

DLP3034-Q1 車載ディスプレイ用 0.3 インチ、WVGA 405nm DMD

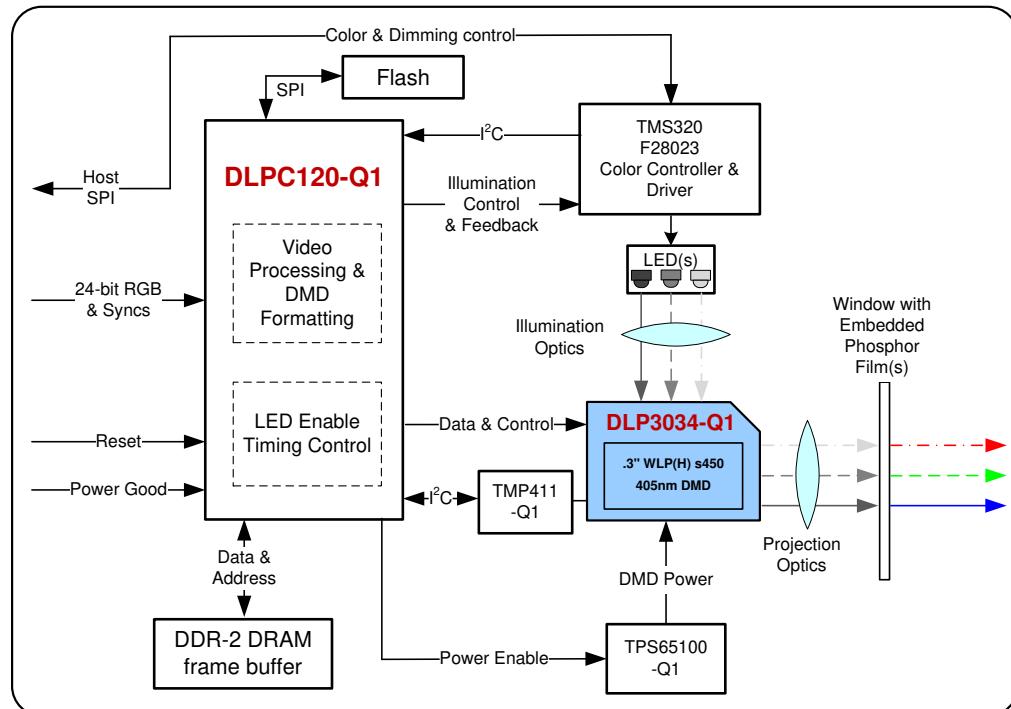
1 特長

- 車載認証済み
 - DMD アレイの動作温度範囲: -40°C ~ 105°C
- 405nm の照明光源をサポート
- 対角 0.3 インチのマイクロミラー・アレイ
 - マイクロミラー・ピッチ: 7.6μm
 - マイクロミラー傾斜角: ±12° (フラット状態に対して)
 - 側面照明による効率の最適化
- WVGA (864 × 480) 解像度
- 偏光無依存の空間光変調器
 - LED またはレーザー光源と互換
- 低消費電力: 105mW (標準値)
- 動作温度範囲: -40°C ~ 105°C
- 熱効率 2.5°C/W の気密パッケージ
- JTAG バウンダリ・スキャンによりインシステム検証が可能
- DLPC120-Q1 車載用 DMD コントローラと互換
- 78MHz DDR DMD インターフェイス

2 アプリケーション

- 透過式ウィンドウ・ディスプレイ (車のフロント、サイド、およびリア・ウィンドウ用)

3 概要


DLP3034-Q1 車載 DMD は、透過型ウィンドウ・ディスプレイ・アプリケーションを主な対象としています。このチップセットを 405nm の照明光源 (例: LED、レーザー) と組み合わせて光学投影システムとすることで、発光性蛍光体薄膜を埋め込んだウィンドウに投影できます。これらの透明な発光性薄膜を DLP3034-Q1 プロジェクタの 405nm 光で励起すると、そのウィンドウは可視スペクトルで発光するディスプレイになります。また、このチップセットを使用すると、ダイナミック・レンジが広く、温度にかかわらずスイッチング速度が速い大出力光学システムを実現できます。

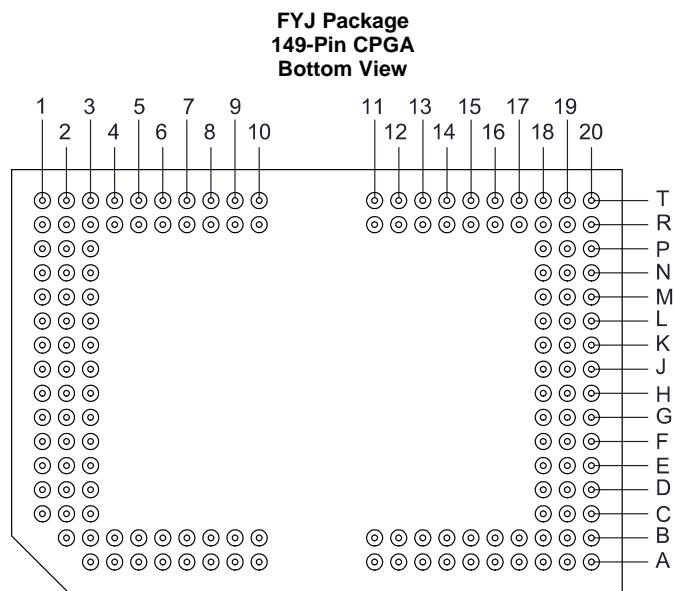
製品情報⁽¹⁾

型番	パッケージ	本体サイズ(公称)
DLP3034-Q1	FYJ (149)	22.30mm×32.20mm

(1) 利用可能なすべてのパッケージについては、このデータシートの末尾にある注文情報を参照してください。

DLP® DLP3034-Q1 のブロック・システム図

目次


1 特長	1	7.5 Micromirror Array Temperature Calculation	25
2 アプリケーション	1	7.6 Micromirror Landed-On/Landed-Off Duty Cycle	26
3 概要	1	8 Application and Implementation	28
4 改訂履歴	2	8.1 Application Information	28
5 Pin Configuration and Functions	3	8.2 Typical Application	28
6 Specifications	6	8.3 Application Mission Profile Consideration	29
6.1 Absolute Maximum Ratings	6	8.4 Illumination Mission Profile Considerations	29
6.2 Storage Conditions	6	9 Power Supply Recommendations	30
6.3 ESD Ratings	6	9.1 Power Supply Sequencing Requirements	30
6.4 Recommended Operating Conditions	7	10 Layout	32
6.5 Thermal Information	9	10.1 Layout Guidelines	32
6.6 Electrical Characteristics	9	10.2 Temperature Diode Pins	32
6.7 Timing Requirements	11	10.3 Layout Example	32
6.8 Switching Characteristics	15	11 デバイスおよびドキュメントのサポート	33
6.9 System Mounting Interface Loads	15	11.1 デバイス・サポート	33
6.10 Physical Characteristics of the Micromirror Array	16	11.2 ドキュメントのサポート	34
6.11 Micromirror Array Optical Characteristics	17	11.3 ドキュメントの更新通知を受け取る方法	34
6.12 Window Characteristics	18	11.4 コミュニティ・リソース	34
6.13 Chipset Component Usage Specification	18	11.5 商標	34
7 Detailed Description	19	11.6 静電気放電に関する注意事項	34
7.1 Overview	19	11.7 デバイスの取り扱い	34
7.2 Functional Block Diagram	19	11.8 Glossary	34
7.3 Feature Description	19	12 メカニカル、パッケージ、および注文情報	34
7.4 System Optical Considerations	25		

4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

2019年5月発行のものから更新	Page
• 製品ステータスを「事前情報」から「量産データ」に変更	1
• Changed illumination power density specifications between 395-nm and 420-nm in the <i>Recommended Operating Conditions</i>	7
• Added <i>Illumination Mission Profile Considerations</i> section to mention TI's testing at 405-nm wavelengths to be considered in final implementation	29

5 Pin Configuration and Functions

Pin Configurations and Functions

PIN	I/O	DESCRIPTION	TRACE, mm ⁽¹⁾	
NAME	NO.			
DATA(0)	F18			
DATA(1)	F20			
DATA(2)	G20			
DATA(3)	G19			
DATA(4)	H19			
DATA(5)	G18			
DATA(6)	J20			
DATA(7)	H20	Data bus. Synchronous to rising edge and falling edge of DCLK.	8.059	
DATA(8)	J19			
DATA(9)	K18			
DATA(10)	K19			
DATA(11)	L20			
DATA(12)	L18			
DATA(13)	K20			
DATA(14)	M18			
DCLK	N18	Data clock.		
LOADB	M20	Parallel latch load enable. Synchronous to rising edge and falling edge of DCLK.	10.939	
SCTRL	N19	Serial control (sync). Synchronous to rising edge and falling edge of DCLK.	6.596	
TRC	M19	Toggle rate control. Synchronous to rising edge and falling edge of DCLK.	8.617	
DAD_BUS	A7	Reset control serial bus. Synchronous to rising edge of SAC_CLK.	10.413	
RESET_OEZ	A5	Active low. Output enable signal for internal reset driver circuitry.	13.37	
RESET_STROBE	A10	Rising edge on RESET_STROBE latches in the control signals.	13.329	
SAC_BUS	B9	Stepped address control serial bus. Synchronous to rising edge of SAC_CLK.	12.586	
SAC_CLK	A8	Stepped address control clock.	12.668	
TCK	M2	JTAG clock.	10.489	
TDI	N3	JTAG data input. Synchronous to rising edge of TCK. Bond pad connects to internal pull up resistor.	11.04	
TDO	M3	LVC MOS output	JTAG data output. Synchronous to falling edge of TCK. Tri-state failsafe output buffer.	10.067
TMS	R5	LVC MOS input	JTAG mode select. Synchronous to rising edge of TCK. Bond pad connects to internal pull up resistor.	10.413
TEMP_MINUS	T10	Analog Input	Calibrated temperature diode used to assist accurate temperature measurements of DMD die.	N/A
TEMP_PLUS	T11			N/A
No Connect (Unused)	A3, A18, A19, A20, B2, B10, B18, B19, B20, C1, C20, D18, D19, D20, E18, E19, E20, N20, P20, R18, R19, R20, T18, T19, T20	N/A	N/A	N/A

(1) Propagation delay is 10.24 ps/mm for the DMD Series 450 ceramic package trace lengths.

Pin Configurations and Functions (continued)

PIN	I/O	DESCRIPTION	TRACE, mm ⁽¹⁾
NAME	NO.		
V _{BIAS} ⁽²⁾	F3, K3, L3	Power supply for positive bias level of mirror reset signal.	N/A
V _{CC} ⁽²⁾	A9, A12, A14, A16, B13, B16, R12, R13, R16, R17, T13, T14, T16	Power supply for low voltage CMOS logic. Power supply for normal high voltage at mirror address electrodes. Power supply for offset level of mirror reset signal during power down.	N/A
V _{CCH}	P3, R3, T3, T4, T5, T6	Connect to GND Reserved pin.	N/A
V _{OFFSET} ⁽²⁾	D1, E1, M1, N1	Power supply for high voltage CMOS logic. Power supply for stepped high voltage at mirror address electrodes. Power supply for offset level of mirror reset signal.	N/A
V _{REF} ⁽²⁾	B11, B12	Power supply for low voltage CMOS DDR interface.	N/A
V _{RESET} ⁽²⁾	B3, C3, E3	Power supply for negative reset level of mirror reset signal.	N/A
V _{SS} ⁽²⁾	A6, A11, A13, A15, A17, B4, B5, B8, B14, B15, B17, C2, C18, C19, F1, F2, F19, H1, H2, H3, H18, J18, K1, K2, L19, N2, P18, P19, R4, R14, R15, T7, T9, T12, T15, T17	Power Common return for all power.	N/A
V _{SSH}	P1, P2, R1, R2, T1, T2	Connect to GND Reserved pin.	N/A
RESERVED_BIM	T8	Connect to GND Bond pad connects to internal pull down resistor.	N/A
RESERVED_DT	R7		N/A
RESERVED_RM	E2		N/A
RESERVED_R(0)	G1		N/A
RESERVED_R(1)	G2		N/A
RESERVED_R(2)	G3		N/A
RESERVED_R(3)	J1		N/A
RESERVED_R(4)	J2		N/A
RESERVED_R(5)	J3		N/A
RESERVED_R(6)	L1		N/A
RESERVED_R(7)	L2		N/A
RESERVED_PFE	R6		N/A
RESERVED_RA(0)	B6		N/A
RESERVED_RA(1)	D3		N/A
RESERVED_RA(2)	B7		N/A
RESERVED_RS(0)	A4		N/A
RESERVED_RS(1)	D2		N/A
RESERVED_SO	R9	Do not connect Tri-state failsafe output buffer.	N/A
RESERVED_TP(0)	R8		N/A
RESERVED_TP(1)	R10		N/A
RESERVED_TP(2)	R11	Connect to GND Manufacturing test.	N/A

(2) The following power supplies are required to operate the DMD: V_{BIAS}, V_{CC}, V_{OFFSET}, V_{REF}, V_{RESET}, V_{SS}.

6 Specifications

6.1 Absolute Maximum Ratings

See ⁽¹⁾

		MIN	MAX	UNIT
SUPPLY VOLTAGE				
V_{REF}	LVCMOS logic supply voltage ⁽²⁾	-0.5	4	V
V_{CC}	LVCMOS logic supply voltage ⁽²⁾	-0.5	4	V
V_{OFFSET}	Mirror electrode and HVCMOS voltage ⁽²⁾	-0.5	8.75	V
V_{BIAS}	Mirror electrode voltage	-0.5	17	V
$ V_{BIAS} - V_{OFFSET} $	Supply voltage delta ⁽³⁾		8.75	V
V_{RESET}	Mirror electrode voltage	-11	0.5	V
Input voltage: other Inputs	See ⁽²⁾	-0.5	$V_{REF} + 0.3$	V
f_{DCLK}	Clock frequency	60	80	MHz
I_{TEMP_DIODE}	Temperature diode current		500	μ A
ENVIRONMENTAL				
T_{ARRAY}	Operating DMD array temperature ⁽⁴⁾	-40	105	°C

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. Unless otherwise indicated, these are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to GND (V_{SS}). V_{BIAS} , V_{CC} , V_{OFFSET} , V_{REF} , V_{RESET} , and V_{SS} are required to operate the DMD.
- (3) To prevent excess current, the supply voltage delta $|V_{BIAS} - V_{OFFSET}|$ must be less than or equal to 8.75 V.
- (4) See *Micromirror Array Temperature Calculation* section.

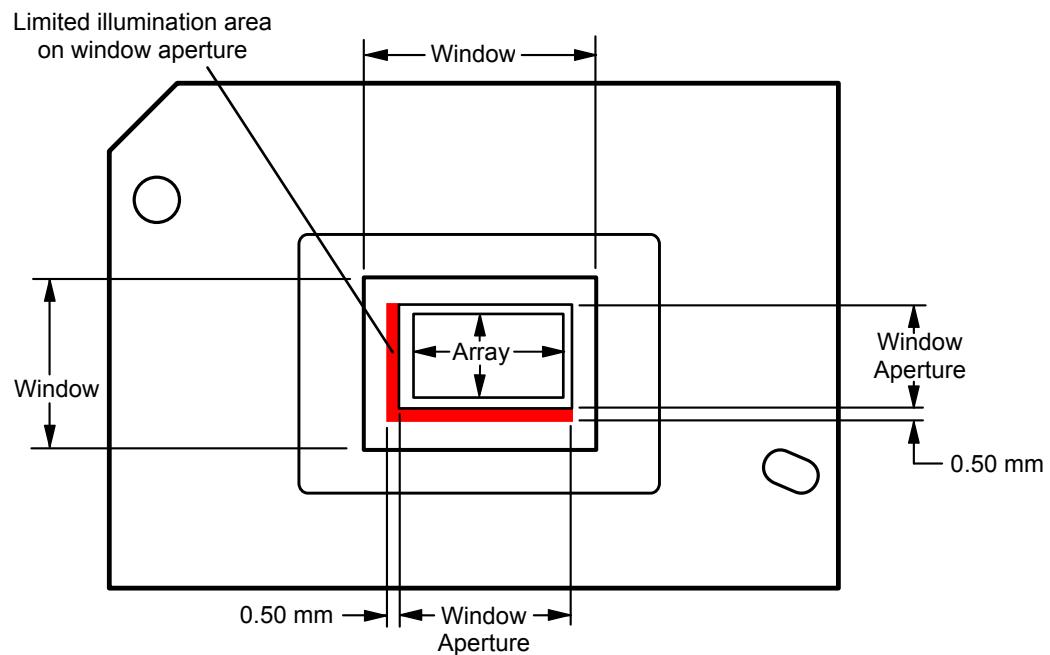
6.2 Storage Conditions

Applicable for the DMD as a component or non-operating in a system.

		MIN	MAX	UNIT
T_{DMD}	DMD storage temperature	-40	125	°C

6.3 ESD Ratings⁽¹⁾

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽²⁾	± 2000	V
		Charged-device model (CDM), per JESD22-C101 ⁽³⁾	All pins ± 500 Corner pins ± 750	


- (1) All CMOS devices require proper electrostatic discharge (ESD) handling procedures.
- (2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
SUPPLY VOLTAGE RANGE					
V_{REF}	LVCMOS interface power supply voltage ⁽¹⁾	1.65	1.8	1.95	V
V_{CC}	LVCMOS logic power supply voltage ⁽¹⁾	2.25	2.5	2.75	V
V_{OFFSET}	Mirror electrode and HVCMOS voltage ⁽¹⁾	8.25	8.5	8.75	V
V_{BIAS}	Mirror electrode voltage	15.5	16	16.5	V
$ V_{BIAS} - V_{OFFSET} $	Supply voltage delta ⁽²⁾			8.75	V
V_{RESET}	Mirror electrode voltage	-9.5	-10	-10.5	V
V_P VT+	Positive going threshold voltage	$0.4 \times V_{REF}$	$0.7 \times V_{REF}$		V
V_N VT-	Negative going threshold voltage	$0.3 \times V_{REF}$	$0.6 \times V_{REF}$		V
V_H ΔVT	Hysteresis voltage ($V_P - V_N$)	$0.1 \times V_{REF}$	$0.4 \times V_{REF}$		V
I_{OH_TDO}	High level output current @ $V_{OH} = 2.25$ V, TDO, $V_{CC} = 2.25$ V			-2	mA
I_{OL_TDO}	Low level output current @ $V_{OL} = 0.4$ V, TDO, $V_{CC} = 2.25$ V			2	mA
TEMPERATURE DIODE					
I_{TEMP_DIODE}	Max current source into temperature diode ⁽³⁾			120	μ A
ENVIRONMENTAL					
T_{ARRAY}	Operating DMD array temperature ⁽⁴⁾	-40	105		$^{\circ}$ C
$ILL_{sub-385nm}$	Illumination, wavelength < 385 nm			2.0	mW/cm^2
$ILL_{385-to-395nm}$	Illumination, 385 nm < wavelength < 395 nm			250	mW/cm^2
$ILL_{395-to-400nm}$	Illumination, 395 nm < wavelength < 400 nm			800	mW/cm^2
$ILL_{400-to-420nm}$	Illumination, 400 nm < wavelength < 420 nm			8.0	W/cm^2
ILL_{VIS}	Illumination, 420 nm < wavelength < 800 nm			Thermally limited ⁽⁵⁾	W/cm^2
$ILL_{OVERFILL}$	Illumination overfill maximum heat load in areas shown in Figure 1 ⁽⁶⁾	$T_{ARRAY} \leq 75^{\circ}$ C		26	mW/mm^2
	Illumination overfill maximum heat load in areas shown in Figure 1 ⁽⁶⁾	$T_{ARRAY} > 75^{\circ}$ C		20	mW/mm^2

- (1) V_{BIAS} , V_{CC} , V_{OFFSET} , V_{REF} , V_{RESET} , V_{SS} are required to operate the DMD.
- (2) To prevent excess current, the supply voltage delta $|V_{BIAS} - V_{OFFSET}|$ must be less than or equal to 8.75 V.
- (3) Temperature Diode is to allow accurate measurement of the DMD array temperature during operation.
- (4) DMD active array temperature can be calculated as shown in [Micromirror Array Temperature Calculation](#) section. Additionally, the DMD array temperature is monitored in the system using the TMP411-Q1 and DLPC120-Q1 as shown in the system block diagram.
- (5) Limited by the resulting micromirror array temperature. Refer to the calculation example in [Micromirror Array Temperature Calculation](#) section.
- (6) The active area of the DLP303x-Q1 device is surrounded by an aperture on the inside of the DMD window surface that masks structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light illuminating the area outside the active array can scatter and create adverse effects to the performance of an end application using the DMD. The illumination optical system should be designed to minimize light flux incident outside the active array. Depending on the particular system's optical architecture and assembly tolerances, the amount of overfill light on the outside of the active array may cause system performance degradation.

Figure 1. Illumination Overfill Diagram

6.5 Thermal Information

THERMAL METRIC ⁽¹⁾		DLP3034-Q1	UNIT
		FYJ (CPGA)	
		149 PINS	
Thermal resistance	Active area to test point 1 (TP1) ⁽¹⁾	2.5	°C/W

(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of maintaining the package within the temperature range specified in the [Recommended Operating Conditions](#). The total heat load on the DMD is largely driven by the incident light absorbed by the active area, although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

6.6 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS ⁽²⁾	MIN	TYP	MAX	UNIT
V_{OH} High level output voltage	$V_{CC} = 2.25\text{ V}$ $I_{OH} = -8\text{ mA}$		1.7		V
V_{OH2} High level output voltage ⁽³⁾	$V_{REF} = 1.8\text{ V}$ $I_{OH} = -2\text{ mA}$		1.44		V
V_{OL} Low level output voltage	$V_{CC} = 2.75\text{ V}$ $I_{OL} = 8\text{ mA}$			0.4	V
V_{OL2} Low level output voltage ⁽³⁾	$V_{REF} = 1.8\text{ V}$ $I_{OL} = 2\text{ mA}$			0.36	V
I_{OZ} Output high impedance current	$V_{REF} = 1.95\text{ V}$ $V_{OL} = 0\text{ V}$		-10		μA
	$V_{REF} = 1.95\text{ V}$ $V_{OH} = V_{REF}$			10	
I_{IL} Low level input current ⁽⁴⁾	$V_{REF} = 1.95\text{ V}$ $V_I = 0\text{ V}$		-5		μA
I_{IH} High level input current ⁽⁴⁾	$V_{REF} = 1.95\text{ V}$ $V_I = V_{REF}$			6	μA
I_{IL2} Low level input current ⁽⁵⁾	$V_{REF} = 1.95\text{ V}$ $V_I = 0\text{ V}$		-785		μA
I_{IH2} High level input current ⁽⁵⁾	$V_{REF} = 1.95\text{ V}$ $V_I = V_{REF}$			6	μA
I_{IL3} Low level input current ⁽⁶⁾	$V_{REF} = 1.95\text{ V}$ $V_I = 0\text{ V}$		-5		μA
I_{IH3} High level input current ⁽⁶⁾	$V_{REF} = 1.95\text{ V}$ $V_I = V_{REF}$			785	μA
CURRENT					
I_{REF} Current at $V_{REF} = 1.95\text{ V}$	$f_{DCLK} = 80\text{ MHz}$			2.80	mA
I_{CC} Current at $V_{CC} = 2.75\text{ V}$	$f_{DCLK} = 80\text{ MHz}$			59.90	mA
I_{OFFSET} Current at $V_{OFFSET} = 8.75\text{ V}$				2.93	mA
I_{BIAS} Current at $V_{BIAS} = 16.5\text{ V}$				2.30	mA
I_{RESET} Current at $V_{RESET} = -10.5\text{ V}$				-2.00	mA

(1) Device electrical characteristics are over [Recommended Operating Conditions](#) unless otherwise noted.

(2) All voltage values are with respect to the ground pins (V_{SS}).

(3) Specification is for LVCMSO JTAG output pin TDO.

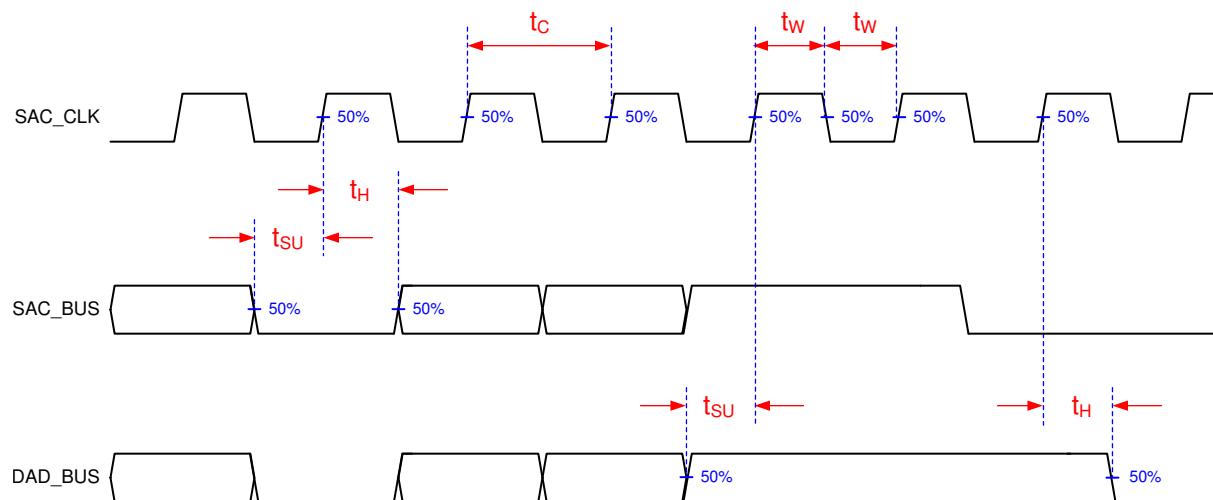
(4) Specification is for LVCMSO input pins, which do not have pull up or pull down resistors. See [Pin Configuration and Functions](#) section.

(5) Specification is for LVCMSO input pins which do have pull up resistors (JTAG: TDI, TMS). See [Pin Configuration and Functions](#) section.

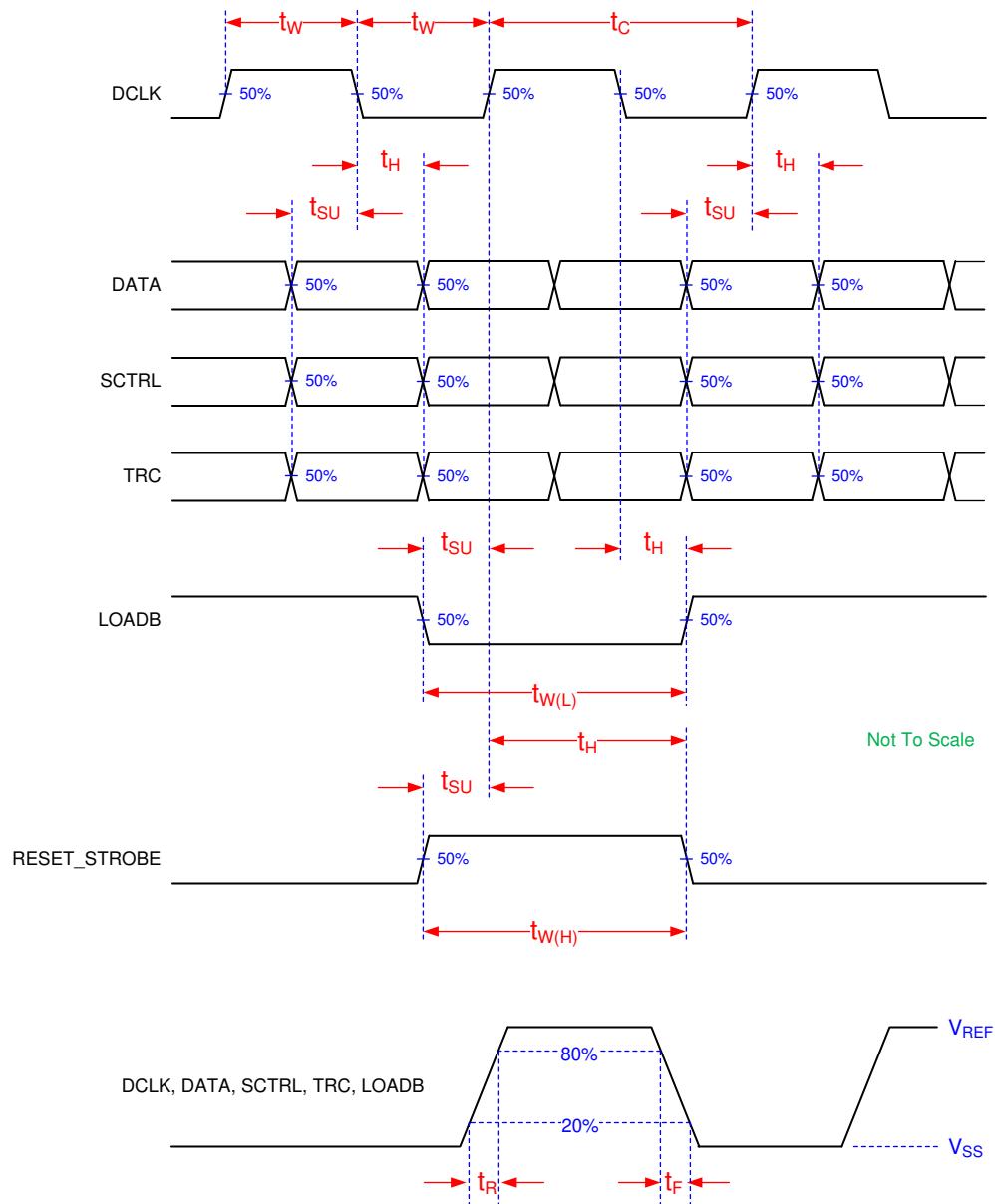
(6) Specification is for LVCMSO input pins which do have pull down resistors. See [Pin Configuration and Functions](#) section.

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾


PARAMETER	TEST CONDITIONS ⁽²⁾	MIN	TYP	MAX	UNIT	
POWER⁽⁷⁾						
P _{REF}	Power at V _{REF} = 1.95 V			5.46	mW	
P _{CC}	Power at V _{CC} = 2.75 V	f _{DCLK} = 80 MHz		164.73	mW	
P _{OFFSET}	Power at V _{OFFSET} = 8.75 V			25.64	mW	
P _{BIAS}	Power at V _{BIAS} = 16.5 V			37.95	mW	
P _{RESET}	Power at V _{RESET} = -10.5 V			21.00	mW	
P _{TOTAL}	Total power at nominal conditions	f _{DCLK} = 80 MHz		105	254.77	mW
CAPACITANCE						
C _{IN}	Input pin capacitance	f = 1 MHz		20	pF	
C _A	Analog pin capacitance (TEMP_PLUS and TEMP_MINUS pins)	f = 1 MHz		65	pF	
C _o	Output pin capacitance	f = 1 MHz		20	pF	

(7) The following power supplies are all required to operate the DMD: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, V_{RESET}. All V_{SS} connections are also required.


6.7 Timing Requirements

Over *Recommended Operating Conditions* unless otherwise noted.

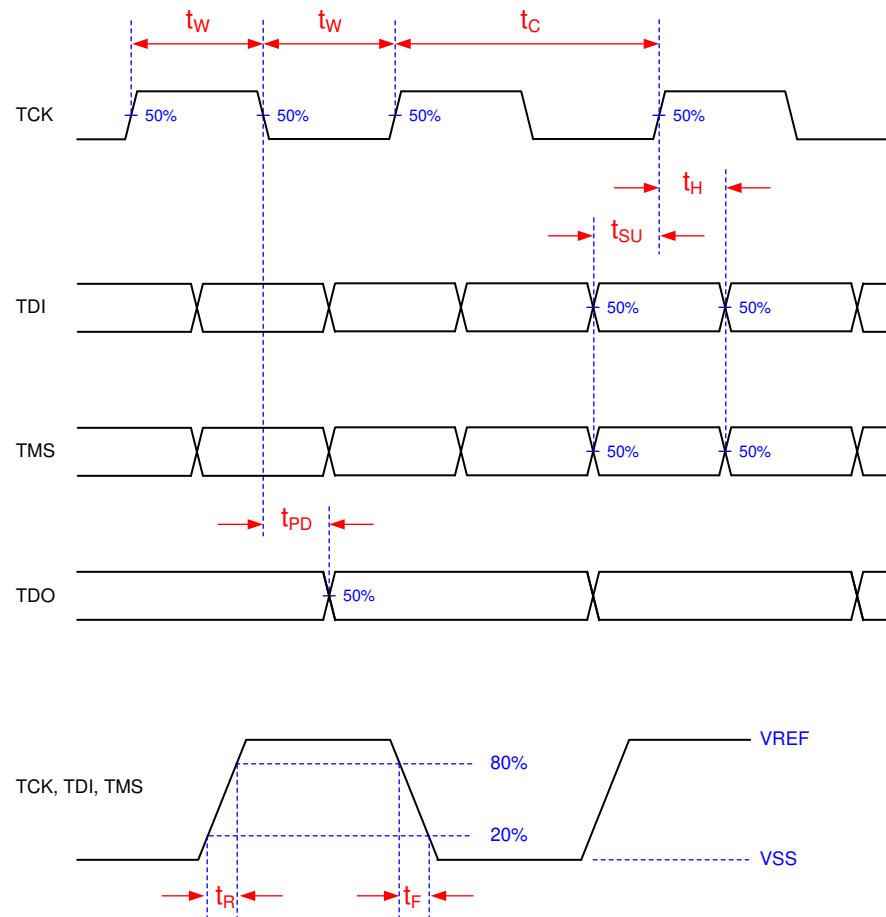
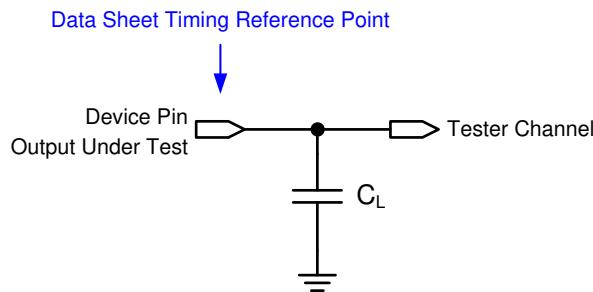

		MIN	NOM	MAX	UNIT
DMD MIRROR AND SRAM CONTROL LOGIC SIGNALS					
t_{SU}	Setup time SAC_BUS low before SAC_CLK \uparrow	1.0			ns
t_H	Hold time SAC_BUS low after SAC_CLK \uparrow	1.0			ns
t_{SU}	Setup time DAD_BUS high before SAC_CLK \uparrow	1.0			ns
t_H	Hold time DAD_BUS after SAC_CLK \uparrow	1.0			ns
t_C	Cycle time SAC_CLK	12.5	16.67		ns
t_W	Pulse width 50% to 50% reference points: SAC_CLK high or low	5.0			ns
t_R	Rise time 20% to 80% reference points: SAC_CLK		2.5		ns
t_F	Fall time 80% to 20% reference points: SAC_CLK		2.5		ns
DMD DATA PATH AND LOGIC CONTROL SIGNALS					
t_{SU}	Setup time DATA(14:0) before DCLK \uparrow or DCLK \downarrow	1.0			ns
t_H	Hold time DATA(14:0) after DCLK \uparrow or DCLK \downarrow	1.0			ns
t_{SU}	Setup time SCTRL before DCLK \uparrow or DCLK \downarrow	1.0			ns
t_H	Hold time SCTRL after DCLK \uparrow or DCLK \downarrow	1.0			ns
t_{SU}	Setup time TRC before DCLK \uparrow or DCLK \downarrow	1.0			ns
t_H	Hold time TRC after DCLK \uparrow or DCLK \downarrow	1.0			ns
t_{SU}	Setup time LOADB low before DCLK \uparrow	1.0			ns
t_H	Hold time LOADB low after DCLK \downarrow	1.0			ns
t_{SU}	Setup time RESET_STROBE high before DCLK \uparrow	1.0			ns
t_H	Hold time RESET_STROBE after DCLK \uparrow	3.5			ns
t_C	Cycle time DCLK	12.5	16.67		ns
t_W	Pulse width 50% to 50% reference points: DCLK high or low	5.0			ns
$t_W(L)$	Pulse width 50% to 50% reference points: LOADB low	7.0			ns
$t_W(H)$	Pulse width 50% to 50% reference points: RESET_STROBE high	7.0			ns
t_R	Rise time 20% to 80% reference points: DCLK, DATA, SCTRL, TRC, LOADB		2.5		ns
t_F	Fall time 80% to 20% reference points: DCLK, DATA, SCTRL, TRC, LOADB		2.5		ns
JTAG BOUNDARY SCAN CONTROL LOGIC SIGNALS					
f_{TCK}	Clock frequency TCK		10	MHz	
t_C	Cycle time TCK	100			ns
t_W	Pulse width 50% to 50% reference points: TCK high or low	10			ns
t_{SU}	Setup time TDI valid before TCK \uparrow	5			ns
t_H	Hold time TDI valid after TCK \uparrow	25			ns
t_{SU}	Setup time TMS valid before TCK \uparrow	5			ns
t_H	Hold time TMS valid after TCK \uparrow	25			ns
t_R	Rise time 20% to 80% reference points: TCK, TDI, TMS		2.5		ns
t_F	Fall time 80% to 20% reference points: TCK, TDI, TMS		2.5		ns

Figure 2. DMD Mirror and SRAM Control Logic Timing Requirements

Figure 3. DMD Data Path and Control Logic Timing Requirements

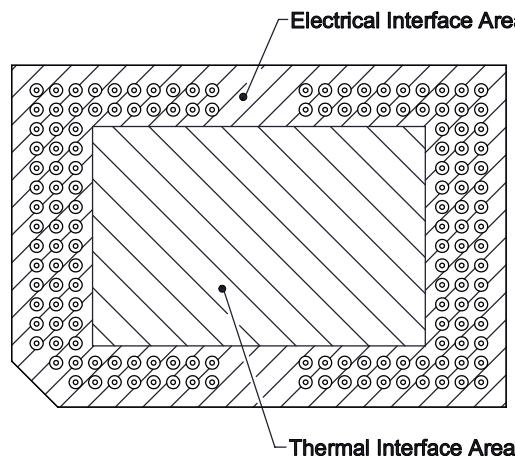

Figure 4. JTAG Boundary Scan Control Logic Timing Requirements

6.8 Switching Characteristics⁽¹⁾

Over operating free-air temperature range (unless otherwise noted).

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PD}	Output propagation, clock to Q (see Figure 4)	3		25	ns

(1) Device electrical characteristics are over [Recommended Operating Conditions](#) unless otherwise noted.



See [Micromirror Array](#) section for more information.

Figure 5. Test Load Circuit for Output Propagation Measurement

6.9 System Mounting Interface Loads

PARAMETER	MIN	NOM	MAX	UNIT
Condition 1:				
Uniformly distributed within the Thermal Interface Area shown in Figure 6		11.30		kg
Uniformly distributed within the Electrical Interface Area shown in Figure 6		11.34		kg
Condition 2:				
Uniformly distributed within the Thermal Interface Area shown in Figure 6		0		kg
Uniformly distributed within the Electrical Interface Area shown in Figure 6		22.64		kg

Figure 6. System Interface Loads

6.10 Physical Characteristics of the Micromirror Array

PARAMETER		VALUE	UNIT
N	Number of active columns	See Figure 7	684
M	Number of active rows	See Figure 7	608
ϵ	Micromirror (pixel) pitch – diagonal	See Figure 8	7.6 μm
P	Micromirror (pixel) pitch – horizontal and vertical	See Figure 8	10.8 μm
	Micromirror active array width	$P \times M + P / 2$; see Figure 7	6.5718 mm
	Micromirror active array height	$(P \times N) / 2 + P / 2$; see Figure 7	3.699 mm
	Micromirror active border	Pond of micromirror (POM) ⁽¹⁾	10 micromirrors/side

(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM. These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical bias to tilt toward OFF.

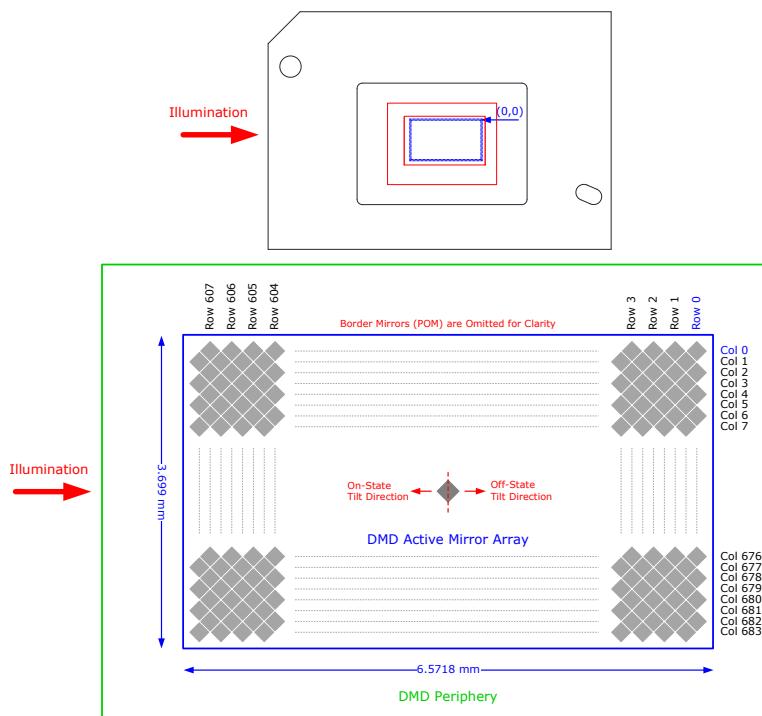


Figure 7. Micromirror Array Physical Characteristics

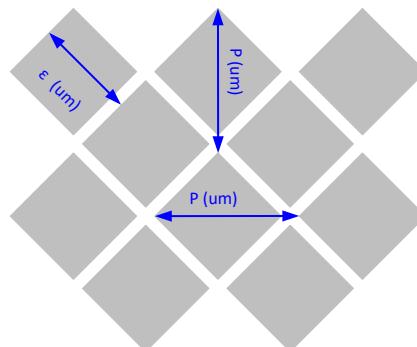
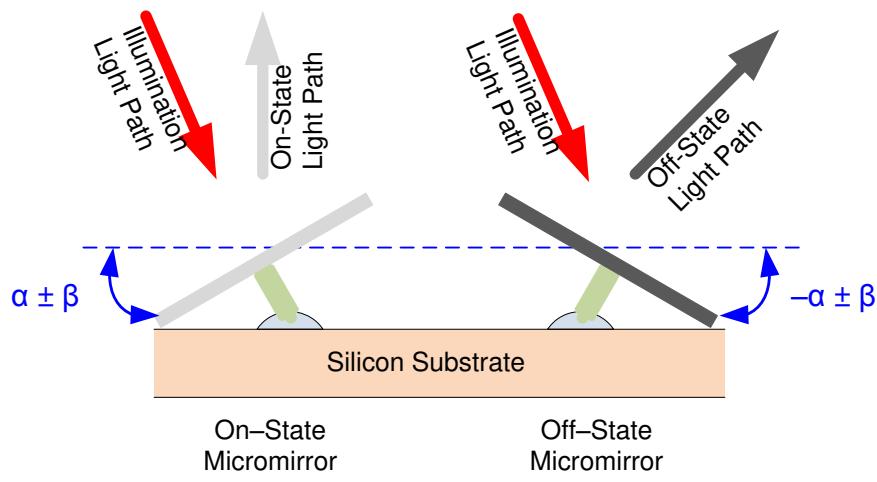


Figure 8. Mirror (Pixel) Pitch

6.11 Micromirror Array Optical Characteristics

Table 1. Optical Parameters⁽¹⁾


PARAMETER	MIN	NOM	MAX	UNIT
α Micromirror Tilt Angle, landed (on-state or off-state) (see ⁽²⁾ and Figure 9)		12		°
β Micromirror Tilt Angle Variation, device to device (see ⁽²⁾ and Figure 9)	-1		1	°
DMD Efficiency, 400 nm – 680 nm (see ⁽³⁾)		66%		
Number of non-operational micromirrors ⁽⁴⁾	Adjacent micromirrors	0		
	Non-adjacent micromirrors	10		micromirrors

(1) Optical parameters are characterized at 25°C.

(2) Mirror Tilt: Limits on variability of mirror tilt are critical in the design of the accompanying optical system. Variations in tilt angle within a device may result in apparent non-uniformities, such as line pairing and image mottling, across the projected image especially at higher system F#. Variations in the average tilt angle between devices may result in colorimetry, brightness, and system contrast variations.

(3) DMD efficiency is measured photopically under the following conditions: 24° illumination angle, F/2.4 illumination and collection apertures, uniform source spectrum (halogen), uniform pupil illumination, the optical system is telecentric at the DMD, and the efficiency numbers are measured with 100% electronic mirror duty cycle and do not include system optical efficiency or overfill loss. Note that this number is measured under conditions described above and deviations from these specified conditions could result in a different efficiency value in a different optical system. The factors that can influence the DMD efficiency related to system application include: light source spectral distribution and diffraction efficiency at those wavelengths (especially with discrete light sources such as LEDs or lasers), and illumination and collection apertures (F/#) and diffraction efficiency. The interaction of these system factors as well as the DMD efficiency factors that are not system dependent are described in detail in the *DMD Optical Efficiency Application Note*, which can be accessed by contacting TI Applications Engineering.

(4) A non-operational micromirror is defined as a micromirror that is unable to transition between the on-state and off-state positions.

Figure 9. Micromirror Tilt Angle

6.12 Window Characteristics

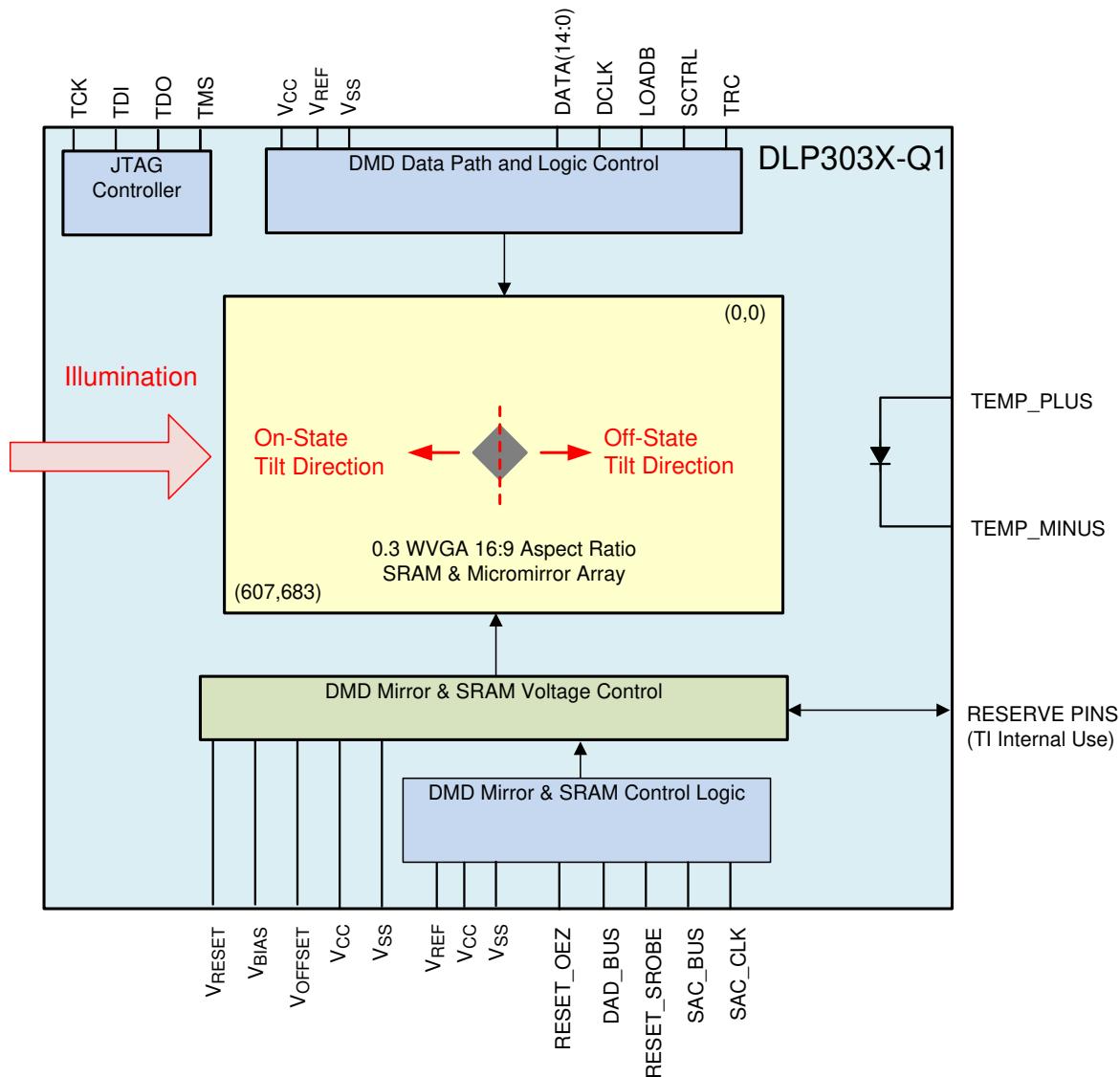
PARAMETER	MIN	NOM	MAX	UNIT
Window material designation		Corning Eagle XG		
Window refractive index	at wavelength 546.1 nm		1.5119	
Window aperture ⁽¹⁾			See ⁽¹⁾	

(1) See the package mechanical ICD for details regarding the size and location of the window aperture.

6.13 Chipset Component Usage Specification

The DLP3034-Q1 DMD is a component of the DLP® chipset including the DLPC120-Q1 DMD controller. Reliable function and operation of the DMD requires that it be used in conjunction with DLPC120-Q1 controller.

NOTE


TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously

7 Detailed Description

7.1 Overview

The DLP3034-Q1 DMD has a resolution of 608×684 mirrors configured in a diamond format that results in an aspect ratio of 16:9, which combined with the DLPC120-Q1 image processing creates an effective resolution of 864×480 square pixels. By configuring the pixels in a diamond format, the illumination input to the DMD enters from the side allowing for smaller mechanical packaging of the optical system. Additionally, side illumination can also enable increased optical efficiency compared to a corner illuminated square pixel design.

7.2 Functional Block Diagram

7.3 Feature Description

To ensure reliable operation, the DLP3034-Q1 DMD must be used with the DLPC120-Q1 DMD Display controller.

Feature Description (continued)

7.3.1 Micromirror Array

The DLP3034-Q1 DMD consists of a two-dimensional array of 1-bit CMOS memory cells that determine the state of each of the 608×684 micromirrors in the array. Refer to [Physical Characteristics of the Micromirror Array](#) for a calculation of how the 608×684 micromirror array represents a 16:9 dimensional aspect ratio to the user. Each micromirror is either “ON” (tilted $+12^\circ$) or “OFF” (tilted -12°). Combined with appropriate projection optical system the DMD can be used to create clear, colorful, and vivid digital images.

7.3.2 Double Data Rate (DDR) Interface

Each DMD micromirror and its associated SRAM memory cell is loaded with data from the DLPC120-Q1 via the DDR interface (DATA(14:0), DCLK, LOADB, SCRTL, and TRC). These signals are low voltage CMOS nominally operating at 1.8-V level to reduce power and switching noise. This high speed data input to the DMD allows for a maximum update rate of the entire micromirror array to be nearly 5 kHz, enabling the creation of seamless digital images using Pulse Width Modulation (PWM).

7.3.3 Micromirror Switching Control

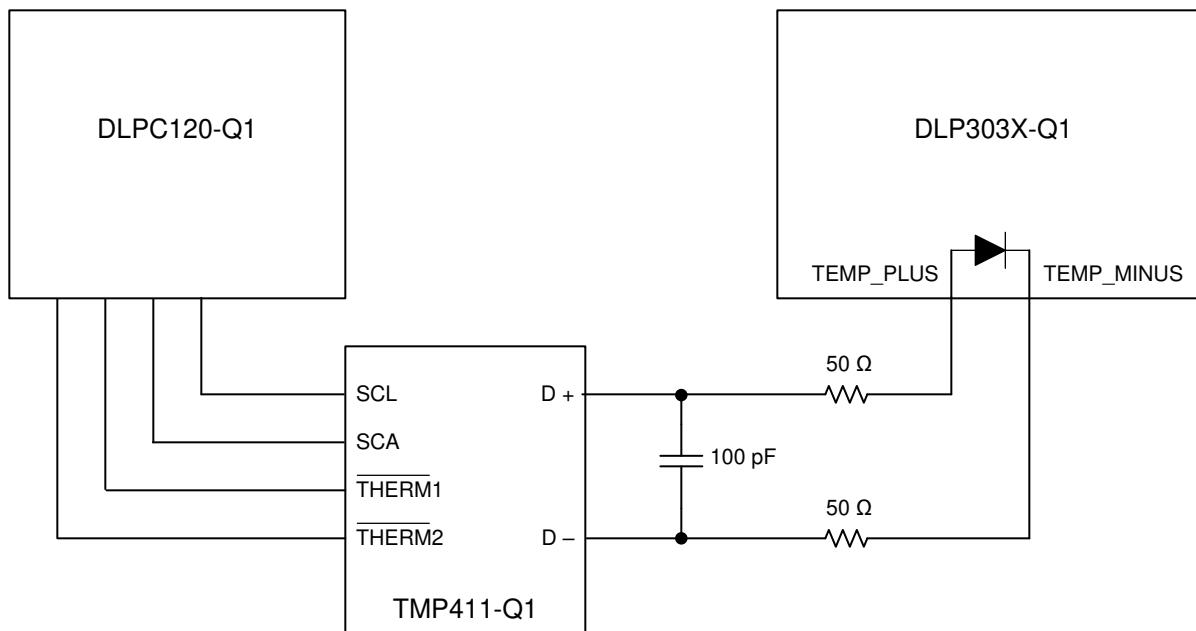
Once data is loaded onto the DMD, the mirrors are caused to switch position ($+12^\circ$ or -12°) based on the timing signal sent to the DMD Mirror and SRAM control logic. The DMD mirrors will be switched from OFF to ON or ON to OFF, or stay in the same position based on control signals DAD_BUS, RESET_STROBE, SAC_BUS, and SAC_CLK, which are coordinated with the data loading by the DLPC120-Q1. In general, the DLPC120-Q1 loads the DMD SRAM memory cells over the DDR interface, and then commands to the micromirrors to switch position.

At power down, the DMD Mirrors are commanded by the DLPC120-Q1 to move to a near flat (0°) position as shown in [Power Supply Recommendations](#) section. The flat state position of the DMD mirrors are referred to as the “Parked” state. To maintain long term DMD reliability, the DMD must be properly “Parked” prior to every power down of the DMD power supplies. Refer to the [DLPC120-Q1 Programmer’s Guide](#) for information about properly parking the DMD.

7.3.4 DMD Voltage Supplies

The micromirrors switching requires unique voltage levels to control the mechanical switching. These voltages levels are nominally 16 V, 8.5 V, and -10 V (V_{BIAS} , V_{OFFSET} , and V_{RESET}). The specification values for V_{BIAS} , V_{OFFSET} , and V_{RESET} are shown in [Recommended Operating Conditions](#).

7.3.5 Logic Reset

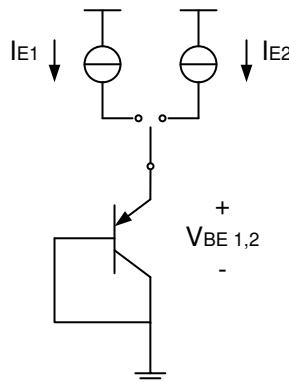

Reset of the DMD is required and controlled by the DLPC120-Q1.

7.3.6 Temperature Sensing Diode

The DMD includes a temperature sensing diode designed to be used with the TMP411-Q1 temperature monitoring device. The DLPC120-Q1 monitors the DMD array temperature via the TMP411-Q1 and temperature sense diode. The DLPC120-Q1 operation of the DMD is based in part on the DMD array temperature, and therefore, this connection is essential to ensure reliable operation of the DMD.

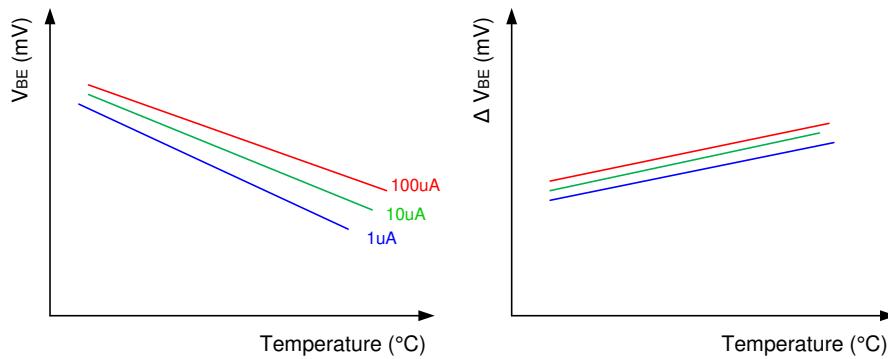
Figure 10 shows the typical connection between the DLPC120-Q1, TMP411-Q1, and the DLP3034-Q1 DMD. The signals to the temperature sense diode are sensitive to system noise, therefore, care should be taken in the routing and implementation of this circuit. See the [TMP411-Q1 Data Sheet](#) for detailed PCB layout recommendations.

Feature Description (continued)


Figure 10. Temperature Sense Diode Typical Circuit Configuration

The DLPC120-Q1 automatically controls the DMD parking based on the temperature measured from the temperature sense diode; however, it is recommended that the host controller manage the parking via the proper methods described in the *DLPC120-Q1 Programmer's Guide*.

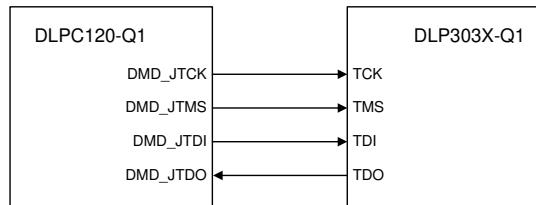
7.3.6.1 Temperature Sense Diode Theory


A temperature sensing diode is based on the fundamental current and temperature characteristics of a transistor. The diode is formed by connecting the transistor base to the collector. Two different known currents flow through the diode and the resulting diode voltage is measured in each case. The difference in their base-emitter voltages is proportional to the absolute temperature of the transistor.

Refer to the [TMP411-Q1 Data Sheet](#) for detailed information about temperature diode theory and measurement. Figure 11 and Figure 12 illustrate the relationship between the current and voltage through the diode.

Figure 11. Temperature Measurement Theory

Feature Description (continued)


Figure 12. Example of Delta VBE vs Temperature

7.3.7 DMD JTAG Interface

The DMD uses 4 standard JTAG signals for sending and receiving boundary scan test data. TCK is the test clock used to drive an IEEE 1149.1 TAP state machine and logic. TMS directs the next state of the TAP state machine. TDI is the scan data input and TDO is the scan data output.

The DMD does not support IEEE 1149.1 signals TRST (Test Logic Reset) and RTCK (Returned Test Clock). Boundary scan cells on the DMD are Observe-Only. To initiate the JTAG boundary scan operation on the DMD, a minimum of 6 TCK clock cycles are required after TMS is set to logic high.

Refer to [Figure 13](#) for a JTAG system board routing example. The DLPC120-Q1 can be enabled to perform an in system boundary scan test. See *DLPC120-Q1 Programmer's Guide* for information about this test.

Figure 13. System Interface Connection to DLPC120-Q1

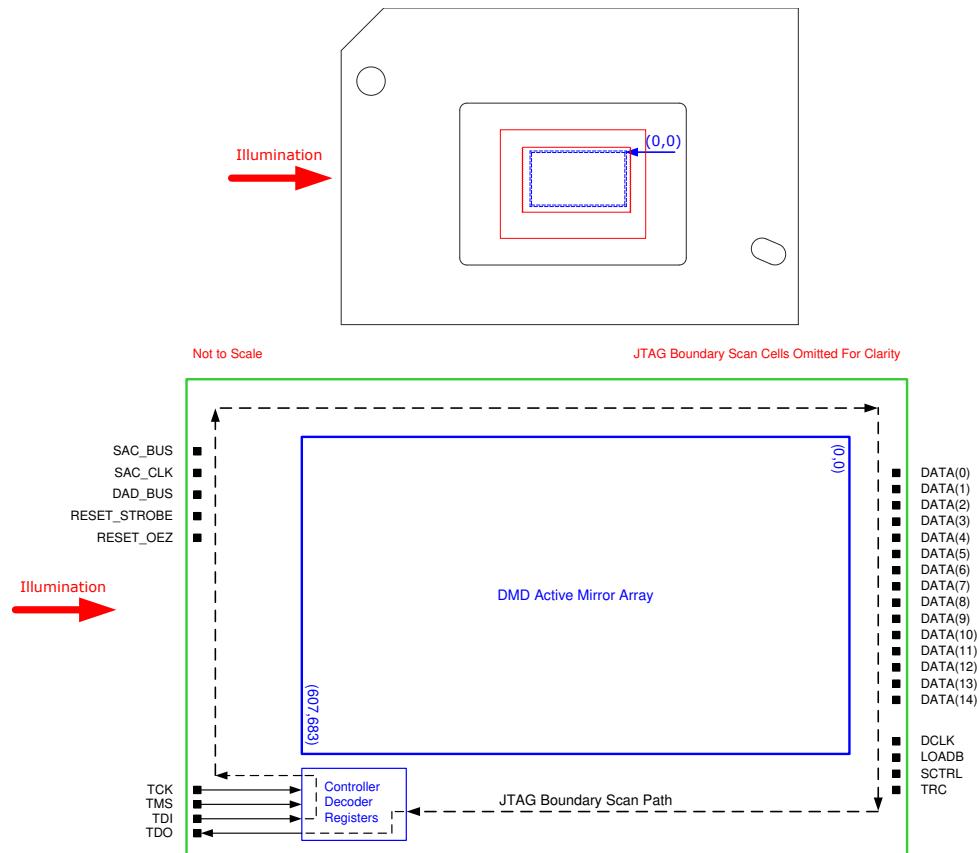

The DMD Device ID can be read via the JTAG interface. The ID and 32-bit shift order is shown in [Figure 14](#).

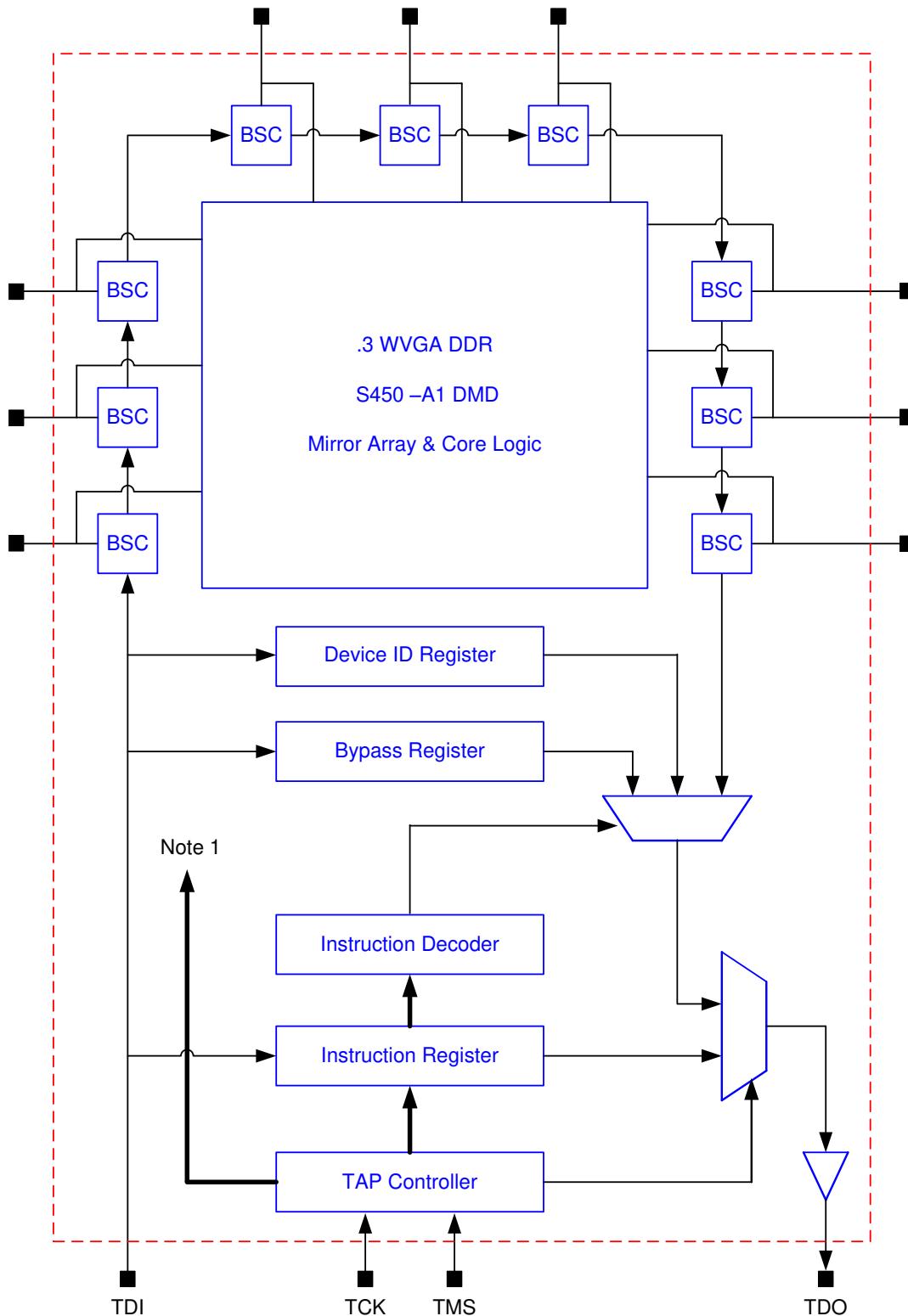
Figure 14. DMD Device ID and 32-bit Shift Order

Refer to [Figure 15](#) for a JTAG boundary scan block diagram for the DMD. These show the pins and the scan order that are observed during the JTAG boundary scan.

Feature Description (continued)

Figure 15. JTAG Boundary Scan Path

Refer to Figure 16 for a functional block diagram of the JTAG control logic.


Feature Description (continued)

Not to Scale.

BSC = Boundary Scan Cell [Observe Only]

Note 1: Signal Routing Omitted for Clarity.

TAP = Test Access Port

Figure 16. JTAG Functional Block Diagram

7.4 System Optical Considerations

Optimizing system optical performance and image quality strongly relates to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described below.

7.4.1 Numerical Aperture and Stray Light Control

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate apertures are added in the illumination and/or projection pupils to block flat-state and stray light from passing through the projection lens. The mirror tilt angle defines DMD capability to separate the "On" optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle, contrast ratio can be reduced and objectionable artifacts in the image border and/or active area could occur.

7.4.2 Pupil Match

TI's optical and image quality specifications assume that the exit pupil of the illumination optics is nominally centered within two degrees of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the image border and/or active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

7.4.3 Illumination Overfill and Alignment

Overfill light illuminating the area outside the active array can create artifacts from the mechanical features and other surfaces that surround the active array. These artifacts may be visible in the projected image. The illumination optical system should be designed to minimize light flux incident outside the active array and on the window aperture. Depending on the particular system's optical architecture and assembly tolerances, this amount of overfill light on the area outside of the active array may still cause artifacts to be visible. Illumination light and overfill can also induce undesirable thermal conditions on the DMD, especially if illumination light impinges directly on the DMD window aperture or near the edge of the DMD window. Refer to [Recommended Operating Conditions](#) for a specification on this maximum allowable heat load due to illumination overfill.

NOTE

TI ASSUMES NO RESPONSIBILITY FOR IMAGE QUALITY ARTIFACTS OR DMD FAILURES CAUSED BY OPTICAL SYSTEM OPERATING CONDITIONS EXCEEDING LIMITS DESCRIBED ABOVE.

7.5 Micromirror Array Temperature Calculation

Active array temperature can be computed analytically from measurement points on the outside of the package, the package thermal resistance, the electrical power, and the illumination heat load.

Relationship between array temperature and the reference ceramic temperature (thermocouple location TP1 in [Figure 17](#)) is provided by the following equations.

$$T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC}) \quad (1)$$

$$Q_{ARRAY} = Q_{ELECTRICAL} + (Q_{INCIDENT} \times \text{DMD Absorption Constant})$$

where

- T_{ARRAY} = computed DMD array temperature (°C)
- $T_{CERAMIC}$ = measured ceramic temperature (TP1 location in [Figure 17](#)) (°C)
- $R_{ARRAY-TO-CERAMIC}$ = DMD package thermal resistance from array to TP1 (°C/watt) (see [Thermal Information](#))
- Q_{ARRAY} = total power, electrical plus absorbed, on the DMD array (watts)
- $Q_{ELECTRICAL}$ = nominal electrical power dissipation by the DMD (watts)
- $Q_{INCIDENT}$ = incident optical power to DMD (watts)
- DMD Absorption Constant = 0.42

Micromirror Array Temperature Calculation (continued)

Electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating frequencies.

Absorbed power from the illumination source is variable and depends on the operating state of the mirrors and the intensity of the light source.

Equations shown previous are valid for a 1-chip DMD system with illumination distribution of 83.7% on the active array and 16.3% on the array border.

Sample calculation:

- $Q_{ELECTRICAL} = 0.105 \text{ W}$

- $T_{CERAMIC} = 55^\circ\text{C}$

- $Q_{INCIDENT} = 3 \text{ W}$

$$Q_{ARRAY} = 0.105 \text{ W} + (3 \text{ W} \times 0.42) = 1.37 \text{ W} \quad (3)$$

$$T_{ARRAY} = 55^\circ\text{C} + (1.37 \text{ W} \times 2.5^\circ\text{C/W}) = 58.4^\circ\text{C} \quad (4)$$

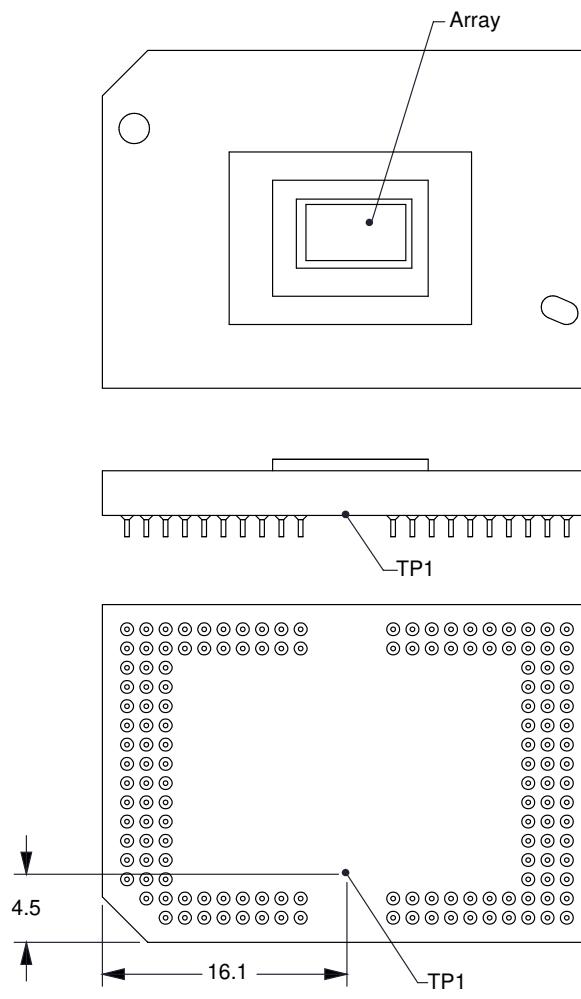


Figure 17. Thermocouple Locations

7.6 Micromirror Landed-On/Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the OFF state.

Micromirror Landed-On/Landed-Off Duty Cycle (continued)

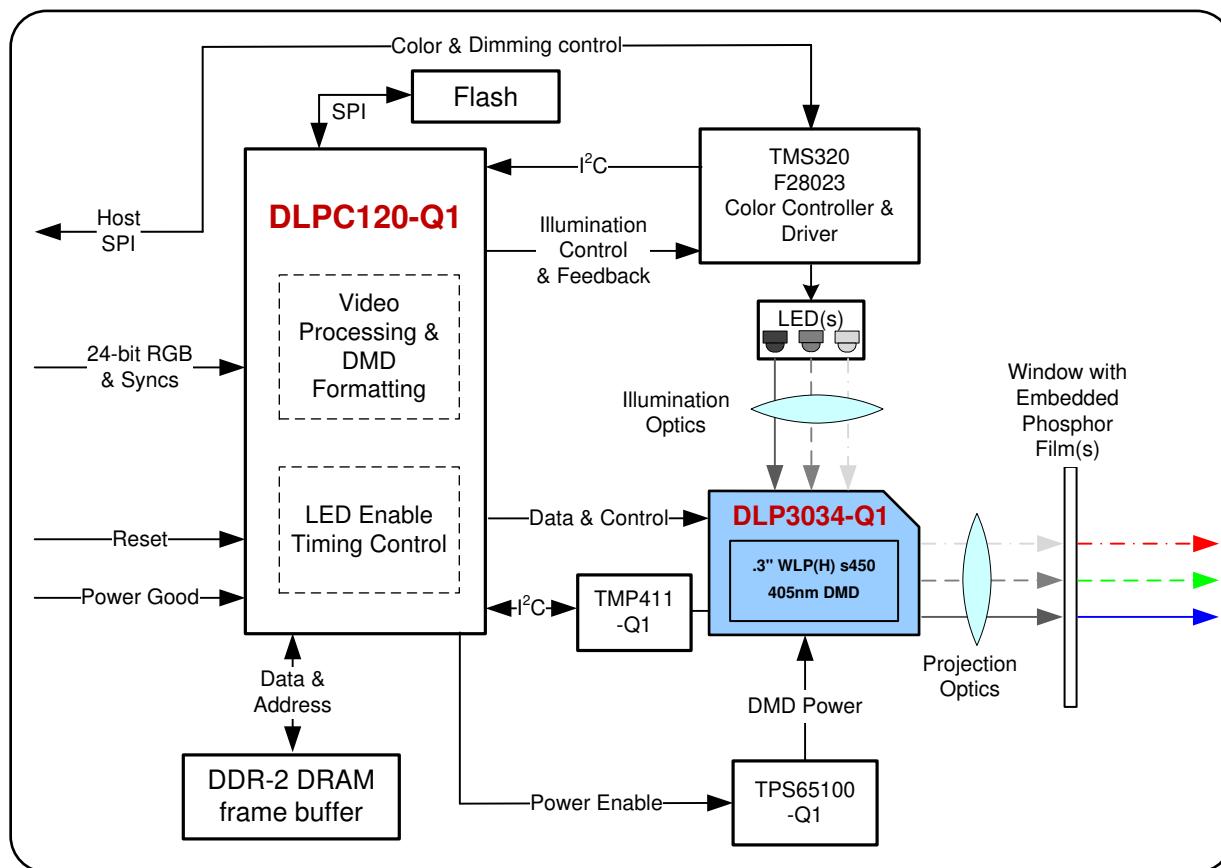
As an example, assuming a fully-saturated white pixel, a landed duty cycle of 90/10 indicates that the referenced pixel is in the ON state 90% of the time (and in the OFF state 10% of the time), whereas 10/90 would indicate that the pixel is in the OFF state 90% of the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time and OFF 50% of the time.

Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored.

Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages) always add to 100.

8 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DLP3034-Q1 DMD was designed to be used in automotive applications such as transparent window displays. The information shown in this section describes the transparent window display application based on the TI reference design. Contact TI application engineer for information on this design.

8.2 Typical Application

The DLP3034-Q1 DMD combined with the DLPC120-Q1 are the primary devices that make up the reference design for a transparent window display system as shown in the block diagram [Figure 18](#).

Figure 18. DLP3034-Q1 Reference Design Block Diagram

The DLPC120-Q1 accepts input video over the parallel RGB data interface up to 8 bits per color from a Video Graphics processor. The DLPC120-Q1 then processes the video data (864×480 manhattan orientation) by scaling the image to match the DMD resolution (608×684 diamond pixel), applies de-gamma correction, bezel adjustment, and then formats the data into DMD bit plane information and stores the data into the DDR2 DRAM. The DMD bit planes are read from DDR2 DRAM, and are then displayed on the DMD using Pulse Width Modulation (PWM) timing. The DLPC120-Q1 synchronizes the DMD bit plane data with the color enable timing for the LED color controller and Driver circuit. Finally, the DMD accepts the bit plane formatted data from the DLPC120-Q1 and displays the data according to the timing controlled by the DLPC120-Q1.

Typical Application (continued)

Due to the mechanical nature of the micromirrors, the latency of the DLP3034-Q1 and DLPC120-Q1 chipset is fixed across all temperature and operating conditions. The observed video latency is one frame, or 16.67 ms at an input frame rate of 60 Hz. However, please note that the use of the DLPC120-Q1 bezel adjustment feature, if enabled by the host controller, requires an additional frame of processing.

The DLPC120-Q1 is configured at power up by data stored in the flash file which stores configuration data, DMD and sequence timing information, LED drive information, and other information related to the system functions. See the *DLPC120-Q1 Programmer's Guide* for information about the this flash configuration data.

The transparent emissive display reference design from TI includes the TMS320F28023 Microcontroller (Piccolo), which is used to adjust the LED current levels in order to control the brightness levels and also the color point for systems with multiple color channels.

8.3 Application Mission Profile Consideration

Each application is anticipated to have different mission profiles, or number of operating hours at different temperatures. To assist in evaluation, the automotive DMD reliability lifetime estimates Application Report may be provided. See the TI Application team for more information.

8.4 Illumination Mission Profile Considerations

TI has performed evaluations at 405-nm illumination wavelengths under certain conditions. These conditions should be considered when evaluating the final application's implementation. Please contact the TI Application team for details about this testing.

9 Power Supply Recommendations

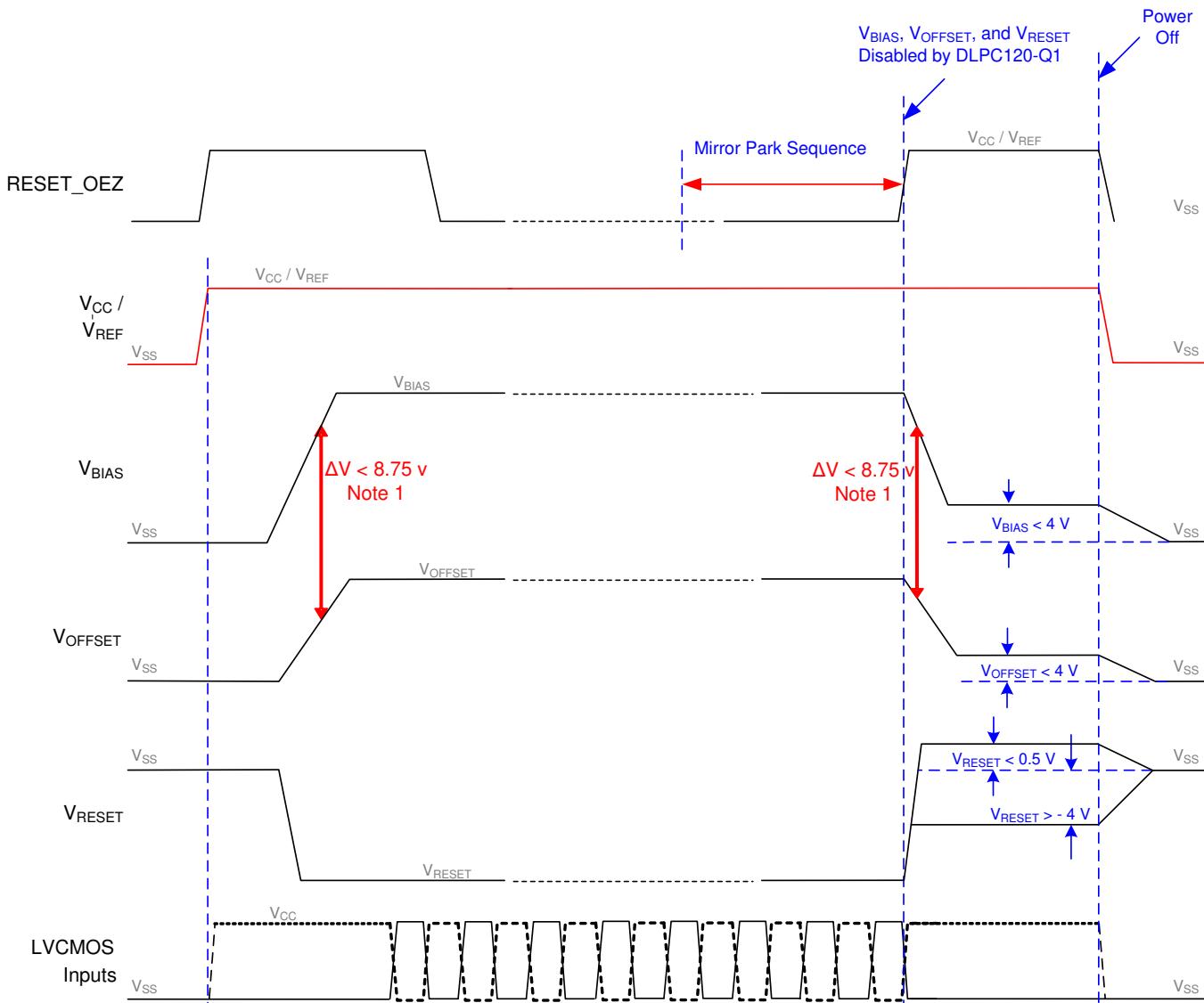
9.1 Power Supply Sequencing Requirements

- V_{BIAS} , V_{CC} , V_{OFFSET} , V_{REF} , V_{RESET} , V_{SS} are required to operate the DMD.

CAUTION

- For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to the prescribed power up and power down procedures may affect device reliability.
- The V_{CC} , V_{REF} , V_{OFFSET} , V_{BIAS} , and V_{RESET} power supplies have to be coordinated during power up and power down operations. Failure to meet any of the below requirements will result in a significant reduction in the DMD's reliability and lifetime. Refer to [Figure 19](#). V_{SS} must also be connected.

DMD Power Supply Power Up Procedure:


- During power up, V_{CC} and V_{REF} must always start and settle before V_{OFFSET} , V_{BIAS} and V_{RESET} voltages are applied to the DMD.
- During power up, V_{BIAS} does not have to start after V_{OFFSET} . However, it is a strict requirement that the delta between V_{BIAS} and V_{OFFSET} must be within ± 8.75 V (refer to Note 1 for [Figure 19](#)).
- During power up, the DMD's LVCMOS input pins shall not be driven high until after V_{CC} and V_{REF} have settled at operating voltage.
- During power up, there is no requirement for the relative timing of V_{RESET} with respect to V_{OFFSET} and V_{BIAS} .
- Power supply slew rates during power up are flexible, provided that the transient voltage levels follow the requirements listed above and in [Recommended Operating Conditions](#) and in [Figure 19](#).

DMD Power Supply Power Down Procedure

- V_{CC} and V_{REF} must be supplied until after V_{BIAS} , V_{RESET} and V_{OFFSET} are discharged to within 4 V of ground.
- During power down it is not mandatory to stop driving V_{BIAS} prior to V_{OFFSET} , but it is a strict requirement that the delta between V_{BIAS} and V_{OFFSET} must be within ± 8.75 V (refer to Note 1 for [Figure 19](#)).
- During power down, the DMD's LVCMOS input pins must be less than $V_{REF} + 0.3$ V.
- During power down, there is no requirement for the relative timing of V_{RESET} with respect to V_{OFFSET} and V_{BIAS} .
- Power supply slew rates during power down are flexible, provided that the transient voltage levels follow the requirements listed above in [Recommended Operating Conditions](#) and in [Figure 19](#).

Power Supply Sequencing Requirements (continued)

9.1.1 Power Up and Power Down

(1) ± 8.75 -V delta, ΔV , shall be considered the max operating delta between V_{BIA}S and V_{OFFSET}. Customers may find that the most reliable way to ensure this is to power V_{OFFSET} prior to V_{BIA}S during power up and to remove V_{BIA}S prior to V_{OFFSET} during power down.

Figure 19. Power Supply Sequencing Requirements (Power Up and Power Down)

10 Layout

10.1 Layout Guidelines

Refer to *DLPC120-Q1 Data Sheet* for specific PCB layout and routing guidelines. For specific DMD PCB guidelines, use the following:

- V_{CC} should have at least one 2.2- μ F and four 0.1- μ F capacitors evenly distributed among the 13 V_{CC} pins.
- A 0.1- μ F, X7R rated capacitor should be placed near every pin for the V_{REF} , V_{BIAS} , V_{RSET} , and V_{OFF} .

10.2 Temperature Diode Pins

The DMD has an internal diode (PN junction) that is intended to be used with an external TI TMP411-Q1 temperature sensing IC. PCB traces from the DMD's temperature diode pins to the TMP411-Q1 are sensitive to noise. See the [TMP411-Q1 Data Sheet](#) for specific routing recommendations.

Avoid routing the temperature diodes signals near other traces to avoid coupling of noise onto these signals.

10.3 Layout Example

Contact TI Application Engineering for access to the complete TI reference design PCB layout.

11 デバイスおよびドキュメントのサポート

11.1 デバイス・サポート

11.1.1 デバイスの項目表記

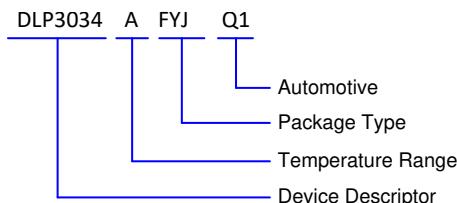


図 20. 型番の説明

11.1.2 デバイスのマーキング

デバイスのマーキングについて、以下に説明します。マーキングには、人間が読める情報と 2 次元のマトリクス・コードの両方が含まれます。

人間が読める情報について、以下に説明します。2 次元のマトリクス・コードは、DMD 型番、シリアル番号のパート 1、シリアル番号のパート 2 を含む英数字の文字列です。

DMDシリアル番号(パート1)の最初の文字は製造年です。DMDシリアル番号(パート1)の2番目の文字は製造月です。DMD シリアル番号 (パート 2) の最後の文字は、バイアス電圧ビンの文字です。

例: *DLP3034AFYJQ1 GHXXXXX LLLLLLM

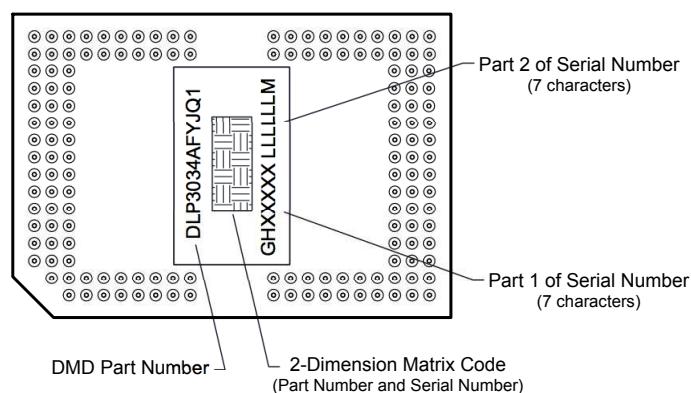


図 21. DMD マーキング

DLP3034-Q1 デバイスの 3 次元モデル化された表現を以下に示します。

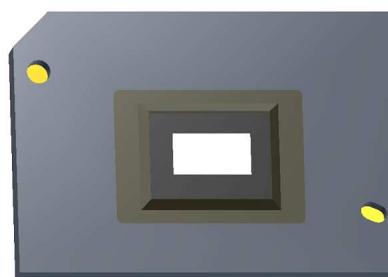


図 22. DLP3034-Q1 の画像

11.2 ドキュメントのサポート

11.2.1 関連資料

関連資料については、以下を参照してください。

- [DLPC120-Q1プロダクト・フォルダのDLPC120-Q1データシート](#)
- [『TMS320F2802x Piccolo™マイクロコントローラ』](#)
- [『TMP411-Q1 N係数および直列抵抗補正機能付き±1°Cリモートローカル温度センサ』](#)

11.3 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、[ti.com](#)のデバイス製品フォルダを開いてください。右上の「アラートを受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.4 コミュニティ・リソース

[TI E2ETM support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

11.5 商標

E2E is a trademark of Texas Instruments.

DLP is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静電気放電に関する注意事項

 これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対する静電破壊を防止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

11.7 デバイスの取り扱い

DMD は光学デバイスであるため、ガラス窓の損傷を避けるために十分注意する必要があります。DMD の正しい取り扱い手順については、[DMD の取り扱いに関するアプリケーション・ノート](#)を参照してください。

11.8 Glossary

[SLYZ022 — TI Glossary](#).

This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあります。ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
DLP3034AFYJQ1	Active	Production	CPGA (FYJ) 149	33 JEDEC TRAY (5+1)	Yes	Call TI	N/A for Pkg Type	-40 to 105	
DLP3034AFYJQ1.A	Active	Production	CPGA (FYJ) 149	33 JEDEC TRAY (5+1)	Yes	Call TI	N/A for Pkg Type	-40 to 105	

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

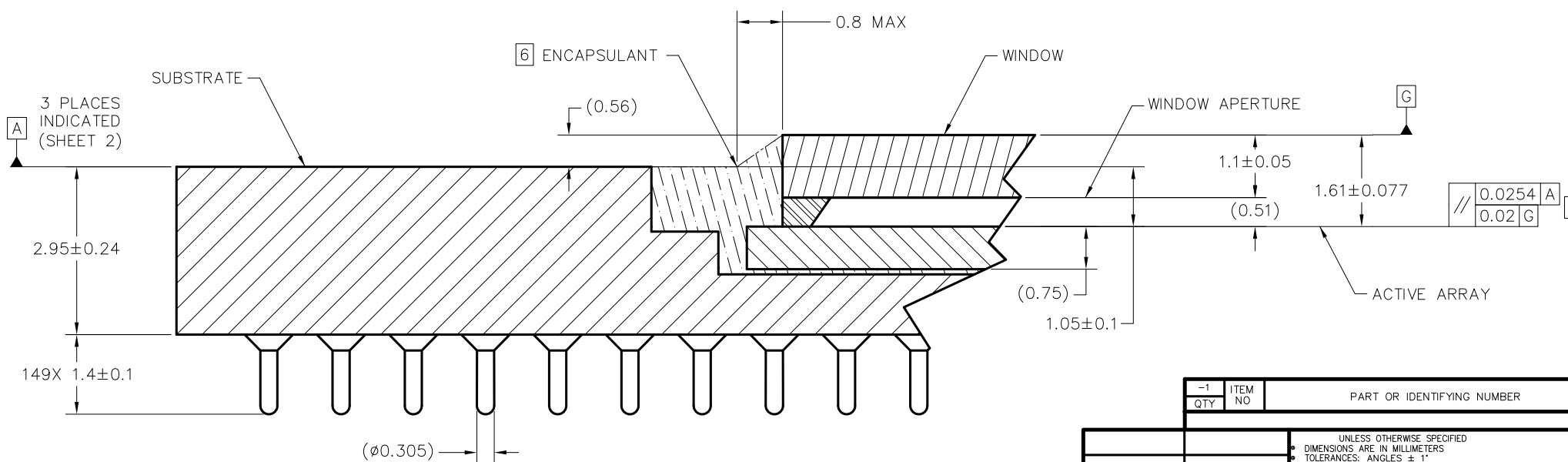
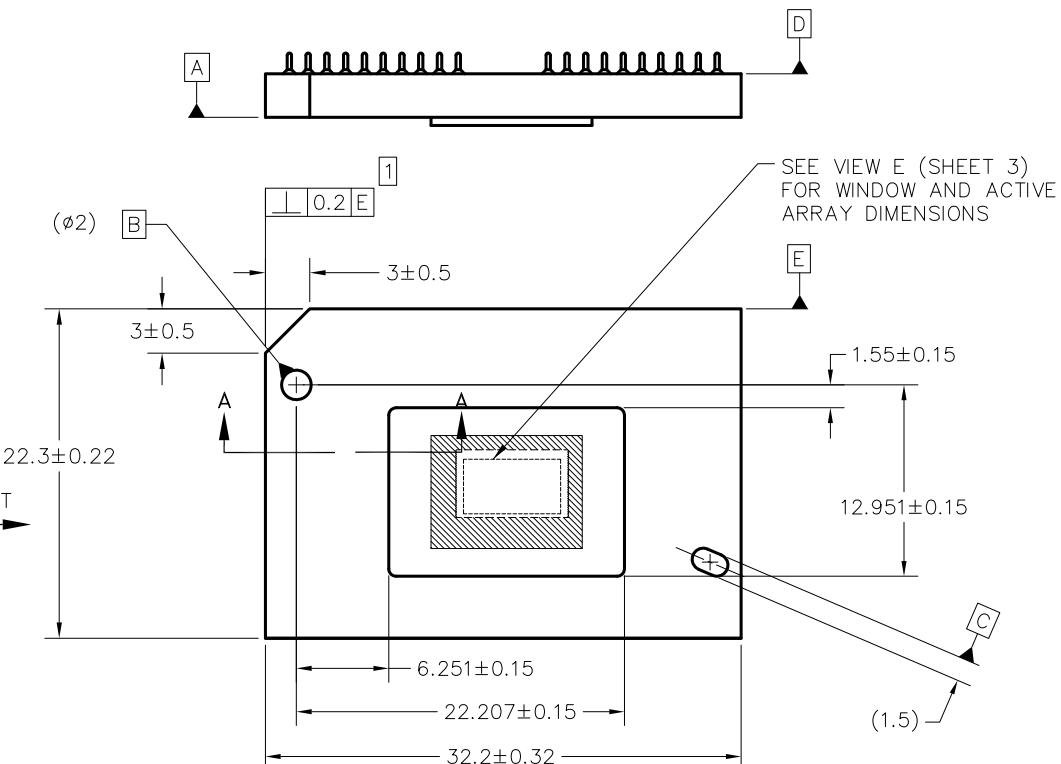
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

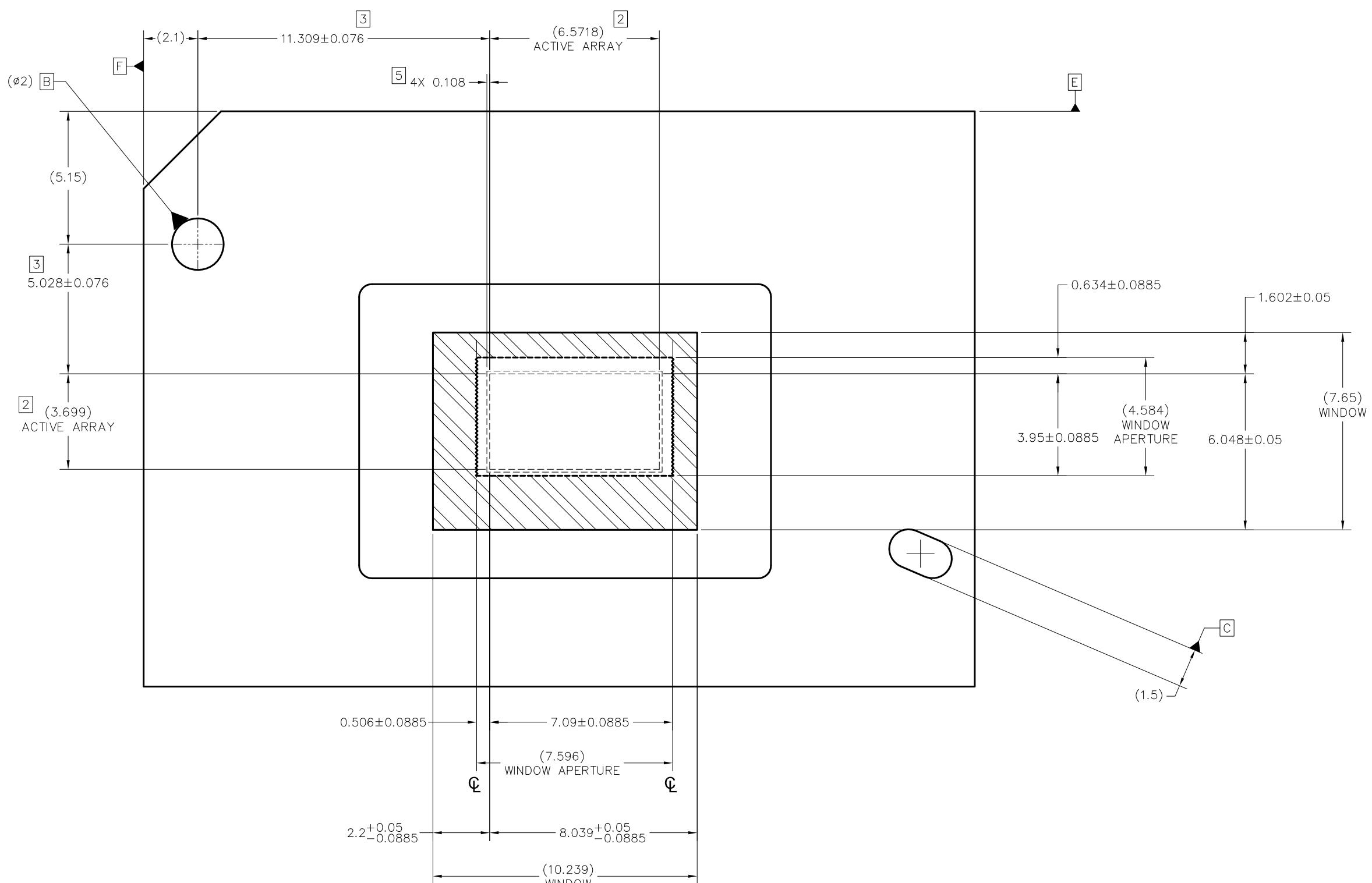


NOTES: UNLESS OTHERWISE SPECIFIED:

- 1 SUBSTRATE EDGE PERPENDICULARITY TOLERANCE APPLIES TO ENTIRE SURFACE
- 2 DIE PARALLELISM TOLERANCE APPLIES TO DMD ACTIVE ARRAY ONLY
- 3 ROTATION ANGLE OF DMD ACTIVE ARRAY IS A REFINEMENT OF THE LOCATION TOLERANCE AND HAS A MAXIMUM ALLOWED VALUE OF 0.8 DEGREES
- 4 SUBSTRATE SYMBOLIZATION PAD AND PLATING AT BOTTOM OF DATUMS B AND C HOLES TO BE ELECTRICALLY CONNECTED TO VSS PLANE WITHIN THE SUBSTRATE BOUNDARY MIRRORS SURROUNDING THE DMD ACTIVE AREA
- 5 MAXIMUM ENCAPSULANT PROFILE SHOWN
- 6 ENCAPSULANT ALLOWED ON THE SURFACE OF THE CERAMIC IN THE AREA SHOWN IN VIEW B (SHEET 2). ENCAPSULANT SHALL NOT EXCEED 0.2 THICKNESS MAXIMUM.
- 7 INDICATED CERAMIC SUBSTRATE FEATURES TO BE PLATED WITH 0.3 MICRUMETER MINIMUM ELECTROLYTIC GOLD OVER 0.1 MICRUMETER MINIMUM PALLADIUM OVER 1.27-8.89 MICRUMETERS ELECTROLYTIC NICKEL PER ASTM B488-01, ASTM B679-95(2009) AND AMS-QQ-N-290, RESPECTIVELY.

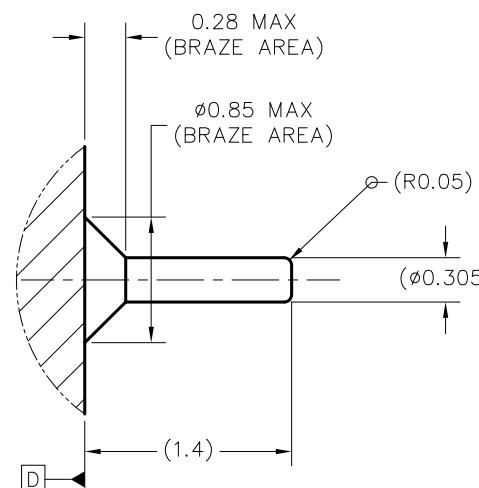
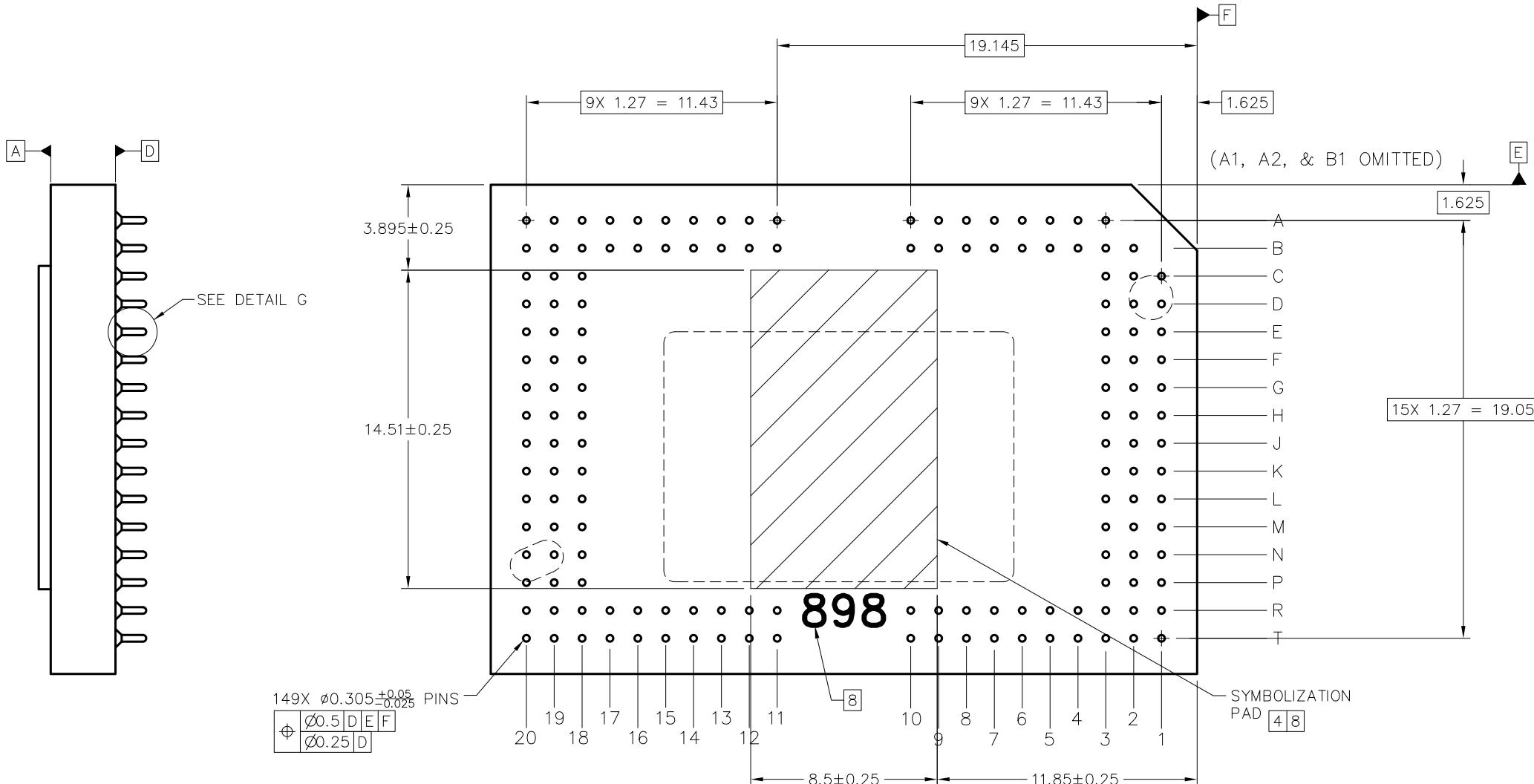
© COPYRIGHT 2013 TEXAS INSTRUMENTS
PUBLISHED, ALL RIGHTS RESERVED.

REV	DESCRIPTION	DATE	APPROVED
A	ECO 2142364, INITIAL RELEASE	06/03/2014	M. AVERY
B	ECO 2153319, UPDATE PACKAGE DESIGNATOR IN TITLE BLOCK, NOTE 8 FIXED FOR Ni/Pd/Au, MOVED SUPPLIER CODE IN VIEW F-F.	09/11/2015	M. AVERY
C	ECO 2158233, UPDATE VIEW F-F 3 DIGIT P/N	05/18/2016	M. AVERY
D	ECO 2168572, CHG DIE HEIGHT TOL, WAS ± 0.08	08/25/2017	M. AVERY

F - SHT. 4



-1 QTY	ITEM NO	PART OR IDENTIFYING NUMBER	NOMENCLATURE OR DESCRIPTION		NOTES
			PARTS LIST		
		<p>UNLESS OTHERWISE SPECIFIED</p> <ul style="list-style-type: none"> DIMENSIONS ARE IN MILLIMETERS TOLERANCES: ANGLES $\pm 1^\circ$ 2 PLACE DECIMALS ± 0.25 3 PLACE DECIMALS ± 0.05 <p>REMOVE ALL BURRS AND SHARP EDGES</p> <p>INTERPRET DIMENSIONS IN ACCORDANCE WITH ASME Y14.5-1994</p> <p>DIMENSIONAL LIMITS APPLY BEFORE PROCESSES</p> <p>PARENTHETICAL INFO FOR REF ONLY</p>	DWN M. AVERY ENGR M. AVERY B. HASKETT QA P. KONRAD R. LONG COE M. DORAK S. SUSI	DATE 6/3/14 6/3/14 6/5/14 6/13/14 6/20/14 6/23/14 6/18/14	TEXAS INSTRUMENTS Dallas, Texas
		NONE	0314DA		SIZE D DRAWING NO 2514100 REV D
		NEXT ASSY	USED ON		
		APPLICATION			

D

D

VIEW E (SHEET 1)
DMD WINDOW AND ACTIVE ARRAY
SCALE 12:1

DETAIL G (149 PLACES) 8
PIN & BRAZE DIMENSIONS
SCALE 40/1

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2026, Texas Instruments Incorporated

最終更新日：2025 年 10 月