Getting Started Guide **xWRL6844** 软件入门指南

U TEXAS INSTRUMENTS

内容	
1 引言	1
2 软件快速入门指南	2
3 软件评估流程	5
3.1 关于雷达评估	5
3.2 更多资源	6
商标	

所有商标均为其各自所有者的财产。

1引言

图 1-1. xWRL6844EVM

xWRL6844 支持汽车和工业应用的低功耗 60GHz 雷达设计。在本文档中,您将找到指向开始对此雷达解决方案进行 SW 评估所需资源的链接。

查看我们的技术文章, 了解 xWRL6844 如何实现支持 AI 的低功耗车内感应的概述。

2 软件快速入门指南

以下是获取在 xWRL6844 器件上运行的开箱即用演示的分步概述。

1. 安装软件

首先,安装最新版本的毫米波低功耗 SDK 6 和 EVM 驱动程序:

- a. 最新版 mmWave-L-SDK-6
- b. XDS110 驱动程序(与CCS捆绑)

2. 设置演示硬件/软件

- a. 通过电路板右下角标有 XDS_USB 的 micro USB 端口连接到 EVM。无需连接到桶形插孔。
- b. 导航到 MMWAVE-L-SDK 下载位置并运行毫米波雷达可视化工具。可视化工具位于
- <MMWAVE_L_SDK6_INSTALL_DIR>\mmwave_I_sdk_06_00_02_00\tools\visualizer\visualizer.exe。
- 3. 刷写应用二进制文件
 - a. 打开可视化工具中的"Flash"选项卡,然后选择 EVM 的 COM 端口。应该会自动检测到它。如果未检测 到,请在设备管理器中找到"XDS110 Class Application /User UART" COM 端口,并在 GUI 中选择该 端口。(注意:如果在设备管理器中看不到正确的 COM 端口,则需要安装上面的步骤 1 "安装软件"中 列出的 XDS110 驱动程序。
 - b. 然后从下拉列表中选择 xWRL6844。应该会自动检测到它。
 - c. 按照可视化工具中所示设置开关,将器件置于刷写模式。

图 2-1. 刷写模式开关设置

- d. 然后,按下复位开关/按钮以注册 SOP 设置。复位按钮标为"RESET SWITCH"。
- e. 最后,在可视化工具中按下"Switch Settings Confirmed"。

SWITCH SETTINGS CONFIRMED

图 2-2. 确认开关设置按钮

ÈXAS NSTRUMENTS om.cn		软件快速入门指南
选择所需的器件二进制文件。"距离-多普勒图像"(mmwave 二进制文件。此外,还可在此处上传自定义二进制文件。	e_demo.release.a	appimage) 是开箱即用的
Image Flash		
Range-Doppler Image Custom Image		
mmwave_demo.release.appimage	🛨 Upload	FLASH
BACK START OVER		

图 2-3. 图像刷写选项

g. 选择"Flash"按钮。成功刷写后,会收到指示刷写成功的消息。

Flash was successful. Change the switch state as per the image below and reset to start using the device.

Move to Configuration Dashboard

图 2-4. 成功刷写

 h. 在此阶段,根据可视化工具中显示的设置更改开关状态;这会将器件置于功能模式。然后,按下复位开关/ 按钮以注册 SOP 设置。(注意:有关器件设置的更多帮助,请参阅 EVM 用户指南中关于开关设置的第 2.3 节。)

4. 发送线性调频脉冲配置

f.

4

来到可视化工具中的"Configuration Dashboard"选项卡。

a. 首先确认 COM 端口和波特率正确。然后,在"Configuration Selection"下选择所需配置。4TX 4RX TDM 配置是默认配置。

图 2-5. 配置选择

b. 最后,选择"Send Selected Config"。(注意:CLI 输出位于右下窗格中)

5. 查看图示

设置命令后,可视化工具将打开"Plots"选项卡并显示雷达数据的实时可视化效果。

Plots Pause Frame Counter Range Profile 698 4,500 4,000 3.500 **Points Detected** 3,000 Signal Strength (dB) 3 2,500 2,000 **Average Power** 1,500 1,000 --.- mW 500 0 Plot Selection Range (meters)

图 2-6. 雷达数据可视化

3 软件评估流程

毫米波雷达产品具有资源生态系统,可帮助进行 RF 评估、应用性能评估和软件设计。

3.1 关于雷达评估

TI 的雷达演示包括三个主要组成部分。它们是线性调频脉冲配置、器件二进制文件和可视化工具。一般评估工作 流程如下:

图 3-1. 评估的三个步骤

线性调频脉冲配置

从根本上说,毫米波 FMCW 雷达会发射称为线性调频脉冲的脉冲,在从目标反射回来后,这些脉冲可用于确定目标的距离、速度和方位角。

图 3-2. 配置图

通过调整物理特性(例如频率斜率和线性调频脉冲数量),可以优化雷达的距离、分辨率和功耗。TI毫米波雷达器件在线性调频脉冲配置文件中存储线性调频脉冲特性。线性调频脉冲配置文件还可能包含算法参数和特定于应用的修改。线性调频脉冲配置在运行时通过 UART 上传到器件,允许修改线性调频脉冲和演示,因此无需使用新的二进制文件重新刷写器件。

应用二进制文件

来自这些反射线性调频脉冲的原始数据由**应用二进制文件**上的信号链在器件上进行处理。此固件刷写到器件上,可将原始雷达数据处理为实时位置和速度信息。适用于特定应用(例如车内儿童检测)的应用特定二进制文件可在 TI Resource Explorer 中的 Radar Toolbox 中找到。处理后,器件将开始通过 UART 将 TLV 格式的该实时位置和速度信息发送到用户的计算机以进行可视化。

可视化工具

直观地实时验证雷达输出对于评估很有用。可视化工具可获取 EVM 的 UART 输出,并在 3D 空间中呈现点云和分 类信息。通用可视化工具可在 MMWAVE-L-SDK 中找到,应用特定可视化工具可在 Radar Toolbox 中找到。

3.2 更多资源

Radar Toolbox

在 TI Resource Explorer 中,可以找到 Radar Toolbox,其中包含各种工业、个人电子产品和汽车应用的入门信息、软件文档和示例软件演示。用户运行 SDK 开箱即用演示后,Radar Toolbox 是为项目查找雷达软件的下一步。

感应估算器

感应估算器工具可用于估算所提供配置的距离和分辨率。导航到"Advanced Chirp Design and Tuning"选项卡,然后粘贴配置以开始使用。

Frequency Start (GHz)	60	# of Chirp Loops	27
Frequency Slope (MHz/us)	70.923	Frame Periodicity (ms)	100
Frequency Slope Constant	1469	Idle Time (us)	7
Sampling Rate (ksps)	5.914	ADC Valid Start Time (us)	5.700
# of Samples per Chirp	249	Ramp End Time	48.801
# of Burst in a Frame	1	# of Chirps in a Burst	54
		Burst Periodicity (us)	3121

图 3-3. 感应估算器

还可以在下图所示的"Power Estimator"选项卡中估算给定配置的功耗。

🕒 GUI Composer 🛛 🗙 🚱 mmWa	aveSensingEstimator × +			v — 6	1 X
\leftrightarrow \rightarrow C $($ dev.ti.com/gc/preview/defau	lt/mmWaveSensingEstimator/v2	/index.html		⋵ ☆ 🛊 🗖	🖕 E
mmWave Sensing Estimator	Help				
Basic Chirp Creation and	d Design	Chirp Design	and Tuning	Power	Estimator
Power Calculator Inputs		Timing and Power Consumption			
mmWave Device: EVM Board: xWRL6432 xWRL6432EVM	Processing Time (ms): 20	FRAME 1		FRAME 2	
Chirp Parameters		lifequ			
# of Rx Antennas	3			time	
# of Tx Antennas	2	Active Mode Time (us)	2240	Power Used in Active Mode (mW)	0.97
Ramp End Time (us)	63	Laterburst Idle Time (us)	2240	Power Used in Active Mode (ITW)	987
Chirp Idle Time (us)	7		960.000	Power Used in Interburst Period (mw)	180
Number of Bursts in Frame	8	Processing Time (ms)	20	Power Used in Processing Period (mW)	159
Frame Periodicity (ms)	250	Interframe Idle Time (ms)	226.800	Power Used in Interframe Period (mW)	1.380
Number of Chirps in Burst	2			Average Power (mW)	25.44
Accumulated Chirps	2				
Burst Periodicity (us)	400				
Frequency Range (GHz)	60-64 ~				
CALCULATE					
		1			
4					•

图 3-4. 功耗估算器

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司