行时间内,采样 DSI 数据所必需的最低 DSI 时钟频率。此值基于 DSI 速率和 行时间计算得出。这个值等同于非突发操作模式下应使用的 DSI 时钟速率。

• Data Burst Time 数据突发时间

数据突发速率是根据实际的 DSI DDR CLK 速率和 DSI 数据量计算得出的。如果突发时间小于行时间,则剩余的行时间周期会用空白数据包填充。如果突发时间大于行时间,则需要增加 DSI DDR CLK 速率以满足行时间要求。在非突发操作模式下,数据突发时间通常等于行时间;而在突发模式操作中,它则少于行时间。这种模式下发送 RGB 数据包的时间被压缩,以留出更多的时间用来传送其他的数据。

11. 完成配置后输出结果

结果计算结束后,在菜单栏选择 🍄 并选择 Generate CSR List 能够看到完整的 Control and Status Registers 列表。

图 17. 工具菜单

nuor anu sta	tus negis	icers		and the second division of the		
ontrol and	Statu	s Registers				
Registers						
ADDRESS	BIT(S)	CSR Names	Access	Bit Field Value	CSR ADDR VALUE	
0x00	7:0	Reserved	RO	00110101	0x33	
0x01	7:0	Reserved	RO	00111000	0x38	
0x02	7:0	Reserved	RO	01001001	0x49	
0x03	7:0	Reserved	RO	01010011	0x53	
0x04	7:0	Reserved	RO	01000100	0x44	
0x05	7:0	Reserved	RO	00000010	0x20	
0x06	7:0	Reserved	RO	00000010	0x20	
0x07	7:0	Reserved	RO	00000010	0x20	
0x08	7:0	Reserved	RO	0000001	0x01	
ADDRESS 0x09	BIT(S)	CSR Names *SOFT_RESET	Access	Bit Field Value	Ox00	
0x09	0	*SOFT_RESET	WO	0	0x00	
	7	PLL_LOCK	RO	0		
0x0A	3:1	LVDS_CLK_RANGE	RW	010	0x05	
	0	HS_CLK_SRC	RW	1		
0x0B	7:3	DSI_CLK_DIVIDER	RW	00010	0x10	
	1:0	REFCLK_MULTIPLIER	RW	00		
0x0D	0	*PLL_EN	RW	0	0x00	
I Registers						
ADDRESS	BIT(S)	CSR Names	Access	Bit Field Value	CSR ADDR Value	
		LEFT_RIGHT_PIXELS	RW	0		
0x10	4:3	CHA DST LANES	RW	01	0x26	
			KW.	00		
	2:1	CHB_DSI_LANES	RW	11		
	0	SOT FRR TOL DIS	RW	0		

图 18. 输出窗口

为了方便用户配置,选择对应的 按键可以保持对应的寄存器配置文本。 注意:PLL_EN 位和 SOFT_RESET 位没配置,需要用户按照数据手册中推荐的顺序来设置。

//								
// Filename : CSR.txt								
11								
11	(C) Copyright 2013 by Texas Instruments Incorporated.							
11	All rights reserved.							
11								
//								
0x09	0x00							
0x0A	0x05							
0x0B	0x10							
0x0D	0x00							
0x10	0×26							
0x11	0,000							
0x12	0.00							
0x13	0.00							
0x18	000							
0x19	0200							
0x1A	0200							
0x10	0x20							
0x21	0x03							
0x22	0x00							
0x23	0×00							
0x24	0x00							
0x25	0x00							
0x26	0x00							
0x27	0x00							
0x28	0x21							
0x29	0x00							
0x2A	0x00							
0x2B	0x00							
0x2C	0x10							
0x2D	0x00							
0x2E	0x00							
0x2F	0x00							
0x30	0x01							
0x31	0x00							
0x32	0x00							
0x33	0x00							
0x34	0x20							
0x35	0.00							
0x36	0.000							
0x37	0×00							
0x30	0×00							
0x35	0×00							
0x3B	0x00							
0x30	0×00							
0x3D	0x00							
0x3E	0x00							

图 19. 输出的寄存器文本

总结

本文介绍了 TI 视频转换芯片 SN65DSI8x 系列选型方法和提供了 DSI Tuner 视频配置工具的相关方法,有助于工程师更高效地设计出更具竞争力的显示产品。

参考资料

SN65DSI83-Q1 汽车类单通道 MIPI® DSI 转单链路 LVDS 桥接器 数据表 (Rev. A)

SN65DSI8x Video Configuration Guide and Configuration Tool Software Users Manual (Rev. B)

DSI TUNNER 下载链接: https://e2e.ti.com/support/interface-group/interface/f/interface-forum/825302/sn65dsi83-dsi-tuner-tool-needed

https://e2e.ti.com/support/interface-group/interface/f/interface-forum/945185/faq-sn65dsi84-sn65dsi83-sn65dsi84-and-sn65dsi85-resolution-guide

商标

所有商标均为其各自所有者的财产。

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司