SCES635B JULY   2005  – April 2015 SN74LVCH16T245

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Switching Characteristics for VCCA = 1.8 V ±0.15 V
    7. 7.7  Switching Characteristics for VCCA = 2.5 V ±0.2 V
    8. 7.8  Switching Characteristics for VCCA = 3.3 V ±0.3 V
    9. 7.9  Switching Characteristics for VCCA = 5 V ±0.5 V
    10. 7.10 Operating Characteristics
    11. 7.11 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.65-V to 5.5-V Power-Supply Range
      2. 9.3.2 Support High-Speed Translation
      3. 9.3.3 Partial-Power-Down Mode Operation
      4. 9.3.4 VCC Isolation
      5. 9.3.5 Bus Hold on Data Inputs
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Enable Times
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Trademarks
    3. 13.3 Electrostatic Discharge Caution
    4. 13.4 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

1 Features

  • Control Inputs VIH/VIL Levels are Referenced to VCCA Voltage
  • VCC Isolation Feature – If Either VCC Input is at GND, All Outputs are in the High-Impedance State
  • Overvoltage-Tolerant Inputs and Outputs Allow Mixed-Voltage-Mode Data Communications
  • Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.65 V to 5.5 V Power-Supply Range
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup and Pulldown Resistors
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22

2 Applications

  • Personal Electronics
  • Industrial
  • Enterprise
  • Telecom

3 Description

This 16-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

The SN74LVCH16T245 device control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by VCCA.

The SN74LVCH16T245 device is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (OE) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
SN74LVCH16T245 SSOP (48) 15.88 mm × 7.49 mm
TSSOP (48) 12.50 mm × 6.10 mm
TVSOP (48) 9.70 mm × 4.40 mm
BGA (56) 7.00 mm × 4.50 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

SN74LVCH16T245 ld2_ces635.gif