Refer to the PDF data sheet for device specific package drawings
The LM35 series are precision integrated-circuit temperature devices with an output voltage linearly-proportional to the Centigrade temperature. The LM35 device has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from the output to obtain convenient Centigrade scaling. The LM35 device does not require any external calibration or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full −55°C to 150°C temperature range. Lower cost is assured by trimming and calibration at the wafer level. The low-output impedance, linear output, and precise inherent calibration of the LM35 device makes interfacing to readout or control circuitry especially easy. The device is used with single power supplies, or with plus and minus supplies. As the LM35 device draws only 60 μA from the supply, it has very low self-heating of less than 0.1°C in still air. The LM35 device is rated to operate over a −55°C to 150°C temperature range, while the LM35C device is rated for a −40°C to 110°C range (−10° with improved accuracy). The LM35-series devices are available packaged in hermetic TO transistor packages, while the LM35C, LM35CA, and LM35D devices are available in the plastic TO-92 transistor package. The LM35D device is available in an 8-lead surface-mount small-outline package and a plastic TO-220 package.
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
LM35 | TO-CAN (3) | 4.699 mm × 4.699 mm |
TO-92 (3) | 4.30 mm × 4.30 mm | |
SOIC (8) | 4.90 mm × 3.91 mm | |
TO-220 (3) | 14.986 mm × 10.16 mm |
Changes from G Revision (August 2016) to H Revision
Changes from F Revision (January 2016) to G Revision
Changes from E Revision (January 2015) to F Revision
Changes from D Revision (October 2013) to E Revision
Changes from C Revision (July 2013) to D Revision
PIN | TYPE | DESCRIPTION | ||||
---|---|---|---|---|---|---|
NAME | TO46 | TO92 | TO220 | SO8 | ||
VOUT | 2 | 2 | 3 | 1 | O | Temperature Sensor Analog Output |
N.C. | — | — | — | 2 | — | No Connection |
— | — | — | 3 | |||
GND | 3 | 3 | 2 | 4 | GROUND | Device ground pin, connect to power supply negative terminal |
N.C. | — | — | — | 5 | — | No Connection |
— | — | — | 6 | |||
— | — | — | 7 | |||
+VS | 1 | 1 | 1 | 8 | POWER | Positive power supply pin |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
Supply voltage | –0.2 | 35 | V | ||
Output voltage | –1 | 6 | V | ||
Output current | 10 | mA | |||
Maximum Junction Temperature, TJmax | 150 | °C | |||
Storage Temperature, Tstg | TO-CAN, TO-92 Package | –60 | 150 | °C | |
TO-220, SOIC Package | –65 | 150 |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2500 | V |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Specified operating temperature: TMIN to TMAX | LM35, LM35A | –55 | 150 | °C |
LM35C, LM35CA | –40 | 110 | ||
LM35D | 0 | 100 | ||
Supply Voltage (+VS) | 4 | 30 | V |
THERMAL METRIC(1)(2) | LM35 | UNIT | ||||
---|---|---|---|---|---|---|
NDV | LP | D | NEB | |||
3 PINS | 8 PINS | 3 PINS | ||||
RθJA | Junction-to-ambient thermal resistance | 400 | 180 | 220 | 90 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 24 | — | — | — |
PARAMETER | TEST CONDITIONS | LM35A | LM35CA | UNIT | ||||
---|---|---|---|---|---|---|---|---|
TYP | TESTED LIMIT(2) | DESIGN LIMIT(3) | TYP | TESTED LIMIT(2) | DESIGN LIMIT(3) | |||
Accuracy(4) | TA = 25°C | ±0.2 | ±0.5 | ±0.2 | ±0.5 | °C | ||
TA = –10°C | ±0.3 | ±0.3 | ±1 | |||||
TA = TMAX | ±0.4 | ±1 | ±0.4 | ±1 | ||||
TA = TMIN | ±0.4 | ±1 | ±0.4 | ±1.5 | ||||
Nonlinearity(5) | TMIN ≤ TA ≤ TMAX, –40°C ≤ TJ ≤ 125°C |
±0.18 | ±0.35 | ±0.15 | ±0.3 | °C | ||
Sensor gain (average slope) |
TMIN ≤ TA ≤ TMAX | 10 | 9.9 | 10 | 9.9 | mV/°C | ||
–40°C ≤ TJ ≤ 125°C | 10 | 10.1 | 10 | 10.1 | ||||
Load regulation(1)
0 ≤ IL ≤ 1 mA |
TA = 25°C | ±0.4 | ±1 | ±0.4 | ±1 | mV/mA | ||
TMIN ≤ TA ≤ TMAX, –40°C ≤ TJ ≤ 125°C |
±0.5 | ±3 | ±0.5 | ±3 | ||||
Line regulation(1) | TA = 25°C | ±0.01 | ±0.05 | ±0.01 | ±0.05 | mV/V | ||
4 V ≤ VS ≤ 30 V, –40°C ≤ TJ ≤ 125°C |
±0.02 | ±0.1 | ±0.02 | ±0.1 | ||||
Quiescent current(6) | VS = 5 V, 25°C | 56 | 67 | 56 | 67 | µA | ||
VS = 5 V, –40°C ≤ TJ ≤ 125°C | 105 | 131 | 91 | 114 | ||||
VS = 30 V, 25°C | 56.2 | 68 | 56.2 | 68 | ||||
VS = 30 V, –40°C ≤ TJ ≤ 125°C | 105.5 | 133 | 91.5 | 116 | ||||
Change of quiescent current(1) | 4 V ≤ VS ≤ 30 V, 25°C | 0.2 | 1 | 0.2 | 1 | µA | ||
4 V ≤ VS ≤ 30 V, –40°C ≤ TJ ≤ 125°C |
0.5 | 2 | 0.5 | 2 | ||||
Temperature coefficient of quiescent current | –40°C ≤ TJ ≤ 125°C | 0.39 | 0.5 | 0.39 | 0.5 | µA/°C | ||
Minimum temperature for rate accuracy | In circuit of Figure 14, IL = 0 | 1.5 | 2 | 1.5 | 2 | °C | ||
Long term stability | TJ = TMAX, for 1000 hours | ±0.08 | ±0.08 | °C |
PARAMETER | TEST CONDITIONS | LM35A | LM35CA | UNIT | |||||
---|---|---|---|---|---|---|---|---|---|
MIN | TYP | MAX | TYP | TYP | MAX | ||||
Accuracy(4) | TA = 25°C | ±0.2 | ±0.2 | °C | |||||
Tested Limit(2) | ±0.5 | ±0.5 | |||||||
Design Limit(3) | |||||||||
TA = –10°C | ±0.3 | ±0.3 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±1 | ||||||||
TA = TMAX | ±0.4 | ±0.4 | |||||||
Tested Limit(2) | ±1 | ±1 | |||||||
Design Limit(3) | |||||||||
TA = TMIN | ±0.4 | ±0.4 | |||||||
Tested Limit(2) | ±1 | ||||||||
Design Limit(3) | ±1.5 | ||||||||
Nonlinearity(5) | TMIN ≤ TA ≤ TMAX, –40°C ≤ TJ ≤ 125°C |
±0.18 | ±0.15 | °C | |||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±0.35 | ±0.3 | |||||||
Sensor gain (average slope) |
TMIN ≤ TA ≤ TMAX | 10 | 10 | mV/°C | |||||
Tested Limit(2) | 9.9 | ||||||||
Design Limit(3) | 9.9 | ||||||||
–40°C ≤ TJ ≤ 125°C | 10 | 10 | |||||||
Tested Limit(2) | 10.1 | ||||||||
Design Limit(3) | 10.1 | ||||||||
Load regulation(1)
0 ≤ IL ≤ 1 mA |
TA = 25°C | ±0.4 | ±0.4 | mV/mA | |||||
Tested Limit(2) | ±1 | ±1 | |||||||
Design Limit(3) | |||||||||
TMIN ≤ TA ≤ TMAX, –40°C ≤ TJ ≤ 125°C |
±0.5 | ±0.5 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±3 | ±3 | |||||||
Line regulation(1) | TA = 25°C | ±0.01 | ±0.01 | mV/V | |||||
Tested Limit(2) | ±0.05 | ±0.05 | |||||||
Design Limit(3) | |||||||||
4 V ≤ VS ≤ 30 V, –40°C ≤ TJ ≤ 125°C |
±0.02 | ±0.02 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±0.1 | ±0.1 | |||||||
Quiescent current(6) | VS = 5 V, 25°C | 56 | 56 | µA | |||||
Tested Limit(2) | 67 | 67 | |||||||
Design Limit(3) | |||||||||
VS = 5 V, –40°C ≤ TJ ≤ 125°C |
105 | 91 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | 131 | 114 | |||||||
VS = 30 V, 25°C | 56.2 | 56.2 | |||||||
Tested Limit(2) | 68 | 68 | |||||||
Design Limit(3) | |||||||||
VS = 30 V, –40°C ≤ TJ ≤ 125°C |
105.5 | 91.5 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | 133 | 116 | |||||||
Change of quiescent current(1) | 4 V ≤ VS ≤ 30 V, 25°C | 0.2 | 0.2 | µA | |||||
Tested Limit(2) | 1 | 1 | |||||||
Design Limit(3) | |||||||||
4 V ≤ VS ≤ 30 V, –40°C ≤ TJ ≤ 125°C |
0.5 | 0.5 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | 2 | 2 | |||||||
Temperature coefficient of quiescent current | –40°C ≤ TJ ≤ 125°C | 0.39 | 0.39 | µA/°C | |||||
Tested Limit(2) | |||||||||
Design Limit(3) | 0.5 | 0.5 | |||||||
Minimum temperature for rate accuracy | In circuit of Figure 14, IL = 0 | 1.5 | 1.5 | °C | |||||
Tested Limit(2) | |||||||||
Design Limit(3) | 2 | 2 | |||||||
Long term stability | TJ = TMAX, for 1000 hours | ±0.08 | ±0.08 | °C |
PARAMETER | TEST CONDITIONS | LM35 | LM35C, LM35D | UNIT | ||||
---|---|---|---|---|---|---|---|---|
TYP | TESTED LIMIT(2) | DESIGN LIMIT(3) | TYP | TESTED LIMIT(2) | DESIGN LIMIT(3) | |||
Accuracy, LM35, LM35C(4) | TA = 25°C | ±0.4 | ±1 | ±0.4 | ±1 | °C | ||
TA = –10°C | ±0.5 | ±0.5 | ±1.5 | |||||
TA = TMAX | ±0.8 | ±1.5 | ±0.8 | ±1.5 | ||||
TA = TMIN | ±0.8 | ±1.5 | ±0.8 | ±2 | ||||
Accuracy, LM35D(4) | TA = 25°C | ±0.6 | ±1.5 | °C | ||||
TA = TMAX | ±0.9 | ±2 | ||||||
TA = TMIN | ±0.9 | ±2 | ||||||
Nonlinearity(4) | TMIN ≤ TA ≤ TMAX, –40°C ≤ TJ ≤ 125°C |
±0.3 | ±0.5 | ±0.2 | ±0.5 | °C | ||
Sensor gain (average slope) |
TMIN ≤ TA ≤ TMAX, –40°C ≤ TJ ≤ 125°C |
10 | 9.8 | 10 | 9.8 | mV/°C | ||
10 | 10.2 | 10 | 10.2 | |||||
Load regulation(1)
0 ≤ IL ≤ 1 mA |
TA = 25°C | ±0.4 | ±2 | ±0.4 | ±2 | mV/mA | ||
TMIN ≤ TA ≤ TMAX, –40°C ≤ TJ ≤ 125°C |
±0.5 | ±5 | ±0.5 | ±5 | ||||
Line regulation(1) | TA = 25°C | ±0.01 | ±0.1 | ±0.01 | ±0.1 | mV/V | ||
4 V ≤ VS ≤ 30 V, –40°C ≤ TJ ≤ 125°C |
±0.02 | ±0.2 | ±0.02 | ±0.2 | ||||
Quiescent current(5) | VS = 5 V, 25°C | 56 | 80 | 56 | 80 | µA | ||
VS = 5 V, –40°C ≤ TJ ≤ 125°C | 105 | 158 | 91 | 138 | ||||
VS = 30 V, 25°C | 56.2 | 82 | 56.2 | 82 | ||||
VS = 30 V, –40°C ≤ TJ ≤ 125°C | 105.5 | 161 | 91.5 | 141 | ||||
Change of quiescent current(1) | 4 V ≤ VS ≤ 30 V, 25°C | 0.2 | 2 | 0.2 | 2 | µA | ||
4 V ≤ VS ≤ 30 V, –40°C ≤ TJ ≤ 125°C |
0.5 | 3 | 0.5 | 3 | ||||
Temperature coefficient of quiescent current | –40°C ≤ TJ ≤ 125°C | 0.39 | 0.7 | 0.39 | 0.7 | µA/°C | ||
Minimum temperature for rate accuracy | In circuit of Figure 14, IL = 0 | 1.5 | 2 | 1.5 | 2 | °C | ||
Long term stability | TJ = TMAX, for 1000 hours | ±0.08 | ±0.08 | °C |
PARAMETER | TEST CONDITIONS | LM35 | LM35C, LM35D | UNIT | |||||
---|---|---|---|---|---|---|---|---|---|
MIN | TYP | MAX | MIN | TYP | MAX | ||||
Accuracy, LM35, LM35C(4) | TA = 25°C | ±0.4 | ±0.4 | °C | |||||
Tested Limit(2) | ±1 | ±1 | |||||||
Design Limit(3) | |||||||||
TA = –10°C | ±0.5 | ±0.5 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±1.5 | ||||||||
TA = TMAX | ±0.8 | ±0.8 | |||||||
Tested Limit(2) | ±1.5 | ||||||||
Design Limit(3) | ±1.5 | ||||||||
TA = TMIN | ±0.8 | ±0.8 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±1.5 | ±2 | |||||||
Accuracy, LM35D(4) | TA = 25°C | ±0.6 | °C | ||||||
Tested Limit(2) | ±1.5 | ||||||||
Design Limit(3) | |||||||||
TA = TMAX | ±0.9 | ||||||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±2 | ||||||||
TA = TMIN | ±0.9 | ||||||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±2 | ||||||||
Nonlinearity(5) | TMIN ≤ TA ≤ TMAX, –40°C ≤ TJ ≤ 125°C |
±0.3 | ±0.2 | °C | |||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±0.5 | ±0.5 | |||||||
Sensor gain (average slope) |
TMIN ≤ TA ≤ TMAX, –40°C ≤ TJ ≤ 125°C |
10 | 10 | mV/°C | |||||
Tested Limit(2) | 9.8 | ||||||||
Design Limit(3) | 9.8 | ||||||||
10 | 10 | ||||||||
Tested Limit(2) | 10.2 | ||||||||
Design Limit(3) | 10.2 | ||||||||
Load regulation(1)
0 ≤ IL ≤ 1 mA |
TA = 25°C | ±0.4 | ±0.4 | mV/mA | |||||
Tested Limit(2) | ±2 | ±2 | |||||||
Design Limit(3) | |||||||||
TMIN ≤ TA ≤ TMAX, –40°C ≤ TJ ≤ 125°C |
±0.5 | ±0.5 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±5 | ±5 | |||||||
Line regulation(1) | TA = 25°C | ±0.01 | ±0.01 | mV/V | |||||
Tested Limit(2) | ±0.1 | ||||||||
Design Limit(3) | ±0.1 | ||||||||
4 V ≤ VS ≤ 30 V, –40°C ≤ TJ ≤ 125°C |
±0.02 | ±0.02 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | ±0.2 | ±0.2 | |||||||
Quiescent current(6) | VS = 5 V, 25°C | 56 | 56 | µA | |||||
Tested Limit(2) | 80 | 80 | |||||||
Design Limit(3) | |||||||||
VS = 5 V, –40°C ≤ TJ ≤ 125°C | 105 | 91 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | 158 | 138 | |||||||
VS = 30 V, 25°C | 56.2 | 56.2 | |||||||
Tested Limit(2) | 82 | 82 | |||||||
Design Limit(3) | |||||||||
VS = 30 V, –40°C ≤ TJ ≤ 125°C |
105.5 | 91.5 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | 161 | 141 | |||||||
Change of quiescent current(1) | 4 V ≤ VS ≤ 30 V, 25°C | 0.2 | 0.2 | µA | |||||
Tested Limit(2) | 2 | ||||||||
Design Limit(3) | 2 | ||||||||
4 V ≤ VS ≤ 30 V, –40°C ≤ TJ ≤ 125°C |
0.5 | 0.5 | |||||||
Tested Limit(2) | |||||||||
Design Limit(3) | 3 | 3 | |||||||
Temperature coefficient of quiescent current | –40°C ≤ TJ ≤ 125°C | 0.39 | 0.39 | µA/°C | |||||
Tested Limit(2) | |||||||||
Design Limit(3) | 0.7 | 0.7 | |||||||
Minimum temperature for rate accuracy | In circuit of Figure 14, IL = 0 | 1.5 | 1.5 | °C | |||||
Tested Limit(2) | |||||||||
Design Limit(3) | 2 | 2 | |||||||
Long term stability | TJ = TMAX, for 1000 hours | ±0.08 | ±0.08 | °C |
The LM35-series devices are precision integrated-circuit temperature sensors, with an output voltage linearly proportional to the Centigrade temperature. The LM35 device has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from the output to obtain convenient Centigrade scaling. The LM35 device does not require any external calibration or trimming to provide typical accuracies of ± ¼ °C at room temperature and ± ¾ °C over a full −55°C to 150°C temperature range. Lower cost is assured by trimming and calibration at the wafer level. The low output impedance, linear output, and precise inherent calibration of the LM35 device makes interfacing to readout or control circuitry especially easy. The device is used with single power supplies, or with plus and minus supplies. As the LM35 device draws only 60 μA from the supply, it has very low self-heating of less than 0.1°C in still air. The LM35 device is rated to operate over a −55°C to 150°C temperature range, while the LM35C device is rated for a −40°C to 110°C range (−10° with improved accuracy). The temperature-sensing element is comprised of a delta-V BE architecture.
The temperature-sensing element is then buffered by an amplifier and provided to the VOUT pin. The amplifier has a simple class A output stage with typical 0.5-Ω output impedance as shown in the Functional Block Diagram. Therefore the LM35 can only source current and it's sinking capability is limited to 1 μA.
The only functional mode of the LM35 is that it has an analog output directly proportional to temperature.