SLAA870 February   2019 AFE7422 , AFE7444

 

  1.   Evaluating the frequency hopping capability of the AFE74xx
    1.     Trademarks
    2. 1 Introduction
    3. 2 Phase Coherency vs Phase Continuity
    4. 3 AFE74xx Architecture
      1. 3.1 AFE74xx Receivers: Multiband DDC
      2. 3.2 AFE74xx Transmitters: Multiband DUC
      3. 3.3 Numerically Controlled Oscillator (NCO)
        1. 3.3.1 Programming the NCO frequency
          1. 3.3.1.1 Example: Programming NCO to 1700MHz
        2. 3.3.2 Direct Digital Synthesis (DDS) Mode
    5. 4 Frequency Hopping Methods
      1. 4.1 Maintaining Phase Continuity
        1. 4.1.1 Phase Continuous Hop Time
          1. 4.1.1.1 Serial Peripheral Interface (SPI)
          2. 4.1.1.2 Test Setup
          3. 4.1.1.3 Software Configuration
          4. 4.1.1.4 Test Results
      2. 4.2 Maintaining Phase Coherency
        1. 4.2.1 TX NCO Hopping Using SPI
          1. 4.2.1.1 TX NCO Switch Using SPI Hop Time
            1. 4.2.1.1.1 Software Configuration
            2. 4.2.1.1.2 Test Results
          2. 4.2.1.2 AFE74xx DAC Settling Time
            1. 4.2.1.2.1 Hardware Setup
            2. 4.2.1.2.2 Software Configuration
            3. 4.2.1.2.3 Test Results
        2. 4.2.2 RX NCO Hopping Using the GPIO Pins
          1. 4.2.2.1 Test Setup
          2. 4.2.2.2 Software Configuration
          3. 4.2.2.3 Test Results
    6. 5 NCO Frequency Resolution Versus Hop Time
    7. 6 Fast Frequency Hopping With the Load and Switch
    8. 7 Register Addresses
    9. 8 References

Evaluating the frequency hopping capability of the AFE74xx

This application note describes the NCO-based frequency hopping capability of the RF-sampling AFE7422 and AFE7444 (AFE74xx). The AFE7422 and AFE7444 are quad-channel, wideband, RF-sampling analog front ends (AFE) based on 14-bit, 9-GSPS DACs, and 14-bit, 3-GSPS ADCs. With operation at an RF of up to 6 GHz, these devices enable direct RF sampling into the C-band frequency range without the need for additional frequency conversions stages. The AFE74xx improvement in density and flexibility enables high-channel-count, multimission systems, and makes these devices a very attractive option for wideband, frequency-hopping applications.