EVM User's Guide: TPLD801-DRL-EVM **TPLD801-DRL-EVM** 评估模块

TEXAS INSTRUMENTS

说明

借助 TPLD801-DRL-EVM,用户无需将 TPLD801DRL 器件焊接到电路板上即可对器件进行配置。用户可以使用 InterConnect Studio (ICS)进行快速评估、开发、仿真和编程。编程完成后,即可从插座移除 TPLD 器件并将其置于用户的系统中。

开始使用

- 1. 订购 TPLD801-DRL-EVM 和 TPLD-PROGRAM
- 2. 下载最新版本的 InterConnect Studio (ICS)
- 3. 使用 TPLD-PROGRAM 套件随附的电缆连接系统
- 4. 将未编程的 TPLD801DRL 插入插座中,并使用 ICS 进行配置

特性

- 可使用 DRL 插座轻松对 TPLD801DRL 进行编程和 评估
- 通过输入按钮和输出 LED 可实现快速评估
- 可通过接头引脚和测试点来连接定制系统
- 使用标准键控 14 引脚电缆与 TPLD-PROGRAM 连接

应用

- 工厂自动化和控制
- 通信设备
- 零售自动化和支付
- 测试和测量
- 专业音频、视频和标牌
- 个人电子产品

1 评估模块概述

1.1 引言

TPLD801 属于 TI 可编程逻辑器件 (TPLD) 系列器件,具有多用途可编程逻辑 IC,支持组合逻辑和顺序逻辑功能。TPLD 提供了一个集成的低功耗设计来实现常见的系统功能,例如时序延迟、电压监控器、系统复位、电源序列发生器、I/O 扩展器等。

本用户指南包含 TPLD801DRL 评估模块 (EVM) 的支持文档。本指南介绍了如何设置和配置 EVM、如何将 EVM 与 TPLD-PROGRAM 板结合使用,以及如何使用 InterConnect Studio 配置 TPLD801。此外,本指南还介绍了 TPLD801-DRL-EVM 的印刷电路板 (PCB) 布局布线、原理图和物料清单 (BOM)。

备注 为了对器件进行编程,需要 TPLD-PROGRAM 板和 InterConnect Studio。

TI 仅支持使用 TPLD-PROGRAM 套件中提供的电缆连接 EVM 和编程器板。

1.2 套件内容

表 1-1. TPLD801-DRL-EVM 套件内容

物品	说明	数量
TPLD801-DRL-EVM	PCB	1
TPLD801DRL	8 引脚 TI 可编程逻辑器件	6
快速入门指南	系统设置指南	1

1.3 规格

参数	条件	最小值	典型值	最大值	单位
Vcc	由编程器提供支持		3.3		V
Vcc	外部电源	1.71		5.5	V
Vi	每引脚输入	0		Vcc	V
Vo	每引脚输出	0		Vcc	V
GPI	输入	0		Vcc	V

1.4 器件信息

TPLD801 是一款成本优化型器件,它在小型封装中提供了一组丰富的功能,支持从-40°C 到 125°C 的工作温度 范围,并可在 1.71V 至 5.5V 的电源电压范围内运行。系统设计人员可以通过 InterConnect Studio 软件创建电路 并配置宏蜂窝、I/O 引脚和互连,方法是临时模拟非易失性存储器或对一次性可编程 (OTP) 进行永久编程。

2 硬件

2.1 功能块

本节介绍了 TPLD801-DRL-EVM 的不同功能块。

2.1.1 测试点

插槽式 TPLD801DRL 器件的每个 GPIO 和 GPI 引脚均直接连接到测试点,方便用户使用器件的每个引脚进行探测和测试。各引脚按如下方式连接到测试点:

引脚编号	IO 名称	测试点
1	IO1	TP1
2	IO2	TP2
3	IO3	TP3
5	IO4	TP5
6	IO5	TP6
7	GPI	TP7

每个测试点均直接连接到相应的引脚,因此任何断开的接头引脚都不会从引脚断开测试点。

2.1.2 编程器接头块 (P1)

编程器接头块接受用于将 TPLD801-DRL-EVM 连接到 TPLD-PROGRAM 的 14 位电缆。TI 建议使用此接头仅通 过 TPLD-PROGRAM 套件随附的电缆连接到 TPLD-PROGRAM。该接头为键控接头,因此 14 位电缆只在键槽朝 向正确方向时才能插入外壳。要将 TPLD801-DRL-EVM 连接到 TPLD-PROGRAM,请按照节 3.2 中的步骤操 作。

SW8 将编程器接头的 3V3 线路连接到 EVM 的 VCC 线路。通过 TPLD-PROGRAM 为 EVM 供电时, 3V3 线路必 须处于 ON 位置。

2.1.3 外部连接接头块

P2 接头块用于将 TPLD801-DRL-EVM 与外部系统连接。根据 EVM 丝印上的指南,可以将 TPLD 引脚与外部系统连接,从而支持在客户系统中进行原型设计和测试。使用 P2 接头块为 TPLD 供电时,SW8 需要处于 OFF 位置,并在 J1 上放置一个分流器,将外部 VCC 电源从 P2 (VCC_EXT) 连接到 EVM 的 VCC 网络。TI 建议不要将电路板同时连接到外部系统和 TPLD-PROGRAM,以避免损坏 TPLD-PROGRAM 和外部系统的风险。

图 2-1. P2 和 J1 接头

2.1.4 GPI 保护块

在永久编程过程中,对 TPLD 的 GPI 引脚施加 8V 电压。该电路可防止 P2 上的电压超过 3.3V。

图 2-2. GPI 保护块

2.1.5 DRL 插座

DRL 插座用于测试 TPLD 器件以及对其进行编程,而无需将器件焊接到 EVM。

要将器件插入插座中,请按照节3.2中的步骤操作。

2.1.6 SW 或 LED 测试块

TPLD801DRL 的每个 IO 引脚(GPI 引脚(引脚7)除外)都连接到一个 SW/LED 测试块。每个 SW/LED 块均包 含一个 4 位接头,该接头可连接到具有可选去抖电路的触控开关或连接到 LED。4 位接头的一侧(标有 OFF)直 接连接到开关输出,4 位接头的另一侧(标有 ON)连接到一个去抖电路,然后再连接到开关输出。标有 LED 的 引脚连接到 LED。接头的中间引脚连接到相应的 TPLD 引脚。要直接连接到开关输出,请在接头的中间引脚和 OFF 引脚之间放置一个分流器。要连接到去抖电路,请在接头的中间引脚和 OFF 引脚之间放置一个分流器。要连接到去抖电路,请在接头的中间引脚和 OFF 引脚之间放置一个分流器。要连接到 LED,请在接头的中间引脚和 LED 引脚之间放置一个分流器。如果在任何一组引脚之间均未放置分流器,则 TPLD 引脚悬空。

每个 SW/LED 块都有用于可选上拉和下拉电阻器的焊接点。这些电阻器最初未填充,并分别标记为 PU 和 PD。

图 2-3. 开关/LED 块

2.1.7 GPI 开关测试块

GPI 线路连接到一个触控式开关。该开关没有去抖功能。这是为了在编程期间保护 GPI 信号。GPU 开关块具有可选上拉和下拉电阻器的焊接点。这些电阻器最初未填充,并分别标记为 PU 和 PD。请勿尝试使用 GPI 线路上安装的上拉或下拉电阻器对器件进行永久编程。

图 2-4. GPI 开关块

3 软件

3.1 使用 TPLD801-DRL-EVM

本节介绍了如何使用 TPLD801-DRL-EVM 对 TPLD801DRL 进行编程。如需获取有关使用 InterConnect Studio (ICS) 自行创建电路的更多帮助,请参阅 "InterConnect Studio 用户指南"。

3.1.1 编程所需的设备

要使用 TPLD801-DRL-EVM 对 TPLD 器件进行编程,需要一个 TPLD-PROGRAM 套件和一台运行 InterConnect Studio 的计算机。TPLD-PROGRAM 套件包含将计算机连接到 TPLD801-DRL-EVM 所需的一切。InterConnect Studio 可以按照节 3.1.2 中的说明从 TI.com 下载。

图 3-1. 连接 TPLD EVM 和编程器

3.1.2 安装软件

InterConnect Studio (ICS) 可从 interconnect_studio.itg.ti.com 免费获取

有关使用 InterConnect Studio (ICS) 的详细信息,请参阅"InterConnect Studio 用户指南"。

3.2 配置 TPLD 器件

本节介绍了使用 TPLD801-DRL-EVM 和 TPLD-PROGRAM 套件对 TPLD801DRL 进行编程的步骤。

3.2.1 用于编程的 TPLD801-DRL-EVM 设置

确保满足以下条件:

- 1. 将 SW8 置于 ON 位置。
- 2. 确保所有 SW/LED 测试块都未设置为 Debounce On。
- 3. 确保 GPI 块上未安装上拉或下拉电阻。
- 4. 移除 EXT_VCC (J1) 分流器。
- 5. 断开 P2 与任何外部系统的连接。

图 3-2. 编程设置中考虑的元件

3.2.2 将 TPLD801DRL 插入 DRL 插座

请勿在通电电路板上移除、更换或添加 TPLD 器件。请勿将手指放在插座内或触摸插座底部的触点。TI 建议在处理 TPLD801DRL 时遵循典型的 ESD 保护程序。

- 1. 轻轻拉动闩锁以打开插座,直到盖板弹开。
- 2. 用干净的压缩空气吹净插座触点和器件焊盘,确保插座干净清洁。
- 3. 使用真空笔或防静电镊子将器件导入插座,将器件的引脚1对准插座的引脚1,如下所示。
- 4. 合上插座盖,直至闩锁卡入到位并将盖板固定到位。

图 3-3. DRL 插座

3.2.3 将 TPLD801-DRL-EVM 连接到 TPLD-PROGRAM 板

随附的所有电缆均为键控电缆,只有在朝向正确方向时才能插入。如果在轻微施力的情况下无法插入电缆,请尝 试调换电缆的方向,并确保接头外壳未被阻塞,然后再次尝试。强制连接可能会导致电缆和电路板损坏。

- 1. 使用提供的 USB 电缆将编程器板连接到运行 InterConnect Studio 的计算机。确保 TPLD-PROGRAM 和计算 机之间连接良好,即 TPLD-PROGRAM 上的两个蓝色 LED 都亮起。节 3.1 中显示了一个完全连接的 EVM 示 例。
- 2. 使用提供的 14 位带状电缆将 TPLD-PROGRAM 与 TPLD801-DRL-EVM 连接在一起。确保 TPLD801-DRL-EVM 和 TPLD-PROGRAM 之间连接良好,即 EVM 左上方的 3V3 LED 指示亮起。

图 3-4. 键控接头插座

3.2.4 对 TPLD 器件进行临时配置

本节介绍了如何使用 InterConnect Studio 来配置 TPLD801。

如果对 TPLD 进行了临时配置,断开器件电源会导致 TPLD 复位并擦除配置的电路。TPLD 可以多次重新配置, 而无需在两种配置之间复位。

- 1. 在 TPLD-PROGRAM 连接到的计算机上打开 InterConnect Studio。在 *Design* 下,选择 *TPLD801*。在 *Package*: 下,选择 *DRL* (*SOT-5X3, 8*)。
- 2. 选择 Empty Design 以构建定制电路,或选择一个预先制作的演示电路。

lnterConnect Studio	-	O	\times
ABOUT			

Welcome To InterConnect Studio

() Start a new Design ⊚		
Device: TPLD801		~
Package: DRL (SOT-5X3, 8)		•
	Q Type filter text	
	Empty Design Start from a blank design	
	< 1 →	
Dpen an Existing Design		
	BROWSE	

图 3-5. 选择 IC 中的 TPLD801DRL

- 3. InterConnect Studio 会打开所选的电路。
- 4. 选择 Configure TPLD801 旁边的三点图标,并确保未选中 Permanently Configure Device。
- 5. 选择 InterConnect Studio 左上角的 *CONFIGURE TPLD801*,以使用 InterConnect Studio 所示的电路配置 EVM 插座中的 TPLD。选择连接到 TPLD-PROGRAM 的串行端口,然后选择 *OK*。

🛃 In	terConnect Studio			o x
	FILE ABOUT			RESTART
82	Q		$\leftarrow \rightarrow$ Software $ ightarrow$ GND	
V	 TPLD801 ELEMENT Comment 	TS (13) (†)	CONFIGURE TPLD801* ••• ORDER DEVICES	٩
	Counter D Flip Flop	\oplus	pin0 (IO2 Pin:2)	+
	Delay GND	+ 1 🕑 🕀		(c) 12
	Group Lookup Table	(†) 1/10 🔮 (†)	pin2 (IO5 Pin:6)	La M
	Oscillator PIN	⊕ 6/6 ✔ (+)		ø

图 3-6. 在 ICS 中进行临时配置

- a. TPLD801-DRL-EVM 上的某些 LED 可能会在编程序列期间闪烁,这是正常现象。
- b. 如果配置失败,请检查 EVM 和计算机之间的连接,确保 SW8 处于 ON 位置,检查 TPLD 器件和插座触点之间的连接,并根据节 3.2.1 确认分流器设置正确无误,然后重试。

编程序列完成后,会使用 InterConnect Studio 中内置的电路临时配置电路板上的 TPLD 器件。配置的电路可以使用 EVM 上提供的按钮和 LED 进行测试。

3.2.5 对 TPLD 器件进行永久编程

本节介绍了如何使用 InterConnect Studio 对 TPLD801 进行永久编程。永久编程的器件会在电源复位后保留已编程的配置。

不得再次对经过永久编程的器件进行永久编程,以避免损坏器件。

- 1. 在 InterConnect Studio 中打开要在 TPLD801 中永久编程的所需配置。
- 2. 选择 CONFIGURE TPLD801 按钮旁边的三点图标,以打开"Configure Settings"。
- 3. 选择 *Permanently Configure Device*。如果使用 TPLD-PROGRAM 为 EVM 供电,则将 "Power Source" 保 留为 *Programmer*。选择 *OK*。

Firmware Update Recovery	STARI	
Serial Port	SELECT	
Permanently Configure Device		
Power Source	Programmer	*

图 3-7. 在 ICS 中进行永久编程

- 4. 选择连接到 TPLD-PROGRAM 的串行端口,然后再次选择 OK。
 - a. TPLD801-DRL-EVM 上的某些 LED 可能会在编程序列期间闪烁,这是正常现象。
 - b. 如果编程失败,请检查 EVM 和计算机之间的连接,确保 SW8 处于 ON 位置,检查 TPLD 器件和插座触点之间的连接,根据节 3.2.1 确认分流器设置正确无误,然后重试。
- 5. 在移除永久编程的 TPLD801 之前,请先断开 EVM 的电源。

硬件设计文件

4 硬件设计文件

4.1 原理图

图 4-2. TPLD801-DRL-EVM 原理图 2

4.2 PCB 布局

图 4-3. TPLD801-DRL-EVM 布局

4.2.1 PCB 概述

图 4-4. TPLD801-DRL-EVM 电路板(顶视图)

图 4-5. TPLD801-DRL-EVM 电路板(底视图)

4.3 物料清单

本节提供了有关可与 TPLD801-DRL-EVM 一同使用的元件的信息。可以使用其他元件,只要这些元件适合提供的电镀孔和焊盘即可。

表 4-1. 物料清单					
位号	物品	值	制造商	器件型号	
X1	插座	DRL	Plastronics	08CHC50Y02	
TP1、TP2、TP3、TP5、TP6、TP7	测试点	红色	Keystone Electronics	5000	
P1	接头	7x2	Wurth Electronics	61201421621	
P2	接头	12x2	Wurth Electronics	61202421621	
SW1、SW2、SW3、SW5、SW4、SW7	开关	触控式	欧姆龙 (Omron)	B3AL-1003P	
DZ1	二极管	5.1	二极管	BZT52C5V1-7-F	
C6	电容器	1000pF	KEMET	C0603C102J5GACAUTO	
C1、C2、C4、C8、C9、C10	电容器	1µF	KEMET	C0603C105K4RACTU	
R5、R6、R15、R16、R29、R30	电阻器	1k Ω	Vishay	CRCW06031K00FKEAC	
R19、R20、R21、R22、R23	电阻器	110 Ω	Vishay / Dale	CRCW0603110RJNEA	
SW8	开关	滑动	E-Switch	EG1206A	
R3、R4、R9、R10、R28	电阻器	10k Ω	Vishay Dale	ERJ3EKF1002V	
R1、R2、R7、R8、R17、R25	电阻器	66.5 Ω	Panasonic	ERJ-3EKF66R5V	
R13、R14、R26、R27、R31、RD1、RD2	电阻器	1.5k Ω	Panasonic	ERJ-3EKF1501V	
J1	接头	2x1		PBC02SAAN	
R18	电阻器	470k Ω	Yageo	RC0603FR-07470KL	
R24	电阻器	0 Ω	Stackpole Electronics Inc	RMCF0603ZT0R00	
H9、H10、H11、H12	Bumpon	清除	3M	SJ-5303 (CLEAR)	
SH-J1、SH-J2、SH-J3、SH-J4、SH-J5、 SH-J6、SH-J7、SH-J8	分流器		Sullins Connector Solutions	SPC02SYAN	
D1、D2、DS1、DS2、DS3、DS4、DS5	LED	1.8V	Vishay	TLMS1000-GS08	
J1B、J2B、J3B、J6B、JB5B	接头	1x1	Samtec	TSW-101-07-F-S	
J2、J3、J4、J7、J9、JB1A、JB2A、 JB3A、JB4A、JB5A	接头	3x1	Samtec	TSW-103-07-F-S	
U2	晶体管	双通道	Rohm	UM6K33NTN	

14 TPLD801-DRL-EVM 评估模块

5 其他信息

5.1 商标

所有商标均为其各自所有者的财产。

6 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

CI	hanges from Revision A (October 2024) to Revision B (October 2024)	Page
•	更新了 TPLD801-DRL-EVM 原理图图像	11

Cł	Changes from Revision * (August 2024) to Revision A (October 2024)			
•	将销售状态更新为 "初始发行版"	1		
•	更新了硬件图像	1		

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司