INA791B JAJSPU3 - MAY 2024 # INA791x 75A EZShunt™ テクノロジー搭載、-4V~110V、双方向、超高精度、高 帯域電流センス アンプ ## 1 特長 - シャント抵抗内蔵の高精度ソリューション - 25℃で ±75A の連続電流 - -40℃~+125℃で ±50A の連続電流 - シャント抵抗:400μΩ - シャントインダクタンス:2nH - 広い同相電圧範囲:-4V~+110V - 高い小信号帯域幅:1MHz - 非常に優れた CMRR - 160dB Ø DC CMRR - 100kHz で 104dB の AC CMRR - 高い測定精度 - システム ゲイン誤差 (最大値) - バージョン A:±0.35%、±35ppm/℃のドリフト - バージョン B:±1%、±75ppm/℃のドリフト - オフセット電流 (最大値) - バージョン A:±30mA、±625µA/℃のドリフト - バージョン B:±375mA、±1.25mA/℃のドリフト - 外付けの分圧抵抗回路でゲインを調整可能: - 20mV/A~400mV/A - 160℃の T」のオープンドレイン温度アラート - パッケージ オプション: VQFN-15 ## 2 アプリケーション - 48V DC/DC コンバータ - 48V バッテリ管理システム (BMS) - 試験 / 測定 - マクロリモート無線ユニット (RRU) - 48V ラック サーバー - 48V 商用ネットワーク / サーバー電源 (PSU) ### 3 概要 INA791x は、 $400\mu\Omega$ のシャント抵抗を内蔵した電圧出 力、電流センスアンプです。INA791x は、電源電圧にか かわらず、-4V~110Vの広い同相電圧範囲で双方向の 電流を監視するよう設計されています。 可変ゲイン オプシ ョンは、システムのダイナミックレンジの最適化に役立ちま す。ケルビン接続シャント抵抗とゼロドリフトのチョップア ンプを内蔵しているため、較正と等価の測定精度、 35ppm/℃という非常に低い温度ドリフト係数、センシング 抵抗に最適化されたレイアウトが実現されています。 このデバイスは 2.7V~5.5V の単一電源で動作し、消費 電流は最大 3.75mA です。どのバージョンも、拡張動作 温度範囲 (-40℃~+125℃) で動作が規定され、15ピン VQFN パッケージで供給されます。 ### パッケージ情報 | 部品番号 | パッケージ ⁽¹⁾ | パッケージ サイズ ⁽²⁾ | | |-----------------|----------------------|--------------------------|--| | INA791A、INA791B | DEK (VQFN, 15) | 6mm × 6mm | | - 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。 - パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。 代表的なアプリケーション 14 16 19 ## **Table of Contents** | 1 特長 | 1 | 7.1 Application Information | 14 | |--------------------------------------|----|---|----| | 2 アプリケーション | | 7.2 Typical Applications | | | 3 概要 | | 8 Power Supply Recommendations | | | 4 Pin Configuration and Functions | | 9 Layout Example | 18 | | 5 Specifications | | 10 Layout Guidelines | 18 | | 5.1 Absolute Maximum Ratings | | 11 Device and Documentation Support | 19 | | 5.2 ESD Ratings | | 11.1 Documentation Support | 19 | | 5.3 Recommended Operating Conditions | | 11.2ドキュメントの更新通知を受け取る方法 | 19 | | 5.4 Thermal Information | | 11.3 サポート・リソース | 19 | | 5.5 Electrical Characteristics | | 11.4 Trademarks | 19 | | 6 Detailed Description | | 11.5 静電気放電に関する注意事項 | 19 | | 6.1 Overview | | 11.6 用語集 | | | 6.2 Functional Block Diagram | 7 | 12 Revision History | | | 6.3 Feature Description | | 13 Mechanical, Packaging, and Orderable | | | 6.4 Device Functional Modes | | Information | 19 | | 7 Application and Implementation | 14 | | | ## **4 Pin Configuration and Functions** 図 4-1. INA791x DEK Package 15-Pin VQFN Top View 表 4-1. Pin Functions | PIN | | Time | DESCRIPTION | | |----------|---------|---------------|---|--| | NAME NO. | | Туре | DESCRIPTION | | | ALERT | 14 | Digital Out | Open-drain temperature alert | | | FB | 12 | Analog Input | Gain adjustment feedback; connect to resistor divider to adjust device gain | | | GND | 5 | Analog | Ground | | | IN- | 9 | Analog Input | Kelvin connection to internal shunt on load side and negative amplifier input | | | IN+ | 1 | Analog Input | Kelvin connection to internal shunt on supply side and positive amplifier input | | | IS- | 8 | Analog Input | Connect to load | | | IS+ | 15 | Analog Input | Connect to supply | | | NC | 2 | _ | Connect to IN+ (Pin 1) | | | NC | 4, 6, 7 | _ | Connect to ground or leave unconnected | | | NC | 10 | _ | Connect to IN– (Pin 9) | | | OUT | 11 | Analog Output | Output voltage | | | REF | 13 | Analog Input | Reference voltage, 0V to VS | | | VS | 3 | Analog | Power supply, 2.7V to 5.5V | | ## 5 Specifications ### 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |--|--|-----------|----------|------| | Supply voltage (V _s) | | | 6 | V | | Analog Inputs, V _{IN+} , V _{IN-} (2) | Differential (V _{IN+}) - (V _{IN-}) | -12 | 12 | V | | Analog inputs, V _{IN+} , V _{IN-} | Common-mode | GND – 20 | 120 | V | | Analog input (REF) | Analog input (REF) | GND – 0.3 | Vs + 0.3 | V | | Analog input (FB) | Analog input (FB) | GND - 0.3 | Vs + 0.3 | V | | Analog output (OUT) | Analog output (OUT) | GND - 0.3 | Vs + 0.3 | V | | Digital output (ALERT) | Temperature Alert Output | GND – 0.3 | Vs + 0.3 | V | | T _A | Operating Temperature | -55 | 150 | °C | | T _J | Junction temperature | | 150 | °C | | T _{stg} | Storage temperature | -65 | 150 | °C | ¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. (2) V_{IN+} and V_{IN-} are the voltages at the IN+ and IN- pins, respectively. ## 5.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|---------------|---|-------|------| | | Electrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾ | ±2000 | V | | V _(ESD) | discharge | Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins ⁽²⁾ | ±1000 | · | ⁽¹⁾ JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. ### 5.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM MAX | UNIT | |--------------------|-------------------------|-----|---------|------| | V _{CM} | Common-mode input range | -4 | 110 | V | | Vs | Operating supply range | 2.7 | 5.5 | V | | I _{SENSE} | Continuous Current | -50 | 50 | Α | | V_{REF} | Reference voltage range | 0 | Vs | V | | V _{FB} | Feed-back voltage range | 0 | Vs | V | | T _A | Ambient temperature | -40 | 125 | °C | ### 5.4 Thermal Information | | | INA791x | | |-----------------------|---|------------|------| | | THERMAL METRIC ⁽¹⁾ | DEK (VQFN) | UNIT | | | | 15 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 28.7 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 8.3 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance ⁽²⁾ | 30.8 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter ⁽²⁾ | 1.1 | °C/W | 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated 4 ²⁾ JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. | | | INA791x | | | |-------------------------------|---|------------|------|--| | THERMAL METRIC ⁽¹⁾ | | DEK (VQFN) | UNIT | | | | | 15 PINS | | | | Ψ_{JB} | Junction-to-board characterization parameter ⁽²⁾ | 8.4 | °C/W | | - (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note. - (2) Thermal metrics are relative to the internal die and are conservative relative to the heating that occur from the package leadframe shunt. For more details on heating, see the Safe Operating Area section. ### 5.5 Electrical Characteristics at T_A = 25°C, V_S = 5V, I_{SENSE} = IS+ = 0A, V_{CM} = 48V, V_{FB} = V_{OUT} , and V_{REF} = V_S / 2 (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------|--|---|-----|--------|--------|-----------------| | INPUT | | | | | | | | V _{CM} | Common-mode input range | $V_{IN+} = -4V$ to 110V, $I_{SENSE} = 0A$,
$T_A = -40^{\circ}C$ to +125 $^{\circ}C$ | -4 | | 110 | V | | CMRR | Common-mode rejection ratio | V _{IN+} = -4V to 110V, I _{SENSE} = 0A,
T _A = -40°C to +125°C, INA791A | | ±25 | ±79 | μΑ/V | | CIVILLIX | Common-mode rejection ratio | V _{IN+} = -4V to 110V, I _{SENSE} = 0A,
T _A = -40°C to +125°C, INA791B | | ±790 | ±2500 | μΑ, ν | | CMRR | Common-mode rejection ratio | f = 50kHz | | ±56 | | mA/V | | 1 | Offset current, input referred | I _{SENSE} = 0A, INA791A | | ±5 | ±30 | mA | | l _{os} | Oliset current, input referred | I _{SENSE} = 0A, INA791B | | ±62.5 | ±375 | ША | | -11 /-IT | Officet current drift | I _{SENSE} = 0A,
T _A = -40°C to +125°C, INA791A | | 0.125 | ±0.625 | mA/°C | | dl _{os} /dT | Offset current drift | I _{SENSE} = 0A,
T _A = -40°C to +125°C, INA791B | | 0.250 | ±1.25 | IIIA/ C | | PSRR | Power supply rejection ratio | V _S = 2.7V to 5.5V, V _{REF} = 1V, I _{SENSE} = 0A, INA791A | | 0.25 | ±2.5 | mA/V | | | | V _S = 2.7V to 5.5V, V _{REF} = 1V, I _{SENSE} = 0A, INA791B | | 2.5 | ±25 | IIIA/V | | I _B | Total input bias current | I _{B+} + I _{B-} , I _{SENSE} = 0A | ±50 | ±80 | ±100 | μΑ | | | Food book ourrant | I _{SENSE} = 0A | | ±1.3 | | n A | | I _{FB} | Feed-back current | I _{SENSE} = 0A, T _A = -40°C to +125°C | | | ±5 | nA | | INTEGR | ATED SHUNT RESISTOR | | | | ' | | | R _{SHUNT} | Internal Kelvin shunt resistance | IN+ to IN-, T _A = 25°C | 350 | 400 | 500 | μΩ | | | Pin to pin package resistance | IS+ to IS-, T _A = 25°C | 450 | 560 | 650 | μΩ | | | Pin to pin package inductance | IS+ to IS-, T _A = 25°C | | 2 | | nH | | I _{SENSE} | Maximum Continuous Current | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | | | ±50 | Α | | | Short time overload change | I _{SENSE} = 120A for 5 seconds | | ± 0.05 | | % | | | Change due to temperature cycle | -65°C to 150°C, 500 cycles | | ± 0.1 | | % | | | Shunt resistance change to solder heat | 260°C solder, 10 seconds | | ± 0.1 | | % | | | High temperature exposure change | 1000 hours, T _A = 150°C | | ± 0.15 | | % | | OUTPUT | · | | | | 1 | | | G | Gain | INA791A , INA791B , | | 20 | | mV/A | | G | System Gain error (shunt + amplifier) | GND + 50 mV \leq V _{OUT} \leq V _S -200 mV,
T _A = 25 °C, INA791A | | ±0.05 | ±0.35 | % | | G | (1) | GND + $50 \text{mV} \le \text{V}_{\text{OUT}} \le \text{V}_{\text{S}} - 200 \text{mV},$
T _A = $25 ^{\circ}\text{C}$, INA791B | | ±0.1 | ±1 | ⁻ /0 | | | | | | | | | at $T_A = 25^{\circ}$ C, $V_S = 5$ V, $I_{SENSE} = IS + = 0$ A, $V_{CM} = 48$ V, $V_{FB} = V_{OUT}$, and $V_{REF} = V_S / 2$ (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN TYP | MAX | UNIT | |---------------------|--|--|-----------------------|-----------------------|--------| | ^ | Custom Cain amon (about 1 | $T_A = -40$ °C to +125°C, INA791A | ±0.5 | ±35 | | | G | System Gain error (shunt + amplifier) | T _A = -40°C to +125°C, INA791B | ±10 | ±75 | ppm/°C | | | Non-Linearity Error | $GND + 10mV \le V_{OUT} \le V_{S} - 200mV$ | ±0.01 | | % | | RVRR | Reference voltage rejection ratio (input - referred) | | ±2.5 | ±12.5 | mA/V | | | Maximum capacitive load | No sustained oscillation | 0.5 | | nF | | VOLTAC | SE OUTPUT | | | | | | | Swing to Vs Power Supply Rail | R_L = 10k Ω to GND, V_{REF} = V_S , Adjustable Gain = 4, T_A = -40°C to +125°C | V _S – 0.05 | V _S - 0.2 | V | | | Swing to Ground | R_L = 10kΩ to GND, Adjustable Gain = 4, V_{REF} = GND, T_A = -40°C to +125°C | V _{GND} + 5 | V _{GND} + 20 | mV | | | Swing to Ground | R_L = 10k Ω to GND, V_{REF} = GND, T_A = – 40°C to +125°C | V _{GND} + 1 | V _{GND} + 5 | mV | | FREQUI | ENCY RESPONSE | | | | | | BW | Bandwidth (current sense amplifier) | −3dB Bandwidth, V _{FB} = V _{OUT} | 1 | | MHz | | | | –3dB Bandwidth, Adjustable Gain = 4 | 0.5 | | MHz | | | | V _{IN+} , V _{IN-} = 48V, V _{OUT} = 1.5V to 3.5V,
Output settles to 1% | 1.5 | | μs | | | Settling time (current sense amplifier | V _{IN+} , V _{IN-} = 48V, Adjustable Gain = 4,
V _{OUT} = 0.5V to 4.5V, Output settles to 1% | 2.5 | | μs | | | input to out) | V _{IN+} , V _{IN-} = 48V, V _{OUT} = 1.5V to 3.5V,
Output settles to 5% | 1 | | μs | | | | V _{IN+} , V _{IN-} = 48V, Adjustable Gain = 4,
V _{OUT} = 0.5V to 4.5V, Output settles to 5% | 2 | | μs | | SR | Slew Rate | $V_{FB} = V_{OUT}$ | 1.8 | | V/µs | | SK | Siew Rate | Adjustable Gain = 4 | 1.5 | | V/µs | | NOISE | | | | | | | | Current Noise Density | | 150 | | µA/√Hz | | POWER | SUPPLY | | | | | | | Outline and automout | | 3.5 | 3.75 | mA | | IQ | Quiescent current | T _A = -40°C to +125°C | | 4 | mA | | TEMPE | RATURE | | | | | | Alert | Thermal Alert Threshold | $R_{\text{pullup}} = 10 \text{k}\Omega,$ | 160 | | °C | | Alert _{LO} | Thermal Alert Threshold Swing to Ground | $R_{\text{pullup}} = 10 \text{k}\Omega,$ | 200 | | mV | (1) $I_{SENSE} = \pm 50A$, $V_{OUT} = V_{REF} \pm 1V$ ## 6 Detailed Description ### 6.1 Overview The INA791x features a precision current sensing solution with $400\mu\Omega$ current-sensing EZShunt[™] technology resistor and supports common-mode voltages up to 110V. The internal amplifier features a precision zero-drift topology with excellent common-mode rejection ratio (CMRR). High-precision measurements are enabled by matching the shunt resistor value and the current-sensing amplifier gain across temperature, thus providing a highly-accurate, system-calibrated method for measuring current. The high-speed current-sensing amplifier helps output settle fast after the common-mode transients. Flexibility of adjustable gain with two external resistors allows for the optimization of the desired full-scale output voltage based on the target current range expected in the application. ### 6.2 Functional Block Diagram ### 6.3 Feature Description #### 6.3.1 Integrated Shunt Resistor The INA791x features an integrated EZShunt™ technology current-sensing resistor that provides accurate measurements over the entire specified temperature range of –40°C to +125°C. The integrated current-sensing resistor provides measurement stability over temperature, and simplifies printed circuit board (PCB) layout and board constraint difficulties common in high-precision measurements. The onboard current-sensing resistor is designed as a 4-wire (or Kelvin) connected resistor that enables accurate measurements through a force-sense connection. Internally connected amplifier input pins (IN– and IN+) to the sense pins of the shunt resistor eliminates many instances of parasitic impedance commonly found in typical very-low sensing-resistor level measurements. The INA791x is system-calibrated to make sure that the current-sensing resistor and current-sensing amplifier are both precisely matched to one another. The inpackage integrated sensing resistor must be used with the internal current-sensing amplifier to achieve the optimized system gain specification. The INA791x has approximately $550\mu\Omega$ of package resistance. Of this total package resistance, $400\mu\Omega$ resistance from the Kelvin-connected current-sensing resistor is used by the amplifier. The power dissipation requirements of the system and package are based on the total $550\mu\Omega$ package resistance between the IS+ and IS- pins. 図 6-1. IS+ to IS- Package Resistance vs Temperature ### 6.3.2 Safe Operating Area The heat dissipated across the package when current flows through the device ultimately determines the maximum current that can be safely handled by the package. The current consumption of the silicon is relatively low, leaving the total package resistance to carry the high load current as the primary contributor to the total power dissipation of the package. The maximum safe-operating current level shown in \boxtimes 6-2 is set to make sure that the heat dissipated across the package is limited so that no damage occurs to the resistor or the package, or that the internal junction temperature of the silicon does not exceed a 165°C limit. External factors, such as ambient temperature, external air flow, and PCB layout, contribute to how effectively the device dissipates heat. The internal heat is developed as a result of the current flowing through the total package resistance of $550\mu\Omega$. 図 6-2. Maximum Continuous Current vs Ambient Temperature #### 6.3.3 Short-Circuit Duration The INA791x features a physical shunt resistance that is able to withstand current levels higher than the continuous handling limit of 50A without sustaining damage to the current-sensing resistor or the current-sensing amplifier, if the excursions are brief. \boxtimes 6-3 shows the short-circuit duration curve for the INA791x. Copyright © 2024 Texas Instruments Incorporated 図 6-3. Maximum Pulse Current vs Pulse Duration (Single Event) ### 6.3.4 Temperature Stability System calibration is common for many industrial applications to eliminate initial component and system-level errors that can be present. A system-level calibration reduces the initial accuracy requirement for many of the individual components because the errors associated with these components are effectively eliminated through the calibration procedure. This calibration enables precise measurements at the temperature in which the system is calibrated. As the system temperature changes because of external ambient changes or self heating, measurement errors are reintroduced. Without accurate temperature compensation used in addition to the initial adjustment, the calibration procedure is not effective. The user must account for temperature-induced changes. The built-in programmed temperature compensation in the INA791x (including both the integrated current-sensing resistor and current-sensing amplifier) keep the device measurement accurate, even when the temperature changes throughout the specified temperature range of the device. #### 6.4 Device Functional Modes #### 6.4.1 Adjusting the Output With the Reference Pin The INA791x output is configurable to allow for unidirectional or bidirectional operation. ☑ 6-4 shows a circuit for setting output with an external reference. 図 6-4. Adjusting the Output The output voltage is set by applying a voltage from an external reference at REF. The reference input is connected to internal gain network. The external resistor network of R_{FB1} and R_{FB2} , connected to OUT, FB and REF pins, set up adjustable gain as explained in *Adjustable Gain Set Using External Resistors*. Output is set accurately at the voltage provided by external reference as shown in \pm 1 when the resistor R_{FB2} is connected to the same voltage as REF pin. The voltage at REF pin can range between supply Vs and GND. For symmetric bidirectional current sensing REF is set at mid-supply which sets out at mid-supply as well. $$V_{OUT} = G \times (I_{SHUNT}) + V_{REF} \tag{1}$$ #### 6.4.1.1 Reference Pin Connections for Unidirectional Current Measurements Unidirectional operation allows current measurements through a resistive shunt in one direction. For unidirectional operation, connect the device reference pin to the negative rail (see the *Ground Referenced Output* section) or positive rail, V_S. The required differential input polarity depends on the output voltage setting. The amplifier output moves away from the referenced rail proportional to the current passing through the internal shunt resistor. ### 6.4.1.2 Ground Referenced Output When using the INA791x in unidirectional mode with a ground-referenced output, both REF input and resistor R_{FB2} are connected to ground. \boxtimes 6-5 shows how this configuration takes the output to ground when there is 0A flowing across the internal shunt. 図 6-5. Ground-Referenced Output #### 6.4.1.3 Reference Pin Connections for Bidirectional Current Measurements Bidirectional operation allows the INA791x to measure currents through a resistive shunt in two directions. For this case, set the output voltage anywhere within the reference input limits. A common configuration is to set the reference inputs at half-scale for equal range in both directions. However, the reference input can be set to a voltage other than half-scale when the bidirectional current is nonsymmetrical. ### 6.4.1.4 Output Set to Mid-Supply Voltage \boxtimes 6-6 shows two equal resistors R₁ and R₂ connected between VS and the GND pins divide the supply at half, and by connecting REF pin to the divided supply, output is set to mid-supply voltage. The mid-point of these resistors is buffered using external operational amplifier to avoid loading of resistors resulting in error. The output is set to middle of the supply when there is no differential input voltage or 0A current in shunt resistor. This method creates a ratiometric offset to the supply voltage, where the output voltage remains at VS / 2 when 0A of current flows through internal shunt resistor. ☑ 6-6. Mid-Supply Voltage Output ### 6.4.2 Adjustable Gain Set Using External Resistors The INA791x features adjustable gain with two external resistor network. The default gain is 20mV/A, and with added external adjustable gain resistor network, total gain (G) can range up to 400mV/A. \boxtimes 6-7 shows two external resistors R_{FB1} and R_{FB2} configured for added external gain. \precsim 2 can be used for calculating external adjustable gain and \precsim 3 shows the total gain of the system with external adjustable gain. The REF pin and one end of resistor R_{FB2} is connected to external reference based on needed voltage at OUT pin as described in *Adjusting the Output With the Reference Pin*. 図 6-7. Adjustable Gain Setting With External Resistor Divider Adjustable Gain = $$\left(1 + \frac{R_{FB1}}{R_{FB2}}\right)$$ (2) $$G = 20\frac{\text{mA}}{\text{V}} \times \left(1 + \frac{\text{R}_{\text{FB1}}}{\text{R}_{\text{FB2}}}\right) \tag{3}$$ The FB pin in INA791x has associated bias current, which can add to error when large values of adjustable gain resistor, R_{FB1} , is used. Alternatively, very low values of adjustable gain resistors load the output of the sense amplifier limiting the capability of the sense amplifier to get close to the supply rail. Keeping the sum of external resistors R_{FB1} and R_{FB2} between $10k\Omega$ and $40k\Omega$ is recommended when external adjustable gain is higher than 1. $\frac{1}{2}$ 6-1 shows recommended values of external gain resistors for the most common gains. 表 6-1. Recommended Values of External Resistors Setting Adjustable Gain | External Adjustable Gain | R _{FB1} | R _{FB2} | Total Gain (G) | |--------------------------|------------------|------------------|----------------| | 1 0Ω (short) | | Open | 20mV/A | | 2 | 20kΩ | 20kΩ | 40mV/A | | 4 | 30kΩ | 10kΩ | 80mV/A | | 5 | 20kΩ | 5kΩ | 100mV/A | #### 6.4.2.1 Adjustable Unity Gain 図 6-8 shows adjustable gain set to unity gain or 1. In this configuration OUT is connected to FB without any external resistor. This unity gain sets INA791x to default minimum gain of 20mV/A. 式 3 can be used to calculate the total gain of the system. The REF pin is connected to external reference based on needed output voltage setting as described in *Adjusting the Output With the Reference Pin*. Copyright © 2024 Texas Instruments Incorporated 図 6-8. Adjustable Unity Gain Setting #### 6.4.3 Thermal Alert Function The INA791x has thermal Alert function that provides an alert when internal shunt temperature reaches 160° C. The power dissipation as a result of internal shunt current causes the temperature to rise inside the package. Extended time at temperature higher than 150° C can cause permanent shift in device specification. Thermal alert function can be used to keep the temperature of INA791x below 150° C. \boxtimes 6-9 shows a circuit where R_{pullup} resistor is tied between open-drain Alert pin and the supply pin. When temperature of the INA791x reaches 160° C, the open-drain FET pulls Alert pin to the ground asserting thermal alert. 図 6-9. Thermal Alert Function ## 7 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### 7.1 Application Information The INA791x measures the voltage developed as current flows across the integrated current shunt. The device provides a reference pin to configure operation as either unidirectional or bidirectional output swing. When using the INA791x for inline motor current sense or measuring current in an H-bridge, the device is commonly configured for bidirectional operation. ### 7.1.1 Calculating Total Error The INA791x electrical specifications *Electrical Characteristics* include typical individual errors terms (such as gain error, offset error, and nonlinearity error). Total error, including all of these individual error components, is not specified in the table. To accurately calculate the expected error of the device, the user must first know the device operating conditions. This section discusses the individual error sources and how the device total error value can be calculated from the combination of these errors for specific conditions. Three examples are provided in $\frac{1}{8}$ 7-1, $\frac{1}{8}$ 7-2, and $\frac{1}{8}$ 7-3 that detail how different operating conditions can affect the total error calculations. Typical and maximum calculations are shown as well to provide the user more information on how much error variance is present from device to device. #### 7.1.1.1 Error Sources The typical error sources that have the largest effect on the total error of the device are gain error, nonlinearity, common-mode rejection ratio, and input offset error. For the INA791x, an additional error source (referred to as the *reference voltage rejection ratio*) is also included in the total error value. ### 7.1.1.2 Reference Voltage Rejection Ratio Error Reference voltage rejection ratio refers to the amount of error induced by applying a reference voltage to the INA791x that deviates from the mid-point of the device supply voltage. ### 7.1.1.3 External Adjustable Gain Error The INA791x features external adjustable gain with two external resistors as described in *Adjustable Gain Set Using External Resistors*. The tolerance of these external resistors contribute to the total gain error of the system. These resistors are recommended to be of same kind so that temperature drift of these resistor track closely. ± 4 can be used for calculating total error contributed by two external gain resistors. Error_{G R} = $$\sqrt{2}$$ × Resistor_{Tolerance} + Resistor_{drift} × Δ T (4) ## 7.1.1.4 Total Error Example 1 表 7-1. Total Error Calculation: Example 1(1) | TERM | SYMBOL | EQUATION | TYPICAL VALUE | |---|--------------------|---|---------------| | Initial input offset with
Temp drift | I _{OS_T} | $I_{OS} + \frac{dI_{OS}}{dT} \times \Delta T$ | 30mA | | Added input offset because of common-mode voltage | I _{OS_CM} | CMRR × (V _{CM} - 48 V) | ОμΑ | | Added input offset because of reference voltage | los_ref | $RVRR \times \left \left(\frac{V_S}{2} - V_{REF} \right) \right $ | 0μΑ | Copyright © 2024 Texas Instruments Incorporated ## 表 7-1. Total Error Calculation: Example 1⁽¹⁾ (続き) | TERM | SYMBOL | EQUATION | TYPICAL VALUE | |----------------------------|-----------------------|---|---------------| | Total input offset Current | I _{OS_Total} | $\sqrt{\left(I_{OS_T}\right)^2 + \left(I_{OS_CM}\right)^2 + \left(I_{OS_REF}\right)^2}$ | 30mA | | Error from input offset | Error _{los} | $\frac{I_{OS_Total}}{I_{Sense}} \times 100$ | 0.12% | | Gain error with Gain drift | Error _G | $G_{Error} + G_{Error_drift} \times \Delta T$ | 0.35% | | Nonlinearity error | Error _{Lin} | _ | 0.01% | | Total error | _ | $\sqrt{\left(\operatorname{Error}_{\operatorname{IOS}}\right)^2 + \left(\operatorname{Error}_{\operatorname{G}}\right)^2 + \left(\operatorname{Error}_{\operatorname{Lin}}\right)^2}$ | 0.38% | ⁽¹⁾ The data for *Total Error Example 1* was taken with the INA791x, V_S = 5V, V_{CM} = 48V, V_{REF} = V_S / 2, T = 25°C, External Unity Gain (G = 20mV/A) and I_{SENSE} = 25A. ### 7.1.1.5 Total Error Example 2 ## 表 7-2. Total Error Calculation: Example 2⁽¹⁾ | TERM | SYMBOL | EQUATION | TYPICAL VALUE | |---|-----------------------|---|---------------| | Initial input offset with
Temp drift | I _{OS_T} | $I_{OS} + \frac{dI_{OS}}{dT} \times \Delta T$ | 92.5mA | | Added input offset because of common-mode voltage | I _{OS_CM} | CMRR × (V _{CM} - 48V) | 2.8mA | | Added input offset because of reference voltage | I _{OS_REF} | $RVRR \times \left \left(\frac{V_S}{2} - V_{REF} \right) \right $ | 31.25mA | | Total input offset Current | I _{OS_Total} | $\sqrt{\left(I_{OS_T}\right)^2 + \left(I_{OS_CM}\right)^2 + \left(I_{OS_REF}\right)^2}$ | 97.67mA | | Error from input offset | Error _{los} | $\frac{I_{OS_Total}}{I_{Sense}} \times 100$ | 0.39% | | Gain error with Gain drift | Error _G | $G_{Error} + G_{Error_drift} \times \Delta T$ | 0.7% | | Nonlinearity error | Error _{Lin} | _ | 0.01% | | Total error | _ | $\sqrt{\left(\operatorname{Error}_{\operatorname{IOS}}\right)^2 + \left(\operatorname{Error}_{\operatorname{G}}\right)^2 + \left(\operatorname{Error}_{\operatorname{Lin}}\right)^2}$ | 0.8% | ⁽¹⁾ The data for Total Error Example 2 was taken with the INA791x, $V_S = 5V$, $V_{CM} = 12V$, $V_{REF} = 0V$, T = 125°C, External Unity Gain (G = 20mV/A) and $I_{SENSE} = 25$ A. ### 7.1.1.6 Total Error Example 3 ### 表 7-3. Total Error Calculation: Example 3⁽¹⁾ | TERM | SYMBOL | EQUATION | TYPICAL VALUE | |---|-----------------------|--|---------------| | Initial input offset with
Temp drift | I _{OS_T} | $I_{OS} + \frac{dI_{OS}}{dT} \times \Delta T$ | 92.5mA | | Added input offset because of common-mode voltage | I _{OS_CM} | CMRR × (V _{CM} - 48V) | 2.8mA | | Added input offset because of reference voltage | los_ref | $RVRR \times \left \left(\frac{V_S}{2} - V_{REF} \right) \right $ | 31.25mA | | Total input offset Current | I _{OS_Total} | $\sqrt{\left(I_{OS_T}\right)^2 + \left(I_{OS_CM}\right)^2 + \left(I_{OS_REF}\right)^2}$ | 97.67mA | | Error from input offset | Error _{los} | $\frac{I_{OS_Total}}{I_{Sense}} \times 100$ | 0.39% | | Gain error with Gain drift | Error _G | $G_{Error} + G_{Error_drift} \times \Delta T$ | 0.7% | | Nonlinearity error | Error _{Lin} | _ | 0.01% | 表 7-3. Total Error Calculation: Example 3⁽¹⁾ (続き) | TERM | SYMBOL | EQUATION | TYPICAL VALUE | | |---|----------------------|---|---------------|--| | External Gain Resistor
Error + Drift | Error _{G_R} | 式 4 | 0.6% | | | Total error | _ | $\sqrt{\left(\operatorname{Error}_{\operatorname{IOS}}\right)^2 + \left(\operatorname{Error}_{\operatorname{G}_{-R}}\right)^2 + \left(\operatorname{Error}_{\operatorname{G}}\right)^2 + \left(\operatorname{Error}_{\operatorname{Lin}}\right)^2}$ | 1.01% | | (1) The data for *Total Error Example 3* was taken with the INA791x, V_S = 5V, V_{CM} = 12V, V_{REF} = 0V, T = 125°C, External Gain = 4 (Total Gain = 80mV/A), External Resistor Tolerance = 0.25%, External Resistor Drift = 25ppm/°C and I_{SENSE} = 25A. ## 7.2 Typical Applications The INA791x offers advantages for multiple applications including the following: - · High common-mode range and excellent CMRR enables direct inline sensing - · Precision low-inductive, low-drift shunt eliminates the need for overtemperature system calibration - Ultra-low offset and drift eliminates the necessity of calibration - Wide supply range enables a direct interface with most microprocessors ### 7.2.1 High-Side, High-Drive, Solenoid Current-Sense Application Challenges exist in solenoid drive current sensing that are similar to those in motor inline current sensing. In certain topologies, the current-sensing amplifier is exposed to the full-scale PWM voltage between ground and supply. The INA791x is an excellent choice for this type of application. The $400\mu\Omega$ integrated shunt with a total system accuracy of 0.35% with a total system drift of $35\text{ppm/}^{\circ}\text{C}$ provides system accuracy across temperature eliminating the need for system calibration at muliple temperatures. 図 7-1. Solenoid Drive Application Circuit #### 7.2.1.1 Design Requirements For this application, the INA791x measures current in the driver circuit of a 12V, 500mA hydraulic valve. 表 7-4. Design Parameters | DESIGN PARAMETER | EXAMPLE VALUE | | | | |-----------------------|---------------|--|--|--| | Common-mode voltage | 12V | | | | | Maximum sense current | 500mA | | | | | Power-supply voltage | 3.3V | | | | ## 8 Power Supply Recommendations The INA791x makes accurate measurements beyond the connected power-supply voltage (VS) because the inputs (IN+ and IN-) operate anywhere between -4V and +110V, independent of VS. For example, the VS power supply equals 5V and the common-mode voltage of the measured shunt can be as high as 110V. Although the common-mode voltage of the input can be beyond the supply voltage, the output voltage range of the INA791x is constrained to the supply voltage. Place the power-supply bypass capacitor as close as possible to the supply and ground pins. The recommended value of this bypass capacitor is $0.1\mu F$. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies. If the INA791x output is set to mid-supply, then take extreme care to minimize noise on the power supply. ## 9 Layout Example 図 9-1. INA791x Layout Example ## 10 Layout Guidelines - This device is specified for current handling of up to 50A over the entire –40°C to +125°C temperature range using a 2oz copper pour for the input power plane, as well as no external airflow passing over the device. - The primary current-handling limitation for this device is how much heat is dissipated inside the package. Efforts to improve heat transfer out of the package and into the surrounding environment improve the ability of the device to handle currents of up to 50A over a wider temperature range. - Heat transfer improvements primarily involve larger copper power traces and planes with increased copper thickness (2oz.), as well as providing airflow to pass over the device. Thermal vias help spread the current and power dissipated over multiple board layers. The INA791x evaluation module (EVM) features a 2oz copper pour for the planes, and is capable of supporting 50A at temperatures up to 125°C. - The bypass capacitor must be placed close to device ground and supply pins, but can be moved farther out if needed to avoid cutting thermal planes. The recommended value of this bypass capacitor is 0.1µF. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies. ## 11 Device and Documentation Support ### 11.1 Documentation Support #### 11.1.1 Related Documentation For related documentation, see the following: Texas Instruments, INA79xEVM, EVM User's Guide ### 11.2 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。 ### 11.3 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。 #### 11.4 Trademarks EZShunt[™] and テキサス・インスツルメンツ E2E[™] are trademarks of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ### 11.5 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 ### 11.6 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 ## 12 Revision History | | DATE | REVISION | NOTE | |---|----------|----------|-----------------| | N | lay 2024 | * | Initial release | ## 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most-current data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane. ### **PACKAGE OUTLINE** ## **DEK0015A** ### VQFN - 1 mm max height PLASTIC QUAD FLAT PACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. ### **EXAMPLE BOARD LAYOUT** ### **DEK0015A** ### VQFN - 1 mm max height PLASTIC QUAD FLAT PACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. ### **EXAMPLE STENCIL DESIGN** ## **DEK0015A** ### VQFN - 1 mm max height PLASTIC QUAD FLAT PACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ### 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com 26-May-2024 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------|-------------------------------|---------------|--------------|-------------------------|---------| | PINA791BIDEKR | ACTIVE | VQFN | DEK | 15 | 4000 | TBD | Call TI | Call TI | -40 to 125 | | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. 6 X 6, 0.6 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC QUAD FLAT PACK - NO LEAD ### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLAT PACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLAT PACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ### 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated