TIDUEZ6 December   2021 TPS62912 , TPS62913

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Overview
    1. 1.1 Key System Level Specifications
    2. 1.2 System Description
    3. 1.3 Block Diagram
    4. 1.4 Design Considerations
      1. 1.4.1 Frequency Band and Applications
        1. 1.4.1.1 RF Transceiver Synchronization Challenges
        2. 1.4.1.2 JESD204B-Compliant Multichannel Phase Synchronized Clocks Generation
      2. 1.4.2 Clock Jitter and System SNR
      3. 1.4.3 Power-Supply Selection
      4. 1.4.4 Highlighted Products
        1. 1.4.4.1 AFE7950
        2. 1.4.4.2 LMX2820
        3. 1.4.4.3 LMK04832
        4. 1.4.4.4 TPS62913 and TPS62912
        5. 1.4.4.5 LMK1C1104
  7. 2Hardware, Software, Testing Requirements, and Test Results
    1. 2.1 Required Hardware and Software
      1. 2.1.1 Hardware
        1. 2.1.1.1 Clocking Board Setup
        2. 2.1.1.2 FMC-to-FMC Adapter Board Setup
        3. 2.1.1.3 AFE7950EVM Setup
        4. 2.1.1.4 TSW14J56EVM Setup
        5. 2.1.1.5 Hardware Setup of Multiple Transceiver Synchronization
      2. 2.1.2 Software
        1. 2.1.2.1 TIDA-010230 Clocking Board GUI
        2. 2.1.2.2 AFE7950 EVM GUI
        3. 2.1.2.3 High-Speed Data Converter (HSDC) Pro
        4. 2.1.2.4 Programming Steps
        5. 2.1.2.5 Clocking Board Programming Sequence
        6. 2.1.2.6 Latte SW and HSDC Pro Setup
    2. 2.2 Test Setup
    3. 2.3 Test Results
      1. 2.3.1 LMX2820 Phase-Noise Performance
      2. 2.3.2 AFE7950 Transmitter Performance
      3. 2.3.3 AFE7950 Receiver Performance
      4. 2.3.4 Multiple AFE7950s TX and RX Alignment
      5. 2.3.5 Summary and Conclusion
  8. 3Design and Documentation Support
    1. 3.1 Design Files
      1. 3.1.1 Schematics
      2. 3.1.2 BOM
    2. 3.2 Tools and Software
    3. 3.3 Documentation Support
    4. 3.4 Support Resources
    5. 3.5 Trademarks
  9. 4About the Author
  10. 5Acknowledgement

Description

In modern radar and electronic warfare systems, active electronically scanned array (AESA) antenna systems are often used with high-speed multichannel RF transceivers. These systems require very low noise clocking solutions capable of precise channel-to-channel skew adjustment to achieve the optimal system performance like signal-to-noise ratio (SNR), spurious free dynamic range (SFDR), IMD3, and effective number of bits (ENOB), and so forth. This reference design demonstrates LMX2820 and LMK04832 based low-noise JESD204B-compliant clocks and provide to multiple AFE7950 devices up to X-band operation and synchronizes them at < 10 ps with improved system performance at 9 GSPS, 3 GSPS DAC or ADC clocks. All key design theories are described, guiding users through the part selection process and design optimization. Finally, schematic, board layout, hardware testing, and results are also presented.