JAJSO98D November 1997 – March 2022 CD54HC4024 , CD54HCT4024 , CD74HC4024 , CD74HCT4024
PRODUCTION DATA
デバイスごとのパッケージ図は、PDF版データシートをご参照ください。
HC4024 および HCT4024 は、7 段リップルキャリー・バイナリ・カウンタです。すべてのカウンタ段は、フリップ・フロップです。段の状態は、各入力パルスの負の遷移時に 1 カウント進み、MR ラインが High レベルになると、すべてのカウンタがゼロ状態にリセットされます。すべての入出力はバッファ付きです。
部品番号 | パッケージ(1) | 本体サイズ (公称) |
---|---|---|
CD74HC4024M | SOIC (14) | 8.65mm × 3.90mm |
CD74HCT4024M | SOIC (14) | 8.65mm × 3.90mm |
CD74HC4024E | PDIP (14) | 19.31mm × 6.35mm |
CD74HCT4024E | PDIP (14) | 19.31mm × 6.35mm |
CD74HC4024PW | TSSOP (14) | 5.00mm × 4.40mm |
CD54HC4024F | CDIP (14) | 19.55mm × 6.71mm |
Changes from Revision C (October 2003) to Revision D (March 2022)
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | – 0.5 | 7 | V | |
IIK | Input diode current | For VI < -0.5 V or VI > VCC + 0.5 V | ±20 | mA | |
IOK | Output diode current | For VO < -0.5 V or VO > VCC + 0.5 V | ±20 | mA | |
IO | Output source or sink current per output pin | ForVO > -0.5 V or VO < VCC+ 0.5 V | ±25 | mA | |
Continuous current through VCC or GND | ±50 | mA | |||
TJ | Junction temperature | 150 | ℃ | ||
Tstg | Storage temperature range | – 65 | 150 | ℃ | |
Lead temperature (soldering 10s) (SOIC - lead tips only) | 300 | ℃ |
MIN | MAX | UNIT | ||||
---|---|---|---|---|---|---|
VCC | Supply voltage range | HC Types | 2 | 6 | V | |
HCT Types | 4.5 | 5.5 | V | |||
VI, VO | DC input or output voltage | 0 | VCC | V | ||
tt | Input rise and fall time | 2 V | 1000 | ns | ||
4.5 V | 500 | |||||
6 V | 400 | |||||
TA | Temperature range | – 55 | 125 | ℃ |
THERMAL METRIC | D (SOIC) | N (PDIP) | PW (TSSOP) | UNIT | |
---|---|---|---|---|---|
14 PINS | 14 PINS | 14 PINS | |||
RθJA | Junction-to-ambient thermal resistance(1) | 86 | 80 | 113 | °C/W |
PARAMETER | TEST CONDITIONS(2) | VCC (V) |
25℃ | –40℃ to 85℃ | –55℃ to 125℃ | UNIT | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
MIN | TYP | MAX | MIN | MAX | MIN | MAX | |||||
HC TYPES | |||||||||||
VIH | High level input voltage | 2 | 1.5 | 1.5 | 1.5 | V | |||||
4.5 | 3.15 | 3.15 | 3.15 | ||||||||
6 | 4.2 | 4.2 | 4.2 | ||||||||
VIL | Low level input voltage | 2 | 0.5 | 0.5 | 0.5 | V | |||||
4.5 | 1.35 | 1.35 | 1.35 | ||||||||
6 | 1.8 | 1.8 | 1.8 | ||||||||
VOH |
High level output
voltage |
IOH = – 20 μA | 2 | 1.9 | 1.9 | 1.9 | V | ||||
IOH = – 20 μA | 4.5 | 4.4 | 4.4 | 4.4 | |||||||
IOH = – 20 μA | 6 | 5.9 | 5.9 | 5.9 | |||||||
High level output
voltage |
IOH = – 4 mA | 4.5 | 3.98 | 3.84 | 3.7 | ||||||
IOH = – 5.2 mA | 6 | 5.48 | 5.34 | 5.2 | |||||||
VOL |
Low level output
voltage |
IOL = 20 μA | 2 | 0.1 | 0.1 | 0.1 | V | ||||
IOL = 20 μA | 4.5 | 0.1 | 0.1 | 0.1 | |||||||
IOL = 20 μA | 6 | 0.1 | 0.1 | 0.1 | |||||||
Low level output
voltage |
IOL = 4 mA | 4.5 | 0.26 | 0.33 | 0.4 | ||||||
IOL = 5.2 mA | 6 | 0.26 | 0.33 | 0.4 | |||||||
II | Input leakage current | VCC or GND | 6 | ±0.1 | ±1 | ±1 | μA | ||||
ICC | Quiescent device current | VCC or GND | 6 | 8 | 80 | 160 | μA | ||||
HCT TYPES | |||||||||||
VIH | High level input voltage | 4.5 to 5.5 | 2 | 2 | 2 | V | |||||
VIL | Low level input voltage | 4.5 to 5.5 | 0.8 | 0.8 | 0.8 | V | |||||
VOH |
High level output
voltage |
IOH = – 20 μA | 4.5 | 4.4 | 4.4 | 4.4 | V | ||||
High level output
voltage |
IOH = – 4 mA | 4.5 | 3.98 | 3.84 | 3.7 | ||||||
VOL |
Low level output voltage |
IOL = 20 μA | 4.5 | 0.1 | 0.1 | 0.1 | V | ||||
Low level output voltage |
IOL = 4 mA | 4.5 | 0.26 | 0.33 | 0.4 | ||||||
II | Input leakage current | VCC and GND | 5.5 | ±0.1 | ±1 | ±1 | μA | ||||
ICC | Supply current | VCC or GND | 5.5 | 8 | 80 | 160 | μA | ||||
ΔICC(1) | Additional supply current per input pin | CP, MR inputs held at VCC - 2.1 | 4.5 to 5.5 | 100 | 180 | 225 | 245 | μA |
PARAMETER | VCC (V) | 25℃ | -40℃ to 85℃ | -55℃ to 125℃ | UNIT | ||||
---|---|---|---|---|---|---|---|---|---|
MIN | MAX | MIN | MAX | MIN | MAX | ||||
HC TYPES | |||||||||
fMAX | Maximum input pulse frequency | 2 | 6 | 5 | 4 | MHz | |||
4.5 | 30 | 24 | 20 | MHz | |||||
6 | 35 | 29 | 24 | MHz | |||||
tW | Input pulse width | 2 | 80 | 100 | 120 | ns | |||
4.5 | 16 | 20 | 24 | ns | |||||
6 | 14 | 17 | 20 | ns | |||||
tREM | Reset removal time | 2 | 50 | 65 | 75 | ns | |||
4.5 | 10 | 13 | 15 | ns | |||||
6 | 9 | 11 | 13 | ns | |||||
tW | Reset pulse width | 2 | 80 | 100 | 120 | ns | |||
4.5 | 16 | 20 | 24 | ns | |||||
6 | 14 | 17 | 20 | ns | |||||
HCT TYPES | |||||||||
fMAX | Maximum input pulse frequency | 4.5 | 25 | 20 | 16 | MHz | |||
tW | Input pulse width | 4.5 | 20 | 25 | 30 | ns | |||
tREC | Reset recovery time | 4.5 | 10 | 13 | 15 | ns | |||
tW | Reset pulse width | 4.5 | 20 | 25 | 30 | ns |
PARAMETER | TEST CONDITIONS | VCC (V) | 25℃ | -40℃ to 85℃ | -55℃ to 125℃ | UNIT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | TYP | MAX | MIN | MAX | MIN | MAX | ||||||
HC TYPES | ||||||||||||
tPLH, tPHL | Propagation delay time
|
CL = 50 pF | 2 | 140 | 175 | 210 | ns | |||||
4.5 | 28 | 35 | 42 | ns | ||||||||
CL = 15 pF | 5 | 11 | ns | |||||||||
CL = 50 pF | 6 | 24 | 30 | 36 | ns | |||||||
tPLH, tPHL | Propagation delay time,
Qn to Qn + 1 |
CL = 50 pF | 2 | 75 | 95 | 110 | ns | |||||
4.5 | 15 | 19 | 22 | ns | ||||||||
CL = 15 pF | 5 | 6 | ns | |||||||||
CL = 50 pF | 6 | 13 | 13 | 19 | ns | |||||||
tPLH, tPHL | Propagation delay time,
MR to Qn |
CL = 50 pF | 2 | 170 | 215 | 255 | ns | |||||
4.5 | 34 | 43 | 51 | ns | ||||||||
5 | 14 | ns | ||||||||||
6 | 29 | 27 | 43 | ns | ||||||||
tTLH, tTHL | Output transition time | CL = 50 pF | 2 | 75 | 95 | 110 | ns | |||||
4.5 | 15 | 19 | 22 | ns | ||||||||
6 | 13 | 16 | 19 | ns | ||||||||
CIN | Input capacitance | CL = 50 pF | 10 | 10 | 10 | pF | ||||||
CPD | Power dissipation capacitance(1)(2) | CL = 15 pF | 5 | 30 | pF | |||||||
HCT TYPES | ||||||||||||
tPLH, tPHL | Propagation delay time
|
CL = 50 pF | 4.5 | 40 | 50 | 60 | ns | |||||
ns | ||||||||||||
CL = 15 pF | 5 | 17 | ns | |||||||||
ns | ||||||||||||
tPLH, tPHL | Propagation delay time,
Qn to Qn + 1 |
CL = 50 pF | 4.5 | 15 | 19 | 22 | ns | |||||
CL = 15 pF | 5 | 6 | ns | |||||||||
tPLH, tPHL | Propagation delay time,
MR to Qn |
CL = 50 pF | 4.5 | 40 | 50 | 60 | ||||||
CL = 15 pF | 5 | 17 | ||||||||||
tTLH, tTHL | Output transition time | CL = 50 pF | 4.5 | 15 | 19 | 22 | ns | |||||
CIN | Input capacitance | CL = 15 pF | 10 | 10 | 10 | pF | ||||||
CPD | Power dissipation capacitance(1)(2) | CL = 15 pF | 5 | 30 | pF |
Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tt < 6 ns.
For clock inputs, fmax is measured when the input duty cycle is 50%.
The outputs are measured one at a time with one input transition per measurement.
The ’HC4024 and ’HCT4024 are 7-stage ripple-carry binary counters. All counter stages are flip-flops. The state of the stage advances one count on the negative transition of each input pulse; a high voltage level on the MR line resets all counters to their zero state. All inputs and outputs are buffered.
CP COUNT | MR | OUTPUT STATE |
---|---|---|
↑ | L | No change |
↓ | L | Advance to next state |
X | H | All outputs are low |
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Recommended Operating Conditions. Each VCC terminal should have a good bypass capacitor to prevent power disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.
When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever makes more sense for the logic function or is more convenient.
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.
TI E2E™ サポート ・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。
リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。
TI E2E is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
![]() |
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. |
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. |
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
TI は、技術データと信頼性データ(データシートを含みます)、設計リソース(リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 |
これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションが適用される各種規格や、その他のあらゆる安全性、セキュリティ、またはその他の要件を満たしていることを確実にする責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 |
TI の製品は、TI の販売条件(www.tij.co.jp/ja-jp/legal/termsofsale.html)、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用されるTI の保証または他の保証の放棄の拡大や変更を意味するものではありません。IMPORTANT NOTICE |
Copyright © 2021, Texas Instruments Incorporated
日本語版 日本テキサス・インスツルメンツ株式会社 |