User's Guide **TPS65219** *评估模块*

U TEXAS INSTRUMENTS

摘要

本用户指南描述了 TPS65219 评估模块 (EVM) 的特性、操作和使用。TPS65219EVM 是一款经全面组装的平台,用于评估 TPS65219 电源管理 IC (PMIC) 性能和功能。该 EVM 包括板载 USB 转 I²C 适配器、电源端子、用于所有直流稳压器输入和输出的跳线以及用于常见测量的测试点。

内容	
1注意	3
2 引言	3
3 要求	3
3.1 硬件	3
3.2 软件	3
4 TPS65219 资源概览	4
5 EVM 配置	5
5.1 默认 EVM 配置	5
5.2 配置接头	8
5.3 测试点	10
6 图形用户界面(GUI)	12
6.1 入门	12
6.2 配套资料页面	16
6.3 寄存器映射页面	17
6.4 NVM 配置页面	
6.5 序列配置	19
6.6 NVM 编程页面	21
6.7 附加特性	21
7 原理图、PCB 布局和物料清单	22
7.1 TPS65219EVM 原理图	22
7.2 TPS65219EVM PCB 层	24
7.3 TPS65219EVM 物料清单	27
8 修订历史记录	

插图清单

图 5-1. TPS65219EVM 默认配置 - 输出电压	5
图 5-2. TPS65219EVM 默认配置 - 跳线	6
图 5-3. TPS6521901 上电序列	7
图 5-4. TPS6521901 断电序列	<mark>8</mark>
图 5-5. TPS65219EVM 默认配置 - 跳线	9
图 6-1. GUI Composer Gallery	12
图 6-2. 在 "Gallery" 中找到 PMIC GUI	13
图 6-3. GUI 软件下载选项	13
图 6-4. Gallery 中的 GUI 面板。	14
图 6-5. PMIC GUI 桌面应用	15
图 6-6. GUI 主页	16
图 6-7. 配套资料页面	16
图 6-8. 寄存器映射页面	17
图 6-9. NVM 配置页面	18
图 6-10. 保存/加载寄存器选项	19

1

图 6-11 序列绘制工具	20
图 6-12. NVM 编程页面	
图 7-1. TPS65219EVM,原理图(第 1 页)	
图 7-2. TPS65219EVM,原理图(第 2 页)	23
图 7-3. TPS65219EVM 顶层	24
图 7-4. TPS65219EVM - 信号层 1	24
图 7-5. TPS65219EVM - 信号层 2	
图 7-6. TPS65219EVM - 信号层 3	
图 7-7. TPS65219EVM - 信号层 4	
图 7-8. TPS65219EVM - 底层	26

表格清单

表 4-1. TPS65219 电源资源	4
表 4-2. TPS65219 与 TPS65219-Q1 的比较	4
表 5-1. TPS65219EVM 默认跳线配置	6
表 5-2. TPS65219EVM 默认跳线配置	9
表 5-3. TPS65219 EVM 测试点	10
表 7-1. 物料清单	

商标

Arm[®] and Cortex[®] are registered trademarks of Arm Limited. Chrome[®] is a registered trademark of Google LLC. Firefox[®] is a registered trademark of Mozilla Foundation. Microsoft Edge[®] is a registered trademark of Microsoft Corporation. 所有商标均为其各自所有者的财产。

1注意

注意	使用前先阅读用户指南
注意	注意表面高温 接触可能会导致烫伤 请勿触摸!

2 引言

TPS65219 PMIC 是一款高度集成的电源管理设计,用于 Arm[®] Cortex[®]-A53 处理器和 FPGA。此器件包含三个降 压转换器和四个低压降 (LDO) 稳压器。Buck1 降压转换器可支持高达 3.5A 的负载电流,适用于处理器的内核电 压轨。全部三个降压转换器都支持非固定开关频率或固定频率模式。LDO1 和 LDO2 可在负载开关和旁路模式下 配置,以支持 SD 卡配置。所有 LDO 电压输入都可以从降压转换器输出级联,或使用相同的系统电源以实现最大 的设计和时序功能。TPS65219 配有三个 GPIO 和三个多功能引脚 (MFP),为完全控制片上系统 (SoC) 的电源和 时序提供了完整的封装。

3 要求

3.1 硬件

本节列出了运行该 EVM 所需的最低硬件要求。

- EVM
- 主机
 - 使用 EVM 软件需要具有可用 USB 端口的计算机。EVM 软件在计算机上运行并通过 USB-A 转 Micro-B 电 缆与 EVM 通信。
- 电源
- 3.2 软件
- TPS65219-GUI(PMIC 图形用户界面)
 - TPS65219-GUI 既可在浏览器中使用,也可作为独立应用程序使用。该软件提供了一种简单的方法,使用 内置 USB2ANY 并利用 MSP430 通过 I2C 与器件进行通信。有关 GUI 安装和设置过程的详细信息,请参 阅本指南的节 6。请注意,该 EVM 可在不使用软件的情况下上电和运行。

4 TPS65219 资源概览

TPS65219 PMIC 包含七个稳压器:3个降压稳压器和4个低压降稳压器 (LDO)。Buck1 降压转换器能够支持高达 3.5A 的电流,其余的降压稳压器每个可支持 2A 电流。LDO1 和 LDO2 (2×400mA) 可配置为负载开关和旁路模式。LDO3 和 LDO4 (2×300mA) 可配置为负载开关。PMIC 的 VIN 范围在 2.5V 至 5.5V 之间,可以支持通用的 3.3V 或 5V 系统电压。表 4-1 汇总了每个模拟资源的电压和电流能力。TPS65219 PMIC 具有一个 I2C 接口、三 个 GPIO 引脚和三个多功能引脚,可提供完整的电源组,满足各种 SoC 的要求。

此 PMIC 有两个版本: TPS65219 支持环境温度范围为 -40°C 至 +105°C 的工业应用, TPS65219-Q1 支持需要 -40°C 至 +125°C 更宽工作温度范围的汽车应用。表 4-2 展示了工业和汽车 PMIC 型号之间的差异。

	输入电压	输出电压	电流功能	说明
BUCK1	2.5V 至 5.5V	0.6V 至 3.4V	3.5A	• 2.3MHz 开关频率
BUCK2	2.5V 至 5.5V	0.6V 至 3.4V	2A	• 动态电压调节
BUCK3	2.5V 至 5.5V	0.6V 至 3.4V	2A	• 可编程电源时序和默认电压。
				• 集成了电压监控器,可实现欠压保护。
LDO1	1.5V 至 5.5V(LDO、负 载开关) 1.5V 至 3.4V(旁路)	0.6V 至 3.4V (LDO) 1.5V 至 3.4V(旁路)	400mA	 可编程电源时序和默认电压。 可配置为负载开关和旁路模式。 集成了电压监控器,可实现欠压保护
LDO2	1.5V 至 5.5V(LDO、负 载开关) 1.5V 至 3.4V(旁路)	0.6V 至 3.4V (LDO) 1.5V 至 3.4V(旁路)	400mA	
LDO3	2.2V 至 5.5V	1.2V 至 3.3V	300mA	• 可编程电源时序和默认电压。
LDO4	2.2V 至 5.5V	1.2V 至 3.3V	300mA	• 可配置为负载开关
				• 集成了电压监控器,可实现欠压保护

表 4-1. TPS65219 电源资源

表 4-2. TPS65219 与 TPS65219-Q1 的比较

特性	TPS65219 (工业)	TPS65219-Q1 (汽车)
目标处理器	AM62x 13mm x 13mm、0.5mm 间距、425 引脚 FCCSP BGA (ALW)	AM62x-Q1 17.2mm x 17.2mm、0.8mm 间距、441 引脚 FCBGA (AMC)
开关频率	高达 2.3MHz 淮固定频率 • 汽车 PFM • 强制 PWM	高达 2.3MHz。能够根据器件配置实现准固定频率或 固定频率 准固定频率 • 汽车 PFM • 强制 PWM 固定频率 • 可用扩频
自然通风工作温度范围 TA	40°C 至 105°C	40°C 至 125°C
运行结温 TJ	-40°C 至 125°C	-40°C 至 150°C
功能安全型	否	功能安全型(TI质量管理流程、功能安全时基故障 率计算和故障模式分布可用)
封裝	两个封装选项 • 4mm×4mm、0.4mm 间距 VQFN • 5mm×5mm、0.5mm 间距 VQFN	 一个封装选项 5mm×5mm、0.5mm 间距 VQFN (可湿性侧面)

5 EVM 配置

可按以下方式对 TPS65219EVM 进行配置。下述章节概述了如何配置 TPS65219EVM 以进行一般实验。

- 1. 使用 电源电压设置 中指示的跳线为预期应用配置稳压器输入电源轨。
- 2. 使用*多功能引脚设置*中指示的模式配置说明从外部配置多功能引脚。请注意,在 SD 或 DDR 电压选择中,稳 压器选择的默认配置可能因不同的 NVM 配置而不同(极性可配置)。
- 3. 将 VSYS 连接到能够支持该应用的电源上,并启用该电源。
- 4. 如果使用配置为首次电源检测 (FSD) 的 TPS65219 版本,则只要将有效电源连接到 VSYS,就会执行上电序 列。

5.1 默认 EVM 配置

本节介绍在 TPS6521901 PMIC 上编程的默认配置。

TPS65219EVM 随附已安装了 TPS6521901 PMIC,这是 TPS65219 器件系列的可订购器件型号之一。降压转换器和 LDO 的默认输出电压如图 5-1 所示。该信息基于 TPS6521901 EVM 上已编程的默认配置。通过对 PMIC NVM 存储器进行重新编程,可将该 EVM 用于评估其他 TPS65219 型号。如果对 PMIC 进行重新编程或将其替换为其他可订购产品,则可能需要更改外部无源器件和跳线配置。有关可重新配置的设置和相关的 I2C 寄存器的更多信息,请参阅器件数据表和技术参考手册 (TRM)。

图 5-1. TPS65219EVM 默认配置 - 输出电压

🔊 🔊 🔊

vio

MCU3V3

VBUCK2

VIN_LDO1

VIN_LDO2

VIN_LDO34

VBUCK

VSYS

EXTLDO VIN

J 3V3

SDA

GND 🖉 🧧

CU BSL

.

DN, D 🎯

Push-button connected to PMIC enable pin

VIO supply selection "MCU3V3" is an external discrete 3.3V LDO "VBUCK2" is the PMIC BUCK2 Input supply for discrete 3.3V LDO The set of the period of the set of

. .

USB2ANY

Iexas Instruments

not FCC app

<u>(</u>)

VLDO1

wed for resal

<u>/sss/</u>

Bucks switching mode High: forced-PWM Low: auto-PFM

Supply selection for PMIC LDOs

Configured as VSEL_SD to set the output voltage of LDO1 High: LDO1 = 3.3 (requires PVIN_LDO1=3.3V) Low: LDO1 = 1.8V (LDO1 behaves as a fixed 1.8V LDO)

DO2 GND

MODE/RESET

MODE/STBY

GND

VIO

GND

VSEL

GND

۲

TPS65219///M

BMC098A

VLDO4

GND 🥘

S+

VLDO3

GND 🕷

TP12

图 5-2. TPS65219EVM 默认配置 - 跳线

6

GND

表 5-1. TPS65219EVM 默认跳线配置

	接头		跳线默认位置
电源电压设置	J3	VIN_LDO1	LDO1 的电源选择 默认:设置为使用 BUCK2 为 LDO1 供电
	Jð	VIN_LDO2	LDO2 的电源选择 默认:设置为使用 VSYS 为 LDO2 供电
	J10	VIN_LDO34	LDO3 和 LDO4 的电源选择 默认:设置为使用 VSYS 为 LDO3/4 供电
	J11	EXTLDO_VIN	外部分立式 LDO 的电源选择。 默认:设置为使用 VSYS 为分立式 3.3V LDO 供电
	J4	VIO	VIO 电源选择 默认:设置为使用外部 3.3V 分立式 LDO 作为 I2C 引脚和数字输入引脚 的上拉电源

表 5-1. TPS65219EVM 默认跳线配置 (续)			
		接头	跳线默认位置
	J5	VSEL	高电平 = 如果 LDO 由 3.3V 电源供电,则在 LDO1 上设置 3.3V 输出电压。 低电平 = 在 LDO1 上设置 1.8V 输出电压 (<u>默认 EVM 配置</u>)
多功能引脚设置	8L	MODE/STBY	降压开关模式 高电平 = 强制 PWM (<u>默认 EVM 配置</u>) 低电平 = 自动 PFM
	J12	MODE_RESET	高电平 = 正常工作(<u>默认 EVM 配置</u>) 低电平 = 执行热复位(将目标电压和旁路模式配置重置为默认 NVM 值)

* discharge-duration depends on Vout, Cout and load. Slot-duration needs to adopt. Slot-duration extends up to 8x its configured value.

图 5-4. TPS6521901 断电序列

5.2 配置接头

TPS65219EVM 具有多个可用于更改某些电源轨输入电源的接头。该 PCB 还包含允许使用多功能引脚更改 PMIC 特定功能的接头。每个接头的跳线选项概览如图 5-5 所示。表 5-2 列出了所有接头和每个选项的预期配置。

Supply selection for PMIC LDOs

Configured as VSEL_SD to set the output voltage of LDO1 High: LDO1 = 3.3 (requires PVIN_LDO1=3.3V) Low: LDO1 = 1.8V (LDO1 behaves as a fixed 1.8V LDO)

图 5-5. TPS65219EVM 默认配置 - 跳线

表 5-2. TPS65219EVM 默认跳线配置

	接头		跳线默认位置
电源电压设置	J3	VIN_LDO1	LDO1 的电源选择 默认:设置为使用 BUCK2 为 LDO1 供电
	Jð	VIN_LDO2	LDO2 的电源选择 默认:设置为使用 VSYS 为 LDO2 供电
	J10	VIN_LDO34	LDO3 和 LDO4 的电源选择 默认:设置为使用 VSYS 为 LDO3/4 供电
	J11	EXTLDO_VIN	外部分立式 LDO 的电源选择。 默认:设置为使用 VSYS 为分立式 3.3V LDO 供电
	J4	VIO	VIO 电源选择 默认:设置为使用外部 3.3V 分立式 LDO 作为 I2C 引脚和数字输入引脚 的上拉电源

EVM 配置

☆ 5-2. TF 3052 T9E VM 款伙邸线癿且(筷)			
	接头		跳线默认位置
	J5	VSEL	高电平 = 如果 LDO 由 3.3V 电源供电,则在 LDO1 上设置 3.3V 输出电压。 低电平 = 在 LDO1 上设置 1.8V 输出电压(<u>默认 EVM 配置</u>)
多功能引脚设置	J8	MODE/STBY	降压开关模式 高电平 = 强制 PWM (<u>默认 EVM 配置</u>) 低电平 = 自动 PFM
	J12	MODE_RESET	高电平 = 正常工作(<u>默认 EVM 配置</u>) 低电平 = 执行热复位(将目标电压和旁路模式配置重置为默认 NVM 值)

表 5-2. TPS65219EVM 默认跳线配置 (续)

5.3 测试点

TPS65219EVM EVM 包含用于各种测量的多个测试点。测试点的引线分配如下表所示。

表 5-3. TPS65219 EVM 测试点

测试点	相关引线
TP1	VSEL_SD/VSEL_DDR
TP2	GND
ТР3	VSYS
TP4-5	GND
TP6	VDD1P8
TP7-10	GND
TP11	MODE/STBY
TP12	GND
TP13	GND
TP14	PB/EN
TP15	降压转换器 1 输出 SENSE
TP16	降压转换器 2 输出 SENSE
TP17	降压转换器 3 输出 SENSE
TP18	LDO 1 输出 SENSE
TP19	LDO 2 输出 SENSE
TP20	LDO 3 输出 SENSE
TP21	LDO 4 输出 SENSE
TP22	MODE/RST
TP23	降压转换器 1 输出
TP24	降压转换器 2 输出
TP25	降压转换器 3 输出
TP26	LDO 1 输出
TP27	LDO 2 输出
TP28	LDO 3 输出
TP29	LDO 4 输出
TP30-36	GND

表 5-3. TPS65219 EVM 测试点 (续)

测试点	相关引线
TP37	GPIO
TP38	GPO1
TP39	GPO2
TP40	nINT
TP41	nRSTOUT
TP42	SDA
TP43	USB_5V
TP44	GND
TP45	SCL
TP46	MCU3V3

6图形用户界面(GUI)

本部分介绍了德州仪器 (TI) TPS65219/TPS65220 图形用户界面 (GUI) 工具的使用和功能。

6.1 入门

入门涉及以下步骤:

- 1. 在"Gallery"中找到该 GUI
- 2. 下载所需软件
 - a. GUI Composer Runtime (用于从 Web 浏览器运行该 GUI)
 - b. 该 GUI 的离线版本
- 3. 启动 GUI。

PMIC GUI 基于与 Chrome[®] (46 以上版本)或 Firefox[®] (38 以上版本)兼容的 GUI Composer。建议使用 Chrome 网络浏览器,本文档通篇使用该浏览器进行演示。PMIC GUI 还与 Microsoft Edge[®] (自版本 111.0.1661.41 起)兼容。可以通过 TI DevTools 页面中的 TI 开发工具找到该 GUI。从"Tools"选项卡(在图 6-1 中以蓝色突出显示)导航至"Gallery"是进入"Gallery"的一种方式。

🦻 TI develo	per zone	Login Register
TI develo Access all the develop	ment tools, soti (2) GUI Composer (2) GUI Composer (2) Resource Explorer	sily develop, debug and analyze code on your desixtop or in the cloud.
Get starte	d SysConfig	
Select a board o	device	~v
Common ac	tions hew project composer Studio™ Cloud IDE	Browse software and examples with Resource Explorer Download the Code Composer Studio [™] IDE and start development on your desktop
About TI	Quick links	Buying Connect with us

图 6-1. GUI Composer Gallery

在"Gallery"中,使用搜索栏并输入 TPS65219_GUI,找到 TPS65219_GUI 面板(如图 6-2 所示)。

Gallery			Login / register
		Search	Q
We've found 2 result(s) for "TPS65219_GUI"	Sort by Best Match ~		
Oktober			
Version 1.00 by PMIC (Group) TPS65219 graphical user interface (GUI). Supports all variants of the TPS65219 and TPS65220 PMICs. Supports DIVI			
(☐) (☐) ≛ () 57 Views			
Dashboards. Applications. and Components are distributed with a TSPA license.			
V TEXAS INSTRUMENTS		© Copyright 1995-2023 Texas Instruments Incorpora Trademarks Privscy Policy Cookie Policy Terma	ted. All rights reserved s of Use Terms of Sal

图 6-2. 在"Gallery"中找到 PMIC GUI

6.1.2 下载所需的软件

独立的 GUI 和 GUI Composer Runtime 都可通过"PMIC"面板获取。同样,GUI Composer Runtime 使 GUI 能够通过 Web 浏览器运行,但需要连接互联网才能运行 GUI。相比之下,独立的 GUI 要大得多,但不需要连接互联网。

如图 6-3 所示,在将光标放置在下载图标上时,弹出窗口中会显示下载选项。上部三个选项提供相应操作系统的 独立下载,而下部三个选项提供 GUI Composer Runtime 的独立下载。

图 6-3. GUI 软件下载选项

6.1.3 *启动* GUI

下载相应的软件后,可以通过 PC 应用在本地启动 GUI,也可以使用 Gallery 通过 TI 云启动。若要使用 TI 云版本 的 GUI,只需点击面板中与下载或信息图标无关的任意位置,如图 6-4 所示。

图 6-4. Gallery 中的 GUI 面板。

图 6-5 展示了 PC 应用的一个示例。

图 6-5. PMIC GUI 桌面应用

6.1.4 *连接到* EVM

借助自述文件文本框,用户可将 EVM 电路板连接到计算机。如果用户要再次查看自述文件,可从 GUI 仪表板左 上角的 *Help* 选项卡访问自述文件。用户还可以在此找到 *About* 选项,获取有关 GUI 版本和其他文档的信息。

用户取消自述文件消息框后,GUI将显示主页,如图 6-6 所示。在这里,用户可以看到 TPS65219 电源结构概 览。分支部分显示了 TPS65xxx 系列的替代版本可为设计提供哪些功能。

在主页底部,用户可以导航至后续部分中介绍的其他 GUI 页面。也可以在 GUI 界面的左侧找到这些页面。

File	Options Tools Help				
0		TPS65219	/ TPS65220 Graphical User I	nterface	
ø			Power Management IC (PMIC)		
/		PMIC V5Y3 PVN_81 0.54 max)	Package 4 mm × 4 mm, 0.4 mm 5 mm × 5 mm, 0.5 mm Term, Ta: -40C to 105C	19 m pitch VQFN m pitch VQFN	
÷		PVIN_B2 BUCK2 (2A max)	Switching Mode Quasi-fixed frequence	y (PFM & PWM)	
Ŧ		PVIN_B3 (2A max) (2A max) PVIN_LD01 (400mm max)	DIY User-programmable	/ DIY available!	
~		PVIN_LD02 LD02 (400mA max)	TPS652	220	
		(300mA max) PVIN_LD034 LD04 (300mA max)	Package 5 mm × 5 mm, 0.5 m Temp Ta: -40C to 125C Ti: -40C to 150C	m pitch VQFN	
		Analog EN/PB/VSENSE	Switching Quasi-fixed frequen Mode Fixed Frequency (su	cy (PFM & PWM) upports spread spectrum)	
		SDA DINT	FS Functional Safety C	apable	
		nRSTOUT VSEL SD /	TPS65219 - Q1	(automotive)	
		VSEL_DDR MODE / STBY	Temp Ta: -40C to 125C Temp Tj: -40C to 150C		
		GPIO	Switching Quasi-fixed frequency Mode Fixed Frequency (su	cy (PFM & PWM) pports spread spectrum)	
		GP01 GP02 Digital	FS Functional Safety Ca	apable	
			home		
	e		- 8 - 8	٣	\checkmark
	Collateral	Registers	Settings	Programming	NVM Verification
	user Guide, Datasneets, Radiation Reports and more	LUW IEVEI FOISIEF FEBD and WITE ODEFATIONS	Galibration and GPIO Settings	Easy steps to contidure AUS device	Comparison against an NVM the
ළි ස	USB2ANY/OneDemo device Hardware Connected.				Pointed By GUI Composition Texas Instruments

图 6-6. GUI 主页

6.2 配套资料页面

图 6-7 中所示的 "Collateral"页面包含使用 TPS65219 或 TPS65220 PMIC 的相关文档。您可以在此处找到指向 EVM 用户指南、数据表、处理器电源设计应用手册以及效率和热估算工具的链接。

页面底部有一条指向我们 E2E 论坛的链接,其中包含有关 GUI 或 PMIC 的技术问题。

File	Options Tools Help			
*	E Collateral			
/		PDF		
÷	User Guide	Data Sheet		
	TP3002 TEEVW User's Guide	TPS65220 Datasheet		
1		TPS65219-Q1 Datasheet		
~				
		IB		
	Application Notes	Tools		
	Powering the AM62x with the TPS65219 PMIC	Efficiency and Thermal-Estimator		
	Powering the AM64x with the TPS65220 or TPS65219 PMIC			
	Questions about the GUI or PMIC? Te	echnical support available on E2E!		
	Link to PMIC E2	E forum		
ළ ල	LUSEZANY/OneDemo device Hardware Connected.	Privat By GU Company 👋 TEXAS INSTRUMENTS		

图 6-7. 配套资料页面

6.3 寄存器映射页面

"Register Map"页面列出了可用于配置的不同寄存器,旨在用于直接读取和写入 PMIC 寄存器,如图 6-8 所示。寄存器读取和写入操作可以单独完成,也可以一次性全部完成。可以使用 READ ALL REGISTERS 按钮旁的下拉菜单选择自动读取时序,从而启用"Auto Read"特性。使用页面顶部的搜索栏,按名称或地址搜索寄存器。

搜索栏下方的前三列依次显示每个寄存器的名称、十六进制地址和数据值。Bits 列包含每个寄存器的位值,可通 过取消选中页面顶部 READ ALL REGISTERS 按钮下方的 Show Bits 框将这些列隐藏。双击此部分中的位可更改 位值。

页面右侧的"Field View"部分显示了按相应控制块分组的寄存器位。用户可以点击任何位字段框以查看 Bits 列中 以黄色突出显示的相应位。每个字段都有一个名称,以每个框顶部的蓝色文本显示。通过选中 Search Bitfields 框 (在 Show Bits 旁边),可以使用搜索栏找到这些名称。

在 *Immediate Write* 模式(位于页面右上角的下拉选项)下,写入按钮呈灰色显示,因为每次在"Field View"中进行更改(位更改或十六进制值更改)后,会立即对各个寄存器分别进行写入。在 *Deferred Write* 模式下,选择 *WRITE REGISTER* 或 *WRITE ALL REGISTERS* 按钮后,单个寄存器或所有寄存器才会执行写入。

ile Options Tools Help								READ R			
Register Map					AUto H			•	LOISTER 10	SAD ALL REGISTER	Deletion And A
Q Search Registers by name or address (0x)								Searcl	h Bitfields	Show Bits	
Register Name	Address	Value	7	6	5	4	Bits	2	1	0	TI DEV ID
Device Registers					-			-			
TI_DEV_ID	0 0x00	0x00	0								A DECEMBER / ILDEV_ID / RESERVED(6:0)
NVM_ID	0x01	0x05	0	0	0	0	0	1	0	1	B RESERVED D000000
ENABLE_CTRL	0x02	0x00		0	0	0	0	0	0	0	Device Registers / TLDEV. ID / TLDEVICE. ID[7]
BUCKS_CONFIG	0x03	0×00	0	0	0	0	0	0	0	0	TI DEVICE ID
LD04_VOUT	0x04	0x80	1	0	0	0	0	0	0	0	DEVICE_ID
LD03_VOUT	0x05	0x80	1	0	0	0	0	0	0	0	TA: -40C to 105C, TJ: -40C to 125C 🗸
LD02_V0UT	0x06	0×00	0	0	0	0	0	0	0	0	
LD01_V0UT	0x07	0x00	0	0	0	0	0	0	0	0	
BUCK3_VOUT	0x08	0x80	1	0	0	0	0	0	0	0	
BUCK2_VOUT	0x09	0x80	1	0	0	0	0	0	0	0	
BUCK1_VOUT	0x0A	0×80	1	0	0	0	0	0	0	0	
LD04_SEQUENCE_SLOT	0×0B	0x00	0	0	0	0	0	0	0	0	
LDO3 SEQUENCE SLOT	0x0C	0x00	0	0	0	0	0	0	0	0	
LD02 SEQUENCE SLOT	0x0D	0×00	0	0	0	0	0	0	0	0	
LDO1 SEQUENCE SLOT	0x0E	0x00	0	0	0	0	0	0	0	0	
BUCK3 SEQUENCE SLOT	0x0F	0x00	0	0	0	0	0	0	0	0	
BUCK2 SEQUENCE SLOT	0x10	0x00	0	0	0	0	0	0	0	0	
BUCK1 SEQUENCE SLOT	0x11	0×00	0	0	0	0	0	0	0	0	
PRST_SEQUENCE_SLOT	0x12	0x00	0	0	0	0	0	0	0	0	
	0x13	0x00	0	0	0	0	0	0	0	0	
GP02 SEQUENCE SLOT	0x14	0×00	0	0	0	0	0	0	0	0	
GR01 SEQUENCE SLOT	0v15	0×00	0	0	0	0	0	0	0	0	
	0x16	0×00	0	0	0	0	0	0	0	ů	
	0x17	0×00	0			0	0	0	0	0	
	0x18	0×00	0	0	0	0	0	0	0	0	
	0x19	0×00	0	0	0	0	0	0	0	ů	
POWER DOWN SLOT DURATION 1	0x10	0x00	0	0	ő	0	0	0	0	ő	
	0x18	0×00				0	0	0	0	0	
	0x10	0x00					0		0	0	
POHER_DOWN_SEDI_DORAHON_S	0x1C	0,00		0			0	v	v		•
Co + URP2ANV/DeeDemo douice Hardware Connected											Ja Teyas Instrument

图 6-8. 寄存器映射页面

备注

尽管所有寄存器都显示在"Register Map"页面中,但并非所有寄存器都可以通过该页面进行编辑。尝试写入只读寄存器不会生成错误。由于每次写入都会伴随一次相关的读取,因此"Register Map"的显示内容会更新,以反映写入尝试并未更改这些位。

6.4 NVM 配置页面

NVM 配置页面(如图 6-9 所示)是 GUI 的主要特性,突出了 PMIC 的可配置性。在该页面上,寄存器字段根据 用例进行分组,并进行标记以指示每个块控制 PMIC 的哪一部分。NVM 配置页面还提供了一个界面,用于保存自 定义配置或将现有配置加载到目标器件的 NVM 中。使用页面左上角的 READ ALL REGISTERS 按钮可读取所有 寄存器。

File	Options Tools Help	þ							
÷	= Configuration -	NVM fields							
٥	READ ALL REGISTERS Note: Changing the value in a dropdown menu will cause an immediate I2C write to the associated register unless immediate write setting is changed on Register Map page.								
,	PMIC Status	Power Resources	Digital Pins C	Configuration	Power-Up Sequence P	Power-Down Sequence Mask Settings			
	Device ID	Enabled Rails (Active State)	BUCK1 Interrupts	BUCK2 Interrupts	BUCK3 Interrupts				
;	0 TI_DEVICE_ID 0x5 NVM ID	BUCK1 LD01 BUCK2 LD02	GPIO BUCK1 Under Voltage GPO1 BUCK1 overcurrent (Po	e BUCK2 Under Volta Positive) BUCK2 overcurrent	ge BUCK3 Under Voltage (Positive) BUCK3 overcurrent (Positive)				
	0x30 I2C_ADDRESS	BUCK3 LD03 LD04	GPO2 BUCK1 overcurrent (No	to GND BUCK2 overcurrent	(Negative) BUCK3 overcurrent (Negative)				
Ť	ACTIVE	2004	BUCK1 Residual Voltage	age BUCK2 Residual Vo	tage BUCK3 Residual Voltage				
	State		BUCK1 RV shutdown	BUCK2 RV shutdow	n BUCK3 RV shutdown				
	LDO1 Interrupts	LDO2 Interrupts	LDO3 Interrupts	LDO4 Interrupts	Temperature Interrupts				
	LDO1 Under Voltage	LDO2 Under Voltage	LDO3 Under Voltage	LDO4 Under Voltage	Sensor 0 Warm Sensor 0 Hot				
	LDO1 overcurrent	LDO2 overcurrent	LDO3 overcurrent	LDO4 overcurrent	Sensor 1 Warm Sensor 1 Hot				
	 LDO1 Short Circuit to LDO1 Residual Voltage 	GND De LDO2 Short Circuit to GND	LDO3 Short Circuit to GND LDO3 Residual Voltage	LDO4 Short Circuit to GND LDO4 Residual Voltage	 Sensor 2 Warm Sensor 3 Warm Sensor 3 Hot 				
	LDO1 RV shutdown	LDO2 RV shutdown	LDO3 RV shutdown	LDO4 RV shutdown	• • • • • • • • • • • • • • • • • • • •				
						-			
						Forward By GUI Comp	poserTH		
<i>8</i> e	 USB2ANY/OneDemo device 	Hardware Connected.				🐺 Texas Instrum	ENTS		

图 6-9. NVM 配置页面

6.4.1 NVM 字段

可以在 NVM 配置页面上更改寄存器设置,并遵循"Register Map"页面上指定的寄存器写入设置("Immediate Write"或"Deferred Write")。

PMIC Status 选项卡包含一组只读状态寄存器,这些寄存器会显示器件 ID 值以及所有电源轨启用和中断 (显示为数字 LED)。本部分提供有关 PMIC 及运行条件的快速视觉反馈。

Power Resources 选项卡包含 PMIC 每个电源轨的寄存器设置。用户还可以在此处找到 LDO1 和 LDO2 配置设置的参考表 (有关负载开关和旁路模式的更多信息,请参阅 "Collateral"页面中包含的器件数据表)。

Sequence 选项卡用于控制电源轨序列和时序寄存器以进行上电和下电。

Digital Pins Configuration 选项卡用于控制数字 I/O 引脚的设置(有关多功能引脚的详细信息,请参阅 PMIC 数据表)。

Mask Settings 选项卡可供用户控制 PMIC 保护特性的故障报告,包括对欠压、温度和中断信号的屏蔽。

6.4.2 创建和加载自定义配置

"NVM 配置"页面无需硬件来开发 NVM 配置。只有在尝试将配置上传到目标器件中时才需要连接实际器件。

将寄存器设置为所需配置后,请使用屏幕项部 File 选项卡下的 Register File Format 选项,为配置文件选择一种格式(如图 6-10 所示)。寄存器配置可保存为 CSV(逗号分隔值)或 JSON(JavaScript 对象表示法)格式。接下来,使用 Save Registers As…选项以所选格式保存您的配置。创建文件后,您可以使用 Save Registers 选项保存对寄存器配置所做的任何更改。该选项会将更改保存到当前加载的配置。

要将现有配置加载到 NVM 中,请使用 Load Registers 选项并浏览至配置文件位置。

图 6-10. 保存/加载寄存器选项

6.5 序列配置

TPS65219 GUI 具有序列配置选项卡,用于修改和绘制上电和下电序列。*Power-Up Sequence* 和 *Power-Down Sequence* 选项卡根据相应的设置,将每个信号的电压电平绘制为时间的函数。

绘制特性

图 6-11 展示了序列配置选项卡的特性。

PMIC Status	Power Resources	Digital Pins Configuration	Power-Up Sequence
	P	Power-Up Sequence	
Slot Assignment	Slot Duration	Rewardla Sequence	<u>+ 0 5 % - 1 4 7 </u>
Buck1 slot_5 V	Slot_0 1.5 ms 🗸	Fower-op Sequence	Ă I
Buck2 slot_0 V	Slot_1 0 ms 🗸		
Buck3 slot_4 V	Slot_2 3 ms 🗸	BUCK2	BUCK2 GPI0
LDO1 slot_2 V	Slot_3 1.5 ms 🗸	GPIO-	GP02
LDO2 slot_6 V	Slot_4 1.5 ms 🗸		LD03
LDO3 slot_2 ¥	Slot_5 1.5 ms 🗸		GP01
LDO4 slot_2 V	Slot_6 1.5 ms 🗸	LD03	BUCK3
GPIO slot_0 V	Slot_7 10 ms 🗸	LD04	LD02 nRSTOUT
GP01 slot_2 V	Slot_8 1.5 ms ¥	GP01	_ _ _
GPO2 slot_0 V	Slot_9 10 ms 🗸	BUCK3	
nRSTOUT slot_9 🗸	Slot_10 0 ms 🗸	BUCK1	
	Slot_11 0 ms 🗸	LD02-	
	Slot_12 0 ms 🗸	nRSTOUT-	
	Slot_13 0 ms 🗸	0ms 5ms 10ms 15ms 20ms 25ms	30ms 7
	Slot_14 0 ms 🗸	time (ms)	
	Slot_15 0 ms 🗸		
		GENERATE PLOT	

图 6-11. 序列绘制工具

备注 图中的上升和下降持续时间不准确。实际上升和下降时间取决于负载电容和其他变量。

- 1. Power-Up Sequence 和 Power-Down Sequence 绘制选项卡。
- 2. 绘制时,在活动状态下禁用的电源轨始终保持低电平。在 Power Resources 或 Digital Pins Configuration 选项卡中配置这些设置。
- 3. 时隙分配: TPS65219 具有 16 种可能的时隙分配(时隙 0 至时隙 15),可将这些时隙分配给每个电源轨, 以实现灵活的电源序列。
- 4. 时隙持续时间:TPS65219 具有四个可能的时隙持续时间(0ms、1.5ms、3ms、10ms),可将这些时隙持续时间分配给每个时隙,以实现灵活的电源序列。
- 5. 将鼠标悬停在图上时,将显示绘制菜单栏。菜单栏选项对该特性进行了详细说明
- 6. 点击图例中的信号可更改可见性。
- 7. 按下 Generate Plot 按钮可绘制设计。根据哪个信号先上升或先下降来对信号进行排序

菜单栏选项

绘制菜单栏有多项设置,包括:

- 摄像机: 将绘图下载为 PNG 格式
- 缩放:在图上左键点击并拖动鼠标可放大所选区域。默认启用。
- 平移: 左键点击并拖动鼠标可导航绘图。
- 放大
- 缩小
- 自动缩放图形
- 复位轴
- 像尖峰那样切换
- 悬停时显示最近的数据
- 悬停时比较数据。默认启用。

6.6 NVM 编程页面

可在 NVM 编程页面对器件 NVM 存储器重新编程,以更改默认寄存器设置。本页包含四个主要功能,分别与图 6-12 中所示的按钮相对应。仅当从"初始化"状态(PMIC 电源轨关闭)对 PMIC 重新编程时,才需要前两个步骤,即 I2C OFF REQUEST 和 ENABLE I2C COMMUNICATION。

- I2C OFF REQUEST 按钮通过 I2C 触发关闭请求,并将 PMIC 发送至"初始化"状态。
- ENABLE I2C COMMUNICATION 按钮可在"初始化"状态下启用 I2C 通信。
 - 启用 I2C 通信后,可以转到 NVM 配置页面,以选择所需的寄存器设置,或使用 *File* 选项卡选项加载预配 置的 JSON 或 CSV 文件。
- NVM PROGRAMMING 按钮可将所选的寄存器设置编程到 NVM 中。
- VALIDATE NVM PROGRAMMING 按钮可用于读取 NVM 内容,并将其与所选寄存器设置进行比较。结果 (PASS 或 FAIL)存储在寄存器 0x34 的字段 7 NVM_VERIFY_RESULT 中。

File	Options Tools Help						
+	F Programming						
٥	NVM Programming						
/							
÷	#1 I2C OFF REQUEST This button triggers an OFF request through I2C and sends the PMIC to Initialize state. Register adverse, tocs? (MFP_CTRL) I2C write .0x01 (2C_OFF_RED)						
9 ~	# 2 ENABLE I2C COMMUNICATION This button enables I2C communication in Initialize state. Register adverse, toxAl (USER, VM, CMD_REG) I2C write: 0x09 (EN_OSC_DV)						
	# 3 Go to the "Configuration" tab and update NVM fields						
	#.4 NVM PROGRAMMING This button programs the selected register settings into the NVM. Register address: 0x34 (USER, NVM_CMD_REG) 12C write: 0x04 (CUST_PROG_CMD)						
	SVALIDATE NVM PROGRAMMING This button reads the NVM content and compares it with the selected register settings. This button reads the NVM content and compares it with the selected register settings. The result (PASS or FALL) is stored in register 0x34, field 7 "NVM_VERIFY_RESULT". Register address: 0x34 (USER_NVM_CMD_REG) I2C write: 0x07 (CUST_NVM_VERIFY_CMD)						
<i>8</i> G	USB2AWY/OneDemo device Hardware Connected.	💠 Texas Instruments					

图 6-12. NVM 编程页面

6.7 附加特性

在 GUI 界面顶部的 "Options" 选项卡中,用户可以选择 Serial Port ··· 来显示有关 EVM 与计算机连接的信息。

Tools 选项卡包括 Log pane 选项。选择该选项可打开一个窗口,其中列出了来自 GUI 应用程序的最新消息和警告。这些报告标有收到每份报告的日期和时间。在日志窗口的右上角,用户可以滤除不同的信息类型,保存事件列表,以及清除或关闭日志窗口。

7 原理图、PCB 布局和物料清单 7.1 TPS65219EVM 原理图

图 7-1. TPS65219EVM,原理图(第1页)

图 7-2. TPS65219EVM,原理图(第 2 页)

7.2 TPS65219EVM PCB 层

图 7-3. TPS65219EVM 顶层

图 7-4. TPS65219EVM - 信号层 1

图 7-5. TPS65219EVM - 信号层 2

图 7-6. TPS65219EVM - 信号层 3

图 7-7. TPS65219EVM - 信号层 4

图 7-8. TPS65219EVM - 底层

7.3 TPS65219EVM 物料清单

表 7-1. 物料清单

位号	数量	值	说明	器件型号	
C1、C2、C7、C10	4	10µF	电容器,陶瓷,10μF,10V,+/-20%,X5R,0402	CL05A106MP5NUNC	Samsung Electro-Mechanics
C3、C4	2	22 µ F	电容,陶瓷,22 μ F,6.3V,+/-20%,X5R,0603	GRM188R60J226MEA0D	MuRata
C5、C11	2	1µF	电容器,陶瓷,1 μ F,35V,+/-20%,X5R,0402	GRM155R6YA105ME11D	MuRata
C6	1	150µF	电容器,钽,150μF,6.3V,+/-20%,0.025Ω,SMD	T520B157M006ATE025	Kemet
C8、C9	2	0.1uF	电容,陶瓷,0.1µF,10V,+/-20%,X5R,0402	885012105010	Wurth Elektronik
C12、C13、C14、C17	4	4.7µF	电容,陶瓷,4.7uF,10V,+/-10%,X7S,0603	C1608X7S1A475K080AC	TDK
C15、C16、C18、C19、 C27、C28、C29、C30	8	2.2 µ F	电容,陶瓷,2.2 µ F,10V,+/-10%,X7S,0402	C1005X7S1A225K050BC	ТDК
C20、C22、C23	3	10µF	电容,陶瓷,10uF,6.3V,X7R,±10%,SMD,1206, +125℃,压纹 T/R	CL31B106KQHNFNE	Samsung
C21、C25、C26	3	47µF	电容,陶瓷,47µF,6.3V,+/-20%,X7S,1206	C3216X7S0J476M160AC	TDK
C31	1	3300pF	电容,陶瓷,3300pF,50V,+/-10%,X7R,0603	C0603C332K5RACTU	Kemet
C32	1	100pF	电容,陶瓷,100pF,16V,+/-10%,X7R,0201	GRM033R71C101KA01D	MuRata
C33	1	0.47uF	电容,陶瓷,0.47µF,16V,+/-10%,X7S,0402	CGA2B1X7S1C474K050BE	TDK
C34	1	220pF	电容,陶瓷,220pF,16V,+/-10%,X7R,0201	GRM033R71C221KA01D	MuRata
C35、C38、C39	3	0.1µF	电容,陶瓷,0.1µF,16V,+/-10%,X7R,0402	GCM155R71C104KA55D	MuRata
C36	1	1000pF	电容,陶瓷,1000pF,50V,+/-10%,X7R,0603	C0603C102K5RACTU	Kemet
C37、C40	2	22pF	电容,陶瓷,22pF,50V,+/-5%,C0G/NP0,0603	06035A220JAT2A	AVX
D1、D2、D3、D5	4	绿色	LED,绿色,SMD	LG L29K-G2J1-24-Z	OSRAM
D4	1		红色 631nm LED 指示 - 分立式 2.2V 0603 (公制 1608)	HSMZ-C190	Broadcom
D6	1	红色	红色 631nm LED 指示 - 分立式 2.2V 0603 (公制 1608)	HSMZ-C190	Broadcom
D7	1	绿色	LED,绿色,SMD	150060VS75000	Wurth Elektronik
H1、H2、H3、H4	4		Bumpon,半球形,0.44 X 0.20,透明	SJ-5303 (CLEAR)	3М
H5	1		要放置在插座 XU1 中的 IC	TPS6521905RHBR	德州仪器 (TI)
J1	1		接头,100mil,3x1,镀金,TH	PBC03SAAN	Sullins Connector Solutions
J2、J3、J4、J5、J6	5		接头,100mil 2x2,锡,TH	PEC02DAAN	Sullins Connector Solutions
J7	1		接头,100mil,3x2,镀金,TH	TSW-103-07-G-D	Samtec
J8、J9、J10	3		接头,100mil,3x1,镀金,TH	TSW-103-07-G-S	Samtec
J11	1		连接器,插座,Micro-USB Type AB,R/A,底部安装 SMT	475890001	Molex
J12	1		接头(有罩),100mil,5x2,高温,镀金,TH	N2510-6002-RB	3M

表 7-1. 物料清单(续)

位号	数量	值	说明	器件型号	制造商
J13、J14、J15	3		接头,100mil 2x1,锡,TH	PEC02SAAN	Sullins Connector Solutions
L1	1	240nH	电感器,屏蔽,金属复合物,240nH,5A,0.019 Ω, SMD	DFE201612E-R24M=P2	MuRata
L2、L4	2	0.47uH	薄膜功率电感器,0.47uH,20%,4.5A,29mΩ,0805	TFM201208BLE-R47MTCF	TDK
L3	1	0.47uH	470nH 屏蔽线绕电感器,7A,23mΩ(最大值),2- SMD	SRP3020TA-R47M	Bourns
LBL1	1		热转印打印标签,0.650"(宽)x0.200"(高)-10,000/卷	THT-14-423-10	Brady
Q1、Q2、Q3	3		30V N 通道 NexFET ? 功率 MOSFET	CSD17318Q2	德州仪器 (TI)
Q4、Q5	2	-20V	MOSFET,P 沟道,-20V,-20A,DQK0006C (WSON-6)	CSD25310Q2	德州仪器 (TI)
Q6、Q7、Q8	3	50V	MOSFET,N 沟道,50V,0.22A,SOT-23	BSS138	Fairchild Semiconductor
R1、R4、R7、R9、R13	5	1.0Meg	电阻,1.0M,5%,0.1W,AEC-Q200 0 级,0603	CRCW06031M00JNEA	Vishay-Dale
R2、R5、R8、R11、R14	5	330	电阻,330,5%,0.063W,AEC-Q200 0 级,0402	CRCW0402330RJNED	Vishay-Dale
R3、R6、R40	3	100k	电阻,100k,5%,0.1W,AEC-Q200 0 级,0402	ERJ-2GEJ104X	Panasonic
R10、R26	2	1.5k	电阻,1.5k,5%,0.063W,AEC-Q200 0 级,0402	CRCW04021K50JNED	Vishay-Dale
R12	1	205k	电阻,205kΩ,1%,0.1W,0603	RC0603FR-07205KL	Yageo
R15	1	680	电阻,680,5%,0.1W,0603	RC0603JR-07680RL	Yageo
R16、R17、R18、R25、 R27、R29、R32、R33	8	10k	电阻,10k,5%,0.063W,AEC-Q200 0 级,0402	CRCW040210K0JNED	Vishay-Dale
R20、R21、R38、R39	4	1.0k	电阻,1.0k,5%,0.063W,AEC-Q200 0 级,0402	CRCW04021K00JNED	Vishay-Dale
R23	1	1.0Meg	电阻,1.0M,5%,0.063W,AEC-Q200 0 级,0402	CRCW04021M00JNED	Vishay-Dale
R24	1	1.07Meg	电阻,1.07M,1%,0.063W,AEC-Q200 0 级,0402	CRCW04021M07FKED	Vishay-Dale
R28、R30	2	33	电阻,33.0,1%,0.1W,AEC-Q200 0 级,0603	CRCW060333R0FKEA	Vishay-Dale
R31	1	120k	电阻,120k,5%,0.063W,AEC-Q200 0 级,0402	CRCW0402120KJNED	Vishay-Dale
R34	1	1.50k	电阻,1.50k,1%,0.1W,AEC-Q200 0 级,0603	CRCW06031K50FKEA	Vishay-Dale
S1	1		开关,滑动式, SPDT, 0.2A, J 形引线, SMD	CL-SB-12A-01T	Copal Electronics
SH-J1、SH-J2、SH-J3、 SH-J4、SH-J5、SH-J6、 SH-J7、SH-J8、SH-J9、 SH-J10、SH-J12	11	1x2	分流器,100mil,镀金,黑色	SPC02SYAN	Sullins Connector Solutions
SW1	1		开关,触控式,N.O.SPST 圆形按钮弯头 32VAC 32VDC 1VA 100000 周期 3N SMD Tube/T/R	KT11P3JM34LFS	C&K Components

表 7-1. 物料清单(续)

位号	数量	值	说明	器件型号	制造商
TP1、TP2、TP9、 TP11、TP13、TP15、 TP17、TP19、TP22、 TP29、TP30、TP31、 TP32、TP33、TP41、 TP42	16		PCB 引脚,模锻支架,TH	2505-2-00-44-00-00-07-0	Mill-Max
TP3、TP4、TP5、TP6、 TP7、TP8、TP10、 TP12、TP14、TP16、 TP18、TP20、TP23、 TP27、TP28、TP34、 TP35、TP36、TP37、 TP38、TP39、TP40、 TP43、TP44、TP45、 TP46、TP47、TP50	28		测试点,微型,SMT	5015	Keystone
TP21	1		测试点,通用,黄色,TH	5014	Keystone
U1	1		采用 1.5mm x 2.5mm QFN 封装的 2.4V 至 5.5V 输入、 6A 降压转换器	TPS62867RQY	德州仪器 (TI)
U2、U3	2		5.5V,2A,38m? 具有快速输出放电功能的负载开关, YFP0004AAAA (DSBGA-4)	TPS22915CYFPR	德州仪器 (TI)
U4	1		25MHz 混合信号微控制器,具有 128KB 闪存、8192 B SRAM 和 63 GPIO,-40℃ 至 85℃,80 引脚 QFP (PN),绿色(符合 RoHS 标准,无锑/溴)	MSP430F5529IPN	德州仪器 (TI)
U5	1		具有电源钳位的 4 通道 USB ESD 解决方案,DRY0006A (USON-6)	TPD4S012DRYR	德州仪器 (TI)
XU1	1		插座,QFN-32,0.5mm 间距,TH	QFN-32_40_BT-0.5-02-00	Enplas Tech Solutions
Y1	1		晶振,24.000MHz,20pF,SMD	ECS-240-20-5PX-TR	ECS Inc.

8 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

C	nanges from Revision * (May 2022) to Revision A (September 2024)	Page
•	通篇进行了更新,以反映新的 EVM 版本	1

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司