

LM2673 SIMPLE SWITCHER®3A降圧型電圧レギュレータ、電流制限調整機能付き

1 特長

- 最大効率94%
- 標準品の外付け部品を使用して単純かつ簡単に設計可能
- 抵抗を使用して、2A～5Aの範囲でピーク電流制限をプログラム可能
- 150mΩ DMOS出力スイッチ
- 3.3V、5V、12Vの固定出力タイプと、可変出力(1.2V～37V)タイプ
- ラインおよび負荷条件の全域において±2%の最大出力許容誤差
- 広い入力電圧範囲: 8V～40V
- 260kHz固定周波数の自己発振器
- ソフトスタート機能
- 動作時の接合部温度範囲: -40°C～125°C

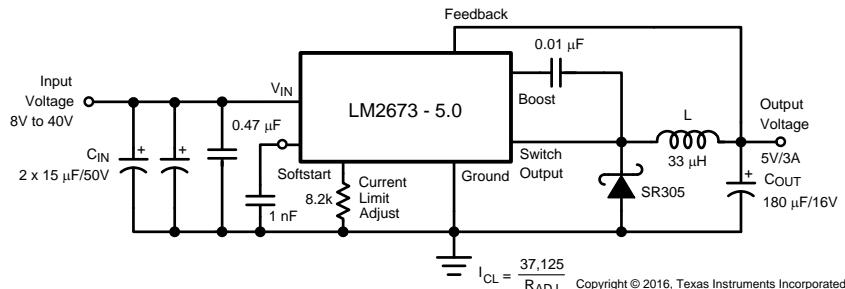
2 アプリケーション

- 設計が簡単で高効率(90%超)の降圧型スイッチング・レギュレータ
- リニア・レギュレータ用の効率的なシステム・ブリレギュレータ
- バッテリ充電器

3 概要

LM2673シリーズのレギュレータはモノリシックな集積回路で、降圧型(バック)スイッチング・レギュレータのすべてのアクティブ機能が搭載されており、優れたラインおよび負荷レギュレーション特性で3Aまでの負荷を駆動できます。低オン抵抗のDMOSパワー・スイッチを使用して、高い効率(90%超)を実現しています。このシリーズには、3.3V、5V、12Vの固定出力電圧のバージョンと、可変出力電圧のバージョンがあります。

SIMPLE SWITCHER®コンセプトにより、最小限の外付け部品で完全な設計を作成できます。高い固定周波数の発振器(260kHz)により、物理的に小さい部品を使用できます。LM2673で使用する標準インダクタは、いくつかの製造元から入手可能で、設計プロセスを大幅に簡素化できます。


他の特長として、ソフトスタート・タイミング・コンデンサを使用してレギュレータの電源を徐々にオンにするため、電源オン時の入力サージ電流が低いことが挙げられます。また、LM2673シリーズにはサーマル・シャットダウン機能が組み込まれており、フォルト状況でデバイスおよび負荷回路を保護するためパワーMOSFETスイッチの電流制限を抵抗によりプログラム可能です。出力電圧の定格許容誤差は±2%が保証されています。クロック周波数は±11%の許容誤差内に制御されます。

製品情報⁽¹⁾

型番	パッケージ	本体サイズ(公称)
LM2673	TO-263 (7)	10.10mm×8.89mm
	TO-220 (7)	14.986mm×10.16mm
	VSON (14)	6.00mm×5.00mm

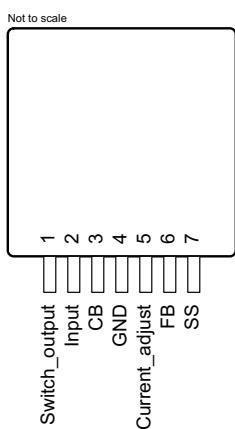
(1) 提供されているすべてのパッケージについては、巻末の注文情報を参照してください。

代表的なアプリケーション

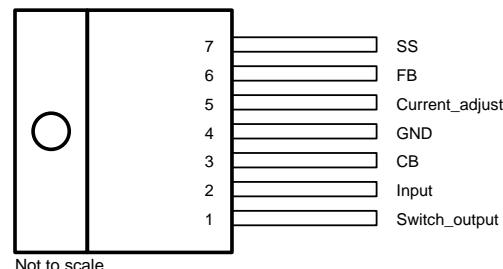
目次

1	特長	1	7.2	Functional Block Diagram	9
2	アプリケーション	1	7.3	Feature Description	9
3	概要	1	7.4	Device Functional Modes	10
4	改訂履歴	2	8	Application and Implementation	11
5	Pin Configuration and Functions	3	8.1	Application Information	11
6	Specifications	4	8.2	Typical Applications	14
6.1	Absolute Maximum Ratings	4	9	Power Supply Recommendations	26
6.2	ESD Ratings	4	10	Layout	26
6.3	Recommended Operating Conditions	4	10.1	Layout Guidelines	26
6.4	Thermal Information	5	10.2	Layout Example	27
6.5	Electrical Characteristics: LM2673 – 3.3 V	5	11	デバイスおよびドキュメントのサポート	28
6.6	Electrical Characteristics: LM2673 – 5 V	5	11.1	関連資料	28
6.7	Electrical Characteristics: LM2673 – 12 V	6	11.2	ドキュメントの更新通知を受け取る方法	28
6.8	Electrical Characteristics: LM2673 – Adjustable	6	11.3	コミュニティ・リソース	28
6.9	Electrical Characteristics – All Output Voltage Versions	6	11.4	商標	28
6.10	Typical Characteristics	7	11.5	静電気放電に関する注意事項	28
7	Detailed Description	9	11.6	Glossary	28
7.1	Overview	9	12	メカニカル、パッケージ、および注文情報	28
			12.1	DAP (VSONパッケージ)	28

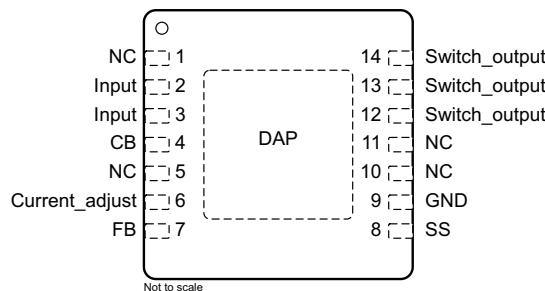
4 改訂履歴


資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Revision N (April 2013) から Revision O に変更	Page
• 「ESD定格」の表、「機能説明」セクション、「デバイスの機能モード」セクション、「アプリケーションと実装」セクション、「電源に関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよびドキュメントのサポート」セクション、「メカニカル、パッケージ、および注文情報」セクションを追加	1
• コンピュータ設計ソフトウェア LM267X Made Simple (バージョン 6.0)に関する記述をすべて削除	1


Revision M (April 2013) から Revision N に変更	Page
• Changed layout of National Data Sheet to TI format	24

5 Pin Configuration and Functions


KTW Package
7-Pin TO-263
Top View

NDZ Package
7-Pin TO-220
Top View

NHM Package
14-Pin VSON
Top View

Connect DAP to pin 9 on PCB.

Pin Functions

NAME	PIN		I/O	DESCRIPTION
	TO-263, TO-220	VSON		
Switch output	1	12, 13, 14	O	Source pin of the internal High Side FET. This is a switching node. Attached this pin to an inductor and the cathode of the external diode.
Input	2	2, 3	I	Supply input pin to collector pin of high side FET. Connect to power supply and input bypass capacitors CIN. Path from VIN pin to high frequency bypass CIN and GND must be as short as possible.
CB	3	4	I	Boot-strap capacitor connection for high-side driver. Connect a high quality 100-nF capacitor from CB to VSW Pin.
GND	4	9	—	Power ground pins. Connect to system ground. Ground pins of CIN and COUT. Path to CIN must be as short as possible.
Current adjust	5	6	I	Current Limit adjust pin. Connect a resistor from this pin to GND to set the current limit of the part.
FB	6	7	I	Feedback sense input pin. Connect to the midpoint of feedback divider to set VOUT for ADJ version or connect this pin directly to the output capacitor for a fixed output version.
SS	7	8	I	Soft-start pin. Connect a capacitor from this pin to GND to control the output voltage ramp. If the feature not desired, the pin can be left floating
NC	—	1, 5, 10, 11	—	No connect pins

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾

		MIN	MAX	UNIT	
Input supply voltage		45		V	
Soft-start pin voltage		-0.1	6	V	
Switch voltage to ground ⁽³⁾		-1	V_{IN}	V	
Boost pin voltage			$V_{SW} + 8$ V	V	
Feedback pin voltage		-0.3	14	V	
Power dissipation		Internally Limited			
Soldering temperature	Wave, 4 s	260		°C	
	Infrared, 10 s	240			
	Vapor phase, 75 s	219			
Storage temperature, T_{stg}		-65	150	°C	

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (3) The absolute maximum specification of the *Switch Voltage to Ground* applies to DC voltage. An extended negative voltage limit of -10 V applies to a pulse of up to 20 ns, -6 V of 60 ns and -3 V of up to 100 ns.

6.2 ESD Ratings

		VALUE	UNIT	
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾⁽²⁾	±2000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) ESD was applied using the human-body model, a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.

6.3 Recommended Operating Conditions

	MIN	MAX	UNIT
Supply voltage	8	40	V
Junction temperature (T_J)	-40	125	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		LM2678			UNIT
		NDZ (TO-220)	KTW (TO-263)	NHM (VSON)	
		7 PINS	7 PINS	14 PINS	
$R_{\theta JA}$	See ⁽²⁾	65	—	—	°C/W
	See ⁽³⁾	45	—	—	
	See ⁽⁴⁾	—	56	—	
	See ⁽⁵⁾	—	35	—	
	See ⁽⁶⁾	—	26	—	
	See ⁽⁷⁾	—	—	55	
	See ⁽⁸⁾	—	—	29	
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	2	2	—	°C/W

- (1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.
- (2) Junction to ambient thermal resistance (no external heat sink) for the 7-lead TO-220 package mounted vertically, with ½ inch leads in a socket, or on a PCB with minimum copper area.
- (3) Junction to ambient thermal resistance (no external heat sink) for the 7-lead TO-220 package mounted vertically, with ½ inch leads soldered to a PCB containing approximately 4 square inches of (1 oz.) copper area surrounding the leads.
- (4) Junction to ambient thermal resistance for the 7-lead DDPAK mounted horizontally against a PCB area of 0.136 square inches (the same size as the DDPAK package) of 1 oz. (0.0014 in. thick) copper.
- (5) Junction to ambient thermal resistance for the 7-lead DDPAK mounted horizontally against a PCB area of 0.4896 square inches (3.6 times the area of the DDPAK package) of 1 oz. (0.0014 in. thick) copper.
- (6) Junction to ambient thermal resistance for the 7-lead DDPAK mounted horizontally against a PCB copper area of 1.0064 square inches (7.4 times the area of the DDPAK 3 package) of 1 oz. (0.0014 in. thick) copper. Additional copper area will reduce thermal resistance further.
- (7) Junction to ambient thermal resistance for the 14-lead VSON mounted on a PCB copper area equal to the die attach paddle.
- (8) Junction to ambient thermal resistance for the 14-lead VSON mounted on a PCB copper area using 12 vias to a second layer of copper equal to die attach paddle. Additional copper area will reduce thermal resistance further. For layout recommendations, see Application Note [AN-1187 Leadless Leadframe Package \(LLP\)](#).

6.5 Electrical Characteristics: LM2673 – 3.3 V

Specifications apply for $T_A = T_J = 25^\circ\text{C}$ unless otherwise noted. $R_{\text{ADJ}} = 5.6 \text{ k}\Omega$.

PARAMETER	TEST CONDITIONS		MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
V_{OUT}	$V_{\text{IN}} = 8 \text{ V to } 40 \text{ V}$, $100 \text{ mA} \leq I_{\text{OUT}} \leq 5 \text{ A}$				3.234	3.3
			over the entire junction temperature range of operation -40°C to 125°C		3.201	3.399
η	Efficiency	$V_{\text{IN}} = 12 \text{ V}$, $I_{\text{LOAD}} = 5 \text{ A}$			86%	

- (1) All room temperature limits are 100% tested during production with $T_A = T_J = 25^\circ\text{C}$. All limits at temperature extremes are specified via correlation using standard Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
- (2) Typical values are determined with $T_A = T_J = 25^\circ\text{C}$ and represent the most likely norm.

6.6 Electrical Characteristics: LM2673 – 5 V

PARAMETER	TEST CONDITIONS		MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
V_{OUT}	$V_{\text{IN}} = 8 \text{ V to } 40 \text{ V}$, $100 \text{ mA} \leq I_{\text{OUT}} \leq 5 \text{ A}$				4.9	5
			over the entire junction temperature range of operation -40°C to 125°C		4.85	5.15
η	Efficiency	$V_{\text{IN}} = 12 \text{ V}$, $I_{\text{LOAD}} = 5 \text{ A}$			88%	

- (1) All room temperature limits are 100% tested during production with $T_A = T_J = 25^\circ\text{C}$. All limits at temperature extremes are specified via correlation using standard Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
- (2) Typical values are determined with $T_A = T_J = 25^\circ\text{C}$ and represent the most likely norm.

6.7 Electrical Characteristics: LM2673 – 12 V

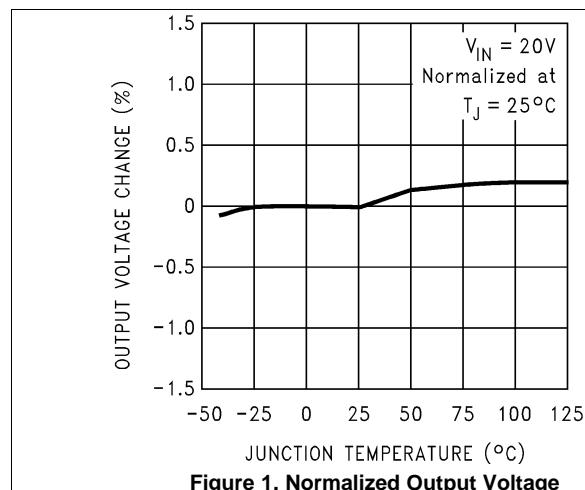
PARAMETER		TEST CONDITIONS		MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
V _{OUT}	Output voltage	V _{IN} = 15 V to 40 V, 100 mA ≤ I _{OUT} ≤ 5 A		11.76	12	12.24	V
				11.64		12.36	
η	Efficiency	V _{IN} = 24 V, I _{LOAD} = 5 A			94%		

(1) All room temperature limits are 100% tested during production with T_A = T_J = 25°C. All limits at temperature extremes are specified via correlation using standard Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
 (2) Typical values are determined with T_A = T_J = 25°C and represent the most likely norm.

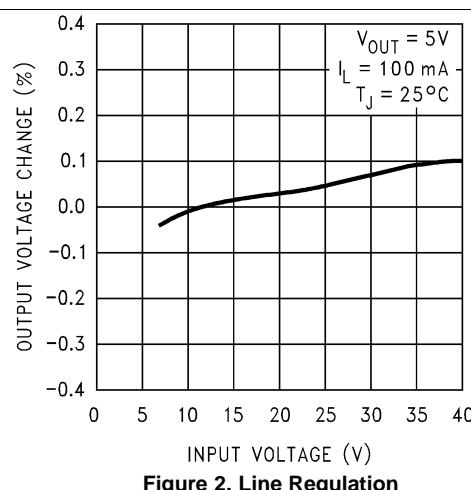
6.8 Electrical Characteristics: LM2673 – Adjustable

PARAMETER		TEST CONDITIONS		MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
V _{FB}	Feedback voltage	V _{IN} = 8 V to 40 V, 100 mA ≤ I _{OUT} ≤ 5 A, V _{OUT} programmed for 5 V		1.186	1.21	1.234	V
				1.174		1.246	
η	Efficiency	V _{IN} = 12 V, I _{LOAD} = 5 A			88%		

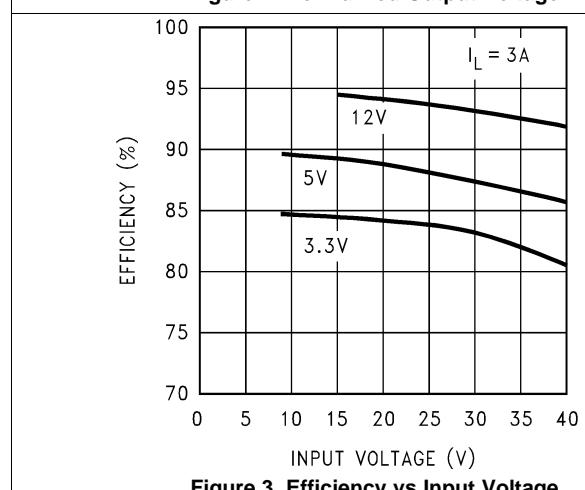
(1) All room temperature limits are 100% tested during production with T_A = T_J = 25°C. All limits at temperature extremes are specified via correlation using standard Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
 (2) Typical values are determined with T_A = T_J = 25°C and represent the most likely norm.

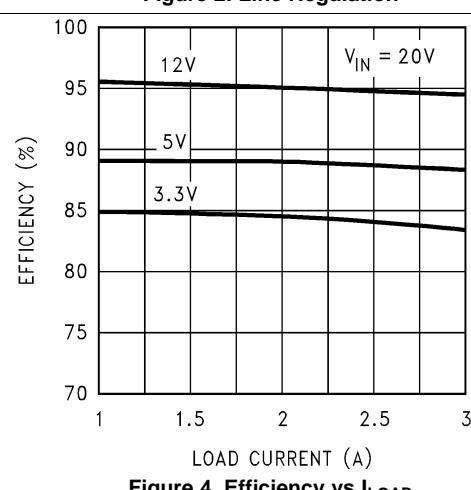

6.9 Electrical Characteristics – All Output Voltage Versions

Specifications are for T_A = T_J = 25°C unless otherwise specified. Unless otherwise specified V_{IN} = 12 V for the 3.3-V, 5-V, and Adjustable versions and V_{IN} = 24 V for the 12-V version.


PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
DEVICE PARAMETERS								
I _Q	Quiescent current	V _{FEEDBACK} = 8 V for 3.3-V, 5-V, and ADJ versions, V _{FEEDBACK} = 15 V for 12-V versions		4.2	6		mA	
V _{ADJ}	Current limit adjust voltage		over the entire junction temperature range of operation –40°C to 125°C	1.181	1.21	1.229	V	
				1.169		1.246		
I _{CL}	Current limit	R _{ADJ} = 5.6 kΩ, ⁽¹⁾	over the entire junction temperature range of operation –40°C to 125°C	5.5	6.3	7.6	A	
				5.3		8.1		
I _L	Output leakage current	V _{IN} = 40 V, soft-start pin = 0 V	V _{SWITCH} = 0 V		1	1.5	mA	
			V _{SWITCH} = –1 V		6	15		
R _{DS(ON)}	Switch ON-resistance	I _{SWITCH} = 5 A	over the entire junction temperature range of operation –40°C to 125°C	0.12	0.14	0.225	Ω	
f _o	Oscillator frequency	Measured at switch pin	over the entire junction temperature range of operation –40°C to 125°C	260			kHz	
				225		280		
D	Duty cycle	Maximum duty cycle		91%				
		Minimum duty cycle		0%				
I _{BIAS}	Feedback bias current	V _{FEEDBACK} = 1.3 V ADJ version only		85			nA	
V _{SFST}	Soft-start threshold voltage		over the entire junction temperature range of operation –40°C to 125°C	0.63			V	
				0.53		0.74		
I _{SFST}	Soft-start pin current	Soft-start pin = 0 V	over the entire junction temperature range of operation –40°C to 125°C	3.7			μA	
						6.9		

(1) The peak switch current limit is determined by the following relationship: I_{CL}=37,125/ R_{ADJ}.


6.10 Typical Characteristics


Figure 1. Normalized Output Voltage

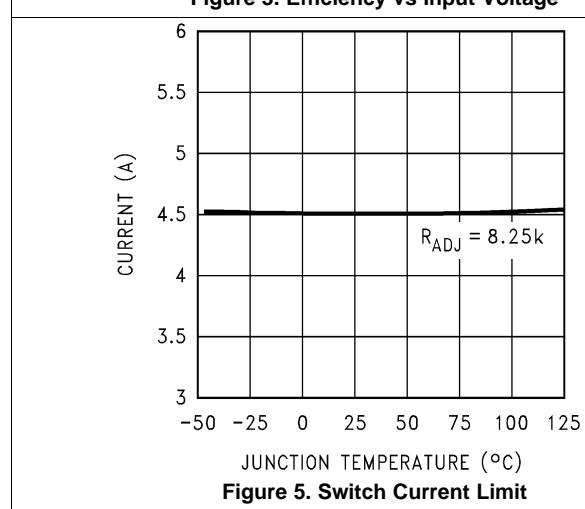

Figure 2. Line Regulation


Figure 3. Efficiency vs Input Voltage

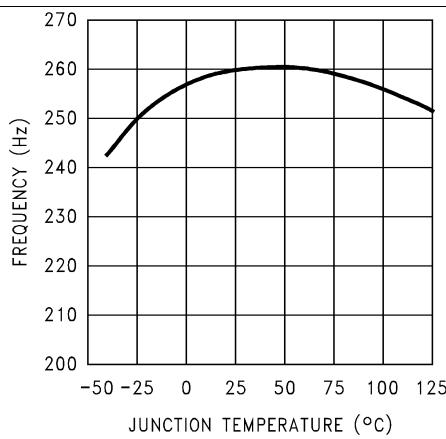
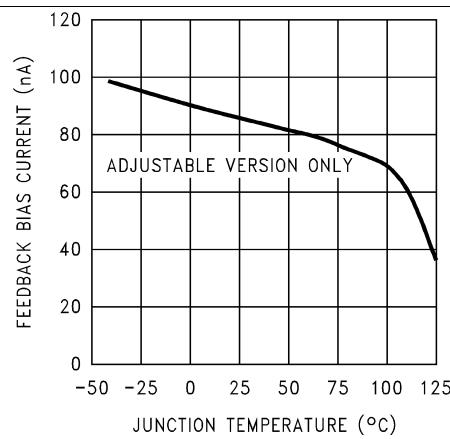
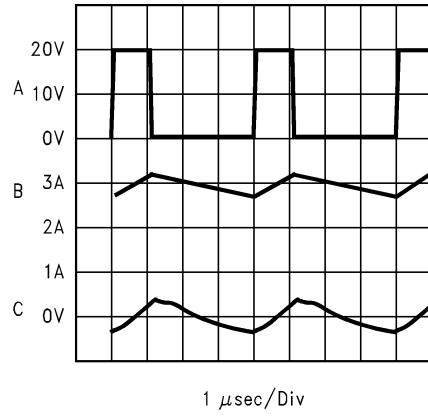



Figure 4. Efficiency vs I_{LOAD}

Figure 5. Switch Current Limit

Figure 6. Operating Quiescent Current

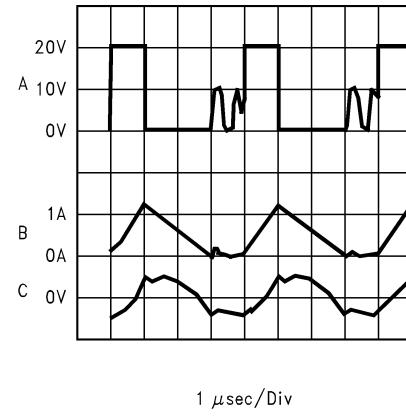

Typical Characteristics (continued)

Figure 7. Switching Frequency

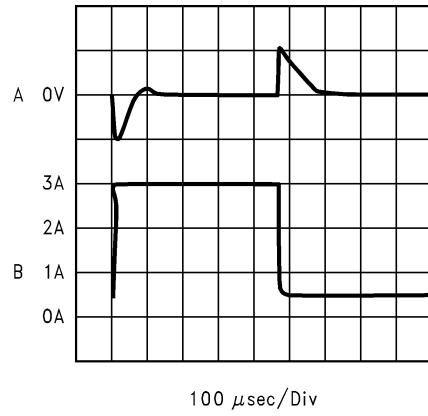
Figure 8. Feedback Pin Bias Current

Continuous Mode Switching Waveforms $V_{IN} = 20$ V, $V_{OUT} = 5$ V, $I_{LOAD} = 3$ A, $L = 33$ μ H, $C_{OUT} = 200$ μ F, $C_{OUTESR} = 26$ m Ω

A: V_{SW} Pin Voltage, 10 V/div

B: Inductor Current, 1 A/div

C: Output Ripple Voltage, 20 mV/div AC-Coupled


Figure 9. Horizontal Time Base: 1 μs/div

Discontinuous Mode Switching Waveforms $V_{IN} = 20$ V, $V_{OUT} = 5$ V, $I_{LOAD} = 500$ mA, $L = 10$ μ H, $C_{OUT} = 400$ μ F, $C_{OUTESR} = 13$ m Ω

A: V_{SW} Pin Voltage, 10 V/div

B: Inductor Current, 1 A/div

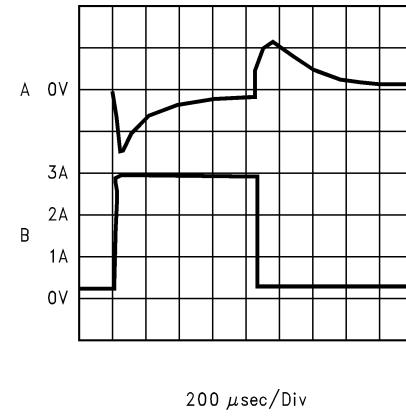

C: Output Ripple Voltage, 20 mV/div AC-Coupled

Figure 10. Horizontal Time Base: 1 μs/div

Load Transient Response for Continuous Mode $V_{IN} = 20$ V, $V_{OUT} = 5$ V, $L = 33$ μ H, $C_{OUT} = 200$ μ F, $C_{OUTESR} = 26$ m Ω

A: Output Voltage, 100 mV/div, AC-Coupled.

B: Load Current: 500-mA to 3-A Load Pulse

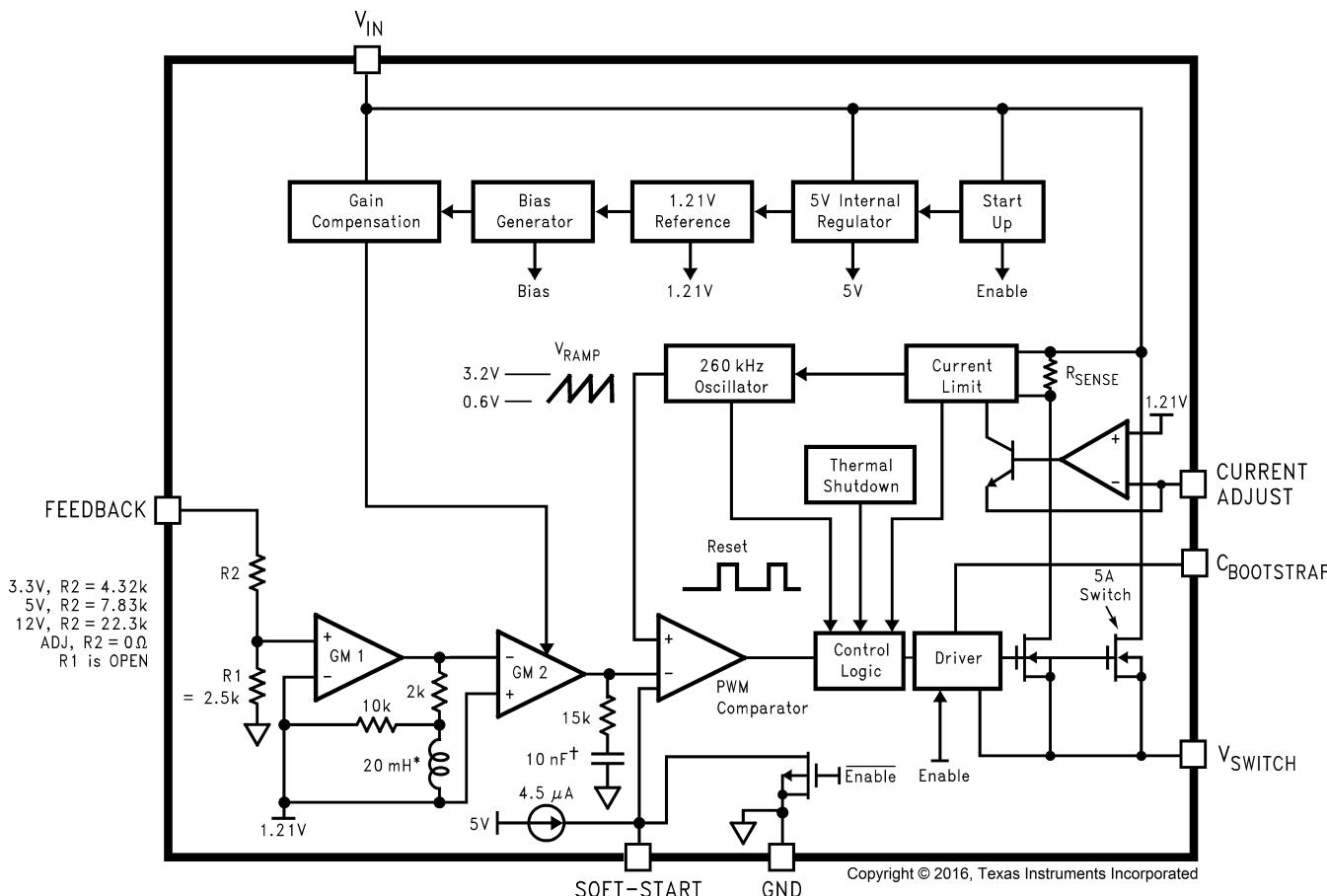
Figure 11. Horizontal Time Base: 100 μs/div

Load Transient Response for Discontinuous Mode $V_{IN} = 20$ V, $V_{OUT} = 5$ V, $L = 10$ μ H, $C_{OUT} = 400$ μ F, $C_{OUTESR} = 13$ m Ω

A: Output Voltage, 100 mV/div, AC-Coupled.

B: Load Current: 200-mA to 3-A Load Pulse

Figure 12. Horizontal Time Base: 200 μs/div


7 Detailed Description

7.1 Overview

The LM2673 provides all of the active functions required for a step-down (buck) switching regulator. The internal power switch is a DMOS power MOSFET to provide power supply designs with high current capability, up to 3 A, and highly efficient operation.

The design support WEBENCH, can also be used to provide instant component selection, circuit performance calculations for evaluation, a bill of materials component list and a circuit schematic for LM2673.

7.2 Functional Block Diagram

* Active Inductor Patent Number 5,514,947

† Active Capacitor Patent Number 5,382,918

7.3 Feature Description

7.3.1 Switch Output

This is the output of a power MOSFET switch connected directly to the input voltage. The switch provides energy to an inductor, an output capacitor and the load circuitry under control of an internal pulse-width-modulator (PWM). The PWM controller is internally clocked by a fixed 260-kHz oscillator. In a standard step-down application the duty cycle (Time ON/Time OFF) of the power switch is proportional to the ratio of the power supply output voltage to the input voltage. The voltage on pin 1 switches between V_{IN} (switch ON) and below ground by the voltage drop of the external Schottky diode (switch OFF).

Feature Description (continued)

7.3.2 Input

The input voltage for the power supply is connected to pin 2. In addition to providing energy to the load the input voltage also provides bias for the internal circuitry of the LM2673. For ensured performance the input voltage must be in the range of 8 V to 40 V. For best performance of the power supply the input pin must always be bypassed with an input capacitor located close to pin 2.

7.3.3 C Boost

A capacitor must be connected from pin 3 to the switch output, pin 1. This capacitor boosts the gate drive to the internal MOSFET above V_{IN} to fully turn it ON. This minimizes conduction losses in the power switch to maintain high efficiency. The recommended value for C Boost is 0.01 μ F.

7.3.4 Ground

This is the ground reference connection for all components in the power supply. In fast-switching, high-current applications such as those implemented with the LM2673, TI recommends that a broad ground plane be used to minimize signal coupling throughout the circuit.

7.3.5 Current Adjust

A key feature of the LM2673 is the ability to tailor the peak switch current limit to a level required by a particular application. This alleviates the need to use external components that must be physically sized to accommodate current levels (under shorted output conditions for example) that may be much higher than the normal circuit operating current requirements.

A resistor connected from pin 5 to ground establishes a current ($I_{(pin\ 5)} = 1.2\ V / R_{ADJ}$) that sets the peak current through the power switch. The maximum switch current is fixed at a level of $37,125 / R_{ADJ}$.

7.3.6 Feedback

This is the input to a two-stage high gain amplifier, which drives the PWM controller. It is necessary to connect pin 6 to the actual output of the power supply to set the DC output voltage. For the fixed output devices (3.3-V, 5-V, and 12-V outputs), a direct wire connection to the output is all that is required as internal gain setting resistors are provided inside the LM2673. For the adjustable output version two external resistors are required to set the dc output voltage. For stable operation of the power supply it is important to prevent coupling of any inductor flux to the feedback input.

7.4 Device Functional Modes

7.4.1 Soft-Start

A capacitor connected from pin 7 to ground allows for a slow turnon of the switching regulator. The capacitor sets a time delay to gradually increase the duty cycle of the internal power switch. This can significantly reduce the amount of surge current required from the input supply during an abrupt application of the input voltage. If soft start is not required this pin must be left open circuited. See [C_{SS} Soft-Start Capacitor](#) for further information regarding soft-start capacitor values.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Design Considerations

Power supply design using the LM2673 is greatly simplified by using recommended external components. A wide range of inductors, capacitors and Schottky diodes from several manufacturers have been evaluated for use in designs that cover the full range of capabilities (input voltage, output voltage, and load current) of the LM2673. A simple design procedure using nomographs and component tables provided in this data sheet leads to a working design with very little effort.

The individual components from the various manufacturers called out for use are still just a small sample of the vast array of components available in the industry. While these components are recommended, they are not exclusively the only components for use in a design. After a close comparison of component specifications, equivalent devices from other manufacturers could be substituted for use in an application.

Important considerations for each external component and an explanation of how the nomographs and selection tables were developed follows.

8.1.2 Inductor

The inductor is the key component in a switching regulator. For efficiency the inductor stores energy during the switch ON time and then transfers energy to the load while the switch is OFF.

Nomographs are used to select the inductance value required for a given set of operating conditions. The nomographs assume that the circuit is operating in continuous mode (the current flowing through the inductor never falls to zero). The magnitude of inductance is selected to maintain a maximum ripple current of 30% of the maximum load current. If the ripple current exceeds this 30% limit the next larger value is selected.

The inductors offered have been specifically manufactured to provide proper operation under all operating conditions of input and output voltage and load current. Several part types are offered for a given amount of inductance. Both surface mount and through-hole devices are available. The inductors from each of the three manufacturers have unique characteristics.

- Renco: ferrite stick core inductors; benefits are typically lowest cost and can withstand ripple and transient peak currents above the rated value. These inductors have an external magnetic field, which may generate EMI.
- Pulse Engineering: powdered iron toroid core inductors; these also can withstand higher than rated currents and, being toroid inductors, has low EMI.
- Coilcraft: ferrite drum core inductors; these are the smallest physical size inductors and are available only as surface mount components. These inductors also generate EMI but less than stick inductors.

8.1.3 Output Capacitor

The output capacitor acts to smooth the dc output voltage and also provides energy storage. Selection of an output capacitor, with an associated equivalent series resistance (ESR), impacts both the amount of output ripple voltage and stability of the control loop.

The output ripple voltage of the power supply is the product of the capacitor ESR and the inductor ripple current. The capacitor types recommended in the tables were selected for having low ESR ratings.

In addition, both surface mount tantalum capacitors and through-hole aluminum electrolytic capacitors are offered as solutions.

Application Information (continued)

Impacting frequency stability of the overall control loop, the output capacitance, in conjunction with the inductor, creates a double pole inside the feedback loop. In addition the capacitance and the ESR value create a zero. These frequency response effects together with the internal frequency compensation circuitry of the LM2673 modify the gain and phase shift of the closed loop system.

As a general rule for stable switching regulator circuits it is desired to have the unity gain bandwidth of the circuit to be limited to no more than one-sixth of the controller switching frequency. With the fixed 260-kHz switching frequency of the LM2673, the output capacitor is selected to provide a unity gain bandwidth of 40 kHz (maximum). Each recommended capacitor value has been chosen to achieve this result.

In some cases multiple capacitors are required either to reduce the ESR of the output capacitor, to minimize output ripple (a ripple voltage of 1% of V_{OUT} or less is the assumed performance condition), or to increase the output capacitance to reduce the closed-loop unity gain bandwidth, to less than 40 kHz. When parallel combinations of capacitors are required it has been assumed that each capacitor is the exact same part type.

The RMS current and working voltage (WV) ratings of the output capacitor are also important considerations. In a typical step-down switching regulator, the inductor ripple current (set to be no more than 30% of the maximum load current by the inductor selection) is the current that flows through the output capacitor. The capacitor RMS current rating must be greater than this ripple current. The voltage rating of the output capacitor must be greater than 1.3 times the maximum output voltage of the power supply. If operation of the system at elevated temperatures is required, the capacitor voltage rating may be de-rated to less than the nominal room temperature rating. Careful inspection of the manufacturer's specification for de-rating of working voltage with temperature is important.

8.1.4 Input Capacitor

Fast changing currents in high current switching regulators place a significant dynamic load on the unregulated power source. An input capacitor helps to provide additional current to the power supply as well as smooth out input voltage variations.

Like the output capacitor, the key specifications for the input capacitor are RMS current rating and working voltage. The RMS current flowing through the input capacitor is equal to one-half of the maximum DC load current so the capacitor should be rated to handle this. Paralleling multiple capacitors proportionally increases the current rating of the total capacitance. The voltage rating must also be selected to be 1.3 times the maximum input voltage. Depending on the unregulated input power source, under light load conditions the maximum input voltage could be significantly higher than normal operation. Consider this when selecting an input capacitor.

The input capacitor must be placed very close to the input pin of the LM2673. Due to relative high current operation with fast transient changes, the series inductance of input connecting wires or PCB traces can create ringing signals at the input terminal which could possibly propagate to the output or other parts of the circuitry. It may be necessary in some designs to add a small valued (0.1 μ F to 0.47 μ F) ceramic type capacitor in parallel with the input capacitor to prevent or minimize any ringing.

8.1.5 Catch Diode

When the power switch in the LM2673 turns OFF, the current through the inductor continues to flow. The path for this current is through the diode connected between the switch output and ground. This forward biased diode clamps the switch output to a voltage less than ground. This negative voltage must be greater than -1 V so a low voltage drop (particularly at high current levels) Schottky diode is recommended. Total efficiency of the entire power supply is significantly impacted by the power lost in the output catch diode. The average current through the catch diode is dependent on the switch duty cycle (D) and is equal to the load current times (1-D). Use of a diode rated for much higher current than is required by the actual application helps to minimize the voltage drop and power loss in the diode.

During the switch ON time the diode will be reversed biased by the input voltage. The reverse voltage rating of the diode should be at least 1.3 times greater than the maximum input voltage.

8.1.6 Boost Capacitor

The boost capacitor creates a voltage used to overdrive the gate of the internal power MOSFET. This improves efficiency by minimizing the on resistance of the switch and associated power loss. For all applications it is recommended to use a 0.01- μ F, 50-V ceramic capacitor.

Application Information (continued)

8.1.7 R_{ADJ} , Adjustable Current Limit

A key feature of the LM2673 is the ability to control the peak switch current. Without this feature the peak switch current would be internally set to 5 A or higher to accommodate 3-A load current designs. This requires that both the inductor (which could saturate with excessively high currents) and the catch diode be able to safely handle up to 5 A which would be conducted under load fault conditions.

If an application only requires a load current of 2 A or so the peak switch current can be set to a limit just over the maximum load current with the addition of a single programming resistor. This allows the use of less powerful and more cost-effective inductors and diodes.

The peak switch current is equal to a factor of 37,125 divided by R_{ADJ} . A resistance of 8.2 k Ω sets the current limit to typically 4.5 A. For predictable control of the current limit, TI recommends keeping the peak switch current greater than 1 A. For lower current applications 500-mA and 1-A switching regulators, the LM2674 and LM2672, are available.

When the power switch reaches the current limit threshold it is immediately turned OFF and the internal switching frequency is reduced. This extends the OFF time of the switch to prevent a steady-state, high-current condition. As the switch current falls below the current limit threshold, the switch turns back ON. If a load fault continues, the switch again exceeds the threshold and switch back OFF. This results in a low duty cycle pulsing of the power switch to minimize the overall fault condition power dissipation.

8.1.8 C_{SS} Soft-Start Capacitor

This optional capacitor controls the rate at which the LM2673 starts up at power on. The capacitor is charged linearly by an internal current source. This voltage ramp gradually increases the duty cycle of the power switch until it reaches the normal operating duty cycle defined primarily by the ratio of the output voltage to the input voltage. The soft-start turnon time is programmable by the selection of C_{SS} .

The formula for selecting a soft-start capacitor is:

$$C_{SS} \cong (I_{SS} \cdot t_{SS}) / [V_{SS} + 2.6V \cdot \left(\frac{V_{OUT} + V_{SCHOTTKY}}{V_{IN}} \right)]$$

where

- I_{SS} = Soft-start current, 3.7 μ A typical
- t_{SS} = Soft-start time, from design requirements
- V_{SS} = Soft-start threshold voltage, 0.63 V typical
- V_{OUT} = Output voltage, from design requirements
- $V_{SCHOTTKY}$ = Schottky diode voltage drop, typically 0.5 V
- V_{IN} = Maximum input voltage, from design requirements

(1)

If this feature is not desired, leave the soft-start pin (pin 7) open circuited.

With certain soft-start capacitor values and operating conditions, the LM2673 can exhibit an overshoot on the output voltage during turnon. Especially when starting up into no load or low load, the soft-start function may not be effective in preventing a larger voltage overshoot on the output. With larger loads or lower input voltages during start-up this effect is minimized. In particular, avoid using soft-start capacitors between 0.033 μ F and 1 μ F.

8.1.9 Additional Application Information

When the output voltage is greater than approximately 6 V, and the duty cycle at minimum input voltage is greater than approximately 50%, the designer should exercise caution in selection of the output filter components. When an application designed to these specific operating conditions is subjected to a current limit fault condition, it may be possible to observe a large hysteresis in the current limit. This can affect the output voltage of the device until the load current is reduced sufficiently to allow the current limit protection circuit to reset itself.

Application Information (continued)

Under current limiting conditions, the LM267x is designed to respond in the following manner:

1. At the moment when the inductor current reaches the current limit threshold, the ON-pulse is immediately terminated. This happens for any application condition.
2. However, the current limit block is also designed to momentarily reduce the duty cycle to below 50% to avoid subharmonic oscillations, which could cause the inductor to saturate.
3. Thereafter, once the inductor current falls below the current limit threshold, there is a small relaxation time during which the duty cycle progressively rises back above 50% to the value required to achieve regulation.

If the output capacitance is sufficiently *large*, it may be possible that as the output tries to recover, the output capacitor charging current is large enough to repeatedly re-trigger the current-limit circuit before the output has fully settled. This condition is exacerbated with higher output voltage settings because the energy requirement of the output capacitor varies as the square of the output voltage ($\frac{1}{2} CV^2$), thus requiring an increased charging current.

A simple test to determine if this condition might exist for a suspect application is to apply a short circuit across the output of the converter, and then remove the shorted output condition. In an application with properly selected external components, the output recovers smoothly.

Practical values of external components that have been experimentally found to work well under these specific operating conditions are $C_{OUT} = 47 \mu F$, $L = 22 \mu H$. It should be noted that even with these components, for a device's current limit of I_{CLIM} , the maximum load current under which the possibility of the large current limit hysteresis can be minimized is $I_{CLIM} / 2$. For example, if the input is 24 V and the set output voltage is 18 V, then for a desired maximum current of 1.5 A, the current limit of the chosen switcher must be confirmed to be at least 3 A.

Under extreme overcurrent or short-circuit conditions, the LM267X employs frequency foldback in addition to the current limit. If the cycle-by-cycle inductor current increases above the current limit threshold (due to short circuit or inductor saturation for example) the switching frequency is automatically reduced to protect the IC. Frequency below 100 kHz is typical for an extreme short-circuit condition.

8.2 Typical Applications

8.2.1 Typical Application for All Output Voltage Versions

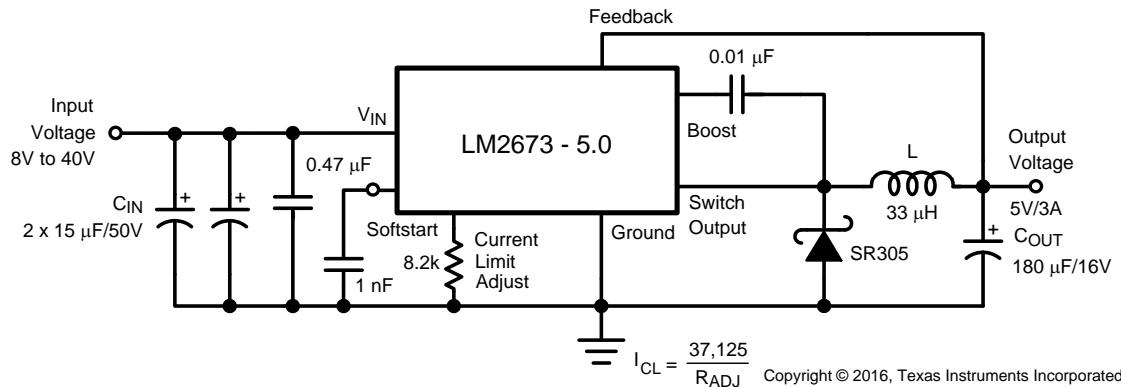


Figure 13. Basic Circuit for All Output Voltage Versions

8.2.1.1 Design Requirements

Select the power supply operating conditions and the maximum output current and follow below procedures to find the external components for LM2673.

Typical Applications (continued)

8.2.1.2 Detailed Design Procedure

Using the nomographs and tables in this data sheet (or use the available design software at www.ti.com) a complete step-down regulator can be designed in a few simple steps.

Step 1: Define the power supply operating conditions:

- Required output voltage
- Maximum DC input voltage
- Maximum output load current

Step 2: Set the output voltage by selecting a fixed output LM2673 (3.3-V, 5-V, or 12-V applications) or determine the required feedback resistors for use with the adjustable LM2673-ADJ

Step 3: Determine the inductor required by using one of the four nomographs, Figure 14 through Figure 17. Table 3 provides a specific manufacturer and part number for the inductor.

Step 4: Using Table 5 and Table 6 (fixed output voltage) or Table 9 and Table 10 (adjustable output voltage), determine the output capacitance required for stable operation. Table 1 and Table 10 provide the specific capacitor type from the manufacturer of choice.

Step 5: Determine an input capacitor from Table 5 and Table 8 for fixed output voltage applications. Use Table 1 or Table 2 to find the specific capacitor type. For adjustable output circuits select a capacitor from Table 1 or Table 2 with a sufficient working voltage (WV) rating greater than V_{IN} maximum, and an RMS current rating greater than one-half the maximum load current (2 or more capacitors in parallel may be required).

Step 6: Select an appropriate diode from Table 4. The current rating of the diode must be greater than I_{LOAD} maximum and the reverse voltage rating must be greater than V_{IN} maximum.

Step 7: Include a 0.01- μ F, 50-V capacitor for C_{BOOST} in the design and then determine the value of a soft-start capacitor if desired.

Step 8: Define a value for R_{ADJ} to set the peak switch current limit to be at least 20% greater than I_{OUT} maximum to allow for at least 30% inductor ripple current ($\pm 15\%$ of I_{OUT}). For designs that must operate over the full temperature range the switch current limit should be set to at least 50% greater than I_{OUT} maximum ($1.5 \times I_{OUT}$ maximum).

8.2.1.2.1 Capacitor Selection Guides

Table 1. Input and Output Capacitor Codes—Surface Mount

CAPACITOR REFERENCE CODE	SURFACE MOUNT								
	AVX TPS SERIES			SPRAGUE 594D SERIES			KEMET T495 SERIES		
	C (μ F)	WV (V)	Irms (A)	C (μ F)	WV (V)	Irms (A)	C (μ F)	WV (V)	Irms (A)
C1	330	6.3	1.15	120	6.3	1.1	100	6.3	0.82
C2	100	10	1.1	220	6.3	1.4	220	6.3	1.1
C3	220	10	1.15	68	10	1.05	330	6.3	1.1
C4	47	16	0.89	150	10	1.35	100	10	1.1
C5	100	16	1.15	47	16	1	150	10	1.1
C6	33	20	0.77	100	16	1.3	220	10	1.1
C7	68	20	0.94	180	16	1.95	33	20	0.78
C8	22	25	0.77	47	20	1.15	47	20	0.94
C9	10	35	0.63	33	25	1.05	68	20	0.94
C10	22	35	0.66	68	25	1.6	10	35	0.63
C11	—	—	—	15	35	0.75	22	35	0.63
C12	—	—	—	33	35	1	4.7	50	0.66
C13	—	—	—	15	50	0.9	—	—	—

Table 2. Input and Output Capacitor Codes—Through Hole

CAPACITOR REFERENCE CODE	THROUGH HOLE											
	SANYO OS-CON SA SERIES			SANYO MV-GX SERIES			NICHICON PL SERIES			PANASONIC HFQ SERIES		
	C (μF)	WV (V)	Irms (A)	C (μF)	WV (V)	Irms (A)	C (μF)	WV (V)	Irms (A)	C (μF)	WV (V)	Irms (A)
C1	47	6.3	1	1000	6.3	0.8	680	10	0.8	82	35	0.4
C2	150	6.3	1.95	270	16	0.6	820	10	0.98	120	35	0.44
C3	330	6.3	2.45	470	16	0.75	1000	10	1.06	220	35	0.76
C4	100	10	1.87	560	16	0.95	1200	10	1.28	330	35	1.01
C5	220	10	2.36	820	16	1.25	2200	10	1.71	560	35	1.4
C6	33	16	0.96	1000	16	1.3	3300	10	2.18	820	35	1.62
C7	100	16	1.92	150	35	0.65	3900	10	2.36	1000	35	1.73
C8	150	16	2.28	470	35	1.3	6800	10	2.68	2200	35	2.8
C9	100	20	2.25	680	35	1.4	180	16	0.41	56	50	0.36
C10	47	25	2.09	1000	35	1.7	270	16	0.55	100	50	0.5
C11	—	—	—	220	63	0.76	470	16	0.77	220	50	0.92
C12	—	—	—	470	63	1.2	680	16	1.02	470	50	1.44
C13	—	—	—	680	63	1.5	820	16	1.22	560	50	1.68
C14	—	—	—	1000	63	1.75	1800	16	1.88	1200	50	2.22
C15	—	—	—	—	—	—	220	25	0.63	330	63	1.42
C16	—	—	—	—	—	—	220	35	0.79	1500	63	2.51
C17	—	—	—	—	—	—	560	35	1.43	—	—	—
C18	—	—	—	—	—	—	2200	35	2.68	—	—	—
C19	—	—	—	—	—	—	150	50	0.82	—	—	—
C20	—	—	—	—	—	—	220	50	1.04	—	—	—
C21	—	—	—	—	—	—	330	50	1.3	—	—	—
C22	—	—	—	—	—	—	100	63	0.75	—	—	—
C23	—	—	—	—	—	—	390	63	1.62	—	—	—
C24	—	—	—	—	—	—	820	63	2.22	—	—	—
C25	—	—	—	—	—	—	1200	63	2.51	—	—	—

8.2.1.2.2 Inductor Selection Guide
Table 3. Inductor Manufacturer Part Numbers

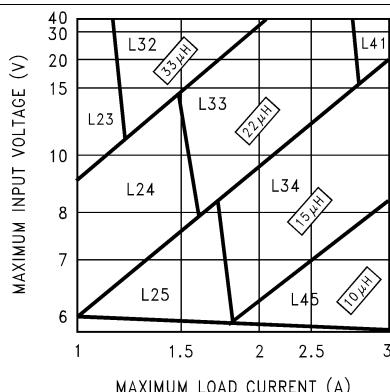
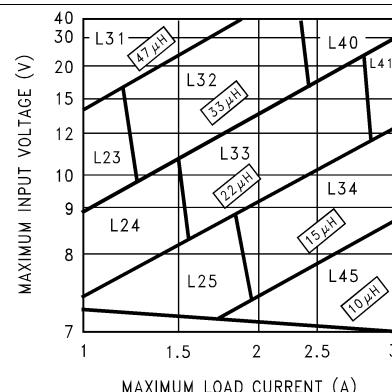
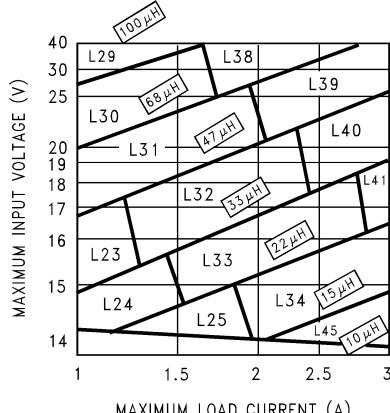
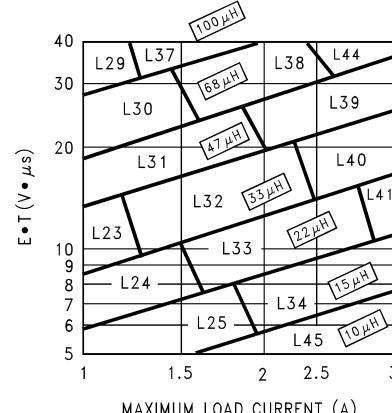




INDUCTOR REFERENCE NUMBER	INDUCTANCE (μH)	CURRENT (A)	RENCO		PULSE ENGINEERING		COILCRAFT	
			THROUGH HOLE	SURFACE MOUNT	THROUGH HOLE	SURFACE MOUNT	SURFACE MOUNT	SURFACE MOUNT
L23	33	1.35	RL-5471-7	RL1500-33	PE-53823	PE-53823S	DO3316-333	
L24	22	1.65	RL-1283-22-43	RL1500-22	PE-53824	PE-53824S	DO3316-223	
L25	15	2	RL-1283-15-43	RL1500-15	PE-53825	PE-53825S	DO3316-153	
L29	100	1.41	RL-5471-4	RL-6050-100	PE-53829	PE-53829S	DO5022P-104	
L30	68	1.71	RL-5471-5	RL6050-68	PE-53830	PE-53830S	DO5022P-683	
L31	47	2.06	RL-5471-6	RL6050-47	PE-53831	PE-53831S	DO5022P-473	
L32	33	2.46	RL-5471-7	RL6050-33	PE-53932	PE-53932S	DO5022P-333	
L33	22	3.02	RL-1283-22-43	RL6050-22	PE-53933	PE-53933S	DO5022P-223	
L34	15	3.65	RL-1283-15-43	—	PE-53934	PE-53934S	DO5022P-153	
L38	68	2.97	RL-5472-2	—	PE-54038	PE-54038S	—	
L39	47	3.57	RL-5472-3	—	PE-54039	PE-54039S	—	
L40	33	4.26	RL-1283-33-43	—	PE-54040	PE-54040S	—	
L41	22	5.22	RL-1283-22-43	—	PE-54041	P0841	—	
L44	68	3.45	RL-5473-3	—	PE-54044	—	—	
L45	10	4.47	RL-1283-10-43	—	—	P0845	DO5022P-103HC	

Table 4. Schottky Diode Selection Table

REVERSE VOLTAGE (V)	SURFACE MOUNT		THROUGH HOLE	
	3 A	5 A OR MORE	3 A	5 A OR MORE
20	SK32	—	1N5820	—
30	SK33	MBRD835L	1N5821	—
	30WQ03F		31DQ03	—
40	SK34	MBRB1545CT	1N5822	—
	30BQ040	6TQ045S	MBR340	MBR745
	30WQ04F		31DQ04	80SQ045
	MBRS340		SR403	6TQ045
	MBRD340		—	—
50 or more	SK35	—	MBR350	—
	30WQ05F		31DQ05	—
	—		SR305	—

8.2.1.3 Application Curves

For Continuous Mode Operation

Figure 14. LM2673-3.3

Figure 15. LM2673-5

Figure 16. LM2673-12

Figure 17. LM2673-ADJ

8.2.2 Fixed Output Voltage Application

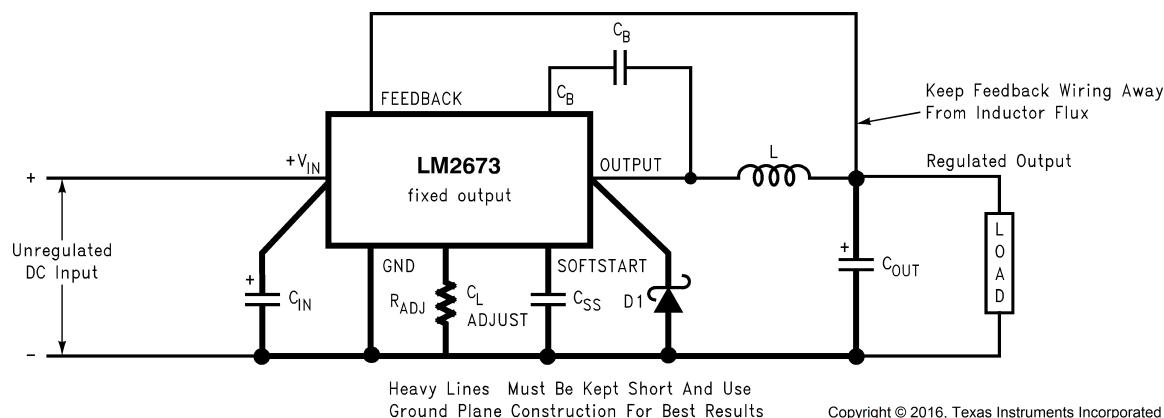


Figure 18. Basic Circuit for Fixed Output Voltage Applications

8.2.2.1 Design Requirements

Select the power supply operating conditions and the maximum output current and follow below procedures to find the external components for LM2673.

8.2.2.2 Detailed Design Procedure

A system logic power supply bus of 3.3 V is to be generated from a wall adapter which provides an unregulated DC voltage of 13 V to 16 V. The maximum load current is 2.5 A. A soft-start delay time of 50 ms is desired. Through-hole components are preferred.

Step 1: Operating conditions are:

- $V_{OUT} = 3.3$ V
- V_{IN} maximum = 16 V
- I_{LOAD} maximum = 2.5 A

Step 2: Select an LM2673T-3.3. The output voltage has a tolerance of $\pm 2\%$ at room temperature and $\pm 3\%$ over the full operating temperature range.

Step 3: Use the nomograph for the 3.3-V device, [Figure 14](#). The intersection of the 16-V horizontal line (V_{IN} max) and the 2.5-A vertical line (I_{LOAD} max) indicates that L33, a 22- μ H inductor, is required.

From [Table 3](#), L33 in a through-hole component is available from Renco with part number RL-1283-22-43 or part number PE-53933 from Pulse Engineering.

Step 4: Use [Table 5](#) or [Table 6](#) to determine an output capacitor. With a 3.3-V output and a 33- μ H inductor there are four through-hole output capacitor solutions with the number of same type capacitors to be paralleled and an identifying capacitor code given. [Table 1](#) or [Table 2](#) provide the actual capacitor characteristics. Any of the following choices will work in the circuit:

- 1 x 220- μ F, 10-V Sanyo OS-CON (code C5)
- 1 x 1000- μ F, 35-V Sanyo MV-GX (code C10)
- 1 x 2200- μ F, 10-V Nichicon PL (code C5)
- 1 x 1000- μ F, 35-V Panasonic HFQ (code C7)

Step 5: Use [Table 5](#) or [Table 8](#) to select an input capacitor. With 3.3-V output and 22 μ H there are three through-hole solutions. These capacitors provide a sufficient voltage rating and an RMS current rating greater than 1.25 A (1/2 I_{LOAD} max). Again using [Table 1](#) or [Table 2](#) for specific component characteristics the following choices are suitable:

- 1 x 1000- μ F, 63-V Sanyo MV-GX (code C14)
- 1 x 820- μ F, 63-V Nichicon PL (code C24)
- 1 x 560- μ F, 50-V Panasonic HFQ (code C13)

Step 6: From [Table 4](#) a 3-A or more Schottky diode must be selected. The 20-V rated diodes are sufficient for the application and for through-hole components two part types are suitable:

- 1N5820
- SR302

Step 7: A 0.01- μ F capacitor will be used for C_{BOOST} . For the 50-ms soft-start delay the following parameters are to be used:

- I_{SST} : 3.7 μ A
- t_{SS} : 50 mS
- V_{SST} : 0.63 V
- V_{OUT} : 3.3 V
- $V_{SCHOTTKY}$: 0.5 V
- V_{IN} : 16 V

Using V_{IN} max ensures that the soft-start delay time will be at least the desired 50 ms.

Using the formula for C_{SS} a value of 0.148 μ F is determined to be required. Use of a standard value 0.22- μ F capacitor will produce more than sufficient soft-start delay.

Step 8: Determine a value for R_{ADJ} to provide a peak switch current limit of at least 2.5 A plus 50% or 3.75 A.

$$R_{ADJ} = \frac{37,125}{3.75A} = 9.9 \text{ k}\Omega \quad (2)$$

Use a value of 10 k Ω .

8.2.2.2.1 Capacitor Selection

Table 5. Output Capacitors for Fixed Output Voltage Application—Surface Mount⁽¹⁾⁽²⁾

OUTPUT VOLTAGE (V)	INDUCTANCE (μ H)	SURFACE MOUNT					
		AVX TPS SERIES		SPRAGUE 594D SERIES		KEMET T495 SERIES	
		NO.	C CODE	NO.	C CODE	NO.	C CODE
3.3	10	4	C2	3	C1	4	C4
	15	4	C2	3	C1	4	C4
	22	3	C2	2	C7	3	C4
	33	2	C2	2	C6	2	C4
5	10	4	C2	4	C6	4	C4
	15	3	C2	2	C7	3	C4
	22	3	C2	2	C7	3	C4
	33	2	C2	2	C3	2	C4
	47	2	C2	1	C7	2	C4
12	10	4	C5	3	C6	5	C9
	15	3	C5	2	C7	4	C8
	22	2	C5	2	C6	3	C8
	33	2	C5	1	C7	2	C8
	47	2	C4	1	C6	2	C8
	68	1	C5	1	C5	2	C7
	100	1	C4	1	C5	1	C8

(1) No. represents the number of identical capacitor types to be connected in parallel

(2) C Code indicates the Capacitor Reference number in [Table 1](#) and [Table 2](#) for identifying the specific component from the manufacturer.

Table 6. Output Capacitors for Fixed Output Voltage Application—Through Hole⁽¹⁾⁽²⁾

OUTPUT VOLTAGE (V)	INDUCTANCE (μH)	THROUGH HOLE						
		SANYO OS-CON SA SERIES		SANYO MV-GX SERIES		NICHICON PL SERIES		PANASONIC HFQ SERIES
		NO.	C CODE	NO.	C CODE	NO.	C CODE	NO.
3.3	10	1	C3	1	C10	1	C6	2
	15	1	C3	1	C10	1	C6	2
	22	1	C5	1	C10	1	C5	1
	33	1	C2	1	C10	1	C13	1
5	10	2	C4	1	C10	1	C6	2
	15	1	C5	1	C10	1	C5	1
	22	1	C5	1	C5	1	C5	1
	33	1	C4	1	C5	1	C13	1
	47	1	C4	1	C4	1	C13	2
12	10	2	C7	2	C5	1	C18	2
	15	1	C8	1	C5	1	C17	1
	22	1	C7	1	C5	1	C13	1
	33	1	C7	1	C3	1	C11	1
	47	1	C7	1	C3	1	C10	1
	68	1	C7	1	C2	1	C10	1
	100	1	C7	1	C2	1	C9	1

(1) No. represents the number of identical capacitor types to be connected in parallel

(2) C Code indicates the Capacitor Reference number in [Table 1](#) and [Table 2](#) for identifying the specific component from the manufacturer.**Table 7. Input Capacitors for Fixed Output Voltage Application—Surface Mount⁽¹⁾⁽²⁾⁽³⁾**

OUTPUT VOLTAGE (V)	INDUCTANCE (μH)	SURFACE MOUNT					
		AVX TPS SERIES		SPRAGUE 594D SERIES		KEMET T495 SERIES	
		NO.	C CODE	NO.	C CODE	NO.	C CODE
3.3	10	2	C5	1	C7	2	C8
	15	3	C9	1	C10	3	C10
	22	See ⁽⁴⁾	See ⁽⁴⁾	2	C13	3	C12
	33	See ⁽⁴⁾	See ⁽⁴⁾	2	C13	2	C12
5	10	2	C5	1	C7	2	C8
	15	2	C5	1	C7	2	C8
	22	3	C10	2	C12	3	C11
	33	See ⁽⁴⁾	See ⁽⁴⁾	2	C13	3	C12
	47	See ⁽⁴⁾	See ⁽⁴⁾	1	C13	2	C12
12	10	2	C7	2	C10	2	C7
	15	2	C7	2	C10	2	C7
	22	3	C10	2	C12	3	C10
	33	3	C10	2	C12	3	C10
	47	See ⁽⁴⁾	See ⁽⁴⁾	2	C13	3	C12
	68	See ⁽⁴⁾	See ⁽⁴⁾	2	C13	2	C12
	100	See ⁽⁴⁾	See ⁽⁴⁾	1	C13	2	C12

(1) Assumes worst case maximum input voltage and load current for a given inductance value

(2) No. represents the number of identical capacitor types to be connected in parallel

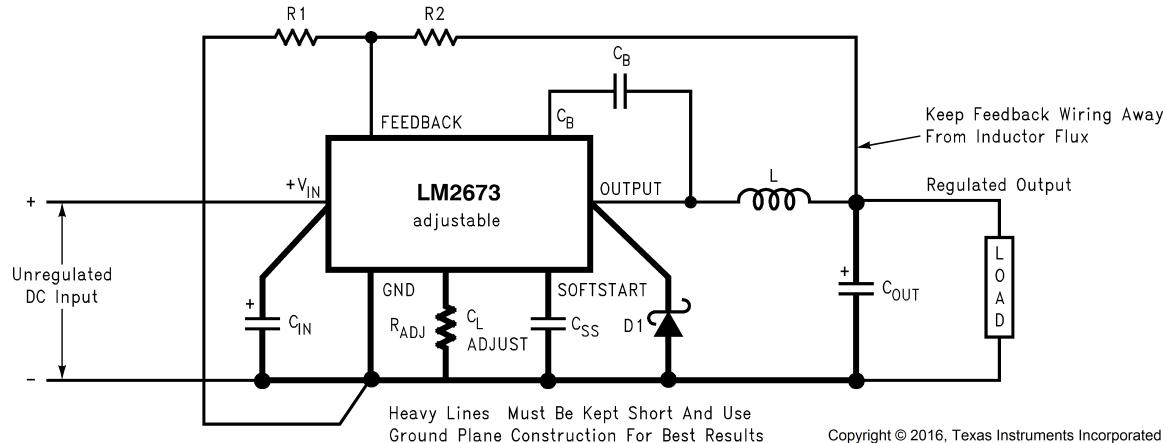
(3) C Code indicates the Capacitor Reference number in [Table 1](#) and [Table 2](#) for identifying the specific component from the manufacturer.

(4) Check voltage rating of capacitors to be greater than application input voltage.

Table 8. Input Capacitors for Fixed Output Voltage Application—Through Hole⁽¹⁾⁽²⁾⁽³⁾

OUTPUT VOLTAGE (V)	INDUCTANC E (μH)	THROUGH HOLE						
		SANYO OS-CON SA SERIES		SANYO MV-GX SERIES		NICHICON PL SERIES		PANASONIC HFQ SERIES
		NO.	C CODE	NO.	C CODE	NO.	C CODE	NO.
3.3	10	1	C7	2	C4	1	C5	1
	15	1	C10	1	C10	1	C18	1
	22	See ⁽⁴⁾	See ⁽⁴⁾	1	C14	1	C24	1
	33	See ⁽⁴⁾	See ⁽⁴⁾	1	C12	1	C20	1
5	10	1	C7	2	C4	1	C14	1
	15	1	C7	2	C4	1	C14	1
	22	See ⁽⁴⁾	See ⁽⁴⁾	1	C10	1	C18	1
	33	See ⁽⁴⁾	See ⁽⁴⁾	1	C14	1	C23	1
	47	See ⁽⁴⁾	See ⁽⁴⁾	1	C12	1	C20	1
12	10	1	C9	1	C10	1	C18	1
	15	1	C10	1	C10	1	C18	1
	22	1	C10	1	C10	1	C18	1
	33	See ⁽⁴⁾	See ⁽⁴⁾	1	C10	1	C18	1
	47	See ⁽⁴⁾	See ⁽⁴⁾	1	C13	1	C23	1
	68	See ⁽⁴⁾	See ⁽⁴⁾	1	C12	1	C21	1
	100	See ⁽⁴⁾	See ⁽⁴⁾	1	C11	1	C22	1

(1) Assumes worst case maximum input voltage and load current for a given inductance value


(2) No. represents the number of identical capacitor types to be connected in parallel

(3) C Code indicates the Capacitor Reference number in [Table 1](#) and [Table 2](#) for identifying the specific component from the manufacturer.

(4) Check voltage rating of capacitors to be greater than application input voltage.

8.2.3 Adjustable Output Design Example

Locate the Programming Resistors near
the Feedback Pin Using Short Leads

Figure 19. Basic Circuit for Adjustable Output Voltage Applications

8.2.3.1 Design Requirements

Select the power supply operating conditions and the maximum output current and follow below procedures to find the external components for LM2673.

8.2.3.2 Detailed Design Procedure

In this example, it is desired to convert the voltage from a two battery automotive power supply (voltage range of 20 V to 28 V, typical in large truck applications) to the 14.8-VDC alternator supply typically used to power electronic equipment from single battery 12-V vehicle systems. The load current required is 2 A (maximum). It is also desired to implement the power supply with all surface mount components. Soft start is not required.

Step 1: Operating conditions are:

- $V_{OUT} = 14.8 \text{ V}$
- V_{IN} maximum = 28 V
- I_{LOAD} maximum = 2 A

Step 2: Select an LM2673S-ADJ. To set the output voltage to 14.9 V, two resistors need to be chosen (R1 and R2 in [Figure 19](#)). For the adjustable device the output voltage is set by the following relationship:

$$V_{OUT} = V_{FB} \left(1 + \frac{R_2}{R_1} \right)$$

where

- V_{FB} is the feedback voltage of typically 1.21 V

(3)

A recommended value to use for R1 is 1 k Ω . In this example then R2 is determined to be:

$$R_2 = R_1 \left(\frac{V_{OUT}}{V_{FB}} - 1 \right) = 1 \text{ k}\Omega \left(\frac{14.8 \text{ V}}{1.21 \text{ V}} - 1 \right)$$
(4)

$$R_2 = 11.23 \text{ k}\Omega$$

The closest standard 1% tolerance value to use is 11.3 k Ω

This sets the nominal output voltage to 14.88 V which is within 0.5% of the target value.

Step 3: To use the nomograph for the adjustable device, [Figure 17](#), requires a calculation of the inductor Volt • microsecond constant ($E \cdot T$ expressed in V • μ s) from the following formula:

$$E \cdot T = (V_{IN(MAX)} - V_{OUT} - V_{SAT}) \cdot \frac{V_{OUT} + V_D}{V_{IN(MAX)} - V_{SAT} + V_D} \cdot \frac{1000}{260} \text{ (V} \cdot \mu\text{s)}$$

where

- V_{SAT} is the voltage drop across the internal power switch which is $R_{ds(ON)}$ times I_{LOAD}

(5)

In this example this would be typically $0.15 \Omega \times 2 \text{ A}$ or 0.3 V and V_D is the voltage drop across the forward biased Schottky diode, typically 0.5 V. The switching frequency of 260 KHz is the nominal value to use to estimate the ON time of the switch during which energy is stored in the inductor.

For this example $E \cdot T$ is found to be:

$$E \cdot T = (28 - 14.8 - 0.3) \cdot \frac{14.8 + 0.5}{28 - 0.3 + 0.5} \cdot \frac{1000}{260} \text{ (V} \cdot \mu\text{s)}$$
(6)

$$E \cdot T = (12.9 \text{ V}) \cdot \frac{15.3}{28.2} \cdot 3.85 \text{ (V} \cdot \mu\text{s)} = 26.9 \text{ (V} \cdot \mu\text{s)}$$
(7)

Using [Figure 17](#), the intersection of 27 V • μ s horizontally and the 2-A vertical line (I_{LOAD} max) indicates that L38, a 68- μ H inductor, must be used.

From [Table 3](#), L38 in a surface mount component is available from Pulse Engineering with part number PE-54038S.

Step 4: Use [Table 9](#) or [Table 10](#) to determine an output capacitor. With a 14.8-V output the 12.5-V to 15-V row is used and with a 68- μ H inductor there are three surface mount output capacitor solutions. [Table 1](#) or [Table 2](#) provide the actual capacitor characteristics based on the C Code number. Any of the following choices can be used:

- 1 x 33- μ F, 20-V AVX TPS (code C6)
- 1 x 47- μ F, 20-V Sprague 594 (code C8)
- 1 x 47- μ F, 20-V Kemet T495 (code C8)

NOTE

When using the adjustable device in low voltage applications (less than 3-V output), if the nomograph, [Figure 17](#), selects an inductance of 22 μ H or less, [Table 9](#) and [Table 10](#) do not provide an output capacitor solution. With these conditions the number of output capacitors required for stable operation becomes impractical. TI recommends either a 33- μ H or 47- μ H inductor and the output capacitors from [Table 9](#) or [Table 10](#).

Step 5: An input capacitor for this example will require at least a 35-V WV rating with an RMS current rating of 1 A (1/2 I_{OUT} max). From [Table 1](#) or [Table 2](#) it can be seen that C12, a 33- μ F, 35-V capacitor from Sprague, has the required voltage and current rating of the surface mount components.

Step 6: From [Table 4](#) aA 3-A Schottky diode must be selected. For surface mount diodes with a margin of safety on the voltage rating one of five diodes can be used:

- SK34
- 30BQ040
- 30WQ04F
- MBRS340
- MBRD340

Step 7: A 0.01- μ F capacitor is used for C_{BOOST} .

The soft-start pin will be left open circuited.

Step 8: Determine a value for R_{ADJ} to provide a peak switch current limit of at least 2 A plus 50% or 3 A.

$$R_{ADJ} = \frac{37,125}{3A} = 12.375 \text{ k}\Omega \quad (8)$$

Use a value of 12.4 k Ω .

8.2.3.2.1 Capacitor Selection

Table 9. Output Capacitors for Adjustable Output Voltage Applications—Surface Mount⁽¹⁾⁽²⁾

OUTPUT VOLTAGE (V)	INDUCTANCE (μ H)	SURFACE MOUNT					
		AVX TPS SERIES		SPRAGUE 594D SERIES		KEMET T495 SERIES	
		NO.	C CODE	NO.	C CODE	NO.	C CODE
1.21 to 2.5	33 ⁽³⁾	7	C1	6	C2	7	C3
	47 ⁽³⁾	5	C1	4	C2	5	C3
2.5 to 3.75	33 ⁽³⁾	4	C1	3	C2	4	C3
	47 ⁽³⁾	3	C1	2	C2	3	C3
3.75 to 5	22	4	C1	3	C2	4	C3
	33	3	C1	2	C2	3	C3
	47	2	C1	2	C2	2	C3
5 to 6.25	22	3	C2	3	C3	3	C4
	33	2	C2	2	C3	2	C4
	47	2	C2	2	C3	2	C4
	68	1	C2	1	C3	1	C4
6.25 to 7.5	22	3	C2	1	C4	3	C4
	33	2	C2	1	C3	2	C4
	47	1	C3	1	C4	1	C6
	68	1	C2	1	C3	1	C4

(1) No. represents the number of identical capacitor types to be connected in parallel

(2) C Code indicates the Capacitor Reference number in [Table 1](#) and [Table 2](#) for identifying the specific component from the manufacturer.

(3) Set to a higher value for a practical design solution.

Table 9. Output Capacitors for Adjustable Output Voltage Applications—Surface Mount⁽¹⁾⁽²⁾ (continued)

OUTPUT VOLTAGE (V)	INDUCTANCE (μ H)	SURFACE MOUNT					
		AVX TPS SERIES		SPRAGUE 594D SERIES		KEMET T495 SERIES	
		NO.	C CODE	NO.	C CODE	NO.	C CODE
7.5 to 10	33	2	C5	1	C6	2	C8
	47	1	C5	1	C6	2	C8
	68	1	C5	1	C6	1	C8
	100	1	C4	1	C5	1	C8
10 to 12.5	33	1	C5	1	C6	2	C8
	47	1	C5	1	C6	2	C8
	68	1	C5	1	C6	1	C8
	100	1	C5	1	C6	1	C8
12.5 to 15	33	1	C6	1	C8	1	C8
	47	1	C6	1	C8	1	C8
	68	1	C6	1	C8	1	C8
	100	1	C6	1	C8	1	C8
15 to 20	33	1	C8	1	C10	2	C10
	47	1	C8	1	C9	2	C10
	68	1	C8	1	C9	2	C10
	100	1	C8	1	C9	1	C10
20 to 30	33	2	C9	2	C11	2	C11
	47	1	C10	1	C12	1	C11
	68	1	C9	1	C12	1	C11
	100	1	C9	1	C12	1	C11
30 to 37	10	No Values Available		4	C13	8	C12
	15			3	C13	5	C12
	22			2	C13	4	C12
	33			1	C13	3	C12
	47			1	C13	2	C12
	68			1	C13	2	C12

Table 10. Output Capacitors for Adjustable Output Voltage Applications—Through Hole⁽¹⁾⁽²⁾

OUTPUT VOLTAGE (V)	INDUCTANCE (μ H)	THROUGH HOLE							
		SANYO OS-CON SA SERIES		SANYO MV-GX SERIES		NICHICON PL SERIES		PANASONIC HFQ SERIES	
		NO.	C CODE	NO.	C CODE	NO.	C CODE	NO.	C CODE
1.21 to 2.5	33 ⁽³⁾	2	C3	5	C1	5	C3	3	C
	47 ⁽³⁾	2	C2	4	C1	3	C3	2	C5
2.5 to 3.75	33 ⁽³⁾	1	C3	3	C1	3	C1	2	C5
	47 ⁽³⁾	1	C2	2	C1	2	C3	1	C5
3.75 to 5	22	1	C3	3	C1	3	C1	2	C5
	33	1	C2	2	C1	2	C1	1	C5
	47	1	C2	2	C1	1	C3	1	C5
5 to 6.25	22	1	C5	2	C6	2	C3	2	C5
	33	1	C4	1	C6	2	C1	1	C5
	47	1	C4	1	C6	1	C3	1	C5
	68	1	C4	1	C6	1	C1	1	C5

(1) No. represents the number of identical capacitor types to be connected in parallel.

(2) C Code indicates the Capacitor Reference number in [Table 1](#) and [Table 2](#) for identifying the specific component from the manufacturer.

(3) Set to a higher value for a practical design solution.

Table 10. Output Capacitors for Adjustable Output Voltage Applications—Through Hole⁽¹⁾⁽²⁾ (continued)

OUTPUT VOLTAGE (V)	INDUCTANC E (μH)	THROUGH HOLE							
		SANYO OS-CON SA SERIES		SANYO MV-GX SERIES		NICHICON PL SERIES		PANASONIC HFQ SERIES	
		NO.	C CODE	NO.	C CODE	NO.	C CODE	NO.	C CODE
6.25 to 7.5	22	1	C5	1	C6	2	C1	1	C5
	33	1	C4	1	C6	1	C3	1	C5
	47	1	C4	1	C6	1	C1	1	C5
	68	1	C4	1	C2	1	C1	1	C5
7.5 to 10	33	1	C7	1	C6	1	C14	1	C5
	47	1	C7	1	C6	1	C14	1	C5
	68	1	C7	1	C2	1	C14	1	C2
	100	1	C7	1	C2	1	C14	1	C2
10 to 12.5	33	1	C7	1	C6	1	C14	1	C5
	47	1	C7	1	C2	1	C14	1	C5
	68	1	C7	1	C2	1	C9	1	C2
	100	1	C7	1	C2	1	C9	1	C2
12.5 to 15	33	1	C9	1	C10	1	C15	1	C2
	47	1	C9	1	C10	1	C15	1	C2
	68	1	C9	1	C10	1	C15	1	C2
	100	1	C9	1	C10	1	C15	1	C2
15 to 20	33	1	C10	1	C7	1	C15	1	C2
	47	1	C10	1	C7	1	C15	1	C2
	68	1	C10	1	C7	1	C15	1	C2
	100	1	C10	1	C7	1	C15	1	C2
20 to 30	33	No Values Available	1	C7	1	C16	1	C2	
	47		1	C7	1	C16	1	C2	
	68		1	C7	1	C16	1	C2	
	100		1	C7	1	C16	1	C2	
30 to 37	10	No Values Available	1	C12	1	C20	1	C10	
	15		1	C11	1	C20	1	C11	
	22		1	C11	1	C20	1	C10	
	33		1	C11	1	C20	1	C10	
	47		1	C11	1	C20	1	C10	
	68		1	C11	1	C20	1	C10	

9 Power Supply Recommendations

The LM2673 is designed to operate from an input voltage supply up to 40 V. This input supply must be well regulated and able to withstand maximum input current and maintain a stable voltage.

10 Layout

10.1 Layout Guidelines

Board layout is critical for the proper operation of switching power supplies. First, the ground plane area must be sufficient for thermal dissipation purposes. Second, appropriate guidelines must be followed to reduce the effects of switching noise. Switch mode converters are very fast switching devices. In such cases, the rapid increase of input current combined with the parasitic trace inductance generates unwanted $L \frac{di}{dt}$ noise spikes. The magnitude of this noise tends to increase as the output current increases. This noise may turn into electromagnetic interference (EMI) and can also cause problems in device performance. Therefore, take care in layout to minimize the effect of this switching noise. The most important layout rule is to keep the AC current loops as small as possible. [Figure 20](#) shows the current flow in a buck converter. The top schematic shows a dotted line which represents the current flow during the top switch ON-state. The middle schematic shows the current flow during the top switch OFF-state. The bottom schematic shows the currents referred to as AC currents. These ac currents are the most critical because they are changing in a very short time period. The dotted lines of the bottom schematic are the traces to keep as short and wide as possible. This also yields a small loop area reducing the loop inductance. To avoid functional problems due to layout, review the PCB layout example. Best results are achieved if the placement of the LM2679 device, the bypass capacitor, the Schottky diode, RFBB, RFBT, and the inductor are placed as shown in the example. Note that, in the layout shown, R1 = RFBB and R2 = RFBT. TI also recommends using 2-oz. copper boards or heavier to help thermal dissipation and to reduce the parasitic inductances of board traces. See application note [AN-1229 SIMPLE SWITCHER® PCB Layout Guidelines](#) for more information.

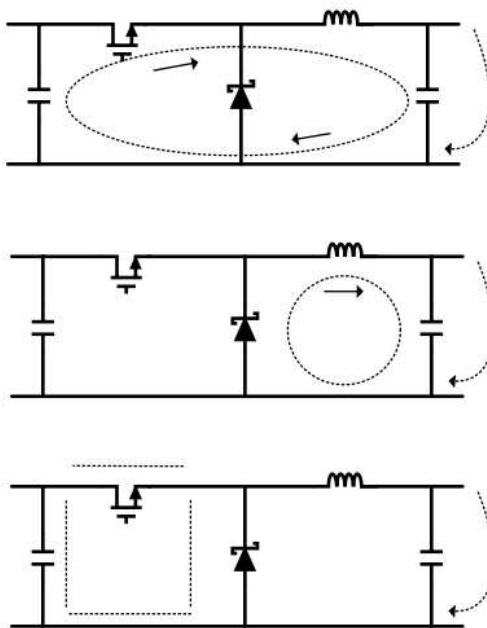


Figure 20. Typical Current Flow in a Buck Converter

10.2 Layout Example

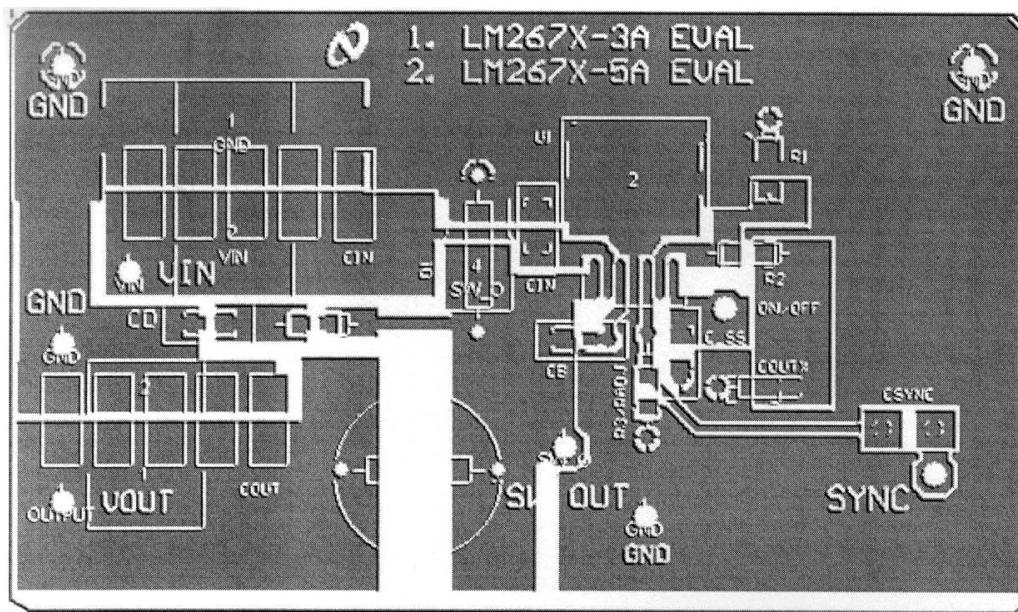


Figure 21. Top Layer Foil Pattern of Printed-Circuit Board

11 デバイスおよびドキュメントのサポート

11.1 関連資料

関連資料については、以下を参照してください。

- 『AN-1187 リードレス・リードフレーム・パッケージ(LLP)』(SNOA401)
- 『AN-1229 SIMPLE SWITCHER® PCBレイアウト・ガイドライン』(SNVA054)

11.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.3 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community*. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 商標

E2E is a trademark of Texas Instruments.

SIMPLE SWITCHER is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 静電気放電に関する注意事項

 これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対する静電破壊を防止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

11.6 Glossary

[SLYZ022](#) — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。これらの情報は、指定のデバイスに対して提供されている最新のデータです。このデータは予告なく変更されることがあります。ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

12.1 DAP (VSONパッケージ)

プリント基板のグランド・プレーンまたはアイランドには、ダイ取り付けパッド(DAP)を接続でき、接続する必要があります。

CADおよび組み立てのガイドラインについては、[アプリケーション・ノートAN1187](#)

(www.ti.com/lscds/ti/analog/powermanagement/power_portal.page)を参照してください。

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
LM2673S-12/NOPB	Active	Production	DDPAK/TO-263 (KTW) 7	45 TUBE	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-12
LM2673S-12/NOPB.B	Active	Production	DDPAK/TO-263 (KTW) 7	45 TUBE	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-12
LM2673S-3.3/NOPB	Active	Production	DDPAK/TO-263 (KTW) 7	45 TUBE	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-3.3
LM2673S-3.3/NOPB.B	Active	Production	DDPAK/TO-263 (KTW) 7	45 TUBE	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-3.3
LM2673S-5.0/NOPB	Active	Production	DDPAK/TO-263 (KTW) 7	45 TUBE	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-5.0
LM2673S-5.0/NOPB.B	Active	Production	DDPAK/TO-263 (KTW) 7	45 TUBE	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-5.0
LM2673S-ADJ/NOPB	Active	Production	DDPAK/TO-263 (KTW) 7	45 TUBE	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-ADJ
LM2673S-ADJ/NOPB.B	Active	Production	DDPAK/TO-263 (KTW) 7	45 TUBE	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-ADJ
LM2673SD-12/NOPB	Active	Production	VSON (NHM) 14	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002SB
LM2673SD-12/NOPB.B	Active	Production	VSON (NHM) 14	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002SB
LM2673SD-3.3/NOPB	Active	Production	VSON (NHM) 14	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002TB
LM2673SD-3.3/NOPB.B	Active	Production	VSON (NHM) 14	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002TB
LM2673SD-5.0/NOPB	Active	Production	VSON (NHM) 14	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002UB
LM2673SD-5.0/NOPB.B	Active	Production	VSON (NHM) 14	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002UB
LM2673SD-ADJ/NOPB	Active	Production	VSON (NHM) 14	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002VB
LM2673SD-ADJ/NOPB.B	Active	Production	VSON (NHM) 14	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002VB
LM2673SDX-3.3/NOPB	Active	Production	VSON (NHM) 14	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002TB
LM2673SDX-3.3/NOPB.B	Active	Production	VSON (NHM) 14	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002TB
LM2673SDX-5.0/NOPB	Active	Production	VSON (NHM) 14	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002UB
LM2673SDX-5.0/NOPB.B	Active	Production	VSON (NHM) 14	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002UB
LM2673SDX-ADJ/NOPB	Active	Production	VSON (NHM) 14	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002VB
LM2673SDX-ADJ/NOPB.B	Active	Production	VSON (NHM) 14	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	S0002VB

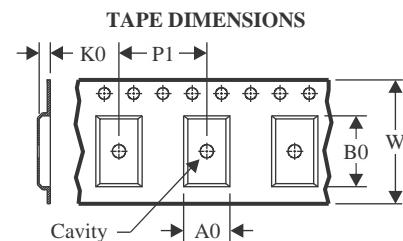
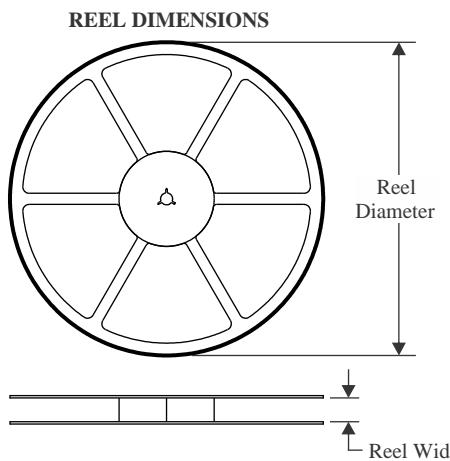
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
LM2673SX-12/NOPB	Active	Production	DDPAK/TO-263 (KTW) 7	500 LARGE T&R	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-12
LM2673SX-12/NOPB.B	Active	Production	DDPAK/TO-263 (KTW) 7	500 LARGE T&R	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-12
LM2673SX-3.3/NOPB	Active	Production	DDPAK/TO-263 (KTW) 7	500 LARGE T&R	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-3.3
LM2673SX-3.3/NOPB.B	Active	Production	DDPAK/TO-263 (KTW) 7	500 LARGE T&R	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-3.3
LM2673SX-5.0/NOPB	Active	Production	DDPAK/TO-263 (KTW) 7	500 LARGE T&R	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-5.0
LM2673SX-5.0/NOPB.B	Active	Production	DDPAK/TO-263 (KTW) 7	500 LARGE T&R	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-5.0
LM2673SX-ADJ/NOPB	Active	Production	DDPAK/TO-263 (KTW) 7	500 LARGE T&R	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-ADJ
LM2673SX-ADJ/NOPB.B	Active	Production	DDPAK/TO-263 (KTW) 7	500 LARGE T&R	ROHS Exempt	SN	Level-3-245C-168 HR	-40 to 125	LM2673 S-ADJ
LM2673T-12/NOPB	Active	Production	TO-220 (NDZ) 7	45 TUBE	Yes	SN	Level-1-NA-UNLIM	-40 to 125	LM2673 T-12
LM2673T-12/NOPB.B	Active	Production	TO-220 (NDZ) 7	45 TUBE	Yes	SN	Level-1-NA-UNLIM	-40 to 125	LM2673 T-12
LM2673T-5.0/NOPB	Active	Production	TO-220 (NDZ) 7	45 TUBE	Yes	SN	Level-1-NA-UNLIM	-40 to 125	LM2673 T-5.0
LM2673T-5.0/NOPB.B	Active	Production	TO-220 (NDZ) 7	45 TUBE	Yes	SN	Level-1-NA-UNLIM	-40 to 125	LM2673 T-5.0
LM2673T-ADJ/NOPB	Active	Production	TO-220 (NDZ) 7	45 TUBE	Yes	SN	Level-1-NA-UNLIM	-40 to 125	LM2673 T-ADJ
LM2673T-ADJ/NOPB.B	Active	Production	TO-220 (NDZ) 7	45 TUBE	Yes	SN	Level-1-NA-UNLIM	-40 to 125	LM2673 T-ADJ

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

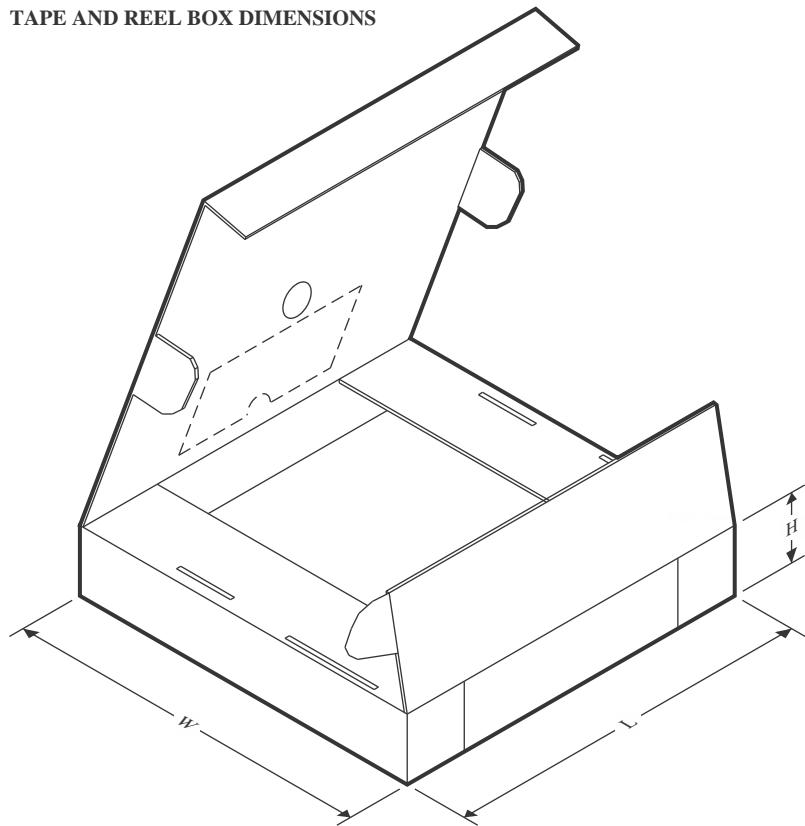


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

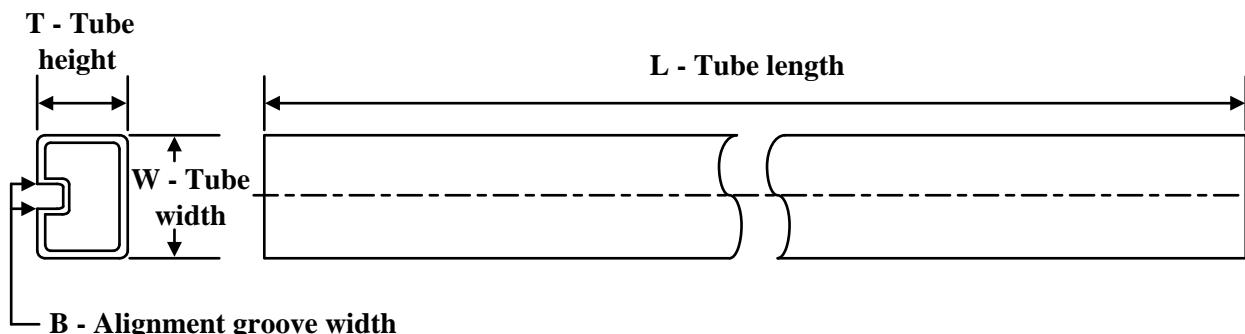
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



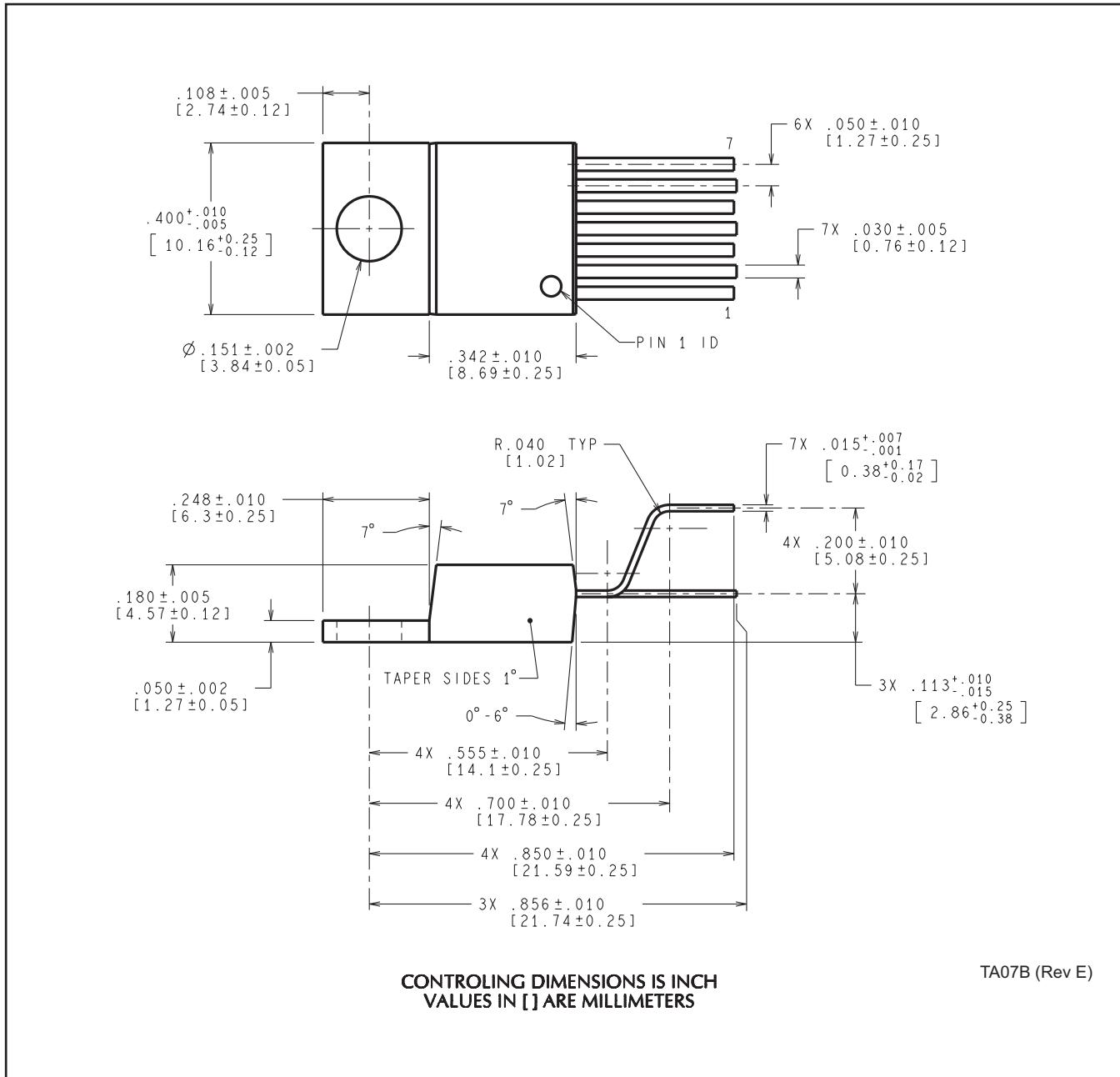
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2673SD-12/NOPB	VSON	NHM	14	250	178.0	16.4	5.3	6.3	1.5	12.0	16.0	Q1
LM2673SD-3.3/NOPB	VSON	NHM	14	250	178.0	16.4	5.3	6.3	1.5	12.0	16.0	Q1
LM2673SD-5.0/NOPB	VSON	NHM	14	250	178.0	16.4	5.3	6.3	1.5	12.0	16.0	Q1
LM2673SD-ADJ/NOPB	VSON	NHM	14	250	178.0	16.4	5.3	6.3	1.5	12.0	16.0	Q1
LM2673SDX-3.3/NOPB	VSON	NHM	14	2500	330.0	16.4	5.3	6.3	1.5	12.0	16.0	Q1
LM2673SDX-5.0/NOPB	VSON	NHM	14	2500	330.0	16.4	5.3	6.3	1.5	12.0	16.0	Q1
LM2673SDX-ADJ/NOPB	VSON	NHM	14	2500	330.0	16.4	5.3	6.3	1.5	12.0	16.0	Q1
LM2673SX-12/NOPB	DDPAK/TO-263	KTW	7	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2673SX-3.3/NOPB	DDPAK/TO-263	KTW	7	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2673SX-5.0/NOPB	DDPAK/TO-263	KTW	7	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2673SX-ADJ/NOPB	DDPAK/TO-263	KTW	7	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2673SD-12/NOPB	VSON	NHM	14	250	210.0	185.0	35.0
LM2673SD-3.3/NOPB	VSON	NHM	14	250	210.0	185.0	35.0
LM2673SD-5.0/NOPB	VSON	NHM	14	250	210.0	185.0	35.0
LM2673SD-ADJ/NOPB	VSON	NHM	14	250	210.0	185.0	35.0
LM2673SDX-3.3/NOPB	VSON	NHM	14	2500	367.0	367.0	35.0
LM2673SDX-5.0/NOPB	VSON	NHM	14	2500	367.0	367.0	35.0
LM2673SDX-ADJ/NOPB	VSON	NHM	14	2500	367.0	367.0	35.0
LM2673SX-12/NOPB	DDPAK/TO-263	KTW	7	500	356.0	356.0	45.0
LM2673SX-3.3/NOPB	DDPAK/TO-263	KTW	7	500	356.0	356.0	45.0
LM2673SX-5.0/NOPB	DDPAK/TO-263	KTW	7	500	356.0	356.0	45.0
LM2673SX-ADJ/NOPB	DDPAK/TO-263	KTW	7	500	356.0	356.0	45.0

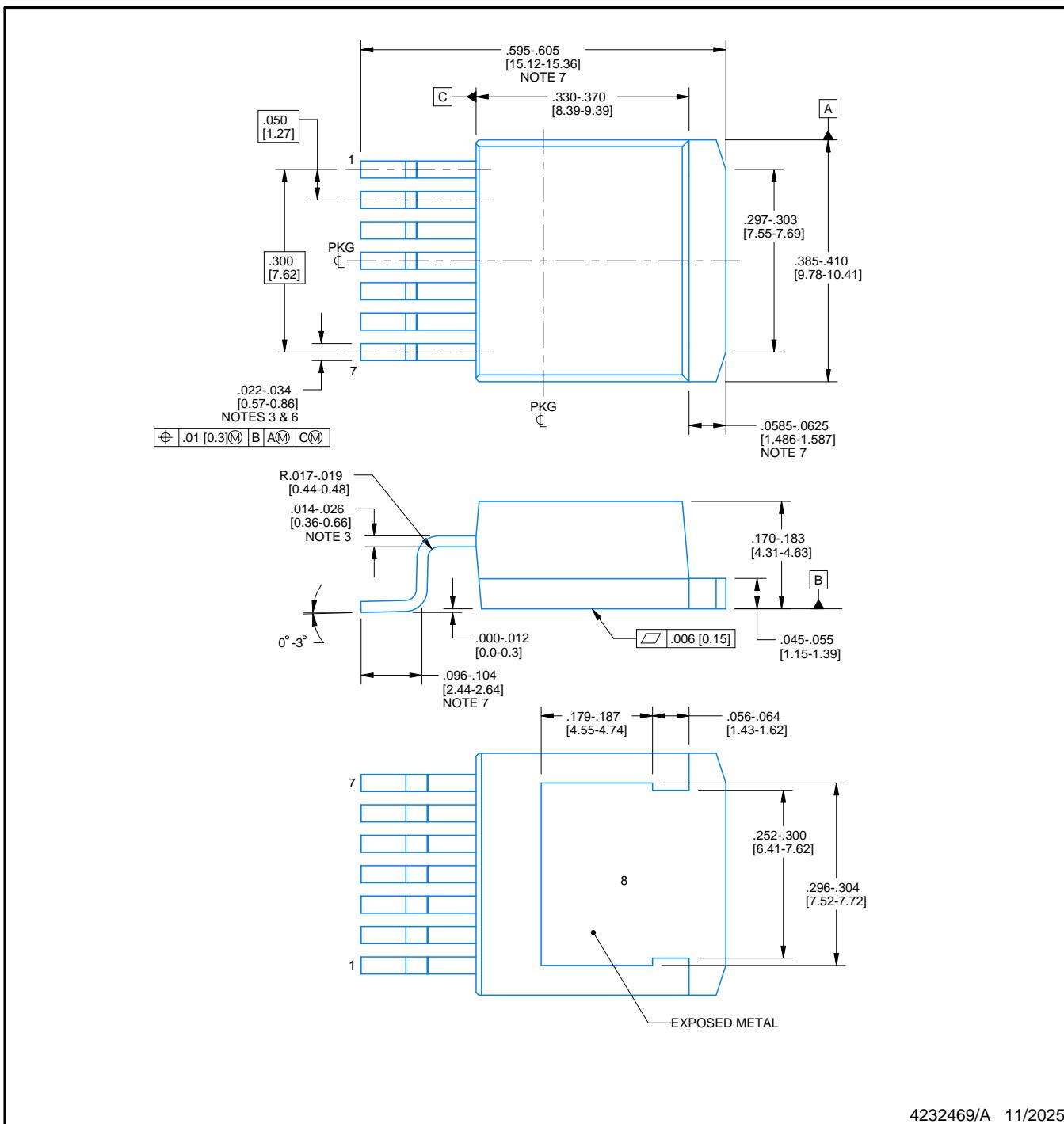

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
LM2673S-12/NOPB	KTW	TO-263	7	45	502	25	8204.2	9.19
LM2673S-12/NOPB.B	KTW	TO-263	7	45	502	25	8204.2	9.19
LM2673S-3.3/NOPB	KTW	TO-263	7	45	502	25	8204.2	9.19
LM2673S-3.3/NOPB.B	KTW	TO-263	7	45	502	25	8204.2	9.19
LM2673S-5.0/NOPB	KTW	TO-263	7	45	502	25	8204.2	9.19
LM2673S-5.0/NOPB.B	KTW	TO-263	7	45	502	25	8204.2	9.19
LM2673S-ADJ/NOPB	KTW	TO-263	7	45	502	25	8204.2	9.19
LM2673S-ADJ/NOPB.B	KTW	TO-263	7	45	502	25	8204.2	9.19
LM2673T-12/NOPB	NDZ	TO-220	7	45	502	30	30048.2	10.74
LM2673T-12/NOPB.B	NDZ	TO-220	7	45	502	30	30048.2	10.74
LM2673T-5.0/NOPB	NDZ	TO-220	7	45	502	30	30048.2	10.74
LM2673T-5.0/NOPB.B	NDZ	TO-220	7	45	502	30	30048.2	10.74
LM2673T-ADJ/NOPB	NDZ	TO-220	7	45	502	30	30048.2	10.74
LM2673T-ADJ/NOPB.B	NDZ	TO-220	7	45	502	30	30048.2	10.74

MECHANICAL DATA

NDZ0007B


PACKAGE OUTLINE

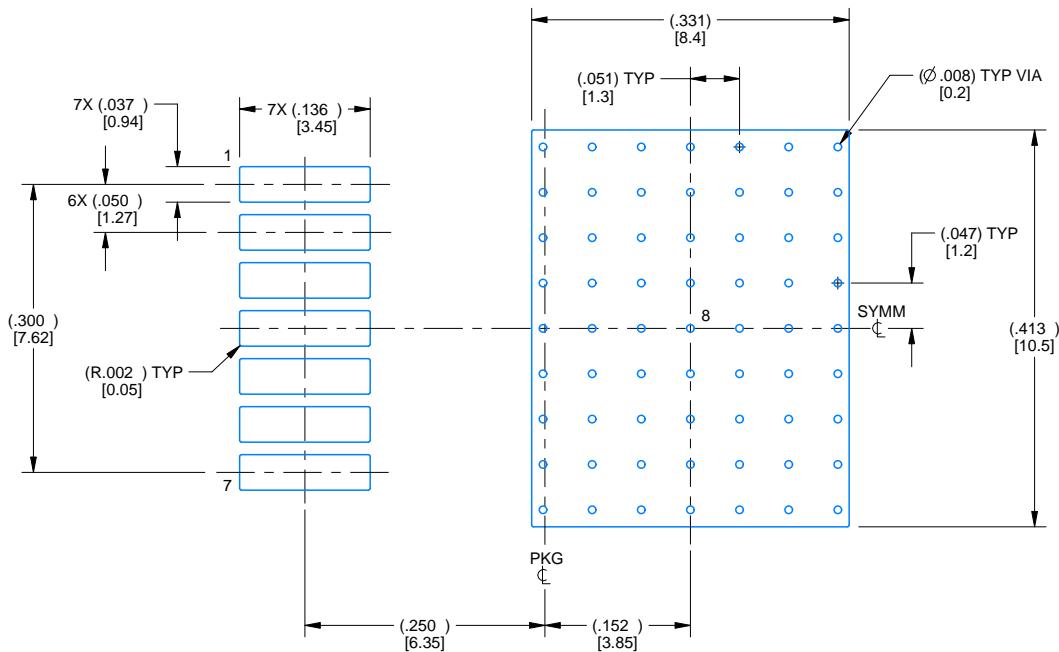
KTW0007A

TO-263 - 5 mm max height

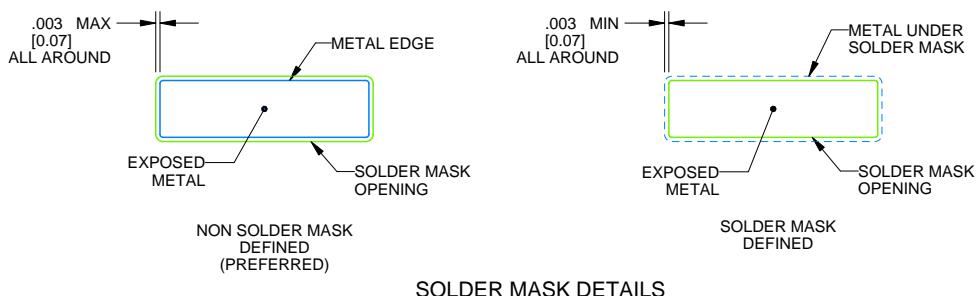
TRANSISTOR OUTLINE

4232469/A 11/2025

NOTES:


1. All linear dimensions are in inches [millimeters]. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Lead width and height dimensions apply to the plated lead.
4. Leads are not allowed above the Datum B.
5. Stand-off height is measured from lead tip with reference to Datum B.
6. Lead width dimension does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum bdimension by more than 0.003".
7. Falls within JEDEC MO-169 with the exception of the dimensions indicated.

EXAMPLE BOARD LAYOUT


KTW0007A

TO-263 - 5 mm max height

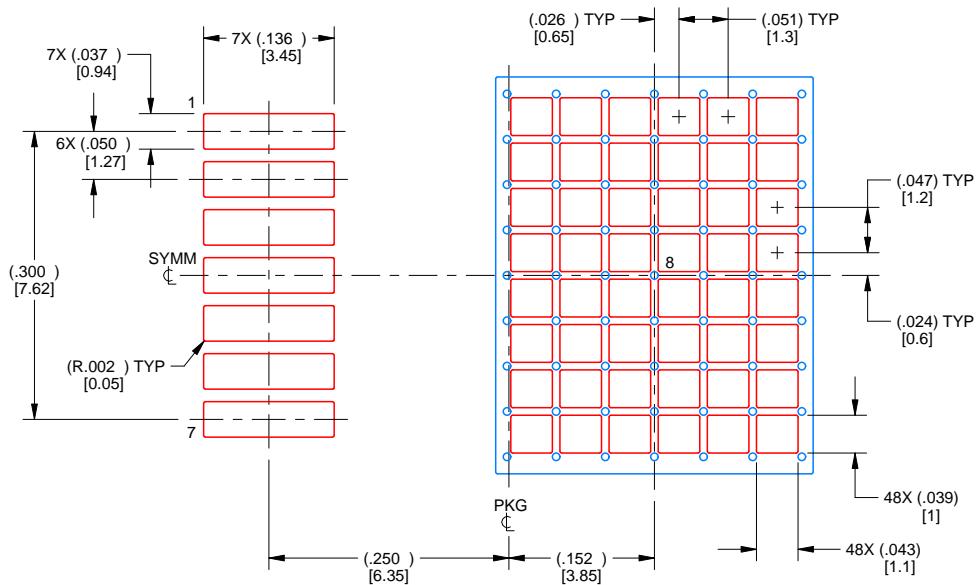
TRANSISTOR OUTLINE

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 5X

SOLDER MASK DETAILS

4232469/A 11/2025

NOTES: (continued)


8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002(www.ti.com/lit/slm002) and SLMA004 (www.ti.com/lit/slma004).
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

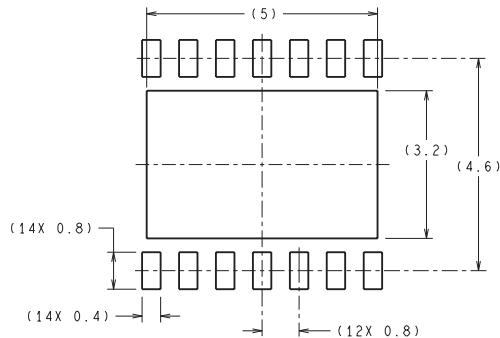
KTW0007A

TO-263 - 5 mm max height

TRANSISTOR OUTLINE

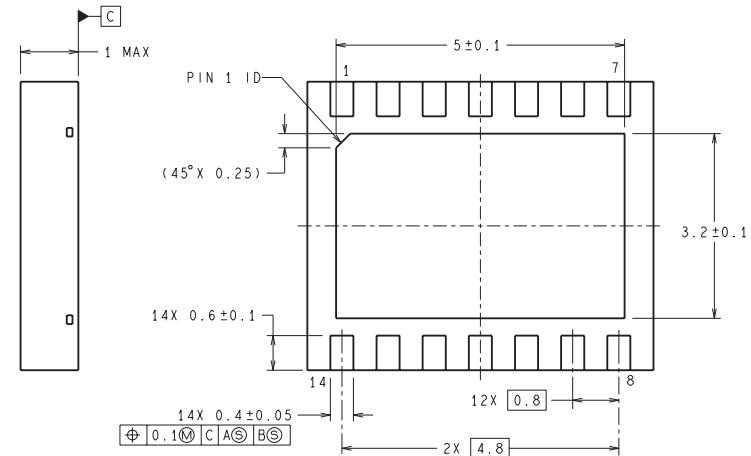
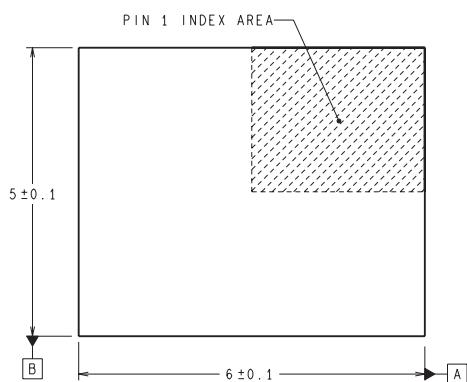
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE: 5X

PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE
PAD 8: 60%


4232469/A 11/2025

NOTES: (continued)

10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
11. Board assembly site may have different recommendations for stencil design.



MECHANICAL DATA

NHM0014A

DIMENSIONS ARE IN MILLIMETERS
DIMENSIONS IN () FOR REFERENCE ONLY

RECOMMENDED LAND PATTERN

SRC14A (Rev A)

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2026, Texas Instruments Incorporated

最終更新日：2025 年 10 月