OPA830

OPA830 低消費電力、単電源、広帯域オペアンプ

1 特長

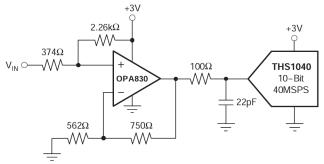
- 広い帯域幅:
 - 250MHz (ゲイン = +1)
 - 110MHz (ゲイン = +2)
- 低い消費電流: 3.9mA (V_S = 5V)
- フレキシブルな電源電圧範囲:
 - デュアル電源:±1.4V~±5.5V
 - シングル電源:2.8V~11V
- シングル電源の場合、入力範囲はグランドにも対応
- 出力スイング:5V 電源で 4.88V
- 高いスルーレート:550V/µs
- 小さい入力電圧ノイズ:9.2nV/√Hz
- パッケージ:鉛フリー SOT23

2 アプリケーション

- 単一電源 A/D コンバータ (ADC) の入力バッファ
- 単一電源 ビデオ ラインドライバ
- CCD イメージング チャネル
- 低消費電力超音波
- PLL 積分器
- 携帯型消費者向け電子機器

3 概要

OPA830 は、低消費電力、単一電源、広帯域、電圧帰還 型アンプであり、3V または 5V の単一電源で動作するよう 設計されています。このデバイスは、±5V または +10V 電 源での動作もサポートしています。入力範囲は、負の電源 よりも下から始まり、正の電源の 1.7V 内側までとなってい ます。相補的共通エミッタ出力を使用することにより、 150Ω を駆動して、どちらの電源からも 25mV 以内の出力 スイングが得られます。また、大きい出力駆動電流 (±80mA) と、小さい差動ゲインおよび位相誤差により、こ のデバイスは単一電源の消費者向けビデオ製品に最適 です。


大きいゲイン帯域幅積 (110MHz) とスルーレート (550V/ μs) により低歪み動作を実現しているため、OPA830 は 3V および 5V CMOS ADC への優れた入力バッファ段と なります。他の低消費電力、単電源のアンプとは異なり、 信号振幅が小さくなるにつれて歪み性能は向上します。 入力電圧ノイズが 9.2nV/√Hz と低いため、広いダイナミッ クレンジでの動作に対応できます。

OPA830 は、業界標準の SO-8 パッケージおよび超小型 の SOT23-5 パッケージで供給されます。 固定ゲイン ライ ン ドライバ アプリケーションについては、OPA832 をご検 討ください。

パッケージ情報

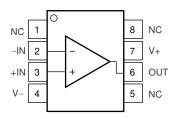
部品番号 (1)	(1) パッケージ ⁽²⁾ パッケーシ	
OPA830	D (SOIC, 8)	4.9mm × 6mm
	DBV (SOT-23, 5)	2.9mm × 2.8mm

- (1) セクション 4 を参照してください。
- (2) 詳細については、セクション 11 を参照してください。
- パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。

DC 結合、3V ADC ドライバ

Table of Contents

1	特長1
2	アプリケーション1
3	概要1
4	Device Comparison Table3
5	Pin Configurations3
6	Specifications4
	6.1 Absolute Maximum Ratings4
	6.2 ESD Ratings
	6.3 Recommended Operating Conditions4
	6.4 Thermal Information4
	6.5 Electrical Characteristics for D Package $V_S = \pm 5V5$
	6.6 Electrical Characteristics for D Package V _S = 5V8
	6.7 Electrical Characteristics for D Package V _S = 3V 11
	6.8 Electrical Characteristics for DBV Package V _S =
	±5V13
	6.9 Electrical Characteristics for DBV Package V _S =
	5V15
	6.10 Electrical Characteristics for DBV Package V _S = 3V
	6.11 Typical Characteristics: $V_S = \pm 5V$
	6.12 Typical Characteristics: $V_S = \pm 5V$, Differential
	Configuration22


6.13 Typical Characteristics: V _S = 5V	23
6.14 Typical Characteristics: V _S = 5V, Differential	
Configuration	27
6.15 Typical Characteristics: V _S = 3V	
6.16 Typical Characteristics: V _S = 3V, Differential	
Configuration	31
7 Parameter Measurement Information	
8 Application and Implementation	
8.1 Application Information	
8.2 Typical Applications	
8.3 Layout	
9 Device and Documentation Support	
9.1 Device Support	
9.2ドキュメントの更新通知を受け取る方法	
9.3 サポート・リソース	
9.4 Trademarks	
9.5 静電気放電に関する注意事項	
9.6 用語集	
10 Revision History	
11 Mechanical, Packaging, and Orderable	
Information	17
O auo	····· 4 /

4 Device Comparison Table

DESCRIPTION	SINGLES	DUALS	TRIPLES	QUADS
Rail-to-rail	_	OPA2830	_	OPA4830
Rail-to-rail fixed gain	OPA832	OPA2832	OPA3832	_
General-purpose (1800V/µs slew rate)	OPA690	OPA2690	OPA3690	_
Low-noise, high dc precision	OPA820	OPA2822	_	OPA4820

5 Pin Configurations

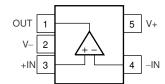


図 5-2. DBV Package, 5-Pin SOT-23 (Top View)

図 5-1. D Package, 8-Pin SO-8 (Top View)

表 5-1. Pin Functions

	PIN				
	N	0.	TYPE	DESCRIPTION	
NAME	D (SO-8)	DBV (SOT-23)			
-IN	2	4	Input	Inverting input	
+IN	3	3	Input	Noninverting input	
NC	1, 5, 8	_	_	No internal connection (float this pin)	
OUT	6	1	Output	Output	
V-	4	2	_	Negative (lowest) supply	
V+	7	5	_	Positive (highest) supply	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN MAX	UNIT
Dower aupply	For DBV package	±6.5	\/
Power supply	For D package	12	V _{DC}
Internal power dissipation		See Thermal Information	
Differential input voltage		±2.5	V
Input voltage		$V_{S-} - 0.5V$ to $V_{S+} + 0.3V$	V
Junction temperature, T _J		150	°C
Storage temperature, T _{stg}		-65 125	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

				VALUE	UNIT
Ι,	V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
	V _(ESD)	Lieonosiano discriarge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	'

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- 2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Vs	Total supply voltage	3	10	11	V
T _A	Operating temperature	-40		85	°C

6.4 Thermal Information

		OPA	A830	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DBV (SOT-23)	UNIT
		8 PINS	5 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	125	186.3	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	N/A	84.0	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	N/A	53.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	N/A	21.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	N/A	52.7	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

6.5 Electrical Characteristics for D Package $V_S = \pm 5V$

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , R_L = 150 Ω to ground, and R_{SRC} = 375 Ω (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
AC PERFORMANCE					
Small-signal bandwidth	$G = +1, V_O \le 0.2V_{PP}$		310		
	$G = +2, V_O \le 0.2V_{PP}$	70	120		
	G = +2, $V_O \le 0.2 V_{PP}$, $T_A = 0^{\circ} C$ to $70^{\circ} C$	68			
	$G = +2, V_O \le 0.2V_{PP}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	65			
Small-signal bandwidth ⁽²⁾	$G = +5, V_O \le 0.2V_{PP}$	18	25		N 41 1-
	G = +5, $V_O \le 0.2 V_{PP}$, $T_A = 0^{\circ}C$ to $70^{\circ}C$	16			MHz
	G = +5, $V_O \le 0.2 V_{PP}$, $T_A = -40^{\circ} C$ to +85°C	15	,		
	$G = +10, V_O \le 0.2V_{PP}$	8	11		
	G = +10, $V_O \le 0.2 V_{PP}$, $T_A = 0^{\circ} C$ to $70^{\circ} C$	7			
	G = +10, $V_0 \le 0.2 V_{PP}$, $T_A = -40^{\circ} C$ to +85°C	6			
Gain bandwidth product ⁽²⁾	G ≥ +10	85	110		MHz
	G ≥ +10, T _A = 0°C to 70°C	82	,		
	$G \ge +10$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$	80			
Peaking at a gain of +1	V _O ≤ 0.2V _{PP}		6		dB
	G = +2, 2V step	280	600		
Slew rate ⁽²⁾	G = +2, 2V step, T _A = 0°C to 70°C	270			V/µs
	G = +2, 2V step, T _A = -40°C to +85°C	260	,		
	0.5V step		3.3	5.8	
Rise time ⁽²⁾	0.5V step, T _A = 0°C to 70°C			5.85	ns
	0.5V step, T _A = -40°C to +85°C			5.9	
	0.5V step		3.5	5.9	
Fall time ⁽²⁾	0.5V step, T _A = 0°C to 70°C		,	5.95	ns
	0.5V step, T _A = -40°C to +85°C			6.0	
	G = +2, 1V step, to 0.1%		42	63	
Settling time ⁽²⁾	G = +2, 1V step, to 0.1%, T _A = 0°C to 70°C			65	ns
	G = +2, 1V step, to 0.1%, T _A = -40°C to +85°C			66	

6.5 Electrical Characteristics for D Package V_S = $\pm 5V$ (続き)

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , R_L = 150 Ω to ground, and R_{SRC} = 375 Ω (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
	2nd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-67	-59	
	2nd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, R_L = 150Ω , T_A = $0^{\circ}C$ to $70^{\circ}C$			<i>–</i> 57	
	2nd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, R_L = 150Ω , T_A = $-40^{\circ}C$ to $+85^{\circ}C$			-56	
	2nd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$		-71	-62	
	2nd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, $R_L \ge 500\Omega$, T_A = $0^{\circ}C$ to $70^{\circ}C$			-61	
Harmonic distortion ⁽²⁾	2nd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, $R_L \ge 500\Omega$, T_A = $-40^{\circ}C$ to $+85^{\circ}C$			-60	dBc
Harmonic distortion -/	3rd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-60	-50	UDC
	3rd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, R_L = 150Ω , T_A = $0^{\circ}C$ to $70^{\circ}C$			-49	
	3rd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, R_L = 150Ω , T_A = $-40^{\circ}C$ to $+85^{\circ}C$			-48	
	3rd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$		–77	-65	
	3rd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$, $T_A = 0^{\circ}C$ to $70^{\circ}C$			-62	
	3rd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$			-59	
Input voltage noise ⁽²⁾	f > 1MHz		9.5	10.5	nV/√Hz
	f > 1MHz, T _A = 0°C to 70°C			11.0	
	$f > 1MHz, T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			11.5	
	f > 1MHz		3.7	4.7	pA/√Hz
Input current noise(2)	f > 1MHz, T _A = 0°C to 70°C			5.2	
	$f > 1MHz, T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			5.7	
NTSC differential gain			0.07		%
NTSC differential phase			0.17		0
DC PERFORMANCE					
	V _O = ±1V	66	74		
Open-loop voltage gain	$V_{O} = \pm 1V$, $T_{A} = 0^{\circ}C$ to $70^{\circ}C$	65	-		dB
	$V_{O} = \pm 1V$, $T_{A} = -40^{\circ}C$ to $+85^{\circ}C$	64			
			±1.5	±7	
Input offset voltage	T _A = 0°C to 70°C			±8.1	mV
	$T_A = -40$ °C to +85°C			±8.6	
Average offset voltage drift ⁽²⁾	$T_A = -40$ °C to +85°C		-	±25	μV/°C
	V _{CM} = 0V		+5	+10	
Input bias current	$V_{CM} = 0V$, $T_A = 0$ °C to 70 °C			+12	μΑ
	$V_{CM} = 0V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$			+13	
Input bias current drift ⁽²⁾	$V_{CM} = 0V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$			±12	nA/°C
	V _{CM} = 0V		±0.1	±1	
Input offset current	V _{CM} = 0V, T _A = 0°C to 70°C			±1.2	μΑ
	$V_{CM} = 0V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$			±1.4	
Input offset current drift(2)	$V_{CM} = 0V$, $T_A = -40$ °C to +85°C			±5	nA/°C

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SBOS263

6

6.5 Electrical Characteristics for D Package V_S = ±5V (続き)

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , R_L = 150 Ω to ground, and R_{SRC} = 375 Ω (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
INPUT					
			-5.5	-5.4	
Negative input voltage ⁽³⁾	T _A = 0°C to 70°C			-5.3	V
	T _A = -40°C to +85°C			-5.2	
		3.1	3.2		
Positive input voltage ⁽³⁾	T _A = 0°C to 70°C	3.0			V
	T _A = -40°C to +85°C	2.9			
	Input-referred	76	80		
Common-mode rejection ratio, CMRR	Input-referred, T _A = 0°C to 70°C	74			dB
	Input-referred, T _A = -40°C to +85°C	72			
In most income adams a	Differential		10 2.1		kΩ pF
Input impedance	Common-mode		400 1.2		
ОИТРИТ				'	
	R_L = 1k Ω to ground	±4.86	±4.88		- V
	R_L = 1k Ω to ground, T_A = 0°C to 70°C	±4.85			
	$R_L = 1k\Omega$ to ground, $T_A = -40^{\circ}$ C to +85°C	±4.84			
Output voltage swing	$R_L = 150\Omega$ to ground	±4.60	±4.64		
	R_L = 150 Ω to ground, T_A = 0°C to 70°C	±4.58			
	R_L = 150 Ω to ground, T_A = -40°C to +85°C	±4.56			
	Output shorted to ground	±65	±85		
Current output, sinking and sourcing	Output shorted to ground, T _A = 0°C to 70°C	±60			mA
	Output shorted to ground, T _A = -40°C to +85°C	±55	,		
Short-circuit current	Output shorted to ground		150		mA
Closed-loop output impedance	G = +2, f ≤ 100kHz		0.06		Ω
POWER SUPPLY				'	
		4	4.25	4.7	
Quiescent current	T _A = 0°C to 70°C	3.6		5.3	mA
	T _A = -40°C to +85°C	3.3	,	5.9	
	Input-referred	61	66		
Power-supply rejection ratio, +PSRR	Input-referred, T _A = 0°C to 70°C	60			dB
	Input-referred, T _A = -40°C to +85°C	59			

⁽¹⁾ Junction temperature = ambient for 25°C specifications.

⁽²⁾ Limits set by characterization and simulation.

⁽³⁾ Tested < 3dB below minimum specified CMRR at ± CMIR limits.

6.6 Electrical Characteristics for D Package $V_S = 5V$

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , and R_L = 150 Ω to ground (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
AC PERFORMANCE					
Small-signal bandwidth	$G = +1, V_O \le 0.2V_{PP}$		250		
	$G = +2, V_O \le 0.2V_{PP}$	72	110		
	G = +2, $V_0 \le 0.2V_{PP}$, $T_A = 0^{\circ}C$ to $70^{\circ}C$	70			
	G = +2, $V_0 \le 0.2V_{PP}$, $T_A = -40^{\circ}C$ to +85°C	68			
	$G = +5, V_O \le 0.2V_{PP}$	17	24		MHz
Small-signal bandwidth ⁽²⁾	G = +5, $V_O \le 0.2V_{PP}$, $T_A = 0^{\circ}C$ to $70^{\circ}C$	16			IVITZ
	G = +5, $V_O \le 0.2V_{PP}$, $T_A = -40^{\circ}C$ to +85°C	15			
	$G = +10, V_O \le 0.2V_{PP}$	8	11		
	G = +10, $V_O \le 0.2V_{PP}$, $T_A = 0^{\circ}C$ to $70^{\circ}C$	7			
	G = +10, $V_O \le 0.2V_{PP}$, $T_A = -40^{\circ}C$ to +85°C	6			
	G ≥ +10	84	110		
Gain bandwidth product ⁽²⁾	G ≥ +10, T _A = 0°C to 70°C	80			MHz
	$G \ge +10$, $T_A = -40$ °C to $+85$ °C	79			
Peaking at a gain of +1	V _O ≤ 0.2V _{PP}		5		dB
	G = +2, 2V step	280	550		
Slew rate ⁽²⁾	G = +2, 2V step, T _A = 0°C to 70°C	270			V/µs
	G = +2, 2V step, T _A = -40°C to +85°C	260			
	0.5V step		3.3	5.7	
Rise time ⁽²⁾	0.5V step, T _A = 0°C to 70°C			5.8	ns
	0.5V step, T _A = -40°C to +85°C			5.9	
	0.5V step	,	3.3	5.7	
Fall time ⁽²⁾	0.5V step, T _A = 0°C to 70°C			5.8	ns
	0.5V step, $T_A = -40^{\circ}C$ to +85°C			5.9	
	G = +2, 1V step, to 0.1%		43	64	
Settling time ⁽²⁾	G = +2, 1V step, to 0.1%, T _A = 0°C to 70°C			66	ns
	G = +2, 1V step, to 0.1%, T _A = -40°C to +85°C			67	ı

6.6 Electrical Characteristics for D Package V_S = 5V (続き)

at $T_A = 25^{\circ}C^{(1)}$, G = +2, $R_F = 750\Omega$, and $R_L = 150\Omega$ to ground (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
	2nd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-62	-55	
	2nd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, R_L = 150Ω , T_A = $0^{\circ}C$ to $70^{\circ}C$			-54	
	2nd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, R_L = 150Ω , T_A = -40 °C to $+85$ °C			-53	
	2nd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$		-64	-58	
	2nd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$, $T_A = 0^{\circ}C$ to $70^{\circ}C$			-57	
Harmonic distortion ⁽²⁾	2nd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, $R_L \ge 500\Omega$, T_A = -40 °C to $+85$ °C			-56	dBc
Harmonic distortion—	3rd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-58	-50	UDC
	3rd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, R_L = 150Ω , T_A = $0^{\circ}C$ to $70^{\circ}C$			-49	
	3rd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, R_L = 150Ω , T_A = -40 °C to $+85$ °C			-48	
	3rd-harmonic, $V_O = 2V_{PP}$, f = 5MHz, R _L ≥ 500Ω		-84	-66	
	3rd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, $R_L \ge 500\Omega$, T_A = $0^{\circ}C$ to $70^{\circ}C$			-63	
	3rd-harmonic, V_O = $2V_{PP}$, f = $5MHz$, $R_L \ge 500\Omega$, T_A = -40 °C to $+85$ °C			-60	
	f > 1MHz		9.2	10.2	
Input voltage noise ⁽²⁾	f > 1MHz, T _A = 0°C to 70°C			10.7	nV/√Hz
	f > 1MHz, T _A = -40°C to +85°C			11.2	
	f > 1MHz		3.5	4.5	
Input current noise ⁽²⁾	$f > 1MHz, T_A = 0^{\circ}C \text{ to } +70^{\circ}C$			5.0	pA/√Hz
	f > 1MHz, T _A = -40°C to +85°C			5.5	
NTSC differential gain ⁽²⁾			0.08		%
NTSC differential phase ⁽²⁾			0.09		٥
DC PERFORMANCE					
	V _O = ±1V	66	72		
Open-loop voltage gain	$V_{O} = \pm 1V$, $T_{A} = 0^{\circ}C$ to $70^{\circ}C$	65			dB
	$V_O = \pm 1V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$	64			
			±0.5	±5.0	
Input offset voltage	T _A = 0°C to 70°C			±6.0	mV
	$T_A = -40$ °C to +85°C			±6.5	
Average offset voltage drift ⁽²⁾	T _A = -40°C to +85°C	,		±20	μV/°C
	V _{CM} = 2.5V	,	+5	+10	
Input bias current	V _{CM} = 2.5V, T _A = 0°C to 70°C			+12	μΑ
	$V_{CM} = 2.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			+13	
Input bias current drift ⁽²⁾	$V_{CM} = 2.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±12	nA/°C
	V _{CM} = 2.5V		±0.1	±0.8	
Input offset current	V _{CM} = 2.5V, T _A = 0°C to 70°C			±1.2	μΑ
	V _{CM} = 2.5V, T _A = -40°C to +85°C			±1.2	
Input offset current drift(2)	V _{CM} = 2.5V, T _A = -40°C to +85°C			±5	nA/°C

6.6 Electrical Characteristics for D Package $V_S = 5V$ (続き)

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , and R_L = 150 Ω to ground (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
INPUT				-	
			-0.5	-0.4	
Negative input voltage ⁽³⁾	T _A = 0°C to 70°C			-0.3	V
	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			-0.2	
		3.1	3.2		
Positive input voltage ⁽³⁾	T _A = 0°C to 70°C	3.0			V
	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.9			
	Input-referred	76	80		
Common-mode rejection ratio, CMRR	Input-referred, T _A = 0°C to 70°C	74			dB
-	Input-referred, T _A = -40°C to +85°C	72			
	Differential		10 2.1		1:O II = F
Input impedance	Common-mode		400 1.2		kΩ pF
ОИТРИТ			,	•	
	$G = +5$, $R_L = 1$ kΩ to 2.5V		0.09	0.11	
	G = +5, R_L = 1kΩ to 2.5V, T_A = 0°C to 70°C			0.12	
Outside the second second	G = +5, R_L = 1kΩ to 2.5V, T_A = -40°C to +85°C			0.13	.,
Output voltage swing low	$G = +5$, $R_L = 150\Omega$ to 2.5V		0.21	0.24	V
	G = +5, R_L = 150Ω to 2.5V, T_A = 0°C to 70°C		,	0.25	
	G = +5, R_L = 150 Ω to 2.5V, T_A = -40°C to +85°C			0.26	
	$G = +5$, $R_L = 1$ kΩ to 2.5V	4.89	4.91		
	G = +5, R_L = 1kΩ to 2.5V, T_A = 0°C to 70°C	4.87			
Output voltage eving high	G = +5, R_L = 1kΩ to 2.5V, T_A = -40°C to +85°C	4.87			V
Output voltage swing high	$G = +5$, $R_L = 150\Omega$ to 2.5V	4.75	4.78		V
	G = +5, R_L = 150Ω to 2.5V, T_A = 0°C to 70°C	4.73			
	G = +5, R_L = 150 Ω to 2.5V, T_A = -40°C to +85°C	4.72			
		±60	±80		
Current output, sinking and sourcing	T _A = 0°C to 70°C	±55			mA
	T _A = -40°C to +85°C	±52			
Short-circuit output current	Output shorted to either supply		140		mA
Closed-loop output impedance	G = +2, f ≤ 100kHz		0.06		Ω
POWER SUPPLY				'	
		3.7	3.9	4.1	
Quiescent current	T _A = 0°C to 70°C	3.1		4.8	mA
	T _A = -40°C to +85°C	3.1		5.5	1
	Input-referred	61	66		
Power-supply rejection ratio, PSRR	Input-referred, T _A = 0°C to 70°C	60			dB
	Input-referred, T _A = -40°C to +85°C	59	,		

⁽¹⁾ Junction temperature = ambient for 25°C specifications.

⁽²⁾ Junction temperature = ambient at low temperature limits; junction temperature = ambient +18°C at high temperature limit for over temperature specifications.

⁽³⁾ Tested < 3dB below minimum specified CMRR at ± CMIR limits.

6.7 Electrical Characteristics for D Package $V_S = 3V$

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , and R_L = 150 Ω to $V_S/3$, unless otherwise noted

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
AC PERFORMANCE					
	$G = +2, V_O \le 0.2V_{PP}$	72	100		
	$G = +2, V_O \le 0.2V_{PP}, T_A = 0^{\circ}C \text{ to } 70^{\circ}C$	68			
• (2)	$G = +5, V_O \le 0.2V_{PP}$	17	22		
Small-signal bandwidth ⁽²⁾	$G = +5, V_O \le 0.2V_{PP}, T_A = 0^{\circ}C \text{ to } 70^{\circ}C$	16			MHz
	$G = +10, V_O \le 0.2V_{PP}$	8	10		
	$G = +10, V_O \le 0.2V_{PP}, T_A = 0^{\circ}C \text{ to } 70^{\circ}C$	7			
(0)	G ≥ +10	80	100		
Gain bandwidth product ⁽²⁾	G ≥ +10, T _A = 0°C to 70°C	76			MHz
(2)	1V step	140	225		
Slew rate ⁽²⁾	1V step, T _A = 0°C to 70°C	110			V/µs
	0.5V step		3.3	5.5	
Rise time ⁽²⁾	0.5V step, T _A = 0°C to 70°C			5.6	ns
Fall time ⁽²⁾	0.5V step		3.3	5.5	
	0.5V step, T _A = 0°C to 70°C			5.6	ns
Settling time ⁽²⁾	1V step, to 0.1%		45	72	
	1V step, to 0.1%, T _A = 0°C to 70°C			87	ns
	2nd-harmonic, $V_O = 1V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-67	-61	
	2nd-harmonic, $V_O = 1V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$, $T_A = 0$ °C to +70°C			-59	
	2nd-harmonic, $V_O = 1V_{PP}$, f = 5MHz, $R_L \ge 500\Omega$		-67	-61	
	2nd-harmonic, $V_O = 1V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$, $T_A = 0$ °C to +70°C			-59	
Harmonic distortion ⁽²⁾	3rd-harmonic, $V_O = 1V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-66	-59	dBc
	3rd-harmonic, $V_O = 1V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$, $T_A = 0$ °C to +70°C			-58	
	3rd-harmonic, $V_O = 1V_{PP}$, f = 5MHz, $R_L ≥ 500Ω$		-77	-59	
	3rd-harmonic, $V_O = 1V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$, $T_A = 0$ °C to +70°C			-58	
(2)	f > 1MHz		9.2	10.2	24/11
Input voltage noise ⁽²⁾	f > 1MHz, T _A = 0°C to 70°C			10.7	nV/√Hz
(2)	f > 1MHz		3.5	4.5	
Input current noise ⁽²⁾	f > 1MHz, T _A = 0°C to 70°C			5.0	pA/√Hz
DC PERFORMANCE		,			
O 1 11 11	$V_{O} = \pm 0.5V$	66	72		ı.
Open-loop voltage gain	$V_O = \pm 0.5V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$	65			dB
			±1.5	±7	.,
Input offset voltage	T _A = 0°C to 70°C			±8.1	mV
Average offset voltage drift ⁽²⁾	T _A = 0°C to 70°C			±25	μV/°C
In the second se	V _{CM} = 1V		+5	+10	
Input bias current	V _{CM} = 1V, T _A = 0°C to 70°C			+12	μA
Input bias current drift ⁽²⁾	T _A = 0°C to 70°C			±12	nA/°C
·	V _{CM} = 1V		±0.1	±1	μΑ
Input offset current	V _{CM} = 1V, T _A = 0°C to 70°C			±1.2	
Input offset current drift ⁽²⁾	T _A = 0°C to 70°C			±5	nA/°C

6.7 Electrical Characteristics for D Package $V_S = 3V$ (続き)

at $T_A = 25^{\circ}C^{(1)}$, G = +2, $R_F = 750\Omega$, and $R_L = 150\Omega$ to $V_S/3$, unless otherwise noted

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
INPUT					
Negative input veltage(3)			-0.45	-0.4	
Negative input voltage ⁽³⁾	T _A = 0°C to 70°C			-0.27	V
Positive input voltage ⁽³⁾		1.1	1.2		V
Positive input voltage	T _A = 0°C to 70°C	1.0			
Common-mode rejection ratio, CMRR	Input-referred	75	80		40
	Input-referred, T _A = 0°C to 70°C	73	,		dB
Input impedance	Differential		10 2.1		1:0 II = F
	Common-mode		400 1.2		kΩ pF
OUTPUT				1	
	$G = +5$, $R_L = 1kΩ$ to 1.5V		0.08	0.11	
Output voltage swing low	G = +5, R_L = 1kΩ to 1.5V, T_A = 0°C to 70°C			0.125	V
	$G = +5$, $R_L = 150\Omega$ to 1.5V		0.17	0.39	V
	G = +5, R _L = 150Ω to 1.5V, T_A = 0°C to 70°C			0.40	
	$G = +5$, $R_L = 1kΩ$ to 1.5V	2.88	2.91		
Outrout welfers a south a bigh	G = +5, R _L = 1kΩ to 1.5V, T_A = 0°C to 70°C	2.85			
Output voltage swing high	$G = +5$, $R_L = 150\Omega$ to 1.5V	2.74	2.82		V
	G = +5, R_L = 150Ω to 1.5V, T_A = 0°C to 70°C	2.70			
Command autorit sinking and accoming		±20	±30		
Current output, sinking and sourcing	T _A = 0°C to 70°C	±18			mA
Short-circuit output current	Output shorted to either supply		45		
Closed-loop output impedance	G = +2, f ≤ 100kHz		0.06		Ω
POWER SUPPLY				'	
Outre and summer		3.3	3.7	4	A
Quiescent current	T _A = 0°C to 70°C	3.1		4.7	mA
Douter cumply rejection and DODD	Input-referred, 0.3V step	60	64		40
Power-supply rejection ratio, PSRR	Input-referred, T _A = 0°C to 70°C	58			dB
	1	1			

⁽¹⁾ Junction temperature = ambient for 25°C specifications.

⁽²⁾ Junction temperature = ambient at low temperature limits; junction temperature = ambient +18°C at high temperature limit for over temperature specifications.

⁽³⁾ Tested < 3dB below minimum specified CMRR at ± CMIR limits.

6.8 Electrical Characteristics for DBV Package $V_S = \pm 5V$

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , R_L = 150 Ω to ground, and R_{SRC} = 375 Ω (unless otherwise noted)

$G = +1, V_O \le 0.2V_{PP}$		310			
$G = +2, V_O \le 0.2V_{PP}$		100		MHz	
$G = +5, V_O \le 0.2V_{PP}$		30		1711 12	
$G = +10, V_O \le 0.2V_{PP}$		13			
G ≥ +10		110		MHz	
$V_0 \le 0.2V_{PP}$		1		dB	
2V step, 20% to 80%		640		V/µs	
0.5V step, 10% to 90%		3.3	5.8	ns	
0.5V step, 10% to 90%		3.5	5.9	ns	
1V step, to 0.1%		42	63	ns	
2nd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-77			
2nd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$		-78			
3rd-harmonic, $V_0 = 2V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-78		dBc	
3rd-harmonic, $V_O = 2V_{PP}$, f = 5MHz, $R_L ≥ 500Ω$		-77			
f > 1MHz		5.6	10.5		
f > 1MHz, T _A = -40°C to +85°C			11.5	nV/√Hz	
f > 1MHz		4	5.4		
f > 1MHz, T _A = -40°C to +85°C			6.4	pA/√Hz	
V _O = ±1V	66	74			
V _O = ±1V, T _A = -40°C to +85°C	64			dB	
5		±1.5	±7		
T _A = -40°C to +85°C			±8.6	mV	
11			±25	μV/°C	
		5			
			19	μA	
			±12	nA/°C	
		±0.1			
-				μΑ	
				nA/°C	
TOWN TO THE STATE OF THE STATE					
			-5.4		
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$				V	
1A 10 0 to 100 0	3.1	32	0.2		
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$				V	
		80			
				— dB	
		10 2 1		kΩ pF	
Common-mode		10 2.1			
	$G = +5$, $V_O ≤ 0.2V_{PP}$ $G = +10$, $V_O ≤ 0.2V_{PP}$ G ≥ +10 $V_O ≤ 0.2V_{PP}$ 2V step, 20% to 80% 0.5V step, 10% to 90% 0.5V step, 10% to 90% 1V step, to 0.1% $2nd$ -harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L = 150Ω$ $2nd$ -harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L ≥ 500Ω$ $3rd$ -harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L ≥ 500Ω$ $3rd$ -harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L ≥ 500Ω$ f > 1MHz $f > 1MHz$, $T_A = -40^\circ$ C to +85°C f > 1MHz $f > 1MHz$, $T_A = -40^\circ$ C to +85°C f > 1MHz $f > 1MHz$, $f = -40^\circ$ C to +85°C $f = 40^\circ$ C to +85°C	$G = +5, \ V_O \le 0.2 V_{PP}$ $G = +10, \ V_O \le 0.2 V_{PP}$ $G \ge +10$ $V_O \le 0.2 V_{PP}$ $2V \text{ step, } 20\% \text{ to } 80\%$ $0.5V \text{ step, } 10\% \text{ to } 90\%$ $0.5V \text{ step, } 10\% \text{ to } 90\%$ $1V \text{ step, } to 0.1\%$ $2nd\text{-harmonic, } V_O = 2V_{PP}, f = 5MHz, \ R_L = 150\Omega$ $2nd\text{-harmonic, } V_O = 2V_{PP}, f = 5MHz, \ R_L \ge 500\Omega$ $3rd\text{-harmonic, } V_O = 2V_{PP}, f = 5MHz, \ R_L \ge 500\Omega$ $3rd\text{-harmonic, } V_O = 2V_{PP}, f = 5MHz, \ R_L \ge 500\Omega$ $f > 1MHz$ $f > 1MHz, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $f > 1MHz, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_O = \pm 1V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CM} = 0V, \ T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $I_A = -40^{\circ}C \text{ to } +85^{\circ}$	$ \begin{array}{c} G = +5, \ V_O \leq 0.2 \ V_{PP} & 30 \\ G = +10, \ V_O \leq 0.2 \ V_{PP} & 13 \\ G \geq +10 & 110 \\ V_O \leq 0.2 \ V_{PP} & 1 \\ 2V \ \text{step, } 20\% \ \text{to } 80\% & 640 \\ 0.5V \ \text{step, } 10\% \ \text{to } 90\% & 3.3 \\ 0.5V \ \text{step, } 10\% \ \text{to } 90\% & 3.5 \\ 1V \ \text{step, } 10\% \ \text{to } 90\% \ \text{step, } 10\% $	$\begin{array}{c} G = +5, \ V_O \le 0.2 \ V_{PP} & 30 \\ G = +10, \ V_O \le 0.2 \ V_{PP} & 13 \\ G \ge +10 & 110 \\ V_O \le 0.2 \ V_{PP} & 1 \\ 2V \ step, \ 20\% \ to \ 80\% & 640 \\ 0.5V \ step, \ 10\% \ to \ 90\% & 3.3 & 5.8 \\ 0.5V \ step, \ 10\% \ to \ 90\% & 3.5 & 5.9 \\ 1V \ step, \ to \ 0.1\% & 42 & 63 \\ 2nd-harmonic, \ V_O = 2 \ V_{PP}, \ f = 5 \ MHz, \ R_L = 150\Omega & -78 \\ 3rd-harmonic, \ V_O = 2 \ V_{PP}, \ f = 5 \ MHz, \ R_L \ge 500\Omega & -78 \\ 3rd-harmonic, \ V_O = 2 \ V_{PP}, \ f = 5 \ MHz, \ R_L \ge 500\Omega & -78 \\ 3rd-harmonic, \ V_O = 2 \ V_{PP}, \ f = 5 \ MHz, \ R_L \ge 500\Omega & -77 \\ f > 1 \ MHz & 5.6 & 10.5 \\ f > 1 \ MHz, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & 11.5 \\ f > 1 \ MHz, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.5 \\ V_O = \pm 1V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.5 \\ V_{CM} = 0V & 5 & 18 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.2 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 \\ V_{CM} = 0V, \ T_A = -40^{\circ} \ C \ to +85^{\circ} \ C & \pm 1.4 $	

6.8 Electrical Characteristics for DBV Package V_S = ±5V (続き)

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , R_L = 150 Ω to ground, and R_{SRC} = 375 Ω (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT					
	$R_L = 1k\Omega$ to ground	±4.86	±4.88		
Output voltage owing	$R_L = 1k\Omega$ to ground, $T_A = -40^{\circ}C$ to $+85^{\circ}C$	±4.84			V
Output voltage swing	$R_L = 150\Omega$ to ground	±4.60	±4.64		V
	$R_L = 150\Omega$ to ground, $T_A = -40$ °C to +85°C	±4.56			
Current output, sinking and sourcing	V _O = ±2.75V, V _{OS} = 20mV	±65	±85		mΛ
	$V_O = \pm 2.75V$, $V_{OS} = 20$ mV, $T_A = -40$ °C to +85°C	±55			mA
Short-circuit current	Output shorted to ground		120		mA
Closed-loop output impedance	G = +2, f ≤ 100kHz		0.03		Ω
POWER SUPPLY					
Quiggaant gurrent			4.5		mA
Quiescent current	$T_A = -40$ °C to +85°C	3.1		6.1	ША
Power-supply rejection ratio, PSRR	Input-referred	61	66		dB
	Input-referred , T _A = -40°C to +85°C	59			uБ

⁽¹⁾ Junction temperature = ambient for 25°C specifications.

⁽²⁾ Tested < 3dB below minimum specified CMRR at ± CMIR limits.

6.9 Electrical Characteristics for DBV Package $V_S = 5V$

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , and R_L = 150 Ω to ground (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
AC PERFORMANCE						
	$G = +1, V_O \le 0.2V_{PP}$		250			
Cmall signal handwidth	$G = +2, V_O \le 0.2V_{PP}$		100		NAL I-	
Small-signal bandwidth	$G = +5, V_O \le 0.2V_{PP}$		30		MHz	
	$G = +10, V_O \le 0.2V_{PP}$		13			
Gain bandwidth product	G ≥ +10		130		MHz	
Peaking at a gain of +1	V _O ≤ 0.2V _{PP}		2		dB	
Slew rate	2V step, 20% to 80%		550		V/µs	
Rise time	0.5V step, 10% to 90%		3.3	5.7	ns	
Fall time	0.5V step, 10% to 90%		3.3	5.7	ns	
Settling time	G = +2, 1V step, to 0.1%		43	64	ns	
Harmonic distortion	2nd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-69			
	2nd-harmonic, V _O = 2V _{PP} , f = 5MHz, R _L ≥ 500Ω		-71			
	3rd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-69		dBc	
	3rd-harmonic, $V_O = 2V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$		-78			
Input voltage noise	f > 1MHz		5.8	10.2		
	f > 1MHz, T _A = -40°C to +85°C			11.2	nV/√Hz	
Input current noise	f > 1MHz		4	5.4		
	f > 1MHz, T _A = -40°C to +85°C			6.4	pA/√Hz	
DC PERFORMANCE	·					
	V _O = ±1V	66	72			
Open-loop voltage gain	$V_{O} = \pm 1V$, $T_{A} = -40^{\circ}$ C to $+85^{\circ}$ C	64			dB	
			±0.5	±5.0		
Input offset voltage	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			±6.5	mV	
Average offset voltage drift	T _A = -40°C to +85°C			±20	μV/°C	
-	V _{CM} = 0V		+15	+18	<u>'</u>	
Input bias current	V _{CM} = 0V, T _A = -40°C to +85°C			+19	μA	
Input bias current drift	V _{CM} = 0V, T _A = -40°C to +85°C			±12	nA/°C	
	V _{CM} = 0V		±0.1	±0.8		
Input offset current	$V_{CM} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±1.2	μA	
Input offset current drift	$V_{CM} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±5	nA/°C	
INPUT	TOWN TO THE SECOND					
			-0.5	-0.4		
Negative input voltage ⁽²⁾	T _A = -40°C to +85°C		0.0	-0.2	V	
	10 0 0 100 0	3.1	3.2	0.2		
Positive input voltage ⁽²⁾	T _A = -40°C to +85°C	2.9	J.2		V	
	Input-referred	76	80			
Common-mode rejection ratio, CMRR	Input-referred, T _A = -40°C to +85°C	70 72			dB	
	Differential		10 2.1			
Input impedance					kΩ pF	
	Common-mode	4	00 1.2			

15

Product Folder Links: OPA830

6.9 Electrical Characteristics for DBV Package V_S = 5V (続き)

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , and R_L = 150 Ω to ground (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
ОUТРUТ					
	$G = +5$, $R_L = 1$ kΩ to 2.5V		0.09	0.11	
Output voltage swing low	G = +5, R_L = 1k Ω to 2.5V, T_A = -40°C to +85°C			0.13	V
Output voltage swing low	$G = +5$, $R_L = 150\Omega$ to 2.5V		0.21	0.24	V
	G = +5, R_L = 150 Ω to 2.5V, T_A = -40°C to +85°C			0.26	
	$G = +5$, $R_L = 1k\Omega$ to 2.5V	4.89	4.91		
Output valtage swing high	G = +5, R_L = 1kΩ to 2.5V, T_A = -40°C to +85°C	4.87			V
Output voltage swing high	$G = +5$, $R_L = 150\Omega$ to 2.5V	4.75	4.78		V
	G = +5, R_L = 150 Ω to 2.5V, T_A = -40°C to +85°C	4.72			
Current cutout cipling and coursing	V _O = ±0.88V, V _{OS} = 20mV	±60	±80		A
Current output, sinking and sourcing	$V_{O} = \pm 0.88V$, $V_{OS} = 20$ mV, $T_{A} = -40$ °C to $+85$ °C	±52			mA
Short-circuit output current	Output shorted to either supply		140		mA
Closed-loop output impedance	G = +2, f ≤ 100kHz		0.06		Ω
POWER SUPPLY					
Outranet summert		3.7	4.4	5	^
Quiescent current	T _A = -40°C to +85°C	3.1		5.7	mA
Dawer aupply rejection ratio DCDD	Input-referred	61	66		- dB
Power-supply rejection ratio, PSRR	Input-referred, T _A = -40°C to +85°C	59			

⁽¹⁾ Junction temperature = ambient for 25°C specifications.

⁽²⁾ Tested < 3dB below minimum specified CMRR at ± CMIR limits.

6.10 Electrical Characteristics for DBV Package $V_S = 3V$

at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , and R_L = 150 Ω to $V_S/3$, unless otherwise noted

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
AC PERFORMANCE						
	$G = +2, V_O \le 0.2V_{PP}$		100			
Small-signal bandwidth	$G = +5, V_O \le 0.2V_{PP}$,	30		MHz	
	$G = +10, V_O \le 0.2V_{PP}$		13			
Gain bandwidth product	G ≥ +10		130		MHz	
Slew rate	1V step, 20% to 80%		225		V/µs	
Rise time	0.5V step, 10% to 90%		3.3	5.5		
Fall time	0.5V step, 10% to 90%		3.3	5.5	4	
Settling time	G = +2, 1V step, to 0.1%		45	72		
-	2nd-harmonic, $V_O = 1V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-67			
	2nd-harmonic, V _O = 1V _{PP} , f = 5MHz, R _L ≥ 500Ω		-67			
Harmonic distortion	3rd-harmonic, $V_O = 1V_{PP}$, $f = 5MHz$, $R_L = 150\Omega$		-66		dBc	
	3rd-harmonic, $V_O = 1V_{PP}$, $f = 5MHz$, $R_L \ge 500\Omega$		-77			
	f > 1MHz		5.8	10.2		
Input voltage noise	f > 1MHz, T _A = 0°C to 70°C			10.7	nV/√Hz	
	f > 1MHz		4	5.2		
Input current noise	f > 1MHz, T _A = 0°C to 70°C			6	pA/√Hz	
DC PERFORMANCE						
	$V_0 = \pm 0.5V$	66	72			
Open-loop voltage gain	V _O = ±0.5V, T _A = 0°C to 70°C	65			dB	
			±1.5	±7	.,	
Input offset voltage	T _A = 0°C to 70°C			±8.1	mV	
Average offset voltage drift	T _A = 0°C to 70°C			±25	μV/°C	
	V _{CM} = 0V		14	18		
Input bias current	V _{CM} = 0V, T _A = 0°C to 70°C			19	μΑ	
Input bias current drift	V _{CM} = 0V, T _A = 0°C to 70°C		-	±12	nA/°C	
	V _{CM} = 0V		±0.1	±1		
Input offset current	V _{CM} = 0V, T _A = 0°C to 70°C			±1.2	μΑ	
Input offset current drift	V _{CM} = 0V, T _A = 0°C to 70°C			±5	nA/°C	
INPUT						
(2)			-0.45	-0.4		
Negative input voltage ⁽²⁾	T _A = 0°C to 70°C, 0.4V step			-0.27		
D (2)		1.1	1.2		V	
Positive input voltage ⁽²⁾	T _A = 0°C to 70°C, 0.4V step	1.0				
_	Input-referred	75	80			
Common-mode rejection ratio, CMRR	Input-referred, T _A = 0°C to 70°C	73			dB	
	Differential		10 2.1			
Input impedance	Common-mode		100 1.2		kΩ pF	

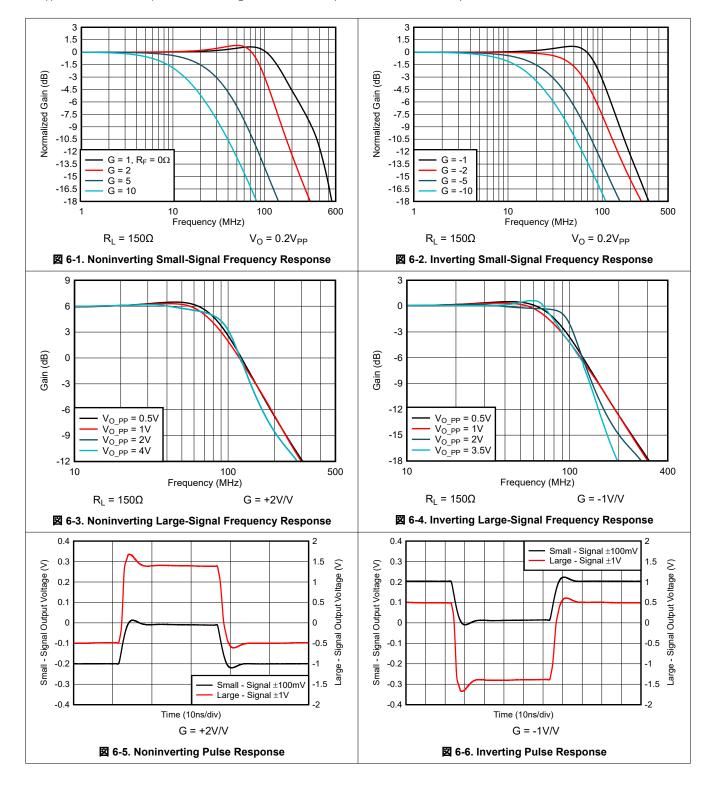
17

Product Folder Links: OPA830

6.10 Electrical Characteristics for DBV Package V_S = 3V (続き)

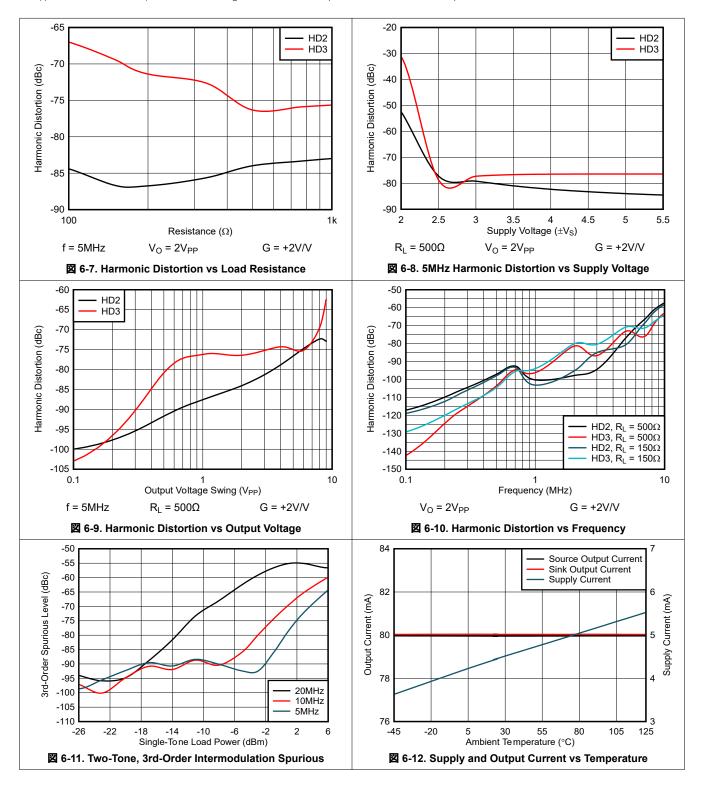
at T_A = 25°C⁽¹⁾, G = +2, R_F = 750 Ω , and R_L = 150 Ω to $V_S/3$, unless otherwise noted

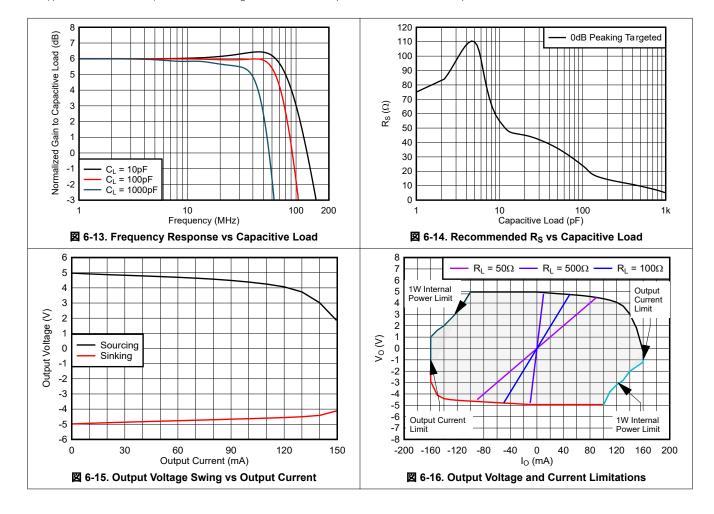
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT					
O de de la	$G = +5$, $R_L = 1$ kΩ to 1.5V		0.08	0.11	
	G = +5, R_L = 1k Ω to 1.5V, T_A = 0°C to 70°C			0.125	V
Output voltage swing low	$G = +5$, $R_L = 150\Omega$ to 1.5V		0.17	0.39	V
	G = +5, R_L = 150Ω to 1.5V, T_A = 0°C to 70°C			0.40	
Output voltage swing high	$G = +5$, $R_L = 1k\Omega$ to 1.5V	2.88	2.91		
	G = +5, R _L = 1kΩ to 1.5V, T_A = 0°C to 70°C	2.85			V
	$G = +5$, $R_L = 150\Omega$ to 1.5V	2.74	2.82		V
	G = +5, R_L = 150 Ω to 1.5V, T_A = 0°C to 70°C	2.70			
Command and an indian and a committee	$V_{O} = \pm 0.125 V, V_{OS} = 20 mV$	±20	±30		
Current output, sinking and sourcing	$V_{O} = \pm 0.125 \text{V}, V_{OS} = 20 \text{mV}, T_{A} = 0^{\circ} \text{C to } 70^{\circ} \text{C}$	±18			mA
Short-circuit output current	Output shorted to either supply		45		
Closed-loop output impedance	G = +2, f ≤ 100kHz		0.03		Ω
POWER SUPPLY	'				
0		3.3	4.3	4.9	4
Quiescent current	T _A = 0°C to 70°C	3.1		5.5	mA
Devices assembly residential metric DODD	Input-referred	60	64		4D
Power-supply rejection ratio, PSRR	Input-referred, T _A = 0°C to 70°C	58			- dB


⁽¹⁾ Junction temperature = ambient for 25°C specifications.

⁽²⁾ Tested < 3dB below minimum specified CMRR at ± CMIR limits.

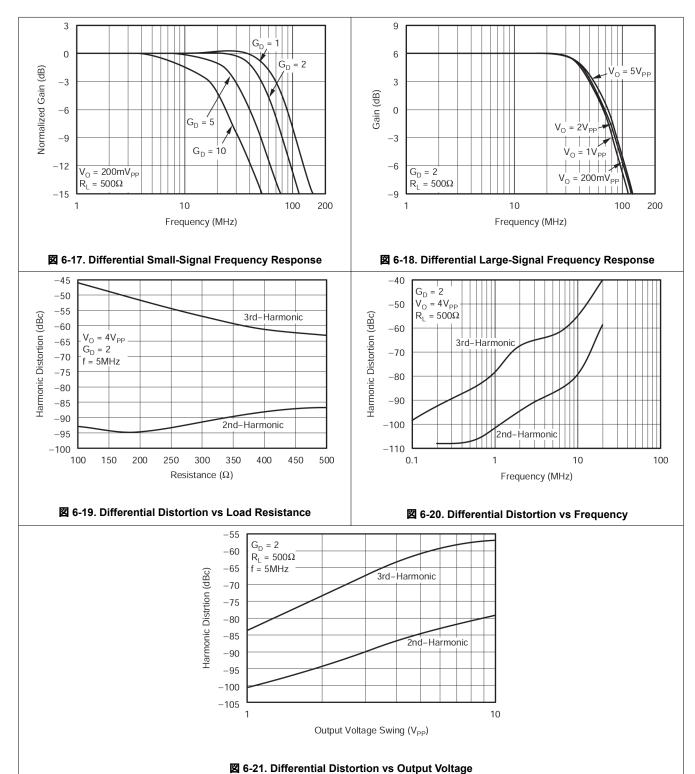
6.11 Typical Characteristics: $V_S = \pm 5V$

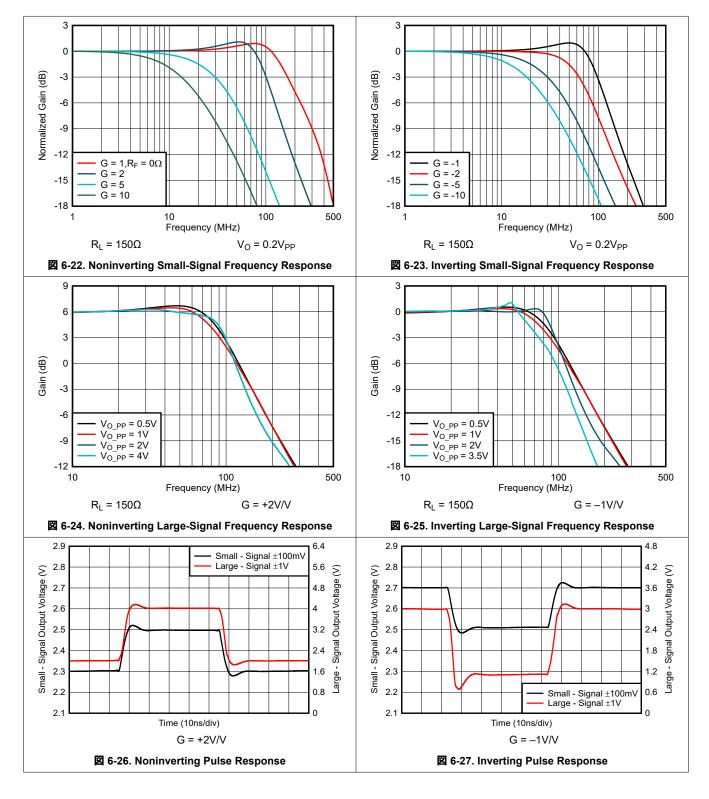

at T_A = 25°C, G = +2, R_F = 750 Ω , and R_L = 150 Ω to GND (unless otherwise noted); see also \boxtimes 8-3


6.11 Typical Characteristics: $V_S = \pm 5V$ (continued)

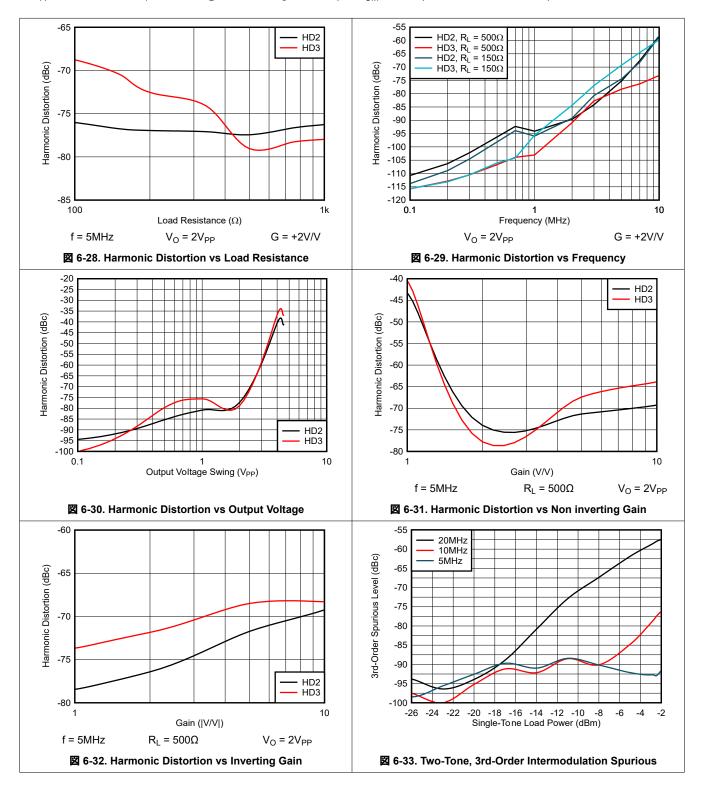
at T_A = 25°C, G = +2, R_F = 750 Ω , and R_L = 150 Ω to GND (unless otherwise noted); see also \boxtimes 8-3

6.11 Typical Characteristics: V_S = ±5V (continued)

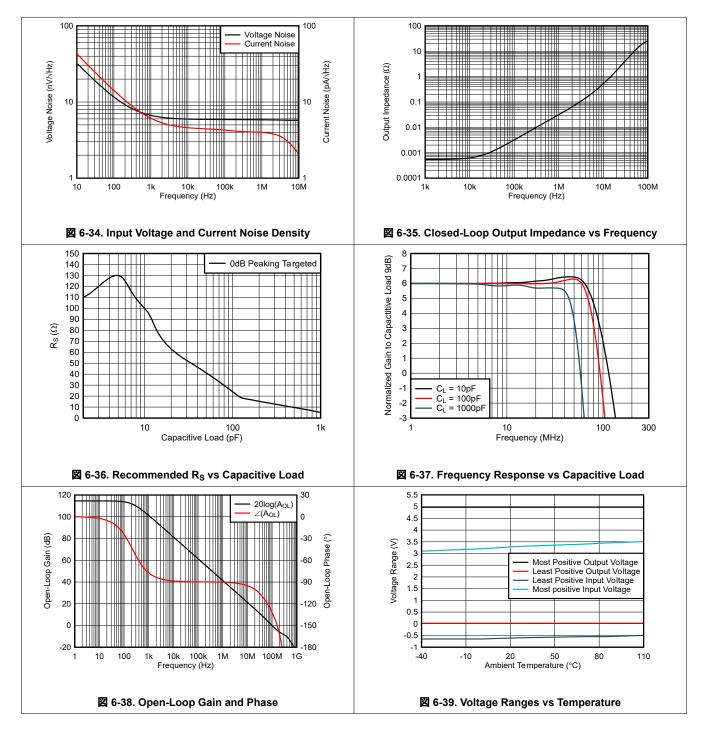

at T_A = 25°C, G = +2, R_F = 750 Ω , and R_L = 150 Ω to GND (unless otherwise noted); see also \boxtimes 8-3


6.12 Typical Characteristics: V_S = ±5V, Differential Configuration

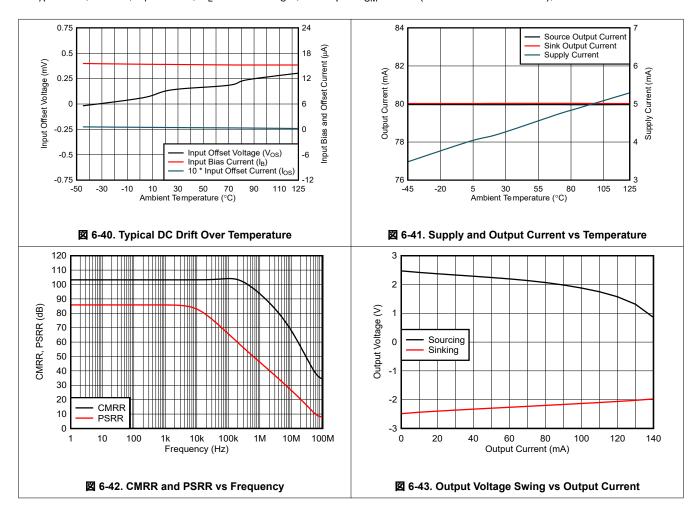
at T_A = 25°C, G_D = +2, R_F = 604 Ω , and R_L = 500 Ω (unless otherwise noted). Refer to \boxtimes 7-1



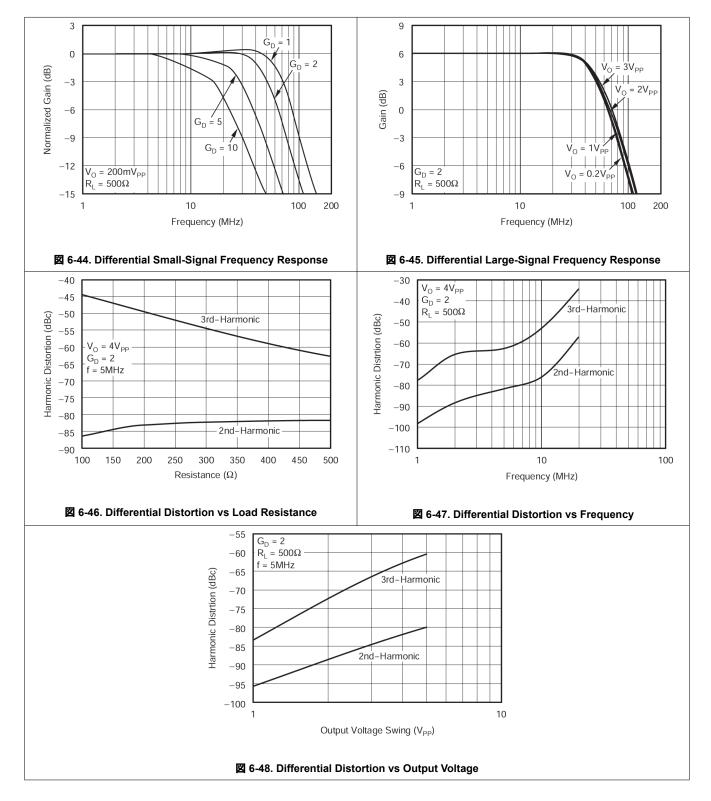
6.13 Typical Characteristics: $V_S = 5V$



6.13 Typical Characteristics: V_S = 5V (continued)



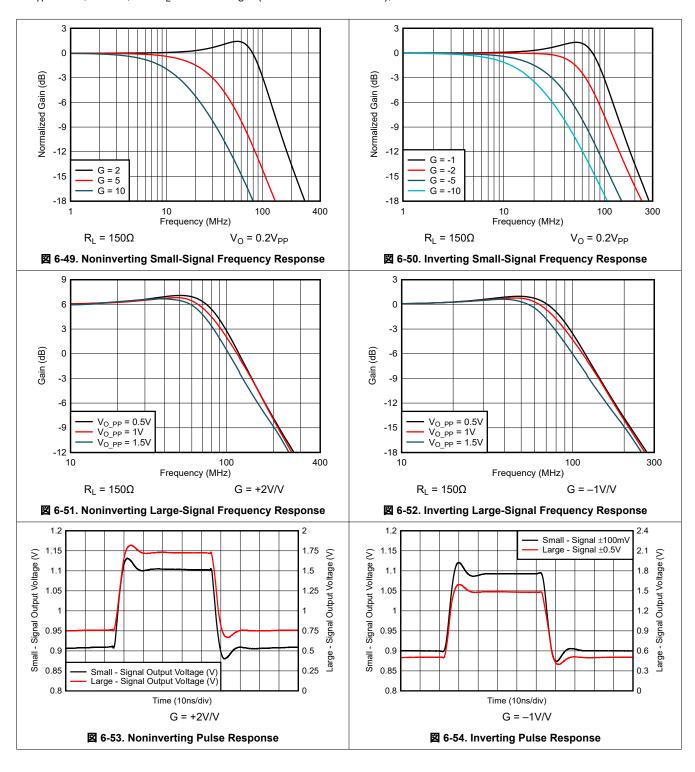
6.13 Typical Characteristics: $V_S = 5V$ (continued)



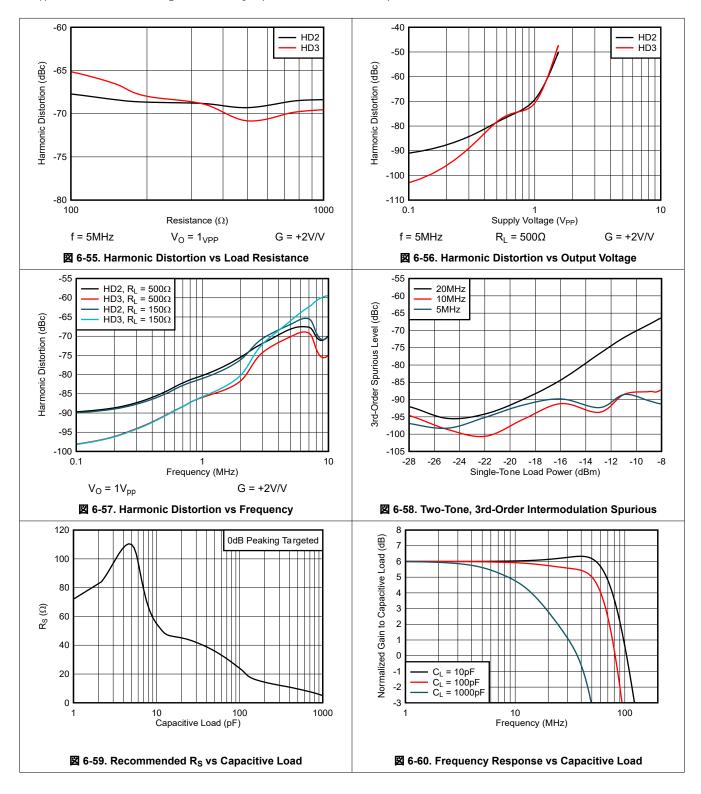
6.13 Typical Characteristics: V_S = 5V (continued)

6.14 Typical Characteristics: $V_S = 5V$, Differential Configuration

at T_A = 25°C, G = +2, R_F = 604 Ω , and R_L = 500 Ω differential (unless otherwise noted). Refer to \boxtimes 7-2

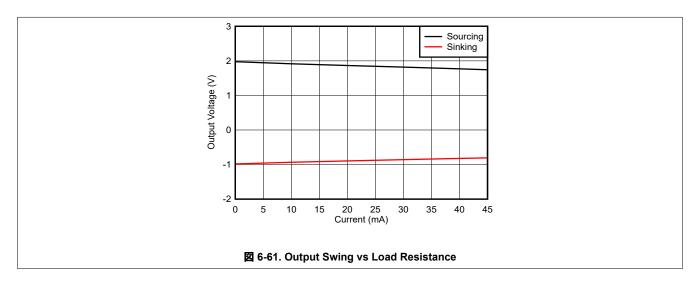


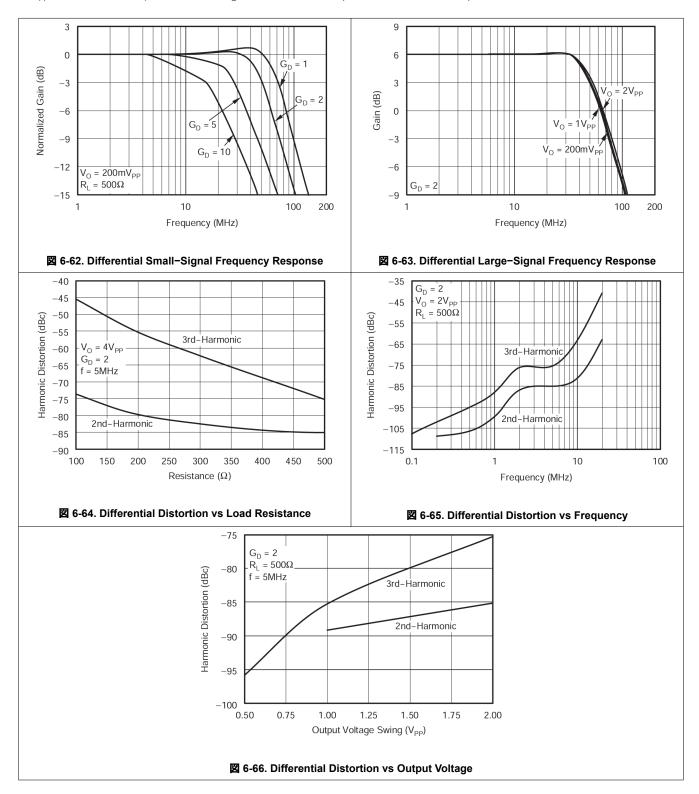
English Data Sheet: SBOS263


6.15 Typical Characteristics: $V_S = 3V$

at T_A = 25°C, G = +2, and R_L = 150 Ω to $V_S/3$ (unless otherwise noted); see also \boxtimes 8-2

6.15 Typical Characteristics: $V_S = 3V$ (continued)


at T_A = 25°C, G = +2, and R_L = 150 Ω to V_S/3 (unless otherwise noted); see also \boxtimes 8-2


6.15 Typical Characteristics: $V_S = 3V$ (continued)

at T_A = 25°C, G = +2, and R_L = 150 Ω to V_S/3 (unless otherwise noted); see also \boxtimes 8-2

6.16 Typical Characteristics: $V_S = 3V$, Differential Configuration

at T_A = 25°C, G = +2, R_F = 604 Ω , and R_L = 500 Ω differential (unless otherwise noted). Refer to \boxtimes 7-3

7 Parameter Measurement Information

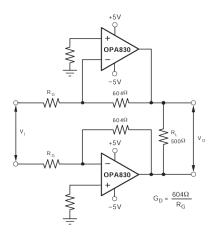


図 7-1. 10V Differential Configuration Test Circuit

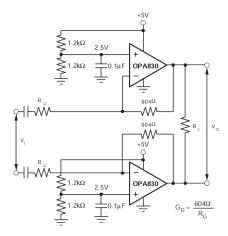


図 7-2. 5V Differential Configuration Test Circuit

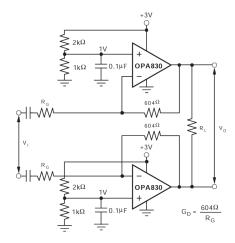


図 7-3. 3V Differential Configuration Test Circuit

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SBOS263

8 Application and Implementation

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

8.1.1 Wideband Voltage-Feedback Operation

The OPA830 is a unity-gain stable, very high-speed voltage-feedback op amp designed for single-supply operation (+3V to +10V). The input stage supports input voltages below ground and to within 1.7V of the positive supply. The complementary common-emitter output stage provides an output swing to within 25mV of ground and the positive supply. The OPA830 is compensated to provide stable operation with a wide range of resistive loads.

 \boxtimes 8-1 shows the AC-coupled, gain of +2 configuration used for the +5V Specifications and Typical Characteristic Curves. For test purposes, the input impedance is set to 50Ω with a resistor to ground. Voltage swings reported in the Electrical Characteristics are taken directly at the input and output pins. For the circuit of \boxtimes 8-1, the total effective load on the output at high frequencies is 150Ω || 1500Ω. The 1.5kΩ resistors at the noninverting input provide the common-mode bias voltage. The parallel combination equals the DC resistance at the inverting input (R_F), reducing the DC output offset due to input bias current.

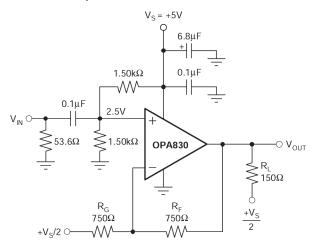


図 8-1. AC-Coupled, G = +2, +5V Single-Supply Specification and Test Circuit

 \boxtimes 8-2 shows the ac-coupled, gain of +2 configuration used for the 3V *Electrical Characteristics* and *Typical Characteristics*. For test purposes, the input impedance is set to 50Ω with a resistor to ground. Voltage swings reported in the *Electrical Characteristics* are taken directly at the input and output pins. For the circuit of \boxtimes 8-2, the total effective load on the output at high frequencies is 150Ω || 1500Ω. The 1.13kΩ and 2.26kΩ resistors at the noninverting input provide the common-mode bias voltage. The parallel combination equals the dc resistance at the inverting input (R_F), reducing the dc output offset due to input bias current.

33

Product Folder Links: OPA830

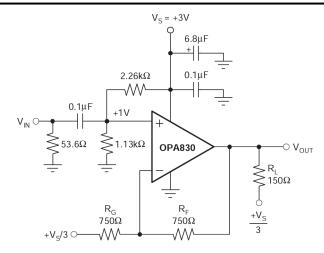


図 8-2. AC-Coupled, G = +2, +3V Single-Supply Specification and Test Circuit

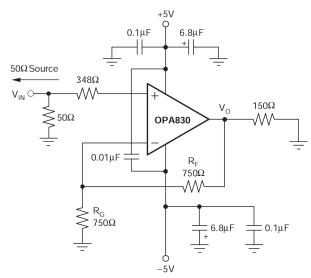


図 8-3. DC-Coupled, G = +2, Bipolar-Supply Specification and Test Circuit

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

8.1.2 DC Level-Shifting

 \boxtimes 8-4 shows a dc-coupled non inverting amplifier that level-shifts the input up to accommodate the desired output voltage range. Given the desired signal gain (G), and the amount V_{OUT} needs to be shifted up (Δ V_{OUT}) when V_{IN} is at the center of the range, the following equations give the resistor values that produce the desired performance. Assume that R₄ is between 200Ω and 1.5kΩ.

$$NG = G + V_{OUT} / V_{S}$$

$$R_1 = R_4 / G$$

$$R_2 = R_4 / (NG - G)$$

$$R_3 = R_4 / (NG - 1)$$

where:

$$NG = 1 + R_4 / R_3$$

$$V_{OUT} = (G)V_{IN} + (NG - G)V_{S}$$

Make sure that V_{IN} and V_{OUT} stay within the specified input and output voltage ranges.

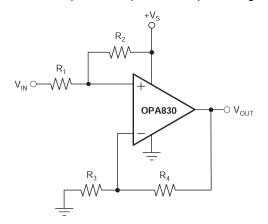


図 8-4. DC Level-Shifting

The circuit on the front page is a good example of this type of application. The circuit is designed to take V_{IN} between 0V and 0.5V and produce V_{OUT} between 1V and 2V when using a 3V supply. This configuration means G = 2.00, and $\Delta V_{OUT} = 1.50V - G \times 0.25V = 1.00V$. Plugging these values into the previous equations (with $R_4 = 750\Omega$) gives: NG = 2.33, $R_1 = 375\Omega$, $R_2 = 2.25k\Omega$, and $R_3 = 563\Omega$. The resistors changed to the nearest standard values for the front-page circuit.

8.1.3 Optimizing Resistor Values

The OPA830 is a unity-gain stable, voltage-feedback op amp; therefore, a wide range of resistor values can be used for the feedback and gain setting resistors. The primary limits on these values are set by dynamic range (noise and distortion) and parasitic capacitance considerations. For a noninverting, unity-gain follower application, make the feedback connection with a direct short.

At less than 200Ω , the feedback network presents additional output loading that can degrade the harmonic distortion performance of the OPA830. At greater than $1k\Omega$, the typical parasitic capacitance (approximately 0.2pF) across the feedback resistor can cause unintentional band limiting in the amplifier response.

A good practice is to target the parallel combination of R_F and R_G (see also \boxtimes 8-3) to be less than approximately 400 Ω . The combined impedance of R_F || R_G interacts with the inverting input capacitance, placing an additional pole in the feedback network, and thus a zero in the forward response. Assuming a 2pF total parasitic on the inverting node, holding R_F || R_G < 400 Ω keeps this pole greater than 200MHz. Independently, this constraint implies that the feedback resistor R_F can increase to several $k\Omega$ at high gains. This increase is acceptable if the pole formed by R_F and any parasitic capacitance appearing in parallel is kept out of the frequency range of interest.

In the inverting configuration, be aware of an additional design consideration: R_G becomes the input resistor, and therefore, the load impedance to the driving source. If impedance matching is desired, R_G can be set equal to the required termination value. However, at low inverting gains, the resulting feedback resistor value can present a significant load to the amplifier output. For example, an inverting gain of 2 with a 50Ω input matching resistor (= R_G) requires a 100Ω feedback resistor, which contributes to output loading in parallel with the external load. In such a case, increase both the R_F and R_G values, and then achieve the input matching impedance with a third resistor to ground (see \boxtimes 8-5). The total input impedance becomes the parallel combination of R_G and the additional shunt resistor.

8.1.4 Bandwidth Versus Gain: Noninverting Operation

Voltage-feedback op amps exhibit decreasing closed-loop bandwidth as the signal gain is increased. In theory, this relationship is described by the gain bandwidth product (GBP) shown in the specifications. Ideally, dividing GBP by the noninverting signal gain (also called the noise gain, or NG) predicts the closed-loop bandwidth. In practice, this prediction only holds true when the phase margin approaches 90°, as in high-gain configurations. At low gains (increased feedback factors), most amplifiers exhibit a more complex response with lower phase margin. The OPA830 is compensated to give a slightly peaked response in a noninverting gain of 2 (see 8-3). This compensation results in a typical gain of +2 bandwidth of 110MHz, far exceeding the result predicted by dividing the 110MHz GBP by 2. Increasing the gain causes the phase margin to approach 90° and the bandwidth to more closely approach the predicted value of (GBP/NG). At a gain of +10, the 11MHz bandwidth shown in the *Electrical Characteristics* agrees with the result predicted using the simple formula and the typical GBP of 110MHz.

Frequency response in a gain of +2 can be modified to achieve exceptional flatness simply by increasing the noise gain to 3. One method, without affecting the +2 signal gain, is to add a $2.55k\Omega$ resistor across the two inputs (see also \boxtimes 8-9). A similar technique can be used to reduce peaking in unity-gain (voltage follower) applications. For example, by using a 750Ω feedback resistor along with a 750Ω resistor across the two op amp inputs, the voltage follower response is similar to the gain of +2 response of \boxtimes 8-2. Further reducing the value of the resistor across the op amp inputs further dampens the frequency response due to increased noise gain. The OPA830 exhibits minimal bandwidth reduction going to single-supply (5V) operation as compared with \pm 5V. This minimal reduction is because the internal bias control circuitry retains nearly constant quiescent current as the total supply voltage between the supply pins changes.

資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2025 Texas Instruments Incorporated

8.1.5 Inverting Amplifier Operation

All of the familiar op amp application circuits are available with the OPA830 to the designer. See \boxtimes 8-5 for a typical inverting configuration where the I/O impedances and signal gain from \boxtimes 8-1 are retained in an inverting circuit configuration. Inverting operation is one of the more common requirements and offers several performance benefits. Inverting operation also allows the input to be biased at $V_S/2$ without any headroom issues. The output voltage can be independently moved to within the output voltage range with coupling capacitors or bias adjustment resistors.

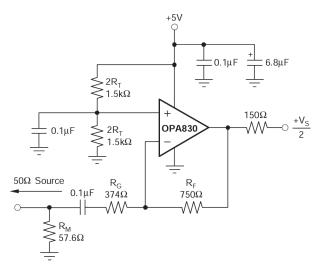


図 8-5. AC-Coupled, G = −2 Example Circuit

In the inverting configuration, be aware of three key design considerations. The first consideration is that the gain resistor (R_G) becomes part of the signal channel input impedance. If input impedance matching is desired (which is beneficial whenever the signal is coupled through a cable, twisted pair, long PCB trace, or other transmission line conductor), R_G can be set equal to the required termination value and R_F adjusted to give the desired gain. This approach is the simplest and results in optimized bandwidth and noise performance.

However, at low inverting gains, the resulting feedback resistor value can present a significant load to the amplifier output. For an inverting gain of 2, setting R_G to 50Ω for input matching eliminates the need for R_M but requires a 100Ω feedback resistor. This configuration has the interesting advantage of the noise gain becoming equal to 2 for a 50Ω source impedance—the same as the noninverting circuits considered previously. The amplifier output now has the 100Ω feedback resistor in parallel with the external load. In general, limit the feedback resistor to the 200Ω to $1.5k\Omega$ range. In this case, increase both the R_F and R_G values (see also 8-5), and then achieve the input matching impedance with a third resistor (R_M) to ground. The total input impedance becomes the parallel combination of R_G and R_M .

The second major consideration, mentioned briefly in the previous paragraph, is that the signal source impedance becomes part of the noise gain equation, and thus influences the bandwidth. For the example in \boxtimes 8-5, the R_M value combines in parallel with the external 50Ω source impedance (at high frequencies), yielding an effective driving impedance of 50Ω || 57.6Ω = 26.8Ω . This impedance is added in series with R_G for calculating the noise gain. The resulting noise gain is 2.87 for \boxtimes 8-5, as opposed to only 2 if R_M is eliminated as discussed previously. Therefore, the bandwidth is lower for the gain of -2 circuit of \boxtimes 8-5 (NG = +2.87) than for the gain of +2 circuit of \boxtimes 8-1.

The third important consideration in inverting amplifier design is setting the bias current cancellation resistors on the noninverting input (a parallel combination of $R_T = 750\Omega$). If this resistor is set equal to the total dc resistance coming out of the inverting node, the output dc error, as a result of the input bias currents, is reduced to (input offset current) times R_F . With the dc blocking capacitor in series with R_G , the dc source impedance coming out of

the inverting mode is simply $R_F = 750\Omega$ for \boxtimes 8-5. To reduce the additional high-frequency noise introduced by this resistor and power-supply feed-through, bypass R_T with a capacitor.

8.1.6 Output Current and Voltages

The OPA830 provides outstanding output voltage capability. For the 5V supply, under no-load conditions at +25°C, the output voltage typically swings closer than 90mV to either supply rail.

The minimum specified output voltage and current specifications over temperature are set by worst-case simulations at the cold temperature extreme. Only at cold start-up does the output current and voltage decrease to the numbers shown in the specified tables. As the output transistors deliver power, the junction temperatures increase, decreasing the V_{BE} s (increasing the available output voltage swing) and increasing the current gains (increasing the available output current). In steady-state operation, the available output voltage and current is always greater than that shown in the over temperature specifications because the output-stage junction temperatures are greater than the minimum specified operating ambient.

To maintain maximum output stage linearity, no output short-circuit protection is provided. This configuration is not normally a problem because most applications include a series matching resistor at the output that limits the internal power dissipation if the output side of this resistor is shorted to ground. However, shorting the output pin directly to the adjacent positive power-supply pin (8-pin packages) in most cases destroys the amplifier. If additional short-circuit protection is required, consider a small series resistor in the power-supply leads. This resistor reduces the available output voltage swing under heavy output loads.

8.1.7 Driving Capacitive Loads

One of the most demanding, and yet very common, load conditions for an op amp is capacitive loading. Often, the capacitive load is the input of an ADC—including additional external capacitance that can be recommended to improve ADC linearity. A high-speed, high open-loop gain amplifier like the OPA830 can be very susceptible to decreased stability and closed-loop response peaking when a capacitive load is placed directly on the output pin. When the primary considerations are frequency response flatness, pulse response fidelity, or distortion, the simplest and most effective solution is to isolate the capacitive load from the feedback loop by inserting a series isolation resistor between the amplifier output and the capacitive load.

The typical characteristic curves show the recommended R_S versus capacitive load and the resulting frequency response at the load. Parasitic capacitive loads greater than 2pF can begin to degrade the performance of the OPA830. Long PCB traces, unmatched cables, and connections to multiple devices can easily exceed this value. Always consider this effect carefully, and add the recommended series resistor as close as possible to the output pin (see also the *Layout Guidelines* section).

The criterion for setting this R_S resistor is a maximum bandwidth, flat frequency response at the load. For a gain of +2, the frequency response at the output pin is already slightly peaked without the capacitive load, requiring relatively high values of R_S to flatten the response at the load. Increasing the noise gain also reduces the peaking (see \boxtimes 8-9).

8.1.8 Distortion Performance

The OPA830 provides good distortion performance into a 150 Ω load. Relative to alternative solutions, the OPA830 provides exceptional performance into lighter loads, and operating on a single 3V supply. Generally, until the fundamental signal reaches very high frequency or power levels, the 2nd-harmonic dominates the distortion with a negligible 3rd-harmonic component. Focusing then on the 2nd-harmonic, increasing the load impedance improves distortion directly. Remember that the total load includes the feedback network; in the noninverting configuration (see \boxtimes 8-3) this result is the sum of R_F + R_G, while in the inverting configuration, only R_F must be included in parallel with the actual load. Running differential suppresses the 2nd-harmonic (see also the differential typical characteristic curves).

Product Folder Links: OPA830

を送信 Copyright © 2025 Texas Instruments Incorporated

8.1.9 Noise Performance

High slew rate, unity-gain stable, voltage-feedback op amps usually achieve a slew rate at the expense of a higher input noise voltage. The $9.2 \text{nV}/\sqrt{\text{Hz}}$ input voltage noise for the OPA830, however, is much lower than comparable amplifiers. The input-referred voltage noise and the two input-referred current noise terms ($2.8 \text{pA}/\sqrt{\text{Hz}}$) combine to give low output noise under a wide variety of operating conditions. $\boxed{2}$ 8-6 shows the op amp noise analysis model with all the noise terms included. In this model, all noise terms are taken to be noise voltage or current density terms in either $\text{nV}/\sqrt{\text{Hz}}$ or $\text{pA}/\sqrt{\text{Hz}}$.

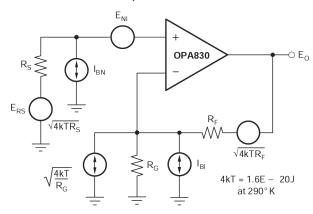


図 8-6. Noise Analysis Model

The total output spot noise voltage can be computed as the square root of the sum of all squared output noise voltage contributors. \boxtimes 8-4 shows the general form for the output noise voltage using the terms shown in \boxtimes 8-6:

$$E_{O} = \sqrt{\left(E_{NI}^{2} + \left(I_{BN}R_{S}\right)^{2} + 4kTR_{S}\right)NG^{2} + \left(I_{BI}R_{F}\right)^{2} + 4kTR_{F}NG}}$$
(4)

Dividing this expression by the noise gain (NG = $(1 + R_F / R_G)$) gives the equivalent input-referred spot noise voltage at the noninverting input, as shown in \boxtimes 8-7:

$$E_{N} = \sqrt{E_{NI}^{2} + (I_{BN}R_{S})^{2} + 4kTR_{S} + \left(\frac{I_{BI}R_{F}}{NG}\right)^{2} + \frac{4kTR_{F}}{NG}}$$
(5)

Evaluating these two equations for the circuit and component values shown in \boxtimes 8-1 gives a total output spot noise voltage of $19.3 \text{nV}/\sqrt{\text{Hz}}$ and a total equivalent input spot noise voltage of $9.65 \text{nV}/\sqrt{\text{Hz}}$. This result includes the noise added by the resistors. This total input-referred spot noise voltage is not much greater than the $9.2 \text{nV}/\sqrt{\text{Hz}}$ Hz specification for the op amp voltage noise alone.

8.1.10 DC Accuracy and Offset Control

The balanced input stage of a wideband voltage-feedback op amp allows good output dc accuracy in a wide variety of applications. The power-supply current trim for the OPA830 gives even tighter control than comparable products. Although the high-speed input stage does require relatively high input bias current (typically 5μ A out of each input terminal), the close matching between the pins can be used to reduce the output dc error caused by this current. This reduction is done by matching the dc source resistances appearing at the two inputs. Evaluating the configuration of \boxtimes 8-3 (which has matched dc input resistances), using worst-case +25°C input offset voltage and current specifications, gives a worst-case output offset voltage equal to:

(NG = noninverting signal gain at DC)
$$\pm (NG \times V_{OS(MAX)}) + (R_F \times I_{OS(MAX)})$$
 =
$$\pm (2 \times 7mV) \times (375\Omega \times 1\mu A)$$
 =
$$\pm 14.38mV$$

English Data Sheet: SBOS263

A fine-scale output offset null, or dc operating point adjustment, is often required. Numerous techniques are available for introducing dc offset control into an op amp circuit. Most of these techniques are based on adding a dc current through the feedback resistor. In selecting an offset trim method, one key consideration is the impact on the desired signal path frequency response. If the signal path is intended to be noninverting, the offset control is best applied as an inverting summing signal to avoid interaction with the signal source. If the signal path is intended to be inverting, applying the offset control to the noninverting input can be considered. Bring the dc offsetting current into the inverting input node through resistor values that are much larger than the signal path resistors. This adjustment circuit configuration has minimal effect on the loop gain, and hence, the frequency response.

8.1.11 Thermal Analysis

The maximum desired junction temperature sets the maximum allowed internal power dissipation. Do not allow the maximum junction temperature to exceed 150°C.

The operating junction temperature (T_J) is given by $T_A + P_D \times \theta_{JA}$. The total internal power dissipation (P_D) is the sum of quiescent power (P_{DQ}) and additional power dissipated in the output stage (P_{DL}) to deliver load power. Quiescent power is simply the specified no-load supply current times the total supply voltage across the part. P_{DL} depends on the required output signal and load; although, for resistive loads connected to mid-supply $(V_S / 2)$, P_{DL} is at a maximum when the output is fixed at a voltage equal to $V_S / 4$ or $3V_S / 4$. Under this condition, $P_{DL} = V_S ^2 / c \times (16 \times R_L)$, where R_L includes feedback network loading.

The power in the output stage, and not into the load, determines internal power dissipation.

As a worst-case example, compute the maximum T_J using an OPA830 (SOT-23-5 package) in the circuit of \boxtimes 8-1 operating at the maximum specified ambient temperature of 85°C and driving a 150 Ω load at mid-supply.

 $P_D = 10V \times 3.9 \text{mA} + 52 / (16 \times (150\Omega || 750\Omega)) = 51.5 \text{mW}$

Maximum $T_1 = 85^{\circ}C + (0.051W \times 186.3^{\circ}C/W) = 94.5^{\circ}C$.

Although this result is still much less than the specified maximum junction temperature, system reliability considerations can require lower specified junction temperatures. The highest possible internal dissipation occurs if the load requires current to be forced into the output at high output voltages, or sourced from the output at low output voltages. This configuration puts a high current through a large internal voltage drop in the output transistors.

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SBOS263

8.2 Typical Applications

8.2.1 Single-Supply ADC Interface

The ADC interface on the front page shows a dc-coupled, single-supply ADC driver circuit. Many systems are now requiring 3V supply capability of both the ADC and driver. The OPA830 provides excellent performance in this demanding application. The large input and output voltage ranges and low distortion support converters such as the THS1040 shown in the figure on page 1. The input level-shifting circuitry was designed so that V_{IN} can be between 0V and 0.5V, while delivering an output voltage of 1V to 2V for the THS1040.

8.2.2 AC-Coupled Output Video Line Driver

Low-power and low-cost video line drivers often buffer digital-to-analog converter (DAC) outputs with a gain of 2 into a doubly-terminated line. Those interfaces typically require a dc blocking capacitor. For a simple design, that interface often has used a very large value blocking capacitor (220 μ F) to limit tilt, or SAG, across the frames. One approach to creating a very low high-pass pole location using much lower capacitor values is shown in \boxtimes 8-7. This circuit gives a voltage gain of 2 at the output pin with a high-pass pole at 8Hz. Given the 150 Ω load, a simple blocking capacitor approach requires a 133 μ F value. The two much lower valued capacitors give this same low-pass pole using this simple SAG correction circuit of \boxtimes 8-7.

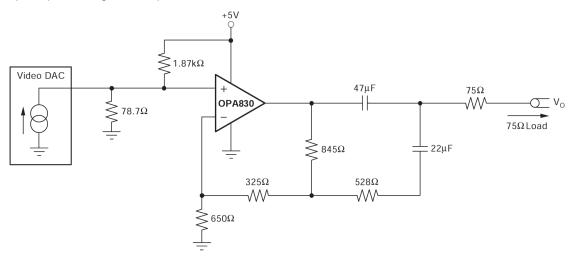


図 8-7. Video Line Driver With SAG Correction

The input is shifted slightly positive in \boxtimes 8-7 using the voltage divider from the positive supply. This shift gives about a 200mV input dc offset that shows up at the output pin as a 400mV dc offset when the DAC output is at zero current during the sync tip portion of the video signal. This offset acts to hold the output in the linear operating region. This offset passes on any power-supply noise to the output with a gain of approximately -20dB, so good supply decoupling is recommended on the power-supply pin. \boxtimes 8-8 shows the frequency response for the circuit of \boxtimes 8-7. This plot shows the 8Hz low-frequency high-pass pole and a high-end cutoff at approximately 100MHz.

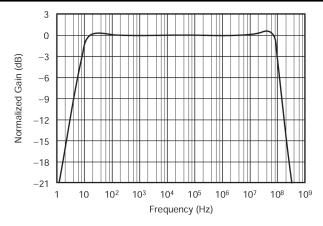


図 8-8. Video Line Driver Response to Matched Load

8.2.3 Noninverting Amplifier With Reduced Peaking

 \boxtimes 8-9 shows a noninverting amplifier that reduces peaking at low gains. Resistor R_C compensates the OPA830 to have greater noise gain (NG), which reduces the ac response peaking (typically 5dB at G = +1 without R_C) without changing the dc gain. V_{IN} must be a low impedance source, such as an op amp. The resistor values are low to reduce noise. Using both R_T and R_F helps minimize the impact of parasitic impedances.

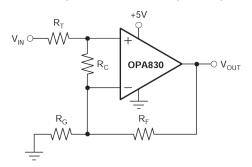


図 8-9. Compensated Noninverting Amplifier

The noise gain is calculated as follows:

$$G_1 = 1 + \frac{R_F}{R_G}$$
 (1)

$$G_2 = 1 + \frac{R_T + \frac{R_F}{G_1}}{R_C}$$
 (2)

$$NG = G_1 \times G_2 \tag{3}$$

A unity-gain buffer can be designed by selecting $R_T = R_F = 20.0\Omega$ and $R_C = 40.2\Omega$ (do not use R_G). This configuration gives a noise gain of 2, so the response is similar to the characteristics plots with G = +2. Decreasing R_C to 20.0Ω increases the noise gain to 3, which typically gives a flat frequency response, but with less bandwidth.

The circuit in \boxtimes 8-1 can be redesigned to have less peaking by increasing the noise gain to 3. This redesign is accomplished by adding $R_C = 2.55k\Omega$ across the op amp inputs.

English Data Sheet: SBOS263

8.2.4 Single-Supply Active Filter

The OPA830, while operating on a single 3V or 5V supply, works well with high-frequency active filter designs. Again, the key additional requirement is to establish the dc operating point of the signal near the supply midpoint for highest dynamic range.

8-10 shows an example design of a 1MHz low-pass Butterworth filter using the Sallen-Key topology.

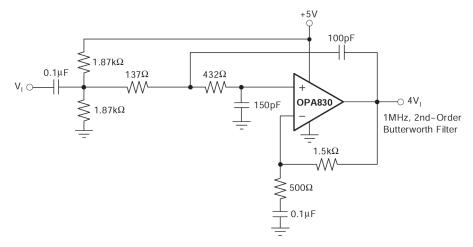


図 8-10. Single-Supply, High-Frequency Active Filter

Both the input signal and the gain setting resistor are ac-coupled using $0.1\mu F$ blocking capacitors (actually giving bandpass response with the low-frequency pole set to 32kHz for the component values shown). As discussed for \mathbb{Z} 8-1, this configuration allows the midpoint bias formed by the two $1.87k\Omega$ resistors to appear at both the input and output pins. The midband signal gain is set to +4 (12dB) in this case. The capacitor to ground on the noninverting input is intentionally set larger to dominate input parasitic terms. At a gain of +4, the OPA830 on a single supply shows 30MHz small- and large-signal bandwidth. The resistor values are slightly adjusted to account for this limited bandwidth in the amplifier stage. Tests of this circuit show a precise 1MHz, -3dB point with a maximally flat pass band (greater than the 32kHz ac-coupling corner), and a maximum stop-band attenuation of 36dB at the amplifier -3dB bandwidth of 30MHz.

8.3 Layout

8.3.1 Layout Guidelines

Achieving optimized performance with a high-frequency amplifier such as the OPA830 requires careful attention to board layout parasitics and external component types. Recommendations that optimize performance include:

- 1. Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output and inverting input pins can cause instability: on the noninverting input, parasitic capacitance can react with the source impedance to cause unintentional bandlimiting. To reduce unwanted capacitance, open a window around the signal I/O pins in all of the ground and power planes around those pins. Otherwise, make sure that ground and power planes are unbroken elsewhere on the board.
- 2. **Minimize the distance** (< 0.25") from the power-supply pins to high-frequency 0.1μF decoupling capacitors. At the device pins, do not place the ground and power-plane layout in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. Always decouple each power-supply connection with one of these capacitors. An optional supply decoupling capacitor (0.1μF) across the two power supplies (for bipolar operation) improves 2nd-harmonic distortion performance. Use larger (2.2μF to 6.8μF) decoupling capacitors, effective at lower frequency, on the main supply pins. Place these capacitors somewhat farther from the device. These capacitors can be shared among several devices in the same area of the PCB.
- 3. Carefully select and place external components to preserve the high-frequency performance. Use very low reactance type resistors. Surface-mount resistors work best and allow a tighter overall layout. Metal film or carbon composition axially-leaded resistors can also provide good high-frequency performance. Again, keep the leads and PCB traces as short as possible. Never use wire-wound type resistors in a high-frequency application. The output pin and inverting input pin are the most sensitive to parasitic capacitance; therefore, always position the feedback and series output resistor, if any, as close as possible to the output pin. Place other network components, such as noninverting input termination resistors, close to the package. Where double-side component mounting is allowed, place the feedback resistor directly under the package on the other side of the board between the output and inverting input pins. Even with a low parasitic capacitance shunting the external resistors, excessively high resistor values can create significant time constants that can degrade performance. Good axial metal film or surface-mount resistors have approximately 0.2pF in shunt with the resistor. For resistor values > 1.5kΩ, this parasitic capacitance can add a pole, zero below 500MHz, or both, that can effect circuit operation. Keep resistor values as low as possible consistent with load driving considerations. The 750Ω feedback used in the *Typical Characteristics* is a good starting point for design.
- 4. Make connections to other wideband devices on the board with short direct traces or through onboard transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Use relatively wide traces (50mils to 100mils), preferably with ground and power planes opened up around them. Estimate the total capacitive load and set R_S from the typical characteristic curve Recommended R S vs Capacitive Load. RS is not always needed for low parasitic capacitive loads (< 5pF) because the OPA830 is nominally compensated to operate with a 2pF parasitic load. Higher parasitic capacitive loads without an R_S are allowed as the signal gain increases (increasing the unloaded phase margin). If a long trace is required, and the 6dB signal loss intrinsic to a doubly terminated transmission line is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50Ω environment is normally not necessary onboard, and in fact, a higher impedance environment improves distortion; see also the distortion versus load plots. With a characteristic board trace impedance defined (based on board material and trace dimensions), a matching series resistor into the trace from the output of the OPA830 is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance is the parallel combination of the shunt resistor and the input impedance of the destination device; set this total effective impedance to match the trace impedance. If the 6dB attenuation of a doubly terminated transmission line is unacceptable, a long trace can be series-terminated at the source end only. Treat the trace as a capacitive load in this case and set the series resistor value as shown in the typical characteristic curve Recommended R _S vs Capacitive Load. This configuration does not preserve signal integrity as well as a doubly-terminated line. If the input impedance of the destination device is low,

資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2025 Texas Instruments Incorporated

some signal attenuation occurs due to the voltage divider formed by the series output into the terminating impedance.

5. **Do not socket a high-speed device.** The additional lead length and pin-to-pin capacitance introduced by the socket can create an extremely troublesome parasitic network that can make achieving a smooth, stable frequency response almost impossible. Best results are obtained by soldering the OPA830 onto the board.

8.3.1.1 Input and ESD Protection

The OPA830 is built using a very high-speed complementary bipolar process. The internal junction breakdown voltages are relatively low for these very small geometry devices. These breakdowns are reflected in the *Absolute Maximum Ratings*. All device pins are protected with internal ESD protection diodes to the power supplies, as in \boxtimes 8-11.

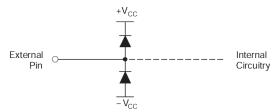


図 8-11. Internal ESD Protection

These diodes provide moderate protection to input overdrive voltages greater than the supplies as well. The protection diodes can typically support 30mA continuous current. Where higher currents are possible (that is, in systems with ±15V supply parts driving into the OPA830), add current-limiting series resistors into the two inputs. Keep these resistor values as low as possible because high values degrade both noise performance and frequency response.

45

Product Folder Links: OPA830

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 Device Support

9.1.1 Development Support

9.1.1.1 Demonstration Boards

Two printed circuit boards (PCBs) are available to assist in the initial evaluation of circuit performance using the OPA830 in two package options. Both of these PCBs are offered free of charge as unpopulated PCBs, delivered with a user's guide. The summary information for these fixtures is shown in 表 9-1.

表 9-1. Demonstration Fixtures by Package

PRODUCT	PACKAGE	ORDERING NUMBER	LITERATURE NUMBER
OPA830ID	SO-8	DEM-OPA-SO-1A	SBOU009
OPA830IDBV	SOT23-5	DEM-OPA-SOT-1A	SBOU010

Request demonstration fixtures at the Texas Instruments web site through the OPA830 product folder.

9.1.1.2 Macromodel and Applications Support

Computer simulation of circuit performance using SPICE is often a quick way to analyze the performance of the OPA830 and circuit designs. This is particularly true for video and RF amplifier circuits where parasitic capacitance and inductance can play a major role on circuit performance. A SPICE model for the OPA830 is available through the TI web page. The applications department is also available for design assistance. These models predict typical small signal ac, transient steps, dc performance, and noise under a wide variety of operating conditions. The models include the noise terms found in the electrical specifications of the data sheet. These models do not attempt to distinguish between the package types in small-signal ac performance.

9.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

9.3 サポート・リソース

テキサス・インスツルメンツ E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

9.4 Trademarks

テキサス・インスツルメンツ E2E™ is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

9.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2025 Texas Instruments Incorporated

9.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

10 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision G (November 2024) to Revision H (December 2024)	Page
Updated power supply for DBV package in	Absolute Maximum Ratings	4
· Added D package electrical characteristics	back into Specifications	13
Moved electrical characteristics for DBV as	nd D packages into separate tables	13
Changes from Revision F (August 2008) to	Revision G (November 2024)	Page
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	SD 定格」、「推奨動作条件」、「熱に関する情報」、	
	プリケーション」、「レイアウト」、「レイアウトのガイドラ	
	ケージ、および注文情報」の各セクションを追加	
	DD	
	device performance	
• Updated θ _{JA} in <i>Thermal Analysis</i>		40
Changes from Revision E (August 2007) to	Revision F (August 2008)	Page
	alue from −40°C to −65°C in <i>Absolute Maximun</i>	<u> </u>
Changes from Revision D (March 2006) to	Revision F (August 2007)	Page
	, , ,	
• 「村女」 C 000V/IIS を 000V/µS に変更		

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

47

www.ti.com 1-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
OPA830ID	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 830
OPA830ID.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 830
OPA830IDBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	A72
OPA830IDBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	A72
OPA830IDBVR.B	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	A72
OPA830IDBVRG4	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A72
OPA830IDBVRG4.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A72
OPA830IDBVRG4.B	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A72
OPA830IDBVT	Obsolete	Production	SOT-23 (DBV) 5	-	-	Call TI	Call TI	-40 to 85	A72
OPA830IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 830
OPA830IDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 830

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 1-Nov-2025

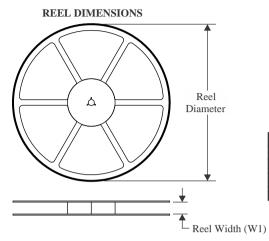
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

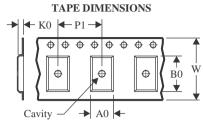
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF OPA830:

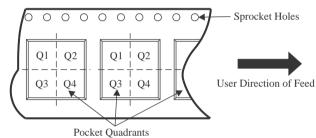
• Enhanced Product : OPA830-EP


NOTE: Qualified Version Definitions:

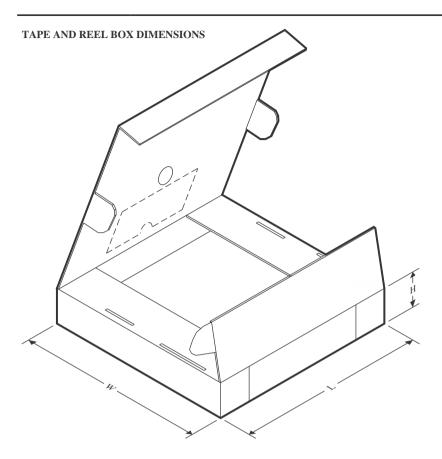

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

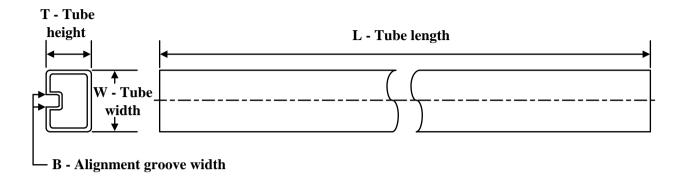
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA830IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
OPA830IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 24-Jul-2025

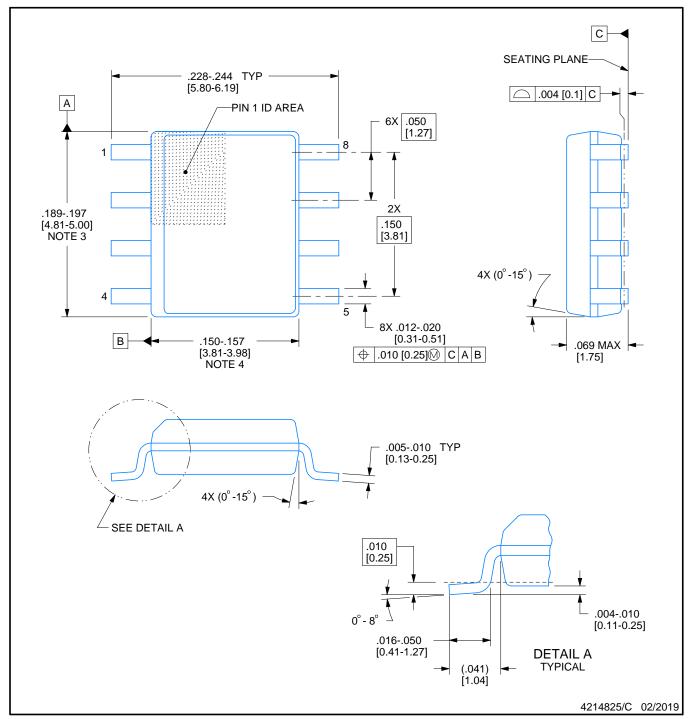

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA830IDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
OPA830IDR	SOIC	D	8	2500	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

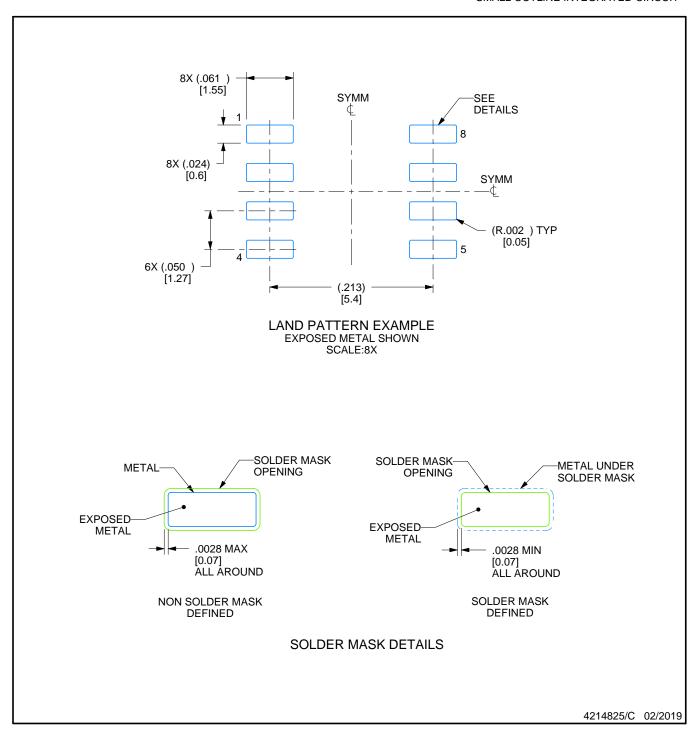
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
OPA830ID	D	SOIC	8	75	506.6	8	3940	4.32
OPA830ID.A	D	SOIC	8	75	506.6	8	3940	4.32

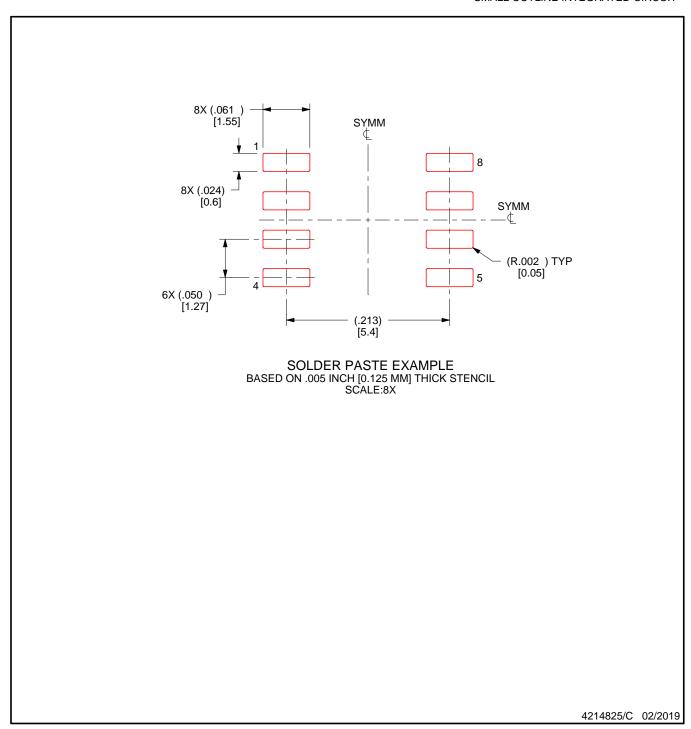
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

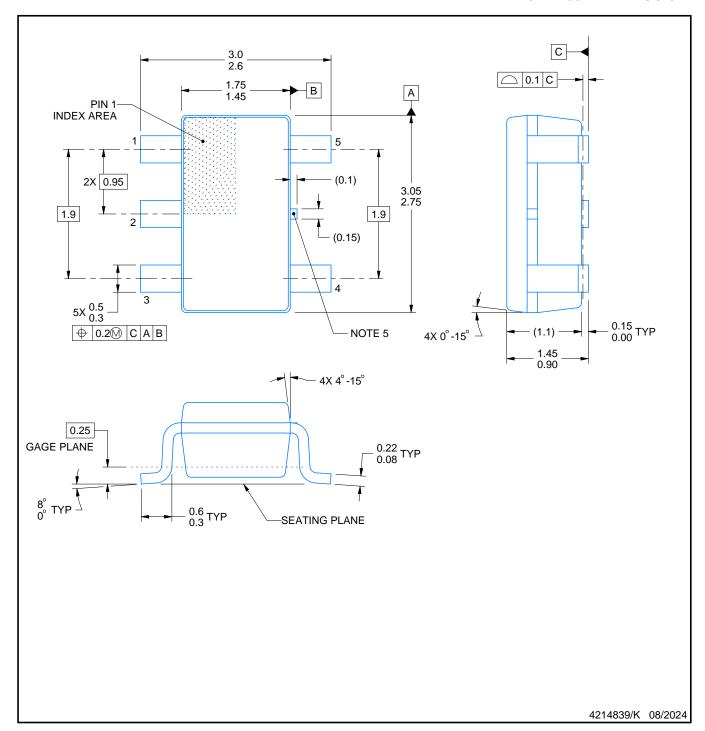
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

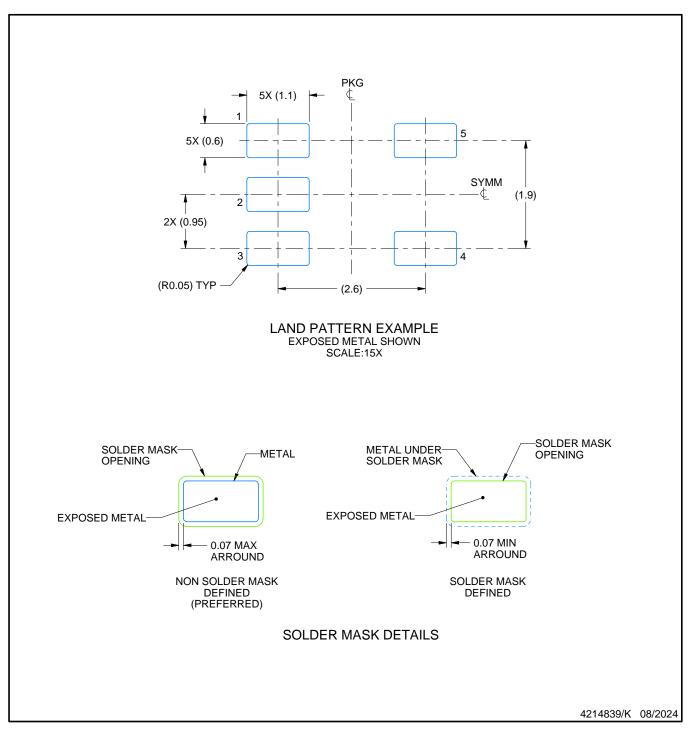
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

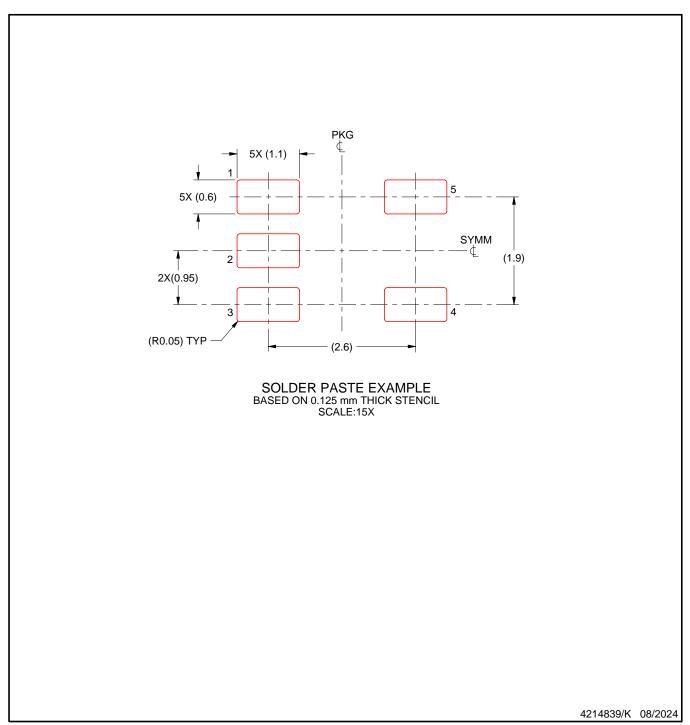
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月