SNAS589F June   2012  – August 2017 LMK04906

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Charge Pump Current Specification Definitions
      1. 7.1.1 Charge Pump Output Current Magnitude Variation Vs. Charge Pump Output Voltage
      2. 7.1.2 Charge Pump Sink Current Vs. Charge Pump Output Source Current Mismatch
      3. 7.1.3 Charge Pump Output Current Magnitude Variation vs Temperature
    2. 7.2 Differential Voltage Measurement Terminology
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1  System Architecture
      2. 8.1.2  PLL1 Redundant Reference Inputs (CLKin0/CLKin0*, CLKin1/CLKin1*, and CLKin2/CLKin2*)
      3. 8.1.3  PLL1 Tunable Crystal Support
      4. 8.1.4  VCXO/Crystal Buffered Outputs
      5. 8.1.5  Frequency Holdover
      6. 8.1.6  Integrated Loop Filter Poles
      7. 8.1.7  Internal VCO
      8. 8.1.8  External VCO Mode
      9. 8.1.9  Clock Distribution
        1. 8.1.9.1 CLKout DIVIDER
        2. 8.1.9.2 CLKout Delay
        3. 8.1.9.3 Programmable Output Type
        4. 8.1.9.4 Clock Output Synchronization
      10. 8.1.10 0-Delay
      11. 8.1.11 Default Start-Up Clocks
      12. 8.1.12 Status Pins
      13. 8.1.13 Register Readback
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Serial MICROWIRE Timing Diagram
      2. 8.3.2  Advanced MICROWIRE Timing Diagrams
        1. 8.3.2.1 Three Extra Clocks or Double Program
        2. 8.3.2.2 Three Extra Clocks With LEuWire High
        3. 8.3.2.3 Readback
      3. 8.3.3  Inputs / Outputs
        1. 8.3.3.1 PLL1 Reference Inputs (CLKin0, CLKin1, and CLKin2)
        2. 8.3.3.2 PLL2 OSCin / OSCin* Port
        3. 8.3.3.3 Crystal Oscillator
      4. 8.3.4  Input Clock Switching
        1. 8.3.4.1 Input Clock Switching - Manual Mode
        2. 8.3.4.2 Input Clock Switching - Pin Select Mode
          1. 8.3.4.2.1 Pin Select Mode and Host
          2. 8.3.4.2.2 Switch Event Without Holdover
          3. 8.3.4.2.3 Switch Event With Holdover
        3. 8.3.4.3 Input Clock Switching - Automatic Mode
          1. 8.3.4.3.1 Starting Active Clock
          2. 8.3.4.3.2 Clock Switch Event: PLL1 DLD
          3. 8.3.4.3.3 Clock Switch Event: PLL1 Vtune Rail
          4. 8.3.4.3.4 Clock Switch Event With Holdover
          5. 8.3.4.3.5 Clock Switch Event Without Holdover
        4. 8.3.4.4 Input Clock Switching - Automatic Mode With Pin Select
          1. 8.3.4.4.1 Starting Active Clock
          2. 8.3.4.4.2 Clock Switch Event: PLL1 DLD
          3. 8.3.4.4.3 Clock Switch Event: PLL1 Vtune Rail
          4. 8.3.4.4.4 Clock Switch Event With Holdover
      5. 8.3.5  Holdover Mode
        1. 8.3.5.1 Enable Holdover
        2. 8.3.5.2 Entering Holdover
        3. 8.3.5.3 During Holdover
        4. 8.3.5.4 Exiting Holdover
        5. 8.3.5.5 Holdover Frequency Accuracy and DAC Performance
        6. 8.3.5.6 Holdover Mode - Automatic Exit of Holdover
      6. 8.3.6  PLLs
        1. 8.3.6.1 PLL1
        2. 8.3.6.2 PLL2
          1. 8.3.6.2.1 PLL2 Frequency Doubler
        3. 8.3.6.3 Digital Lock Detect
      7. 8.3.7  Status PINS
        1. 8.3.7.1 Logic Low
        2. 8.3.7.2 Digital Lock Detect
        3. 8.3.7.3 Holdover Status
        4. 8.3.7.4 DAC
        5. 8.3.7.5 PLL Divider Outputs
        6. 8.3.7.6 CLKinX_LOS
        7. 8.3.7.7 CLKinX Selected
        8. 8.3.7.8 MICROWIRE Readback
      8. 8.3.8  VCO
      9. 8.3.9  Clock Distribution
        1. 8.3.9.1 Fixed Digital Delay
        2. 8.3.9.2 Fixed Digital Delay - Example
        3. 8.3.9.3 Clock Output Synchronization (SYNC)
          1. 8.3.9.3.1 Effect of SYNC
          2. 8.3.9.3.2 Methods of Generating SYNC
          3. 8.3.9.3.3 Avoiding Clock Output Interruption Due to SYNC
          4. 8.3.9.3.4 SYNC Timing
        4. 8.3.9.4 Dynamically Programming Digital Delay
          1. 8.3.9.4.1 Absolute vs Relative Dynamic Digital Delay
          2. 8.3.9.4.2 Dynamic Digital Delay and 0-Delay Mode
          3. 8.3.9.4.3 SYNC and Minimum Step Size
          4. 8.3.9.4.4 Programming Overview
          5. 8.3.9.4.5 Internal Dynamic Digital Delay Timing
          6. 8.3.9.4.6 Other Timing Requirements
        5. 8.3.9.5 Absolute Dynamic Digital Delay
          1. 8.3.9.5.1 Absolute Dynamic Digital Delay - Example
        6. 8.3.9.6 Relative Dynamic Digital Delay
          1. 8.3.9.6.1 Relative Dynamic Digital Delay - Example
      10. 8.3.10 0-Delay Mode
      11. 8.3.11 Hitless Switching
    4. 8.4 Device Functional Modes
      1. 8.4.1 Mode Selection
      2. 8.4.2 Operating Modes
        1. 8.4.2.1 Dual PLL
        2. 8.4.2.2 0-Delay Dual PLL
        3. 8.4.2.3 Single PLL
        4. 8.4.2.4 0-delay Single PLL
        5. 8.4.2.5 Clock Distribution
    5. 8.5 Programming
      1. 8.5.1 Special Programming Case for R0 to R5 for CLKoutX_DIV and CLKoutX_DDLY
        1. 8.5.1.1 Example
      2. 8.5.2 Recommended Programming Sequence
        1. 8.5.2.1 Overview
      3. 8.5.3 Readback
        1. 8.5.3.1 Readback - Example
    6. 8.6 Register Maps
      1. 8.6.1 Register Map and Readback Register Map
      2. 8.6.2 Default Device Register Settings After Power On Reset
      3. 8.6.3 Register Descriptions
        1. 8.6.3.1  Register R0 to R5
          1. 8.6.3.1.1 CLKoutX_PD, Powerdown CLKoutX Output Path
          2. 8.6.3.1.2 CLKoutX_OSCin_Sel, Clock Output Source
          3. 8.6.3.1.3 CLKoutX_ADLX_SEL[29], CLKoutX_ADLX_SEL[28], Select Analog Delay
          4. 8.6.3.1.4 CLKoutX_DDLY, Clock Channel Digital Delay
          5. 8.6.3.1.5 Reset
          6. 8.6.3.1.6 POWERDOWN
          7. 8.6.3.1.7 CLKoutX_HS, Digital Delay Half Shift
          8. 8.6.3.1.8 CLKoutX_DIV, Clock Output Divide
        2. 8.6.3.2  Registers R6 to R8
          1. 8.6.3.2.1 CLKoutX_TYPE
          2. 8.6.3.2.2 CLKoutX_ADLY
        3. 8.6.3.3  Register R10
          1. 8.6.3.3.1 OSCout0_TYPE
          2. 8.6.3.3.2 EN_OSCout0, OSCout0 Output Enable
          3. 8.6.3.3.3 OSCout0_MUX, Clock Output Mux
          4. 8.6.3.3.4 PD_OSCin, OSCin Powerdown Control
          5. 8.6.3.3.5 OSCout_DIV, Oscillator Output Divide
          6. 8.6.3.3.6 VCO_MUX
          7. 8.6.3.3.7 EN_FEEDBACK_MUX
          8. 8.6.3.3.8 VCO_DIV, VCO Divider
          9. 8.6.3.3.9 FEEDBACK_MUX
        4. 8.6.3.4  REGISTER R11
          1. 8.6.3.4.1 MODE: Device Mode
          2. 8.6.3.4.2 EN_SYNC, Enable Synchronization
          3. 8.6.3.4.3 NO_SYNC_CLKoutX
          4. 8.6.3.4.4 SYNC_CLKin2_MUX
          5. 8.6.3.4.5 SYNC_QUAL
          6. 8.6.3.4.6 SYNC_POL_INV
          7. 8.6.3.4.7 SYNC_EN_AUTO
          8. 8.6.3.4.8 SYNC_TYPE
          9. 8.6.3.4.9 EN_PLL2_XTAL
        5. 8.6.3.5  Register R12
          1. 8.6.3.5.1 LD_MUX
          2. 8.6.3.5.2 LD_TYPE
          3. 8.6.3.5.3 SYNC_PLLX_DLD
          4. 8.6.3.5.4 EN_TRACK
          5. 8.6.3.5.5 HOLDOVER_MODE
        6. 8.6.3.6  Register R13
          1. 8.6.3.6.1 HOLDOVER_MUX
          2. 8.6.3.6.2 HOLDOVER_TYPE
          3. 8.6.3.6.3 Status_CLKin1_MUX
          4. 8.6.3.6.4 Status_CLKin0_TYPE
          5. 8.6.3.6.5 DISABLE_DLD1_DET
          6. 8.6.3.6.6 Status_CLKin0_MUX
          7. 8.6.3.6.7 CLKin_SELECT_MODE
          8. 8.6.3.6.8 CLKin_Sel_INV
          9. 8.6.3.6.9 EN_CLKinX
        7. 8.6.3.7  Register 14
          1. 8.6.3.7.1 LOS_TIMEOUT
          2. 8.6.3.7.2 EN_LOS
          3. 8.6.3.7.3 Status_CLKin1_TYPE
          4. 8.6.3.7.4 CLKinX_BUF_TYPE, PLL1 CLKinX/CLKinX* Buffer Type
          5. 8.6.3.7.5 DAC_HIGH_TRIP
          6. 8.6.3.7.6 DAC_LOW_TRIP
          7. 8.6.3.7.7 EN_VTUNE_RAIL_DET
        8. 8.6.3.8  Register 15
          1. 8.6.3.8.1 MAN_DAC
          2. 8.6.3.8.2 EN_MAN_DAC
          3. 8.6.3.8.3 HOLDOVER_DLD_CNT
          4. 8.6.3.8.4 FORCE_HOLDOVER
        9. 8.6.3.9  Register 16
          1. 8.6.3.9.1 XTAL_LVL
        10. 8.6.3.10 Register 23
          1. 8.6.3.10.1 DAC_CNT
        11. 8.6.3.11 Register 24
          1. 8.6.3.11.1 PLL2_C4_LF, PLL2 Integrated Loop Filter Component
          2. 8.6.3.11.2 PLL2_C3_LF, PLL2 Integrated Loop Filter Component
          3. 8.6.3.11.3 PLL2_R4_LF, PLL2 Integrated Loop Filter Component
          4. 8.6.3.11.4 PLL2_R3_LF, PLL2 Integrated Loop Filter Component
          5. 8.6.3.11.5 PLL1_N_DLY
          6. 8.6.3.11.6 PLL1_R_DLY
          7. 8.6.3.11.7 PLL1_WND_SIZE
        12. 8.6.3.12 Register 25
          1. 8.6.3.12.1 DAC_CLK_DIV
          2. 8.6.3.12.2 PLL1_DLD_CNT
        13. 8.6.3.13 Register 26
          1. 8.6.3.13.1 PLL2_WND_SIZE
          2. 8.6.3.13.2 EN_PLL2_REF_2X, PLL2 Reference Frequency Doubler
          3. 8.6.3.13.3 PLL2_CP_POL, PLL2 Charge Pump Polarity
          4. 8.6.3.13.4 PLL2_CP_GAIN, PLL2 Charge Pump Current
          5. 8.6.3.13.5 PLL2_DLD_CNT
          6. 8.6.3.13.6 PLL2_CP_TRI, PLL2 Charge Pump TRI-STATE
        14. 8.6.3.14 Register 27
          1. 8.6.3.14.1 PLL1_CP_POL, PLL1 Charge Pump Polarity
          2. 8.6.3.14.2 PLL1_CP_GAIN, PLL1 Charge Pump Current
          3. 8.6.3.14.3 CLKinX_PreR_DIV
          4. 8.6.3.14.4 PLL1_R, PLL1 R Divider
          5. 8.6.3.14.5 PLL1_CP_TRI, PLL1 Charge Pump TRI-STATE
        15. 8.6.3.15 Register 28
          1. 8.6.3.15.1 PLL2_R, PLL2 R Divider
          2. 8.6.3.15.2 PLL1_N, PLL1 N Divider
        16. 8.6.3.16 REGISTER 29
          1. 8.6.3.16.1 OSCin_FREQ, PLL2 Oscillator Input Frequency Register
          2. 8.6.3.16.2 PLL2_FAST_PDF, High PLL2 Phase Detector Frequency
          3. 8.6.3.16.3 PLL2_N_CAL, PLL2 N Calibration Divider
        17. 8.6.3.17 Register 30
          1. 8.6.3.17.1 PLL2_P, PLL2 N Prescaler Divider
          2. 8.6.3.17.2 PLL2_N, PLL2 N Divider
        18. 8.6.3.18 Register 31
          1. 8.6.3.18.1 READBACK_LE
          2. 8.6.3.18.2 READBACK_ADDR
          3. 8.6.3.18.3 uWire_LOCK
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Loop Filter
        1. 9.1.1.1 PLL1
        2. 9.1.1.2 PLL2
      2. 9.1.2 Driving CLKin and OSCin Inputs
        1. 9.1.2.1 Driving CLKin Pins With a Differential Source
        2. 9.1.2.2 Driving CLKin Pins With a Single-Ended Source
      3. 9.1.3 Termination and Use of Clock Output (Drivers)
        1. 9.1.3.1 Termination for DC Coupled Differential Operation
        2. 9.1.3.2 Termination for AC Coupled Differential Operation
        3. 9.1.3.3 Termination for Single-Ended Operation
      4. 9.1.4 Frequency Planning With the LMK04906 Family
      5. 9.1.5 PLL Programming
        1. 9.1.5.1 Example PLL2 N Divider Programming
      6. 9.1.6 Digital Lock Detect Frequency Accuracy
        1. 9.1.6.1 Minimum Lock Time Calculation Example
      7. 9.1.7 Calculating Dynamic Digital Delay Values For Any Divide
        1. 9.1.7.1 Example
      8. 9.1.8 Optional Crystal Oscillator Implementation (OSCin/OSCin*)
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Device Selection
          1. 9.2.2.1.1 Clock Architect
          2. 9.2.2.1.2 Clock Design Tool
          3. 9.2.2.1.3 Calculation Using LCM
        2. 9.2.2.2 Device Configuration
          1. 9.2.2.2.1 PLL LO Reference
          2. 9.2.2.2.2 POR Clock
        3. 9.2.2.3 PLL Loop Filter Design
          1. 9.2.2.3.1 PLL1 Loop Filter Design
          2. 9.2.2.3.2 PLL2 Loop Filter Design
        4. 9.2.2.4 Clock Output Assignment
        5. 9.2.2.5 Other Device Specific Configuration
          1. 9.2.2.5.1 Digital Lock Detect
          2. 9.2.2.5.2 Holdover
        6. 9.2.2.6 Device Programming
      3. 9.2.3 Application Curve
    3. 9.3 System Examples
      1. 9.3.1 System Level Diagram
    4. 9.4 Do's and Don'ts
      1. 9.4.1 LVCMOS Complementary vs. Non-Complementary Operation
      2. 9.4.2 LVPECL Outputs
  10. 10Power Supply Recommendations
    1. 10.1 Pin Connection Recommendations
      1. 10.1.1 Vcc Pins and Decoupling
        1. 10.1.1.1 Vcc2, Vcc3, Vcc10, Vcc11, Vcc12, Vcc13 (CLKout Vccs)
        2. 10.1.1.2 Vcc1 (VCO), Vcc4 (Digital), and Vcc9 (PLL2)
        3. 10.1.1.3 Vcc6 (PLL1 Charge Pump) and Vcc8 (PLL2 Charge Pump)
        4. 10.1.1.4 Vcc5 (CLKin), Vcc7 (OSCin & OSCout0)
      2. 10.1.2 Unused Clock Outputs
      3. 10.1.3 Unused Clock Inputs
      4. 10.1.4 LDO Bypass
    2. 10.2 Current Consumption and Power Dissipation Calculations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resource
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Features

  • Ultralow RMS Jitter Performance
    • 100-fs RMS Jitter (12 kHz to 20 MHz)
    • 123-fs RMS Jitter (100 Hz to 20 MHz)
  • Dual Loop PLLatinum™ PLL Architecture
    • PLL1
      • Integrated Low-Noise Crystal Oscillator Circuit
      • Holdover Mode when Input Clocks are Lost
        • Automatic or Manual Triggering/Recovery
    • PLL2
      • Normalized [1 Hz] PLL Noise Floor of –227 dBc/Hz
      • Phase Detector Rate up to 155 MHz
      • OSCin Frequency-doubler
      • Integrated Low-Noise VCO
  • 3 Redundant Input Clocks with LOS
    • Automatic and Manual Switch-Over Modes
  • 50% Duty Cycle Output Divides, 1 to 1045 (Even and Odd)
  • LVPECL, LVDS, or LVCMOS Programmable Outputs
  • Precision Digital Delay, Fixed or Dynamically Adjustable
  • 25-ps Step Analog Delay Control.
  • 6 Differential Outputs. Up to 12 Single Ended.
    • Up to 5 VCXO/Crystal Buffered Outputs
  • Clock Rates of up to 2600 MHz
  • 0-Delay Mode
  • Three Default Clock Outputs at Power Up
  • Multi-mode: Dual PLL, Single PLL, and Clock Distribution
  • Industrial Temperature Range: –40 to 85 °C
  • 3.15-V to 3.45-V Operation
  • Package: 64-Pin WQFN (9 mm × 9 mm × 0.8 mm)

Applications

  • 10G, 40G, and 100G OTN Line Cards
  • SONET/SDH OC-48/STM-16 and OC-192/STM-64 Line Cards
  • GbE/10GbE, 1/2/4/8/10GFC Line Cards
  • ITU G.709 and Custom FEC Line Cards
  • Synchronous Ethernet
  • Optical Modules
  • DSLAM/MSANs
  • Test and Measurement
  • Broadcast Video
  • Wireless Basestations
  • Data Converter Clocking
  • Microwave ODU and IDUs for Wireless Backhaul

Description

The LMK04906 is the industry's highest performance clock jitter attenuator with superior clock jitter cleaning, generation, and distribution with advanced features to meet high performance timing application needs.

The LMK04906 accepts 3 clock inputs ranging from 1 kHz to 500 MHz and generates 6 unique clock output frequencies ranging from 284 kHz to 2.6 GHz. The LMK04906 can also buffer a crystal or VCXO to generate a 7th unique clock frequency.

The device provides virtually all frequency translation combinations required for SONET, Ethernet, Fibre Channel and multi-mode Wireless Base Stations.

The LMK04906 input clock frequency and clock multiplication ratio are programmable through a SPI interface.

Device Information(1)

PART NUMBER VCO FREQUENCY REFERENCE INPUTS
LMK04906 2370 to 2600 MHz 3
  1. For all available packages, see the orderable addendum at the end of the data sheet.

System Application Diagram

LMK04906 30179139.gif

Simplified LMK04906 Block Diagram

LMK04906 30179140.gif