SNOSA42G November   2002  – December 2014 LMH6624 , LMH6626

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics ±2.5 V
    6. 6.6 Electrical Characteristics ±6 V
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Feature Description
      1. 7.2.1 Bias Current Cancellation
      2. 7.2.2 Total Input Noise vs. Source Resistance
      3. 7.2.3 Noise Figure
      4. 7.2.4 Low Noise Integrator
      5. 7.2.5 High-gain Sallen-key Active Filters
      6. 7.2.6 Low Noise Magnetic Media Equalizer
    3. 7.3 Device Functional Modes
      1. 7.3.1 Single Supply Operation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Related Links
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

1 Features

  • VS = ±6 V, TA = 25°C, AV = 20 (Typical Values Unless Specified)
  • Gain Bandwidth (LMH6624) 1.5 GHz
  • Input Voltage Noise 0.92 nV/√Hz
  • Input Offset Voltage (limit over temp) 700 µV
  • Slew Rate 350 V/μs
  • Slew Rate (AV = 10) 400 V/μs
  • HD2 at f = 10 MHz, RL = 100 Ω −63 dBc
  • HD3 at f = 10 MHz, RL = 100 Ω −80 dBc
  • Supply Voltage Range (Dual Supply) 2.5 V to 6 V
  • Supply Voltage Range (Single Supply) 5 V to 12 V
  • Improved Replacement for the CLC425 (LMH6624)
  • Stable for Closed Loop |AV| ≥ 10

2 Applications

  • Instrumentation Sense Amplifiers
  • Ultrasound Pre-amps
  • Magnetic Tape & Disk Pre-amps
  • Wide Band Active Filters
  • Professional Audio Systems
  • Opto-electronics
  • Medical Diagnostic Systems

3 Description

The LMH6624 and LMH6626 devices offer wide bandwidth (1.5 GHz for single, 1.3 GHz for dual) with very low input noise (0.92 nV/√Hz, 2.3 pA/√Hz) and ultra-low dc errors (100 μV VOS, ±0.1 μV/°C drift) providing very precise operational amplifiers with wide dynamic range. This enables the user to achieve closed-loop gains of greater than 10, in both inverting and non-inverting configurations.

The LMH6624 (single) and LMH6626 (dual) traditional voltage feedback topology provide the following benefits: balanced inputs, low offset voltage and offset current, very low offset drift, 81dB open loop gain, 95dB common mode rejection ratio, and 88dB power supply rejection ratio.

The LMH6624 and LMH6626 devices operate from ±2.5 V to ±6 V in dual supply mode and from 5 V to 12 V in single supply configuration.

LMH6624 is offered in SOT-23-5 and SOIC-8 packages. The LMH6626 is offered in SOIC-8 and VSSOP-8 packages.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
LMH6624 SOT-23 (5) 2.90 mm × 1.60 mm
SOIC (8) 4.90 mm × 3.91 mm
LMH6626 SOIC (8) 4.90 mm × 3.91 mm
VSSOP (8) 3.00 mm × 3.00 mm
  1. For all available packages, see the orderable addendum at the end of the datasheet.

Voltage Noise vs. Frequency

20058962.png