User's Guide BQ25792EVM、BQ25798EVM 和 BQ25798BKUPEVM (BMS034) 评估模块

TEXAS INSTRUMENTS

摘要

本用户指南介绍了 BQ25792 和 BQ25798 评估模块 (EVM) 的特性、运行和功能,还会介绍运行 EVM 所需的设备、测试设置和软件。本文档中还提供了完整的原理图、印刷电路板 (PCB) 布局和物料清单 (BOM)。

在本用户指南中,缩写词和术语 *EVM、BQ2579XEVM、BMS034*和*评估模块*与 BQ25792EVM、 BQ25798BKUPEVM和 BQ25798EVM 具有相同的含义。

WARNING

表面高温!接触可能会导致烫伤。请勿触摸!

电路板加电后,某些元件可能会达到 55°C 以上的高温。在运行过程中或运行刚结束时,用户不得触摸电路板,因为可能存在高温。

1 引言	3
1.1 EVM 特性	
1.2 1/0 说明	
1.3 建议运行条件	6
2 测试设置和结果	6
21设备	6
2.2 设备设置	6
2.3 软件设置	7
2.4 测试步骤	8
3 PCB 布局指南	13
4 电路板布局、原理图和物料清单	14
4.1 BMS034 电路板布局	
4.2 BQ2579XEVM (BMS034) 原理图	
4.3 物料清单	21
5 修订历史记录	

内容

插图清单

图 2-1. 测试电池充电的设备测试设置	7
图 2-2. 单位寄存器部分	8
图 2-3. 多位寄存器部分	9
图 2-4. 16 位寄存器文件	9
图 2-5. 图标指南	9
图 2-6. 芯片配置	
图 2-7. 充电器配置	
图 2-8. 单位寄存器部分	
图 2-9. 多位寄存器部分	

1

图 2-10. OTG 配置部分	12
图 2-11. 芯片配置	12
图 4-1. BMS034A/B 项层	14
图 4-2. BMS034A/B 信号层 1	15
图 4-3. BMS034A/B 信号层 2	16
图 4-4. BMS034A/B 底层	. 17
图 4-5. BQ25792EVM (BMS034A/B-001) 和 BQ25798EVM (BMS034A/B-003) 原理图第 1 页	18
图 4-6. BQ25792EVM (BMS034A/B-001)、BQ25798BKUPEVM (BMS034A/B-005) 和 BQ25798EVM (BMS034A/B-003)	
原理图第2页	. 19
图 4-7. BQ25798BKUPEVM (BMS034A/B-002) 原理图第 1 页	20

表格清单

表 1	-1.	器件数据表	3
表 1	-2.	EVM 连接	4
表 1	-3.	EVM 分流器和开关装置	.4
表 1	-4	建议运行条件	6
表 4	-1	2002579XFVM 物料清单	21
~~~ '	•••		- ·



## 1 引言

BQ25792 和 BQ25798 (BQ25792/8) 是采用 QFN 封装的集成式开关模式降压/升压电池充电管理器件,用于为 1-4 芯串联锂离子和锂聚合物电池充电。该充电器采用窄 VDC 架构 (NVDC),即使电池已完全放电,也能将系统 调节至最小值。此外,BQ25792/8 支持通过 D+和 D-进行输入源检测,兼容 USB2.0、USB3.0 电力输送、非标 准适配器和高压适配器。BQ25792/8 具有双输入源选择功能,支持 USB OTG,并且集成了一个 16 位多通道模数 转换器 (ADC),是一个完整的充电解决方案。

### 1.1 EVM 特性

BQ25792/8EVM 是一款用于评估采用 QFN 封装的 BQ25792/8 充电器 IC 的完整模块。此 EVM 的主要特性包括:

- 同步开关模式降压/升压充电器,适用于 1-4 芯串联电池配置,充电电流为 5A,分辨率为 10mA
- 支持 3.6V 至 24V 宽范围输入源,具备 USB 自动检测、USB PD 和无线输入功能
- 双输入源选择器可驱动双向阻断 NFET
- 使用电池为 USB 端口供电 (USB OTG), OTG 输出电压为 2.8V 至 22V, 分辨率为 10mV
- 关断模式下低电池静态电流 < 1µA
- BQ25798 具有 MPPT 和备用模式特性。

表 1-1 中所列的器件数据表提供了详细特性和操作。

#### 表 1-1. 器件数据表

器件	数据表
BQ25792	SLUSDG1
BQ25798	SLUSDV2



### 1.2 I/O 说明

表 1-2 列出了 BQ2579XEVM 电路板连接和端口。

#### 表 1-2. EVM 连接

:	连接器,端口	说明			
J1	VIN1	优先级输入适配器或电源的正电源轨			
	GND	接地			
J2	VIN2	辅助输入适配器或电源的正电源轨			
	GND	接地			
J3	系统	充电器系统输出电压的正电源轨,通常连接到系统负载			
	GND	接地			
J4	VPMID	反向模式 (OTG) 充电器输出电压的正电源轨。此输出在正向模式中也与 VBUS 共享电源轨			
	GND	接地			
J5	电池	充电器电池输入端的正电源轨			
	SNS_BATP 输入端连接到电池正极端子,实现电池电压远程测量				
	GND	接地			
J6	USB 端口	USB Micro B 端口用于输入源类型检测和握手。已连接至 VIN1 或 VIN2			
J7	外部热敏电阻	输入端连接至外部电池温度感测热敏电阻			
	GND	接地			
J8	通信端口	I ² C 通信端口与 EV2300/2400 接口板搭配使用			
J9	通信端口	I ² C 通信端口与 USB2ANY 接口适配器搭配使用 (供日后使用)			

表 1-3 列出了 EVM 上提供的分流器装置及其相应的说明。

#### 表 1-3. EVM 分流器和开关装置

分流器	说明	BQ25792/6/8 设置
JP1	连接 ACDRV1 引脚以控制 ACFET1-RBFET1。使用输入保护 MOSFET 时,将此分流器连接至_acdrv1 net 网(标有 VAC1 FET)。未使用或绕过输入保护 MOSFET 时,将此分流器连接至GND	ACDRV1 至 VAC1 FET ( 短接引 脚 1 至 2 )
JP2	连接 ACDRV2 引脚以控制 ACFET2-RBFET2。使用输入保护 MOSFET 时,将此分流器连接至 _acdrv2 net 网(标有 VAC2 FET)。未使用或绕过输入保护 MOSFET 时,将此分流器连接至 GND	ACDRV2 至 VAC2 FET ( 短接引 脚 1 至 2 )
JP3	VIN1/VAC1 至 VBUS 旁路连接。当不需要输入保护 MOSFET 特性时,连接此分流器。这会将 VIN1 输入源连接至 VBUS。	未安装
JP4	VIN2/VAC2 至 VBUS 旁路连接。当不需要输入保护 MOSFET 特性时,连接此分流器。这会将 VIN2 输入源连接至 VBUS。	未安装
JP5	BAT 至电池旁路连接。当不需要运输和关断模式特性且 JP8 引脚 1 和 2 短接时,连接此分流器。	未安装
JP6	连接 USB Micro B 输入 D- 和充电器 D- 引脚。当需要输入源检测和握手特性时,连接此分流器。	已安装
JP7	连接 USB 端口 J6 正电源轨和充电器 VBUS 选项。通过分流器选择 VIN1/VAC1 或 VIN2/ VAC2,从而连接该 USB 端口。	USB_VIN 至 VAC1
JP8	连接 SDRV 引脚以控制 SFET。当不需要运输和关断模式特性时,短接 JP8 的引脚 1 至 2 并在 JP5 安装分流器。当需要运输和关断模式特性时,短接 JP8 的引脚 2 至 3 并从 JP5 移除分流器。	短接引脚2至3
JP9	连接 BATP 引脚。BATP 始终连接至 J5 引脚 2,实现远程电池感测。如果未使用非板载远程感测,短接引脚 2 至 J5 引脚 1 (BATTERY),可在 Q5 运输模式 FET 之后的 J5 连接器上实现充电器恒压感测;短接引脚 2 至引脚 3 (BAT 引脚),可在 Q5 运输模式 FET 之前 IC 附近的 PCB 板上实现充电器恒压感测。不要让 BATP 引脚悬空。	短接引脚 2 至 J5 引脚 1 (BATTERY)
JP10	短接充电器 D+ 和 D- 引脚。连接此分流器仿真 DCP 类型适配器,实现输入源检测和握手特性。要使用充电器的 D+/D- 检测特性时可移除。	已安装
JP11	连接 USB Micro B 输入 D+ 与充电器 D+ 引脚。当需要输入源检测和握手特性时,连接此分流器。	已安装

English Document: SLUUCB5 Copyright © 2022 Texas Instruments Incorporated

表	1-3.	EVM	分流器和开关装置	(continued)
---	------	-----	----------	-------------

分流器	说明	BQ25792/6/8 设置
JP12	连接 REGN 与 TS 电阻分压器网络。此分流器必须保持连接。	已安装
JP13	设置 ILIM_HIZ 引脚为 500mA。连接此分流器可将外部输入电流限值设置为 500mA	未安装
JP14	设置 ILIM_HIZ 引脚为 1.5A。安装此分流器可将外部输入电流限值设置为 1.5A。	已安装
JP15	设置热敏电阻 COOL 的温度。连接跳线以对充电器进入 TCOOL (T1-T2) 温度区域进行仿真。	未安装
JP16	设置热敏电阻 COLD 的温度。连接跳线以对充电器进入 TCOLD ( <t1) td="" 温度区域进行仿真。<=""><td>未安装</td></t1)>	未安装
JP17	连接 CE 引脚到接地,以启用充电。当移除时, CE 引脚会上拉,以便禁用充电	已安装
JP18	设置热敏电阻 NORMAL 的温度。连接跳线以对充电器进入 TNORMAL (T2-T3) 温度区域进行仿 真。测试其他热敏电阻温度设置(JP17 - TCOOL, JP18 - TCOLD, JP21 - TWARM, JP22 - THOT)时保持连接。使用外部连接的热敏电阻时移除此跳线。	已安装
JP19	设置热敏电阻 WARM 的温度。连接跳线以对充电器进入 TWARM (T3-T5) 温度区域进行仿真。	未安装
JP20	设置热敏电阻 HOT 的温度。连接跳线以对充电器进入 THOT (>T5) 温度区域进行仿真。	未安装
JP21	设置 ILIM_HIZ 引脚的 HIZ 模式。连接可进入充电器高阻抗 (HIZ) 模式,从而禁用转换器	未安装
JP22	设置 PROG 引脚为 1S、1.5MHz。连接可将充电器默认设置配置为 1 芯充电调节电压、2A 充 电电流和 1.5MHz 开关频率	未安装
JP23	设置 PROG 引脚为 1S、750kHz。连接可将充电器默认设置配置为 1 芯充电调节电压、2A 充 电电流和 750kHz 开关频率	未安装
JP24	设置 PROG 引脚为 2S、1.5MHz。连接可将充电器默认设置配置为 2 芯串联充电调节电压、2A 充电电流和 1.5MHz 开关频率	已安装
JP25	设置 PROG 引脚为 2S、750kHz。连接可将充电器默认设置配置为 2 芯串联充电调节电压、2A 充电电流和 750kHz 开关频率	未安装
JP26	设置 PROG 引脚为 3S、1.5MHz。连接可将充电器默认设置配置为 3 芯串联充电调节电压、1A 充电电流和 1.5MHz 开关频率	未安装
JP27	设置 PROG 引脚为 3S、750kHz。连接可将充电器默认设置配置为 3 芯串联充电调节电压、1A 充电电流和 750kHz 开关频率	未安装
JP28	设置 PROG 引脚为 4S、1.5MHz。连接可将充电器默认设置配置为 4 芯串联充电调节电压、1A 充电电流和 1.5MHz 开关频率	未安装
JP29	设置 PROG 引脚为 4S、750kHz。连接可将充电器默认设置配置为 4 芯串联充电调节电压、1A 充电电流和 750kHz 开关频率	未安装
JP30	实现板载 PULLUP 电源轨 LDO 的输入连接。连接至板载 3.3V 上拉电源轨。LDO 输入将通过 二极管或在 VBUS 和 BAT 之间连接	已安装
JP31	EV2400 内部上拉连接至 PULLUP。连接可使用 EV2400 内部 3.3V 上拉,从而驱动 EVM PULLUP 电源轨。	未安装
JP32	连接 STAT 引脚和 LED 指示灯,指示当前充电器状态	已安装
JP33	USB2ANY 内部上拉连接至 PULLUP。连接可使用 USB2ANY 内部 3.3V 上拉,从而驱动 EVM PULLUP 电源轨	未安装
S1	QON 控制开关。按下以退出运输模式或重置系统功率	默认关闭

### 1.3 建议运行条件

### 表 1-4. 建议运行条件

	说明	最小值	典型值	最大值	单位
J1 或 J2 的 V(VINx)	外部阻断 FET 的电源电压允许为 VBUS 引脚供电	3.6		24	V
I(INx) 流入 J1 或 J2	受充电器输入电流限制功能限制的电源电流 (IINDPM)	0.01		3.3	А
J5 的 V(BATTERY) 电压	预充电支持的电池电压	2.2	3.8(1S)、7.6(2S)、 11.4(3S)、15.2V(4S)	18.8	V
流出/流入 J5 的 I(BATTERY)	电池充电电流	0.01	2 (1S, 2S)、1(3S, 4S)	5	А
J3 的 V(SYS)	系统电压调节范围	3.2		19	V
从 J3 流出的 I(SYS)	系统负载电流	0		5	А

备注

如果热插拔电压高于 15 伏的适配器,建议安装 RSNUB1、CSNUB1、RSNUB2 和 CSBUB2 (如原理 图所示)。

备注 如果热插拔 4 节电池并且安装了 shipFET,建议安装组件 CSNUB3(如原理图所示)

**备注** 如果热插拔 4 节电池并且未安装 shipFET,建议安装组件 DVTS(如原理图所示)。

### 2 测试设置和结果

### 2.1 设备

本节列出了在 BQ25790EVM 上执行测试所需的设备。

- 1. VBUS 引脚的电源:电源 #1 (PS1):需要一个能够提供高达 24V 电压、3A 电流的电源。
- 2. 用于 BAT 引脚的电池仿真器:负载 #1(四象限电源):一个"Kepco"负载,BOP,20-5M,0V至±20V 直流电压,0A至±6A(或更高)电流,或Keithley 2450 3A数字源表。当同时使用两者时,建议在 EVM 电 池和接地端子上进行以下连接:1000μF或更高,低 ESR,25V额定值或更高。 替代选项:可使用一个 0-20V/0-5A、> 60W 的直流电子负载,设置为恒压负载模式,与第二个电源并联。第 二个电源的电压设置为略低于电子负载的恒压设置。在启用时,充电器的充电电流取代第二个电源提供的电 流。
- 3. SYS 引脚的系统负载仿真器:负载 #2(电子负载设置为恒阻或电阻负载):10 Q、5W(或更高)。
- 4. 仪表:(6个) "Fluke 75"万用表(性能相当或更高)。 替代选项:(4个)性能相当的电压表和(2个)性能相当的电流表。电流表必须能够测量至少达 5A 的电流。如果在 PS#1、负载 #1 或负载 #2 之间串联使用,则电流表应设置为手动而不是自动量程。电流表会显著 增大串联电阻,从而影响充电器的性能。
- 5. **计算机:**至少有一个 USB 端口和一条 USB 电缆的计算机。使用 GUI Composer 应用程序时需要有效的互联 网连接。
- 6. PC 通信接口: EV2300/2400 USB PC 接口板(使用 Battery Management Studio 时)或 USB2ANY 接口适 配器(使用 GUI Composer 应用程序时)。

### 2.2 设备设置

根据以下列表来设置 EVM 测试设备。请参阅图 2-1, 了解 EVM 的测试设置连接:

- 1. 请查看表 1-2 中的 EVM 连接。
- 2. 将 PS#1 设置为 5.0V、3A 电流限制,然后关闭电源。将 PS#1 连接至 J1 ( VIN1 和 PGND )。
- 3. 在 TP23 (VBUS) 和 TP44 (PGND) 之间连接电压表,以测量输入电压(可从充电器的 VBUS 引脚上测得)。
- 4. 在 TP1 和 TP2 (I_VAC1_SENSE) 之间连接电压表,以测量通过 VIN1 路径进入 VBUS 引脚的输入电流。您 也可以在 PS1 和 J1 之间连接电流表。

- 5. 将负载 #1 设置为恒压模式,能够驱动至少 3A 的灌电流(例如,合规),并输出至 5.0V,然后禁用负载。将 负载 #1 连接至 J5(电池和 PGND)。
- 6. 在 TP29 (BAT) 和 TP46 (PGND) 之间连接电压表,以测量电池电压(可从充电器的 BAT 引脚上测得)。
- 7. 在 TP19 和 TP20 (I_BAT_SENSE) 之间连接电压表,以测量流出 BAT 引脚的电池充电电流和进入 BAT 引脚 的放电电流。您也可以在负载 #1 和 J5 之间连接电流表。
- 8. 在 TP28 (SYS) 和 TP45 (PGND) 之间连接电压表,以测量系统电压(可从充电器的 SYS 引脚上测得)。
- 9. 按表 1-3 所示安装分流器。



图 2-1. 测试电池充电的设备测试设置

### 2.3 软件设置

充电器由使用 I²C 寄存器的状态机控制,状态机基于 I²C 寄存器做出决策。软件仅帮助读取和写入到这些寄存器。

### 2.3.1 使用 EV2400 的 BQSTUDIO

下载 BQSTUDIOTEST 的最新版本。双击 Battery Management Studio 安装文件并执行安装步骤。该软件支持 Microsoft[®] Windows[®] XP、7 和 10 操作系统。启动 BQSTUDIO 并选择 *Charger*。如果"Charger"中未显示 BQSTUDIO 的 EVM 配置文件,请关闭 BQSTUDIO 并从 www.ti.com 的 EVM 产品文件夹下载 .BQZ 文件,或者 通过 e2e.ti.com 申请该文件。该文件必须保存到 C:\XXX\BatteryManagementStudio\config 中,其中 XXX 是用户 选择安装 BQSTUDIO 的目录。

### 2.3.2 适用于 USB2ANY 的 TI Charger GUI

导航到 TI-CHARGER-GUI 工具文件夹。进入工具页面后,点击"在云端评估"按钮。浏览器会自动重定向至 TI Charger GUI 登录页。在登录页中,找到要评估的器件,然后点击"选择器件"。请注意,EVM 必须已通电,且 USB2ANY 必须已连接至 EVM 和 PC,才能建立连接。还需要通过 USB2ANY Explorer 软件,将 USB2ANY 更新 至最新版本。



### 2.4 测试步骤

#### 2.4.1 初始设置

执行以下步骤来启用 EVM 测试设置。

- 1. 确保已经执行了节 2.2 中的步骤。
- 2. 移除 JP17 上的分流器以禁用充电。
- 3. 确保 PROG 引脚跳线 JP22-JP29 设置为所需的频率和电池节数。
- 4. 如果要模拟热敏电阻,请确保 TS 跳线已安装到正确位置。
- 5. 如果使用 BQStudio,请启动 BQSTUDIO 软件,选择"Charger",然后选择"BQ25792EVM"(如果尚未 选择)。
- 6. 如果使用 TI Charger GUI,请转到 TI Charger GUI 网站,然后从列表中选择充电器。
- 7. 开启 PS1 和负载 #1:
  - **测量 ➡** V_{SYS-PGND} (TP26 和 TP48) = 8.55V ±0.2V
- 8. 验证 PG LED (D13) 是否开启。

#### 备注

如果 PG LED 未点亮,请确认连接了有效的 PS1 并放置了正确的分流器配置。

#### 备注

如果器件不通信且未进行确认,请确认已经按照节 2.2 和此部分中的步骤操作。验证 TP42 (PULLUP)和 TP49 (AGND)之间的电压是否大约为 3.3V。

### 2.4.2 通信验证

如果使用 Battery Management Studio,请按照以下步骤进行通信验证:

- 1. 在 Battery Management Studio 中,选择页面顶部的"READ REGISTER"。此时页面顶部应出现"Device ACK OK"。
- 选择屏幕右上角的 Field View。请注意,这里有两个选项卡,一个用于 8 位寄存器,一个用于 16 位寄存器。
   8 位选项卡中包括多个部分,分别用于芯片、充电器、OTG 单位寄存器和多位寄存器。16 位选项卡中有充电器和 OTG 多位寄存器部分,用于设置电压和电流。此外,ADC 寄存器在 16 位选项卡上。
- 3. 如果默认情况下尚未设置充电模式充电器寄存器,请按以下方式准备该设置:
  - 在 8-bit Registers 选项卡上的 Chip Config Single-bit Registers 部分
    - 将看门狗计时器更改为禁用
    - 选中 "ShipFET Present?" 复选框

Chip Config Single-bit Registers							
Reset all		EN Charge	EN HIZ		WD Timer RST		
Disable 10s S	DRV Delay	EN OTG Mode	EN 15ms /QON	Wakeup Delay	EN ACDRV2		
EN ACDRV1		EN 750kHz PWM	Disable STAT		ShipFET Present?		
EN ADC		Disable IBUS ADC	Disable IBAT AD		Disable VBUS ADC		
Disable VBAT	ADC	Disable VSYS ADC	Disable TS ADC		Disable Die Temp ADC		
Chip Config Mul	ti-bit Regist	ers		_			
Watchdog Timer	Disabled		~	SDRV Contro	IDEL	~	
ADC Rate	Continuou	s	~	ADC Resolution	n 12-bit	~	
ADC Average	Single		~	ADC Average Star	rt Current Value	~	

#### 图 2-2. 单位寄存器部分

- 在 8-bit Registers 选项卡上的 充电器多位寄存器 部分
  - 将预充电电流设置为 240mA
  - 将 ABS VINDPM 设置为 4000mV
  - 将 VSYSMIN 设置为 7000mV

8 Bit Registers 16 Bit Registe	ers				
Charger Multi-bit Regist	ers				
VSYSMIN	7000 mV	Y	ABS VINDPM	4000 mV	~
VBAT_LOWV	%*VBATREG	~	Precharge current	240 mA	Ŷ
Term current	200 mA	~	CELLS	2s	~
VRCH deglitch	1024ms	~	VRCH	200 mV	~
PRECHRG Timer	0.5hr	~	Topoff Timer	Disabled	~
Charge Timer	12 hrs	~	VAC OVP	26 V	~
Auto VINDPM %	0.875	~	TREG Temp	120 C	Ŷ
TSHUTdown Temp	150 C	~	JEITAVSET TWARM	REG-400 mV	~
JEITAISET TWARM	; unchanged	~	JEITAISET TCOOL	20%*ICHG	~
JEITATCOOL TS Voltage	68.4%*REGN	Y	JEITA TWARM TS Voltage	44.8%*REGN	~
D+ DAC	HiZ	~	D- DAC	HiZ	~

图 2-3. 多位寄存器部分

- 在 16-bit Registers 选项卡上的 *充电器多位寄存器* 部分
  - 将充电电压充电调节限制设置为 8400mV
  - 将充电电流设置为 500mA。
  - 将输入电流调节限制 (IINDPM) 设置为 3000mA。

8	Bit Registers 16 Bit Registers									
	Charger Multi-b	it Registers								
	Charge Voltage	8400 mV ~	Charge Current	500 mA ~						
	IINDPM	3000 mA 🗸 🗸	ILIM from ICO	1050 mA						

#### 图 2-4.16 位寄存器文件

如果使用 TI Charger GUI,请按照以下步骤操作。

1. 在 TI Charger GUI 主页中,选择您正在使用的充电器。您应该会在左下角看到"Hardware Connected"。以下是左侧面板上图标含义的简要说明:

	Home
-19	Quick Start
\$6	Charger Configuration
	Chip Configuration
	OTG Configuration
ġ.	Status and Faults
1	I2C Interrupts
B.	ADC
\$	Part
	Command Sequence
1	Registers
Ð	Back
	图 2-5. 图标指南

**备注** 如果 EVM 已通电但未通信(例如,未 ACK),请尝试使用 处的软件将 USB2ANY 固件更新至最 新版本。该软件会告诉您使用回形针或细针按下 LED 的 USB 接口对面的复位按钮。

2. 转到"芯片配置",将看门狗计时器设置为禁用并选中"ShipFET present?"框。



<b>†</b>	E Chip Cont	figuration									Auto Read Off ~	READ ALL REGISTERS	Write Mo	ode Immediate 🗸	W87111550011123
4	Chip Configuratio	n													
	Watchdog Time	er Disabled 🗸		VD Timer RST		EN HI	z C		Charge	2	EN OTG Mode	Disabl	le both ACDRV	•	
	EN ACDRV2	0	EN A	ACDRV1	0	EN 75	OKHZ PWM	] Disa	able STAT Pin [	2	ShipFET Present?	SDRV	Control	IDEL ~	
,	SDRV_DLY		WKU	UP_DLY		EN IB	AT Pin E		teset all						
								图 2-6 7	齿片配	習					
Chargin	<ul> <li>(對 4-0. 心力 配直)</li> <li>(封 4-0. 心力 配直)</li> <li>(共和学校)</li> <li>(本和学校)</li> <li>(本和</li></ul>								0.240 C A						
CELI	.S	2s	~	VRCH de	glitch	64ms	~	VRCH	0.050	≎ v	PRECHRG Timer	0.5hr v	1	Topoff Timer	Disabled V
TRE	6 Temp	60 C	~	TSHUTdo	own Temp	150 C	~	JEITA VSET TWAR	RM Charge	Suspe 🗸	JEITA ISET TWARM	Charge Suspe 🗸		JEITA ISET TCOOL	Charge Suspe V
JEIT Volta	A TWARM TS ige	48.4%*REGN	~	Ignore TS	S			EN TRKLCHRG Tin	mer 🗖		EN PRECHRG Timer		E	EN Charge Timer	
EN II w/ B	AT Discharge ATOVP			Force IB/	AT Discharge			EN Charge			EN Termination		[	Disable PFM in Charge Mode	
Disa Outo	ble Charge fAudio			Disable S Hiccup	SYS Short										
Input Co	onfiguration														
IIND	PM	3.000 🗘	A	EN IINDP	PM Register			ILIM from ICO	0 mA		EN ICO	0		Force ICO	
EN II	BUS OCP			VAC OVF	2	26 V	~	ABS VINDPM	0.400	≎ v	Force VINDPM		E	EN Auto D+D- Detec	t 🗆

图 2-7. 充电器配置

#### 2.4.3 充电模式验证

按照以下步骤进行充电模式验证,包括升压运行的预充电、CC 和 CV 阶段。

- 在节 2.4.1 时应已开启 PS1 和负载 #1。在 EVM GUI 中,一般情况下,我们建议读取 REG22-REG27(或读 取所有寄存器)一次,以便显示自上次读取以来发生的所有中断(来自状态变化、例程自动完成、故障)。读 取这些寄存器一秒钟即可清除中断。读取寄存器之后,
  - 验证 ➡ REG1B 报告一切正常,表示没有 DPM 循环处于运行状态,没有 WD 计时器故障(位 7-4),存在 VAC1(位 2),存在 VBUS(位 0),且电源正常(位 3)
- 2. 在跳线 J17 上重新安装分流器以启用充电
  - 验证 ➡ STAT LED (D13) 点亮
- 3. 按如下方式进行测量,请注意,您可能必须调整负载的输出,以便适应从负载至 EVM 的引线两端的压降:
  - 测量 ➡ V_{VBUS-PGND} (TP23 和 TP44) = 5.0V ±0.2V
  - **测量 ➡** V_{BAT-PGND} (TP29 和 TP46) = 5.0V ±0.2V
  - 测量 ➡ I_{BAT SENSE} (TP19 和 TP20 之间 0.01 欧姆电阻两端的电压) = 240mA ±60mA
  - 点击 "READ ALL REGISTERS"并验证 ➡ REG1Cb[7:5] 报告预充电
- 将负载 #1 调节电压增大至 8.0V,然后按如下方式进行测量,请注意,您可能必须调整负载的输出,以便适应 从负载至 EVM 的引线两端的压降:
  - 测量 ➡ V_{VBUS-PGND} (TP23 和 TP44) = 5.0V ±0.2V
  - 测量 ➡ V_{BAT-PGND} (TP29 和 TP46) = 8.0V ±0.1V
  - 测量 ➡ I_{BAT SENSE} (TP19 和 TP20 之间 0.01 Ω 电阻两端的电压) = 500mA ±50mA

- 测量 ➡ I_{VAC1 SENSE} (TP1 和 TP2 之间 0.01 Ω 电阻两端的电压 ) = 900mA ±60mA
- 点击 "READ ALL REGISTERS"并验证 ➡ REG1Cb[7:5] 报告快速充电
- 5. 将负载 #1 调节电压增大至 8.4V 并按如下方式进行测量:
  - 测量 ➡ V_{BAT-PGND} (TP29 和 TP46) = 8.4V ±0.04V
  - 测量 ➡ I_{BAT SENSE} (TP19 和 TP20 之间 0.01 Ω 电阻两端的电压) = 0mA ±10mA
  - 点击 "READ ALL REGISTERS"并验证 ➡ REG1Cb[7:5] 报告终止
- 6. 在充电模式下按上述内容更改电压和寄存器设置时的有用提示:
  - 如果增大充电电流或在 SYS J3 端子添加负载,您可能需要使用 "8-bit register"选项卡/Charger Singlebit Registers/REG14b[1] 禁用 EN_ILIM 位,并在 "16-bit register"选项卡/Charger Multi-bit Registers/ REG06b[8:0] 中增大 IINDPM 寄存器设置。
  - 如果将输入电压提高到 8V 以上,使充电器进入降压模式,则您将需要使用 "8-bit register"选项卡/ Charger Multi-bit Registers/REG10b[5:4] 从 7V 默认值增大 VAC_OVP。
  - 在启动时使用 PROG 引脚(跳线 JP24 至 JP31)设置电池配置。也可以使用"16-bit register"选项卡/ Charger Multi-bit Registers/REG0Ab[7:6] 更改电池配置。请注意,SYSMIN 和充电电流通过电芯配置进行 更改。
  - 状态、故障和中断位报告是有用的调试工具。

#### 2.4.4 OTG 模式验证

按照以下步骤针对升压操作进行 OTG 模式验证:

- 1. 上电,然后关闭负载 #2 输出。设置为 CR = 12V/0.5A = 24 Ω。从 J1 断开 PS1 的连接并将负载 #2 连接至 J1 (VIN1 和 GND)。
- 2. 将负载 #1 调节电压增大至 8.0V 并按如下方式进行测量:
  - 测量 ➡ V_{BAT-PGND} (TP27 和 TP46) = 8.0V ±0.1V
- 3. 对于 BQStudio,请按以下方式准备 OTG 模式充电器寄存器设置:
  - 在 8-bit Registers 选项卡上的 芯片配置单位寄存器 部分:
    - 选中"EN OTG Mode"框
    - 选中"EN ACDRV1"框
  - 在 8-bit Registers 选项卡上的 OTG 多位寄存器 部分:
    - 设置 IOTG 1000mA 以更改 OTG 电流限制。

Chip Config Sing Reset all Disable 10s SI EN ACDRV1 EN ADC Disable VBAT A	e-bit Registers EN Charge EN HiZ DRV Delay EN OTG Mode EN 15ms /QON 1 EN 750kHz PWM Disable STAT Disable IBUS ADC Disable IBAT ADO DC Disable VSYS ADC Disable TS ADC							
Chip Config Mult	-bit Registers							
Watchdog Timer	Disabled ~							
ADC Rate	~							
ADC Average	× .							
OTG Single-bit Registers								
OTG Multi-bit Reg	jisters							
IOTG Lim	it 1000 mA 🗸 🗸 🗸							

- 图 2-8. 单位寄存器部分
- 在 16-bit Registers 选项卡上的 OTG 多位寄存器 部分:
  - 将 OTG 模式调节电压设置为 12000mV



#### OTG Multi-bit Registers OTG Reg Voltage 12000 mV

#### 图 2-9. 多位寄存器部分

对于 GUI Composer,请转到"OTG 配置"部分并更改以下寄存器:

- OTG 调节电压设置为 12V
- IOTG 限制设置为 1A。

OTG Reg Voltage	12,000	v	IOTG Limit	1.000

### 图 2-10. OTG 配置部分

接下来,转到"芯片配置",选中"EN OTG Mode"框和"EN ACDRV1"框。

Watchdog Timer	Disabled V	WD Timer RST	EN HIZ	EN Charge	EN OTG Mode
EN ACDRV2		EN ACDRV1	EN 750kHz PWM	Disable STAT Pin	ShipFET Present?

#### 图 2-11. 芯片配置

- 4. 按如下方式进行测量:
  - 测量 ➡ V_{VBUS-PGND} (TP21 和 TP45) = 12.0V ±0.2V
  - 测量 ➡ V_{AC1-PGND} (TP22 和 TP45) = 12.0V ±0.2V
  - ・ 点击 "READ ALL REGISTERS"
    - 验证 ➡ REG1Bb[6] 报告 VINDPM 或 OTG
    - 验证 ➡ REG1Cb[4:1] 将 VBUS 状态报告为正常 OTG
- 5. 打开负载 #2 输出,设置为 24 Ω 的 CR。
- 6. 按如下方式进行测量:
  - 测量 ➡ V_{AC1-PGND} (TP22 和 TP45) = 12.0V ±0.2V
  - 测量 ➡ I_{AC1-SENSE} (TP1 和 TP2) = 500mA ±0.10A
- 7. 将负载 #2 的 CR 降低至 10 Ω。
- 8. 按如下方式进行测量,以便确认 OTG 电流功能:
  - 测量 ➡ V_{AC1-PGND} (TP22 和 TP45) < 12.0V ±0.2V
  - 测量 ➡ I_{AC1-SENSE} (TP1 和 TP2) = 1000mA ±0.10A
  - 点击"READ ALL REGISTERS"并验证 ➡ REG1Bb[7] 报告 IINDPM
- 9. 进一步 OTG 测试的提示:
  - 启用 OTG 模式的过程分为两个步骤,首先启用 OTG,然后打开相应的交流驱动器 FET。

为了让充电器满足规格要求,重要的是精心放置组件。以下各项按放置优先级顺序列出。

- 1. PMID 和 SYS 的高频去耦电容器 (EVM 上的 C3 和 C18) 应尽可能靠近与充电器 IC 位于同一层的各自引脚 和接地引脚放置 (换句话说,没有过孔),以便形成最小的电流环路。
- 2. PMID 和 SYS 的大容量电容器应尽可能靠近与充电器 IC 位于同一层的各自引脚和充电器的接地引脚放置(换 句话说,没有过孔孔)。
- 3. 将 REGN 电容器 (C35) 靠近接地端放置,将 SW 的 BTST 电容器 (C6 和 C8) 尽可能靠近各自的引脚放置,如果需要,仅在每个元件的一侧使用过孔。
- 4. 将 VBUS 和 BAT 引脚的高频去耦电容器尽可能靠近各自的引脚放置。如有必要,每个电容器端子使用至少 2 个过孔。
- 5. 将 VBUS 和 BAT 引脚的大容量电容器尽可能靠近各自的引脚放置。如有必要,每个电容器端子使用至少 2 个 过孔。
- 6. 将电感器放置在靠近 SW1 引脚和 SW2 引脚的位置。因为过孔只会给电感器增加少量的电感和电阻,所以使用多个过孔来建立这些连接是可以接受的。
- 7. 虽然这个 EVM 具有靠近充电 GND 引脚的模拟接地 (AGND) 和电源接地 (PGND) 平面,但并不需要两个接地 端。用于设置敏感节点(例如,ILIM、TS)的电阻器和电容器可以使用一个公共接地平面,但其接地端子要 远离会出现开关噪声的大电流接地回路。

请注意,此 EVM 具有测试点和跳线,需要将走线引出至 PCB 边沿。实施这些布线需要对于不像上面列出的前六 项那么重要的组件,实施这些布线在 PCB 布局上 需要进行一些折衷。



### 4 电路板布局、原理图和物料清单

### 4.1 BMS034 电路板布局

图 4-1 至图 4-4 显示了 BQ2579XEVM 的电路板布局。



图 4-1. BMS034A/B 顶层

14 BQ25792EVM、BQ25798EVM 和 BQ25798BKUPEVM (BMS034) 评估模块





图 4-2. BMS034A/B 信号层 1





图 4-3. BMS034A/B 信号层 2

16 BQ25792EVM、BQ25798EVM 和 BQ25798BKUPEVM (BMS034) 评估模块



图 4-4. BMS034A/B 底层

#### 4.2 BQ2579XEVM (BMS034) 原理图

图 4-5、图 4-6 和图 4-7 展示了 BQ2579XEVM 的原理图。



图 4-5. BQ25792EVM (BMS034A/B-001) 和 BQ25798EVM (BMS034A/B-003) 原理图第 1 页





图 4-6. BQ25792EVM (BMS034A/B-001)、BQ25798BKUPEVM (BMS034A/B-005) 和 BQ25798EVM (BMS034A/B-003) 原理图第 2 页





图 4-7. BQ25798BKUPEVM (BMS034A/B-002) 原理图第 1 页



### 4.3 物料清单

表 4-1 列出了 BQ2579XEVM 物料清单。

标识符	数量	值	说明	封装参考	器件型号	制造商
C2、C4	2	1000pF	电容,陶瓷,1000pF,50V,±1%,C0G/NP0,0402	0402	GRM1555C1H102FA01D	Murata(村田)
C6、C8	2	0.047uF	电容,陶瓷,0.047uF,25V,±10%,X7R,0402	0402	GRM155R71E473KA88D	Murata(村田)
C11、C12、C19、C20、C21、 C22、C23、C29、C30、C31	10	10µF	电容,陶瓷,10uF,25V,±10%,X5R,0805	0805	C2012X5R1E106K125AB	ТДК
C13、C14、C15、C18、C32	5	0.1uF	电容,陶瓷,0.1uF,50V,±10%,X7R,0402	0402	C1005X7R1H104K050BE	ТДК
C33、C34(仅 BQ25798BKUPEVM)	2	33µF	铝聚合物电容器,33uF 20% 25V	SMD2 (7343-31)	ECASD41E336M040KA0	Murata(村田)
C35	1	4.7uF	电容,陶瓷,4.7uF,16V,±10%,X5R,0603	0603	GRM188R61C475KAAJD	Murata(村田)
C36	1	1000pF	电容,陶瓷,1000pF,50V,±5%,C0G/NP0,0402	0402	GRM1555C1H102JA01D	Murata(村田)
C38、C39	2	10uF	电容,陶瓷,10uF,25V,±20%,X5R,0603	0603	GRT188R61E106ME13D	Murata(村田)
C43、C44	2	0.1µF	电容,陶瓷,0.1uF,25V,±10%,X5R,0402	0402	GRM155R61E104KA87D	Murata(村田)
D2、D6	2	12V	二极管,齐纳,12V,300mW,SOD-523	SOD-523	BZT52C12T-7	Diodes Inc.
D11、D12	2	30V	二极管,肖特基,30V,0.2A,SOD-323	SOD-323	BAT54HT1G	ON Semiconductor ( 安 森美半岛体 )
D13	1	绿色	LED,绿色,SMD	1.6x0.8x0.8mm	LTST-C190GKT	Lite-On ( 建兴电子 )
H1、H2、H3、H4	4		Bumpon , Hemisphere , 0.44 X 0.20 , Clear	Transparent Bumpon	SJ-5303 (CLEAR)	3M
J1、J2、J3、J4	4		端子块,5.08mm,2x1,黄铜,TH	2x1 5.08mm 端子块	ED120/2DS	On-Shore Technology (岸上科技)
J5	1		端子块,5.08mm,3x1,黄铜,TH	3x1 5.08mm 端子块	ED120/3DS	On-Shore Technology (岸上科技)
J6	1		连接器,插座,Micro-USB Type B,R/A,底部安装 SMT	7.5x2.45x5mm	47346-0001	Molex(莫仕)
J7	1		端子块,3.5mm,2x1,锡,TH	端子块,3.5mm,2x1, TH	0393570002	Molex(莫仕)
J8	1		插头(摩擦锁),100mil,4x1,R/A,TH	4x1 R/A 接头	0022053041	Molex(莫仕)
J9	1		接头(有罩),100mil,5x2,高温,镀金,TH	5x2 有罩接头	N2510-6002-RB	3M
JP1、JP2、JP7、JP8、JP9	5		接头,100mil,3x1,锡,TH	接头, <b>3</b> 引脚,100mil, 锡	PEC03SAAN	Sullins Connector Solutions(赛凌思科技 有限公司)
JP3、JP4、JP5	3		插头,100mil,2x1,镀金,TH	接头,100mil,2x1,TH	HTSW-102-07-G-S	Samtec(申泰)
JP6、JP10、JP11、JP12、 JP13、JP14、JP15、JP16、 JP17、JP18、JP19、JP20、 JP21、JP22、JP23、JP24、 JP25、JP26、JP27、JP28、 JP29、JP30、JP31、JP32、 JP33	25		接头,100mil,2x1,锡,TH	接头,2 引脚,100mil, 锡	PEC02SAAN	Sullins Connector Solutions(赛凌思科技 有限公司)
L2	1	1uH	电感,屏蔽,铁氧体,1μH,11.1A,0.0078 Ω,SMD	SMD 7.1x3.0x6.5mm	SPM6530T-1R0M120	TDK

#### 

### 表 4-1. BQ2579XEVM 物料清单 (continued)

标识符	数量	值	说明	封装参考	器件型号	制造商
Q1、Q2、Q3、Q4	4	30V	MOSFET,N 沟道,30V,60A,DNH0008A (VSONP-8)	DNH0008A	CSD17581Q3A	德州仪器 (TI)
Q5	1	30V	MOSFET,N 沟道,30V,60A,DQG0008A (VSON-CLIP-8)	DQG0008A	CSD17575Q3	德州仪器 (TI)
R2、R6、R11、R12、R13	5	0.01	电阻,0.01,1%,1W,2010	2010	WSL2010R0100FEA18	Vishay-Dale(威世达 勒)
R4、R9	2	294	电阻,294,1%,0.1W,AEC-Q200 0 级,0603	0603	CRCW0603294RFKEA	Vishay-Dale(威世达 勒)
R15	1	100	电阻,100Ω,1%,0.1W,0603	0603	RC0603FR-07100RL	Yageo(国巨)
R17、R36	2	0	电阻,0,5%,0.1W,AEC-Q200 0 级,0603	0603	CRCW06030000Z0EA	Vishay-Dale(威世达 勒)
R18	1	5.23k	电阻,5.23k,1%,0.063W,AEC-Q200 0 级,0402	0402	CRCW04025K23FKED	Vishay-Dale(威世达 勒)
R19	1	7.68k	电阻,7.68k,1%,0.063W,AEC-Q200 0 级,0402	0402	CRCW04027K68FKED	Vishay-Dale(威世达 勒)
R20	1	255k Ω	电阻,255k,1%,0.1W,AEC-Q200 0 级,0603	0603	CRCW0603255KFKEA	Vishay-Dale(威世达 勒)
R21	1	127k	电阻,127k,1%,0.1W,AEC-Q200 0 级,0603	0603	CRCW0603127KFKEA	Vishay-Dale(威世达 勒)
R22	1	0	电阻,0,1%,0.5W,0805	0805	5106	Keystone
R23	1	100k	电阻,100k,1%,0.1W,0603	0603	RC0603FR-07100KL	Yageo(国巨)
R24	1	30.1k	电阻,30.1k,1%,0.063W,AEC-Q200 0 级,0402	0402	CRCW040230K1FKED	Vishay-Dale(威世达 勒)
R25、R39、R40、R41、R42	5	10.0k	电阻,10.0k $\Omega$ ,1%,0.063W,AEC-Q200 0 级,0402	0402	CRCW040210K0FKED	Vishay-Dale(威世达 勒)
R26	1	4.87k	电阻,4.87k,1%,0.063W,AEC-Q200 0 级,0402	0402	CRCW04024K87FKED	Vishay-Dale(威世达 勒)
R27	1	3.57kΩ	电阻,3.57k,1%,0.1W,AEC-Q200 0 级,0603	0603	CRCW06033K57FKEA	Vishay-Dale(威世达 勒)
R28	1	4.75k	电阻,4.75k,1%,0.1W,AEC-Q200 0 级,0603	0603	CRCW06034K75FKEA	Vishay-Dale(威世达 勒)
R29	1	6.20k	电阻,6.20k,1%,0.1W,0603	0603	RC0603FR-076K2L	Yageo(国巨)
R30	1	8.20k	电阻,8.20k,1%,0.1W,0603	0603	RC0603FR-078K2L	Yageo(国巨)
R31	1	10.5k	电阻,10.5k,1%,0.1W,AEC-Q200 0 级,0603	0603	CRCW060310K5FKEA	Vishay-Dale(威世达 勒)
R32	1	14.0k	电阻,14.0k,1%,0.1W,AEC-Q200 0 级,0603	0603	CRCW060314K0FKEA	Vishay-Dale(威世达 勒)
R33	1	18.0k	电阻,18.0k,1%,0.1W,AEC-Q200 0 级,0603	0603	ERJ-3EKF1802V	Panasonic(松下)
R34	1	27.0k	电阻,27.0k,1%,0.1W,AEC-Q200 0 级,0603	0603	ERJ-3EKF2702V	Panasonic(松下)
R35、R37、R43	3	10.0	电阻,10.0,1%,0.25W,AEC-Q200 0 级,1206	1206	ERJ-8ENF10R0V	Panasonic(松下)
R38	1	2.21k	电阻,2.21k,1%,0.063W,AEC-Q200 0 级,0402	0402	CRCW04022K21FKED	Vishay-Dale(威世达 勒)





### 表 4-1. BQ2579XEVM 物料清单 (continued)

标识符	数量	值	说明	封装参考	器件型号	制造商
S1	1		开关,常开,2.3N 力,200k 次运行,SMD	KSR	KSR221GLFS	C&K Components
SH-JP1、SH-JP2、SH-JP6、SH- JP7、SH-JP8、SH-JP9、SH- JP11、SH-JP12、SH-JP14、SH- JP17、SH-JP18、SH-JP24、SH- JP30、SH-JP32	14	1x2	分流器,100mil,镀金,黑色	分流器	SNT-100-BK-G	Samtec(申泰)
TP1、TP2、TP4、TP6、TP7、 TP9、TP11、TP13、TP14、 TP15、TP16、TP17、TP18、 TP19、TP20、TP21、TP22、 TP30、TP31、TP32、TP33、 TP34、TP35、TP36、TP37、 TP38、TP39、TP40、TP41、 TP42、TP43	31		测试点,微型,白色,TH	白色微型测试点	5002	Keystone
TP23、TP24、TP25、TP26	4		测试点,微型,红色,TH	红色微型测试点	5000	Keystone
TP27、TP28	2		测试点,微型,橙色,TH	橙色微型测试点	5003	Keystone
TP29	1		测试点,微型,黄色,TH	黄色微型测试点	5004	Keystone
TP44、TP45、TP46、TP47、 TP48、TP49、TP50	7		测试点,紧凑型,SMT	Testpoint_Keystone_Co mpact	5016	Keystone
U1	1		BQ2579x HotRod	VQFN-HR29	BQ25792RQM	德州仪器 (TI)
U2	1		100mA,30V,固定输出,线性电压稳压器,DBZ0003A (SOT-23-3)	DBZ0003A	TLV76033DBZR	德州仪器 (TI)
C1、C3、C26	0	1uF	电容,陶瓷,1uF,25V,±10%,X7R,0805	0805	GRM219R71E105KA88D	Murata ( 村田 )
C5、C7	0	2200pF	电容,陶瓷,2200pF,50V,±5%,C0G/NP0,0603	0603	GRM1885C1H222JA01D	Murata ( 村田 )
C9、C10、C24、C27、C28	0	10uF	电容,陶瓷,10uF,25V,±10%,X5R,0805	0805	C2012X5R1E106K125AB	TDK
C16、C17	0	0.01uF	电容,陶瓷,0.01uF,50V,±5%,X7R,0402	0402	C0402C103J5RACTU	Kemet(基美)
C25	0	33µF	电容,钽,33uF,35V,±20%,0.065 Ω,SMD	7343-31	T521D336M035ATE065	Kemet(基美)
C37	0	0.1µF	电容,陶瓷,0.1uF,50V,±10%,X7R,0402	0402	C1005X7R1H104K050BE	TDK
C40	0	10uF	电容,陶瓷,10uF,25V,±20%,X5R,0603	0603	GRT188R61E106ME13D	Murata(村田)
C41	0	1000pF	电容,陶瓷,1000pF,50V,±5%,C0G/NP0,0402	0402	GRM1555C1H102JA01D	Murata(村田)
C42	0	1000pF	电容,陶瓷,1000pF,50V,±1%,C0G/NP0,0402	0402	GRM1555C1H102FA01D	Murata(村田)
D1、D5、D10	0	40V	二极管,肖特基,40V,0.38A,SOD-523	SOD-523	ZLLS350TA	Diodes Inc.
D3、D4、D7、D8	0	30V	二极管,肖特基,30V,1A,SOD-123	SOD-123	MBR130T1G	Diodes Inc.
D9	0	12V	二极管,齐纳,12V,300mW,SOD-523	SOD-523	BZT52C12T-7	Diodes Inc.
FID1、FID2、FID3、FID4、 FID5、FID6	0		基准标记。没有需要购买或安装的元件。	不适用	不适用	不适用
L1	0	1uH	电感器,1uH,3.2A,0.028 Ω,SMD	2.5x2mm	MPIM252010F1R0M-LF	Microgate ( 麦捷科技 )
R1、R5、R14	0	0	电阻,0,1%,0.5W,0805	0805	5106	Keystone
R3、R8、R16	0	100k	电阻,100k立,1%,0.0625W,0402	0402	RC0402FR-07100KL	Yageo America(国巨)

# 电路板布局、原理图和物料清单

### 表 4-1. BQ2579XEVM 物料清单 (continued)

标识符	数量	值	说明	封装参考	器件型号	制造商
R7、R10	0	2.0	电阻,2.0,5%,0.1W,AEC-Q200 0 级,0603	0603	CRCW06032R00JNEA	Vishay-Dale(威世达 勒)
SH-JP3、SH-JP4、SH-JP5、SH- JP10、SH-JP13、SH-JP15、SH- JP16、SH-JP19、SH-JP20、SH- JP21、SH-JP22、SH-JP23、SH- JP25、SH-JP26、SH-JP27、SH- JP28、SH-JP29、SH-JP31、SH- JP33	0	1x2	分流器,100mil,镀金,黑色	分流器	SNT-100-BK-G	Samtec(申泰)
TP3、TP5、TP8、TP10、TP12	0		测试点,微型,白色,TH	白色微型测试点	5002	Keystone

•

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision D (September 2021) to Revision E (July 2022)	Page
<ul> <li>更改了"建议运行条件"</li> </ul>	
• 更改了"设备"	6
• 更改了"软件设置"	7
• 更改了"初始设置"	
<ul> <li>更改了"通信验证"</li></ul>	
• 更改了"OTG 模式验证"	
• 更新了图 <b>4-7</b>	
Changes from Revision C (June 2021) to Revision D (September 2021)	Page

更新了测试电池充电的设备测试设置图像。......6

С	Changes from Revision B (December 2020) to Revision C (June 2021)						
•	将 BQ25796EVM 更改为 BQ25798BKUPEVM	0					
•	删除了 BQ25796,添加了 BQ25798BKUPEVM	1					
•	删除了 BQ25796	3					
•	删除了 BQ25796	3					
•	更正了对 JP9、JP14 和 JP31 的说明中的错别字	4					
•	删除了 BQ25796	14					
•	将 BQ25796EVM 重命名为 BQ25798BKUPEVM						
•	更新了图 4-7						
•	对于 C22、C34,更改了对 BQ25798BKUPEVM 和器件型号的引用	0					

Changes from Revision A (September 2020) to Revision B (December 2020)		Page
•	添加了 BQ25796 和 BQ25798 特性和数据表文献编号	3
•	更新了对 JP1、JP2、JP5、JP8 和 JP9 分流器的说明	4
•	删除了 EVM 版本 E2 文本。添加了 BQ25796 原理图和对 BQ25798 原理图的引用	
•	更新了当前的 BOM 以包括 BQ25796EVM 器件	<mark>0</mark>

Changes from Revision * (June 2020) to Revision A (September 2020)	Page
• 删除了 BQ25795EVM	3
• 删除了 BQ25795	3
• 从文本和表中删除了 BQ25795EVM	
• 删除了 BQ25795EVM	4
• 更新了测试电池充电的设备测试设置图像。	6
• 更新了 BMS034E2/A <i>项层</i> 图像	14
• 将 BMS034E1 更改为 BMS034E2/A	14
• 两个原理图图像均已更新	
• 将 BMS034E1 更新为 BMS034E2/A	
• 将 C37、D3 和 D7 更新为未组装	0
• 向 MBR130T1G 添加了 D3、D4、D7 和 D8	0

#### 重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司