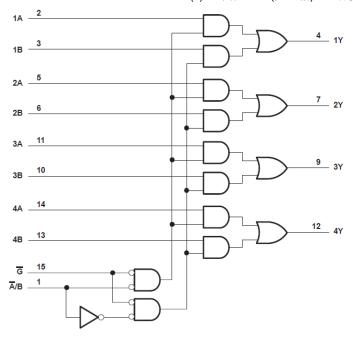
JAJSO50F - DECEMBER 1982 - REVISED FEBRUARY 2025

SNx4HC157 クワッド、2 ライン入力 1 ライン出力、データ・セレクタ / マル チプレクサ

1 特長

- 広い動作電圧範囲:2V~6V
- 出力は最大 15 個の LSTTL 負荷を駆動可能
- 低消費電力、最大 I_{CC}:80μA
- t_{pd} = 11ns (標準値)
- 5V で ±6mA の出力駆動能力
- 小さい入力電流、最大 1µA


2 概要

SNx4HC157 は、2 つのデータ源の 1 つを選択するため の 4 つのデータ セレクタ / マルチプレクサを内蔵していま す。 すべてのチャネルは、同じアドレス選択 (Ā/B) 入力と ストローブ (\overline{G}) 入力により制御されます。ストローブ端子に HIGH レベルを印加すると、すべての出力は LOW に強 制されます。

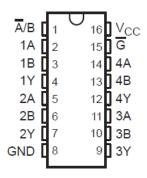
製品情報

部品番号	パッケージ ⁽¹⁾	本体サイズ (公称) ⁽²⁾
	D (SOIC, 16)	9.90mm × 3.90mm
	DB (SSOP, 16)	6.20mm × 5.30mm
SN74HC157	N (PDIP, 16)	19.31mm × 6.35mm
	NS (SOP, 16)	6.20mm × 5.30mm
	PW (TSSOP, 16)	5.00mm × 4.40mm
	J (CDIP, 16)	24.38mm × 6.92mm
SN54HC157	FK (LCCC, 20)	8.89mm × 8.45mm
	W (CFP, 16)	10.16mm × 6.73mm

- (1) 詳細については、セクション 10 を参照してください。
- 本体サイズ (長さ×幅) は公称値であり、ピンは含まれません。

ここに示すピン番号は D、DB、J、N、NS、PW、W の各パッケージのものです。

機能ブロック図


目次

9
10
10
10
13
13
15
15
ī法 1 <mark>5</mark>
15
15
15
15
15
報16
· · · · · · · · · · · · · · · · · · ·

English Data Sheet: SCLS113

3ピン構成および機能

J、D、DB、N、NS、PW パッケージ 16 ピン CDIP、SOIC、SSOP、PDIP、SO、TSSOP 上面図

NC - No internal connection

FK パッケージ、 20 ピン LCCC (上面図)

ピンの機能

٣	ン		
SOIC または TSSOP NO。	名称	種類 (1)	説明
1	Ā/B	I	アドレス選択
2	1A	I	チャネル 1、データ入力 A
3	1B	I	チャネル 1、データ入力 B
4	1Y	I	チャネル 1、データ出力
5	2A	0	チャネル 2、データ入力 A
6	2B	0	チャネル 2、データ入力 B
7	2Y	I	チャネル 2、データ出力
8	GND	_	グランド
9	3Y	I	チャネル 3、データ出力
10	3B	I	チャネル 3、データ入力 B
11	3A	I	チャネル 3、データ入力 A
12	4Y	I	チャネル 4、データ出力
13	4B	I	チャネル 4、データ入力 B
14	4A	I	チャネル 4、データ入力 A
15	G	I	出力ストローブ、アクティブ Low
16	V _{CC}	_	正電源

(1) I = 入力、O = 出力、P = 電源、FB = フィードバック、GND = グランド、N/A = 該当なし

4 仕様

4.1 絶対最大定格

自由気流での動作温度範囲内 (特に記述のない限り)(1)

			最小値	最大値	単位
V _{CC}	電源電圧範囲		-0.5	7	V
I _{IK}	入力クランプ電流 ⁽²⁾	(V _I < 0 または V _I > V _{CC})		±20	mA
I _{OK}	出力クランプ電流 ⁽²⁾	$(V_O < 0$ または $V_O > V_{CC})$		±20	mA
Io	連続出力電流	(V _O = 0∼V _{CC})		±35	mA
	V _{CC} または GND を通過する	5連続電流		±70	mA
T _J	接合部温度			150	°C
T _{stg}	保存温度		-65	150	°C

⁽¹⁾ 絶対最大定格を上回るストレスが加わった場合、デバイスに永続的な損傷が発生する可能性があります。これはストレス定格のみについて示してあり、このデータシートの「推奨動作条件」に示された値を超える状態で本製品が正常に動作することを暗黙的に示すものではありません。絶対最大定格の状態が長時間続くと、デバイスの信頼性に影響を与える可能性があります。

4.2 推奨動作条件

自由空気での推奨動作温度範囲内 (特に記述のない限り)(1)

		·	SI	N54HC15	7	SI	N74HC15	7	አጻ የተ	
			最小値	公称值	最大値	最小値	公称值	最大値	単位	
V _{CC}	電源電圧		2	5	6	2	5	6	V	
		V _{CC} = 2 V	1.5			1.5				
V _{IH}	High レベル入力電圧	V _{CC} = 4.5 V	3.15			3.15			V	
		V _{CC} = 6 V	4.2			4.2				
		V _{CC} = 2 V			0.5			0.5		
V _{IL}	/ _{IL} Low レベル入力電圧	V _{CC} = 4.5 V			1.35			1.35	V	
		V _{CC} = 6 V			1.8			1.8		
VI	入力電圧		0		V _{CC}	0		V _{CC}	V	
Vo	出力電圧		0		V _{CC}	0		V _{CC}	V	
		V _{CC} = 2 V			1000			1000		
t _t	入力遷移の立ち上がり/立ち下がり 時間	V _{CC} = 4.5 V			500			500	ns	
	 h立 H1	V _{CC} = 6 V			400			400		
T _A	自由空気での動作温度		-55		125	-55		125	°C	

⁽¹⁾ デバイスが適切に動作するように、デバイスの未使用の入力はすべて、V_{CC} または GND に固定する必要があります。 テキサス・インスツルメンツ のアプリケーション レポート『低速またはフローティング SMOS 入力の影響』(文献番号 SCBA004) を参照してください。

4.3 熱に関する情報

		D (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	PW (TSSOP)	
熱評価基準		16 ピン	16 ピン	16 ピン	16 ピン	16ピン	単位
$R_{\theta JA}$	接合部から周囲への熱抵抗(1)	73	82	67	64	108	°C/W

(1) 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション レポートを参照してください。

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

⁽²⁾ 入力と出力の電流定格を順守しても、入力と出力の電圧定格を超えることがあります。

4.4 電気的特性

自由空気での推奨動作温度範囲内 (特に記述のない限り)

,,°==_}, >7	テスト条件 ⁽¹⁾	V	Т	_ _A = 25℃		SN54H	C157	SN74HC157		単位
パラメータ	プクP条件(**)	V _{CC}	最小値	標準値	最大値	最小値	最大値	最小値	最大値	平江
		2 V	1.9	1.998		1.9		1.9		
	$I_{OH} = -20\mu A$	4.5 V	4.4	4.499		4.4		4.4		
V _{OH}		6 V	5.9	5.999		5.9		5.9		V
	I _{OH} = -6mA	4.5 V	3.98	4.3		3.7		3.7		
	I _{OH} = -7.8mA	6 V	5.48	5.8		5.2		5.2		
		2 V		0.002	0.1	-	0.1		0.1	
	$I_{OL} = 20\mu A$	4.5 V		0.001	0.1	-	0.1		0.1	
V _{OL}		6 V		0.001	0.1		0.1		0.1	V
	I _{OL} = 6mA	4.5 V		0.17	0.26		0.4		0.4	
	I _{OL} = 7.8mA	6 V		0.15	0.26		0.4		0.4	
I _I	V _I = V _{CC} または 0	6 V		±0.1	±100	-	±1000		±1000	nA
Icc	$V_1 = V_{CC} \pm \hbar$ $\downarrow 1_0 = 0$	6 V			8		160		160	μΑ
Ci		2V∼6V		3	10		10		10	pF

⁽¹⁾ $V_I = V_{IH}$ または V_{IL} (特に記述のない限り)。

4.5 スイッチング特性

自由空気での推奨動作温度範囲内、CL = 50pF (特に記述のない限り) (「機械、パッケージ、注文情報」を参照)

	パラメータ	始点 (入力)	終点 (出力)	V _{CC}	T _A = 25°C	;	SN54HC157	SN74HC157	単位																			
	<i>ハリ</i> カータ	知点 (人力)	於以(四八)	(V)	最小値 標準値	最大値	最小値 最大値	最小値 最大値	甲亚																			
				2	63	125	190	190																				
		A または B	Y	4.5	13	25	38	38	ns																			
				6	11	21	32	32																				
	t _{pd} 伝搬遅延 A/B			2	67	125	190	190																				
t _{pd}		Ā/B	Y	4.5	18	25	38	38	ns																			
				6	14	21	32	32																				
			Y	Υ	2	59	115	170	170																			
		G			Υ	Y	Y	Υ	Υ	Y	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Y	Υ	Υ	Y	Y	4.5	16	23	34	34
				6	13	20	29	29																				
				2	28	60	90	90																				
t _t	t _t 遷移時間	Y		移時間 Y	Y	Y	4.5	8	12	18	18	ns																
				6	6	10	15	15																				

4.5 スイッチング特性

自由気流での推奨動作温度範囲内、C_L = 150pF (特に記述のない限り) (図 6 を参照)

	パラメータ	始点 (入力)	終点 (出力)	V _{CC}	T _A = 2	25℃		SN54HC15	SN74	HC157	単位																															
	/\/ <i>/</i> //	対点 (ノヘノリ)	をが (田ハ)	_в		值:	最大値	最小値 最大	直 最小値	最大値	#111																															
				2		81	190	29	0	235																																
		A または B	Υ	4.5		23	38		8	47	ns																															
				6		18	33	4	9	41																																
	t _{pd} 伝搬遅延	Ā/B	Y	2		81	210	32	0	260																																
t _{pd}				4.5		23	42	(4	52	ns																															
				6		18	36	;	4	45																																
				2		91	190	29	0	235																																
		G	G	G	G	Υ	Y	Y	Υ	Y	Y	Υ	Υ	Υ	Υ	Y	Υ	Y	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Y	Υ	4.5		24	38	;	8	47	ns
				6		18	33	4	9	41																																
			Y	2		45	210	3	5	265																																
t _t	t _t 遷移時間			4.5		17	42	(3	53	ns																															
																6		13	36	;	3	45																				

4.6 動作特性

 $T_A = 25^{\circ}C$

		テスト条件	標準値	単位
C_{pd}	電力散逸容量	無負荷	40	pF

English Data Sheet: SCLS113

5パラメータ測定情報

t_{pd} は、t_{PLH} と t_{PHL} との間の最大値です

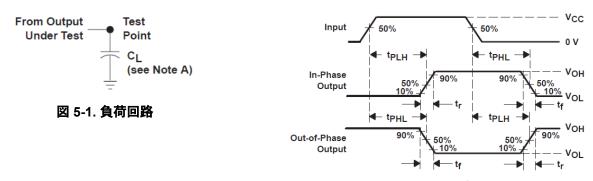


図 5-2. 電圧波形 伝搬遅延および出力遷移時間

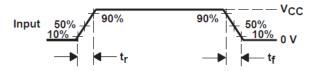


図 5-3. 電圧波形 入力の立ち上がりおよび立ち下がり時間

C_L にはプローブとテスト装置の静電容量が含まれます。

B. 波形間の位相関係は、任意に選択されました。 すべての入力パルスは、以下の特性を持つジェネレータによって供給されます。 PRR \leq 1MHz、 Z_O = 50 Ω 、 t_r = 6ns、 t_f = 6ns。

C. 出力は一度に 1 つずつ測定され、測定ごとに 1 つの入力が遷移します。

English Data Sheet: SCLS113

6 詳細説明

6.1 概要

SNx4HC157 は、多重化またはデータ ルーティング アプリケーションに最適な高速シリコン ゲート CMOS マルチプレクサです。 本デバイスは 4 つの 2:1 マルチプレクサを内蔵しています。

SNx4HC157 は非同期で動作し、各 Y 出力はアドレス入力 (Ā/B) によって選択された入力と等しくなります。4 つのチャネルはすべて同じアドレス入力によって制御されます。

他の入力の状態に関係なく、ストローブ (\overline{G}) 入力はすべての Y 出力を Low に強制します。

6.2 機能ブロック図

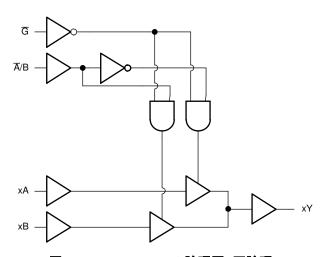


図 6-1. SNx4HC157 の論理図 (正論理)

6.3 機能説明

6.3.1 標準 CMOS 入力

このデバイスには、標準 CMOS 入力が搭載されています。標準 CMOS 入力は高インピーダンスであり、通常は電気的 特性に示されている入力容量と並列の抵抗としてモデル化されます。ワースト ケースの抵抗は、「絶対最大定格」に示されている最大入力電圧と、「電気的特性」に示されている最大入力リーク電流からオームの法則 (R = V ÷ I) を使用して計算されます。

標準 CMOS 入力では、「推奨動作条件」表の入力遷移時間またはレートで定義されるように、有効なロジック状態間で入力信号を迅速に遷移させる必要があります。この仕様を満たさないと、消費電力が過剰になり、発振の原因となる可能性があります。詳細については、『低速またはフローティング CMOS 入力の影響』を参照してください。

動作中は、標準 CMOS 入力をフローティングのままにしないでください。未使用の入力は、V_{CC} または GND に終端させる必要があります。システムが入力を常にアクティブに駆動している訳ではない場合、システムが入力をアクティブに駆動していないときに有効な入力電圧を与えるため、プルアップまたはプルダウン抵抗を追加できます。抵抗値は複数の要因で決まりますが、10kΩ の抵抗を推奨します。通常はこれですべての要件を満たします。

6.3.2 TTL 互換 CMOS 入力

このデバイスには、TTL 互換の CMOS 入力が搭載されています。これらの入力は、入力電圧スレッショルドを下げることで TTL ロジック デバイスと接続するように特に設計されています。

TTL 互換 CMOS 入力は高インピーダンスであり、通常は「電気的特性」に示されている入力容量と並列の抵抗としてモデル化されます。 ワースト ケースの抵抗は、「絶対最大定格」に示されている最大入力電圧と、「電気的特性」に示されている最大入力リーク電流からオームの法則 (R = V ÷ I) を使用して計算されます。

TTL 互換 CMOS 入力では、「推奨動作条件」表の入力遷移時間またはレートで定義されるように、有効なロジック状態間で入力信号を迅速に遷移させる必要があります。この仕様を満たさないと、消費電力が過剰になり、発振の原因となる可能性があります。詳細については、『低速またはフローティング CMOS 入力の影響』アプリケーションレポートを参照してください。

動作中は、TTL 互換 CMOS 入力をフローティングのままにしないでください。未使用の入力は、 V_{CC} または GND に終端させる必要があります。システムが常に入力をアクティブに駆動していない場合は、プルアップまたはプルダウン抵抗を追加して、これらの時間中に有効な入力電圧を供給できます。抵抗値は複数の要因によって決まりますが、 $10k\Omega$ の抵抗を推奨します。通常はこれですべての要件を満たします。

6.4 デバイスの機能モード

機能表 に、SNx4HC157 の機能モードを示します。

入力(1) 出力 データ 選択 $\overline{\mathsf{G}}$ Υ A/B Α В Н Χ Χ Χ L L L L Χ L Χ L L Н Н L Н Χ L L L Х Н Н Н

表 6-1. 機能表

(1) H = High 電圧レベル、L = Low 電圧レベル、X = ドントケア

7アプリケーションと実装

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

7.1 アプリケーション情報

SNx4HC157 はクワッド 2:1 データ セレクタ / マルチプレクサです。以下のアプリケーションは、2 つのソース デバイスの間で 4 ビット データ バスを切り替えるために必要なすべての接続を備えた本デバイスの使い方の例を示しています。

7.2 代表的なアプリケーション

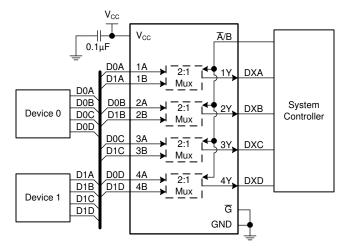


図 7-1. 代表的なアプリケーションのブロック図

7.2.1 設計要件

7.2.1.1 電源に関する考慮事項

目的の電源電圧が「推奨動作条件」で規定されている範囲内であることを確認します。「電気的特性」セクションに記載されているように、電源電圧は本デバイスの電気的特性を決定づけます。

正電圧の電源は、「電気的特性」に記載された静的消費電流 (I_{CC}) の最大値、スイッチングに必要な任意の過渡電流の合計に等しい電流を供給できる必要があります。

グランドは、SNx4HC157のすべての出力によってシンクされる総電流、「電気的特性」に記載された消費電流 (Icc)の最大値、スイッチングに必要な任意の過渡電流の合計に等しい電流をシンクできる必要があります。ロジック デバイスは、グランド接続にシンクできる電流のみをシンクできます。「絶対最大定格」に記載された GND 総電流の最大値を超えないようにしてください。

SNx4HC157 は、データシートの仕様をすべて満たしつつ、合計容量 50pF 以下の負荷を駆動できます。これより大きな容量性負荷を印加することもできますが、50pF を超えることは推奨しません。

SNx4HC157 は、「電気的特性」表に定義されている出力電圧および電流 (V_{OL}) で、 $R_L \ge V_O / I_O$ で記述される合計抵抗の負荷を駆動できます。High 状態で出力する場合、この式の出力電圧は、測定した出力電圧と V_{CC} ピンの電源電圧の差として定義されます。

総消費電力は、『CMOS の消費電力と Cpd の計算』に記載されている情報を使用して計算できます。

熱上昇は、『標準リニアおよびロジック (SLL) パッケージおよびデバイスの熱特性』に記載されている情報を使用して計算できます。

注意

「絶対最大定格」に記載された最大接合部温度 (T_{J(max)}) は、本デバイスの損傷を防止するための追加の制限値です。「絶対最大定格」に記載されたすべての制限値を必ず満たすようにしてください。これらの制限値は、デバイスへの損傷を防ぐために規定されています。

English Data Sheet: SCLS113

7.2.1.2 入力に関する考慮事項

入力信号は、 $V_{IL(max)}$ を超えるとロジック Low と見なされ、 $V_{IH(min)}$ を超えるとロジック High と見なされます。「絶対最大定格」に記載された最大入力電圧範囲を超えないようにしてください。

未使用の入力は、V_{CC} またはグランドに終端させる必要があります。入力がまったく使われていない場合は、未使用の入力を直接終端させることができます。入力が常時ではなく、時々使用される場合は、プルアップ抵抗かプルダウン抵抗と接続することも可能です。デフォルト状態が High の場合にはプルアップ抵抗、デフォルト状態が Low の場合にはプルダウン抵抗を使用します。コントローラの駆動電流、SNx4HC157 へのリーク電流 (「電気的特性」で規定)、および必要な入力遷移レートによって抵抗のサイズが制限されます。こうした要因により 10kΩ の抵抗値がしばしば使用されます。

SNx4HC157 は CMOS 入力を備えているため、正しく動作するには、「推奨動作条件」表で定義されているように、入力が素早く遷移する必要があります。入力遷移が遅いと発振が発生し、消費電力の増大やデバイスの信頼性の低下を招くことがあります。

このデバイスの入力の詳細については、「機能説明」セクションを参照してください。

7.2.1.3 出力に関する考慮事項

グランド電圧を使用して、出力 Low 電圧を生成します。出力に電流をシンクすると、「電気的特性」の V_{OL} 仕様で規定されたように出力電圧が上昇します。

未使用の出力はフローティングのままにできます。出力を V_{CC} またはグランドに直接接続しないようにしてください。 本デバイスの出力の詳細については、「機能説明」セクションを参照してください。

7.2.2 詳細な設計手順

- 1. V_{CC} と GND の間にデカップリング コンデンサを追加します。このコンデンサは、物理的にデバイスの近く、かつ V_{CC} ピンと GND ピンの両方に電気的に近づけて配置する必要があります。レイアウト例を「レイアウト」セクションに示します。
- 2. 出力の容量性負荷は、必ず 50pF 以下になるようにします。これは厳密な制限ではありませんが、設計上、性能が最適化されます。これは、SNx4HC157 から 1 つまたは複数の受信デバイスまでのトレースを短い適切なサイズにすることで実現できます。
- 3. 出力の抵抗性負荷を $(V_{CC}/I_{O(max)})\Omega$ より大きくします。これを行うと、「絶対最大定格」の最大出力電流に違反するのを防ぐことができます。ほとんどの CMOS 入力は、 $M\Omega$ 単位で測定される抵抗性負荷を備えています。これは、上記で計算される最小値よりはるかに大きい値です。
- 4. 熱の問題がロジック ゲートにとって問題となることはほとんどありません。ただし、消費電力と熱の上昇は、アプリケーション レポート『CMOS 消費電力と CPD の計算』に記載されている手順を使用して計算できます。

7.2.3 アプリケーション曲線

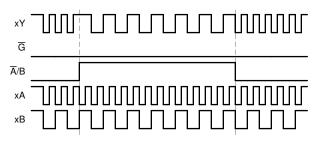


図 7-2. アプリケーション タイミング図

7.3 電源に関する推奨事項

電源には、「推奨動作条件」に記載された電源電圧定格の最小値と最大値の間の任意の電圧を使用できます。

電源の外乱を防止するため、各 V_{CC} 端子に適切なバイパスコンデンサを配置する必要があります。SNx4HC157には、 $0.1\mu F$ バイパスコンデンサを推奨します。異なる周波数のノイズを除去するため、複数のバイパスコンデンサを並列に配置します。通常、 $0.1\mu F$ と $1\mu F$ の値のコンデンサを並列にして使います。

7.4 レイアウト

7.4.1 レイアウトのガイドライン

- バイパス コンデンサの配置
 - デバイスの正電源端子の近くに配置
 - 電気的に短いグランド帰還パスを提供
 - インピーダンスを最小化するため、広いパターンを使用
 - 可能な場合はいつでも、ボードの同じ側にデバイス、コンデンサ、パターンを配置
- 信号トレースの形状
 - 8mil~12mil のトレース幅
 - 伝送ラインの影響を最小化する 12cm 未満の長さ
 - 信号トレースの 90° のコーナーは避ける
 - 信号トレースの下に、途切れのないグランドプレーンを使用
 - 信号トレース周辺の領域をグランドでフラッドフィル
 - 12cm を超えるパターン用
 - インピーダンス制御トレースを使用
 - 出力の近くに直列ダンピング抵抗を使用して、ソース終端
 - 分岐を回避。個別に分岐が必要なバッファ信号

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

7.4.2 レイアウト例

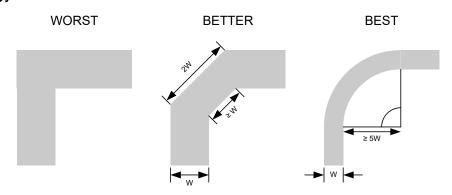


図 7-3. シグナル インテグリティ向上のためのサンプル パターンのコーナー

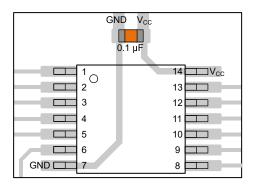


図 7-4. TSSOP や類似のパッケージに対応するバイパ ス コンデンサの配置例

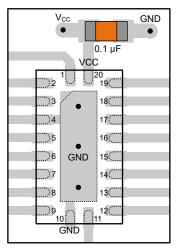


図 7-5. WQFN や類似のパッケージに対応するバイパス コンデンサの配置例

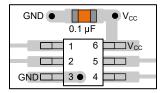


図 7-6. SOT、SC70、および類似のパッケージに対応するバイパス コンデンサの配置例

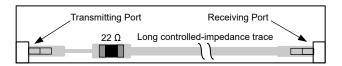


図 7-7. シグナル インテグリティ向上のためのダンピング抵抗の配置例

8 デバイスおよびドキュメントのサポート

テキサス・インスツルメンツは、幅広い開発ツールを提供しています。デバイスの性能の評価、コードの生成、ソリューションの開発を行うためのツールとソフトウェアを以下で紹介します。

8.1 ドキュメントのサポート

8.1.1 関連資料

関連資料については、以下を参照してください。

- テキサス・インスツルメンツ、『CMOS の消費電力と Cpd の計算』アプリケーション・レポート
- テキサス・インスツルメンツ、『ロジックを使用した設計』アプリケーション・レポート
- テキサス・インスツルメンツ、『標準リニアおよびロジック (SLL) パッケージおよびデバイスの熱特性』アプリケーション・レポート

8.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

8.3 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

8.4 商標

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

8.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

8.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

9 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision E (February 2022) to Revision F (February 2025)

Page

- SN74HC157 の動作温度を 125°C に更新し、「*推奨動作条件*」表、「*電気的特性*」表、「*スイッチング特性*」表のそれ ぞれの値も更新.......
- 「ピン機能」のおよび「ピン構成および機能」のセクションを追加......1

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

15

Changes from Revision D (September 2003) to Revision E (February 2022)

Page

10 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated www.ti.com

24-Jul-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
5962-86061012A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 86061012A SNJ54HC 157FK
5962-8606101EA	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8606101EA SNJ54HC157J
5962-8606101VEA	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8606101VE A SNV54HC157J
5962-8606101VEA.A	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8606101VE A SNV54HC157J
SN54HC157J	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54HC157J
SN54HC157J.A	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54HC157J
SN74HC157D	Obsolete	Production	SOIC (D) 16	-	-	Call TI	Call TI	-40 to 85	HC157
SN74HC157DBR	Active	Production	SSOP (DB) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC157
SN74HC157DBR.A	Active	Production	SSOP (DB) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC157
SN74HC157DR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	HC157
SN74HC157DR.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC157
SN74HC157DRG4	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC157
SN74HC157DRG4.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC157
SN74HC157DT	Obsolete	Production	SOIC (D) 16	-	-	Call TI	Call TI	-40 to 85	HC157
SN74HC157N	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74HC157N
SN74HC157N.A	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74HC157N
SN74HC157NE4	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74HC157N
SN74HC157NSR	Active	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC157
SN74HC157NSR.A	Active	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC157
SN74HC157PW	Obsolete	Production	TSSOP (PW) 16	-	-	Call TI	Call TI	-40 to 85	HC157
SN74HC157PWR	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU SN NIPDAU	J Level-1-260C-UNLIM	-40 to 85	HC157
SN74HC157PWR.A	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC157
SN74HC157PWR.B	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	=	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC157

24-Jul-2025

www.ti.com

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	(3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
SN74HC157PWT	Obsolete	Production	TSSOP (PW) 16	-	-	Call TI	Call TI	-40 to 85	HC157
SNJ54HC157FK	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 86061012A SNJ54HC 157FK
SNJ54HC157FK.A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 86061012A SNJ54HC 157FK
SNJ54HC157J	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8606101EA SNJ54HC157J
SNJ54HC157J.A	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8606101EA SNJ54HC157J
SNJ54HC157W	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54HC157W
SNJ54HC157W.A	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54HC157W

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 24-Jul-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

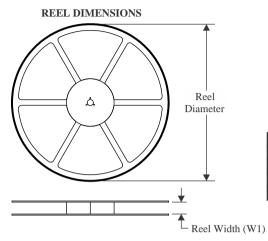
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

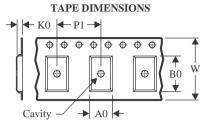
OTHER QUALIFIED VERSIONS OF SN54HC157, SN54HC157-SP, SN74HC157:

Catalog: SN74HC157, SN54HC157

Military: SN54HC157

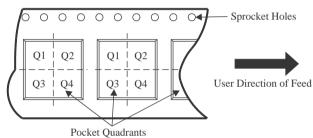
Space: SN54HC157-SP


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

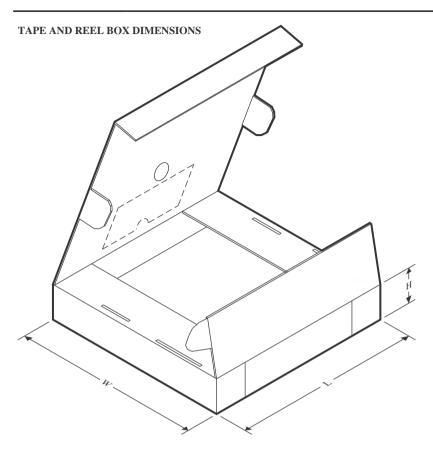
PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

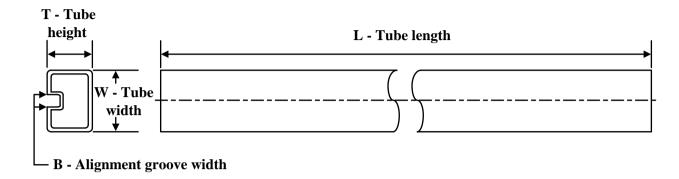
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC157DBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74HC157DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC157DRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC157NSR	SOP	NS	16	2000	330.0	16.4	8.45	10.55	2.5	12.0	16.2	Q1
SN74HC157PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 25-Jul-2025

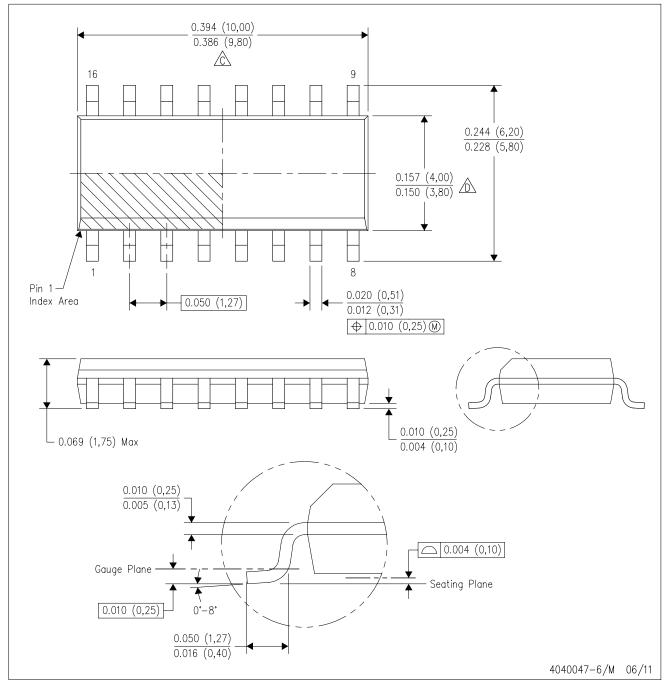

*All dimensions are nominal

7 111 011110110110110 0110 11101111101							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC157DBR	SSOP	DB	16	2000	353.0	353.0	32.0
SN74HC157DR	SOIC	D	16	2500	353.0	353.0	32.0
SN74HC157DRG4	SOIC	D	16	2500	353.0	353.0	32.0
SN74HC157NSR	SOP	NS	16	2000	353.0	353.0	32.0
SN74HC157PWR	TSSOP	PW	16	2000	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jul-2025

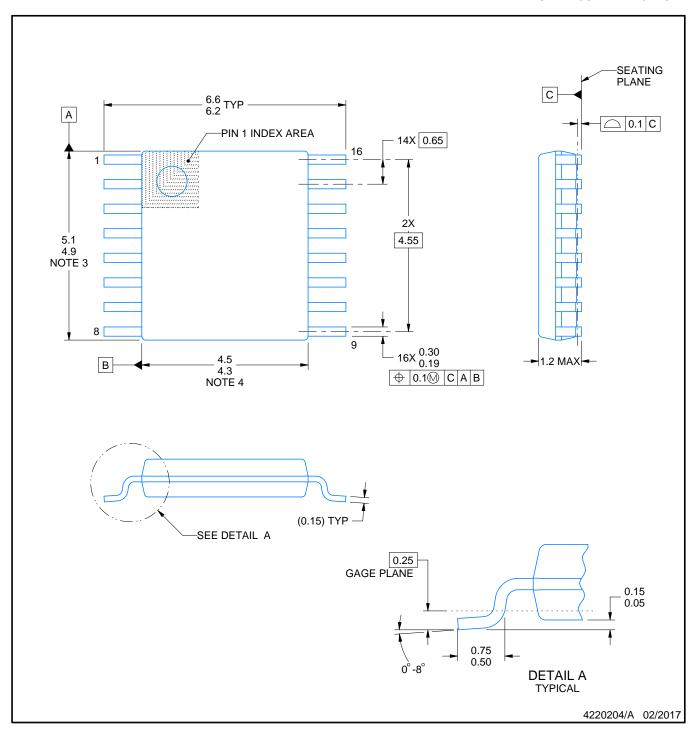
TUBE



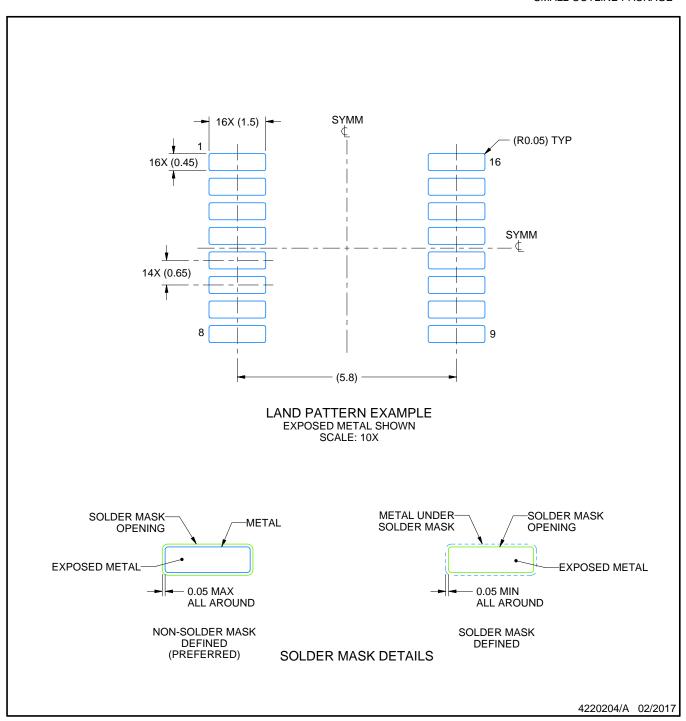
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-86061012A	FK	LCCC	20	55	506.98	12.06	2030	NA
SN74HC157N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC157N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC157N.A	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC157N.A	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC157NE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC157NE4	N	PDIP	16	25	506	13.97	11230	4.32
SNJ54HC157FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54HC157FK.A	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54HC157W	W	CFP	16	25	506.98	26.16	6220	NA
SNJ54HC157W.A	W	CFP	16	25	506.98	26.16	6220	NA

D (R-PDS0-G16)


PLASTIC SMALL OUTLINE

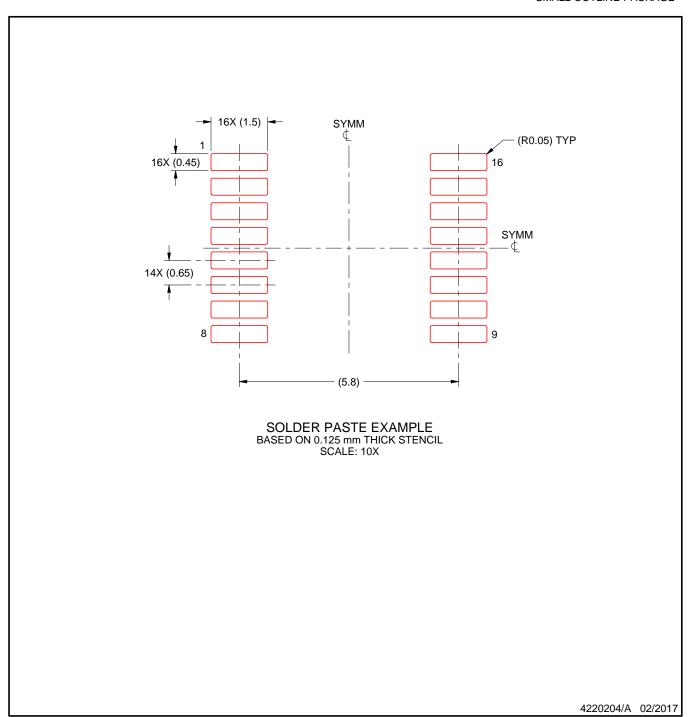
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

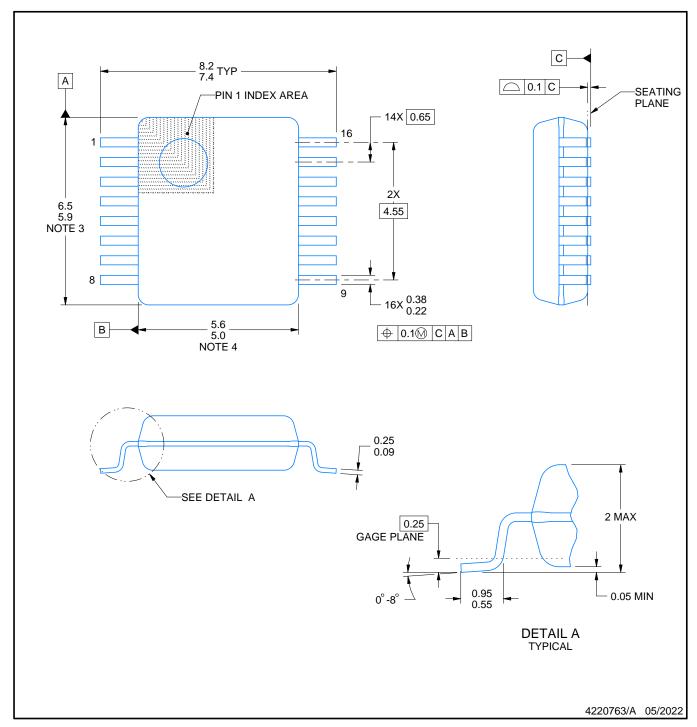
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

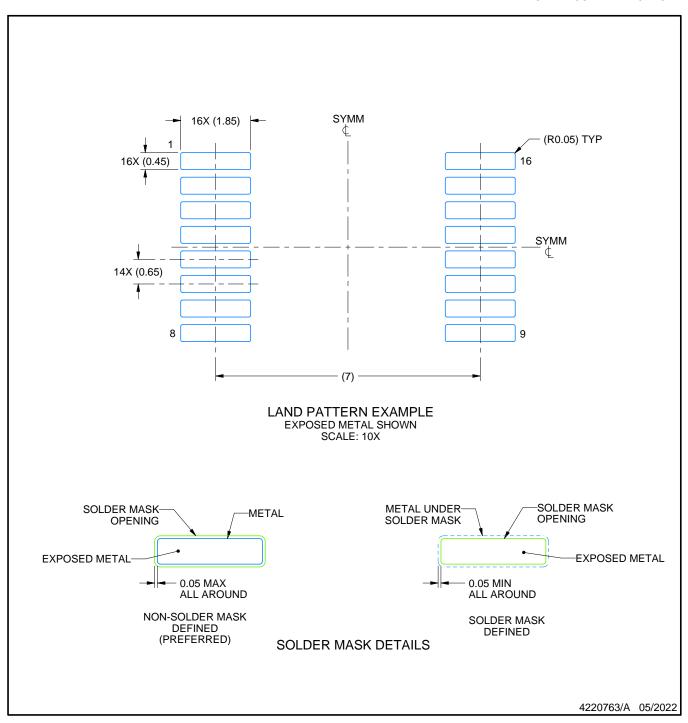
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

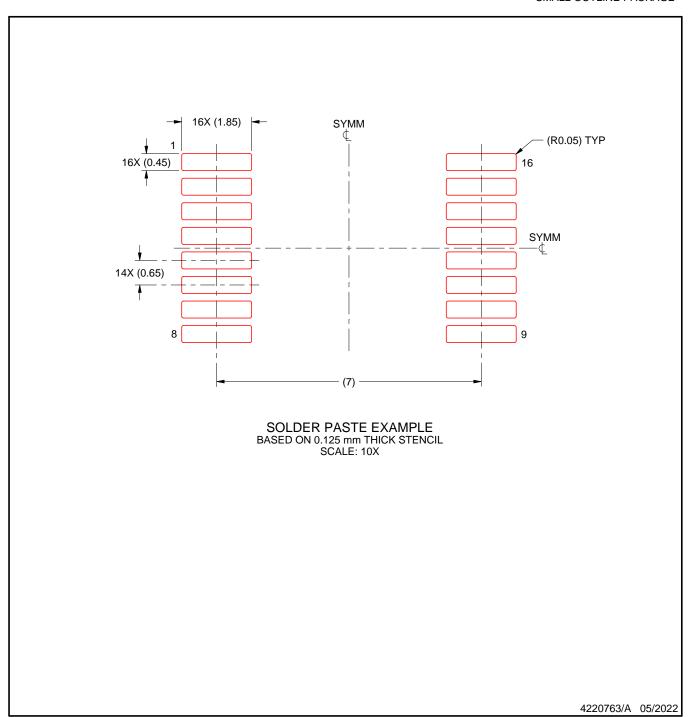
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.

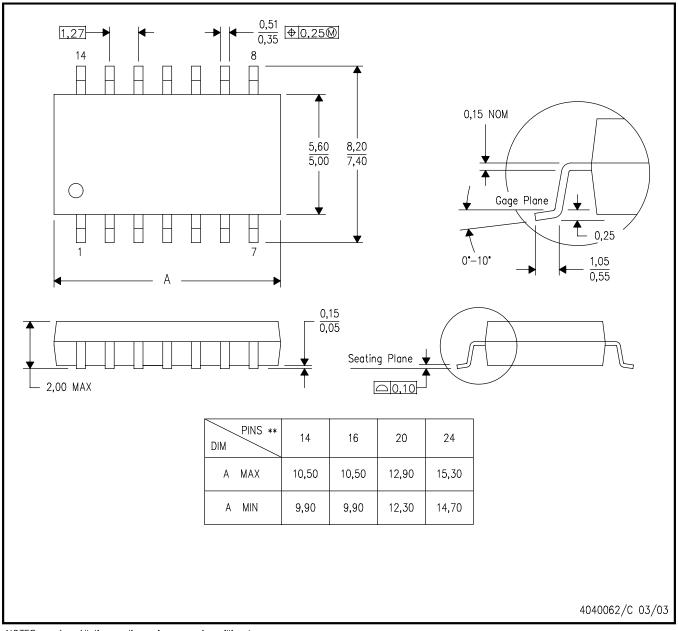


NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

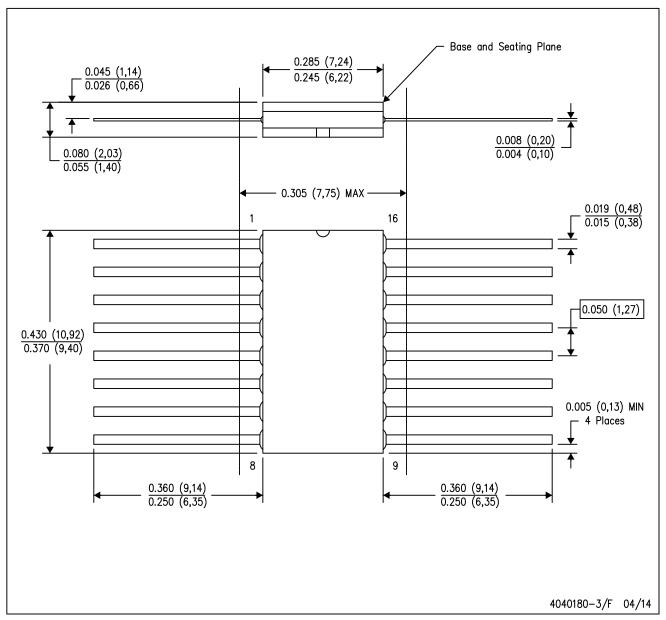


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

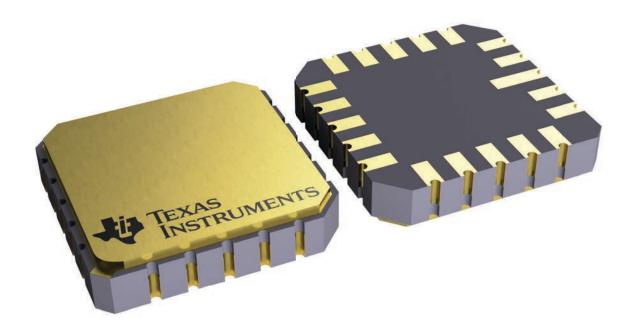
PLASTIC SMALL-OUTLINE PACKAGE



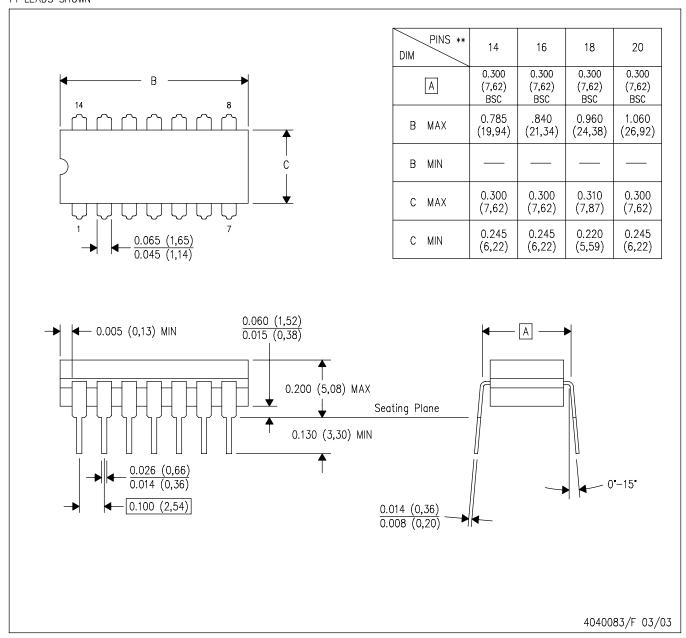
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

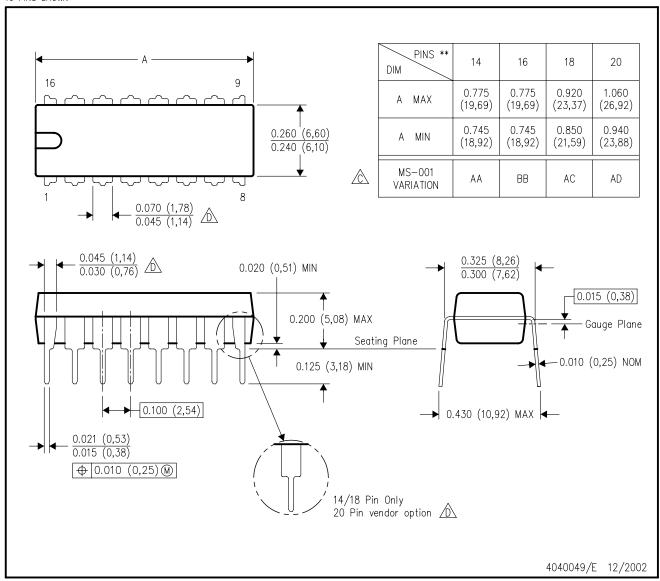
8.89 x 8.89, 1.27 mm pitch


LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

14 LEADS SHOWN

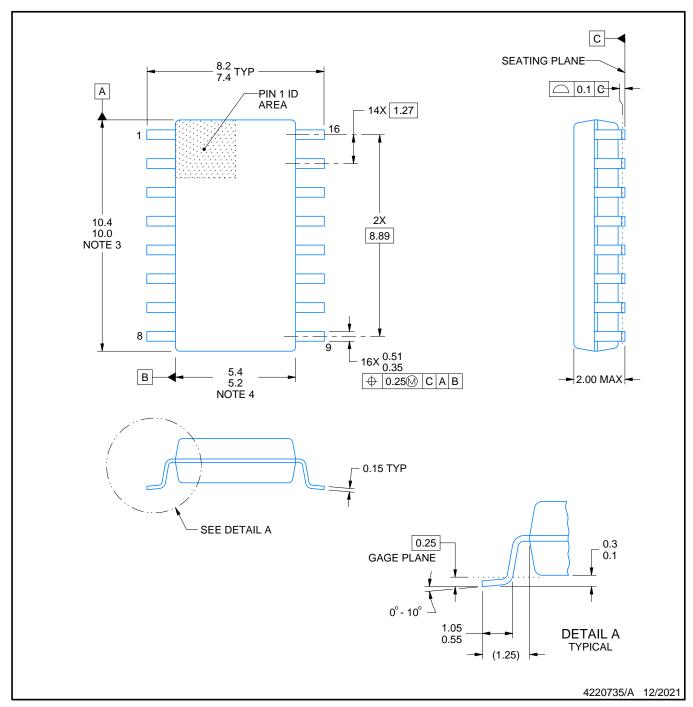


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

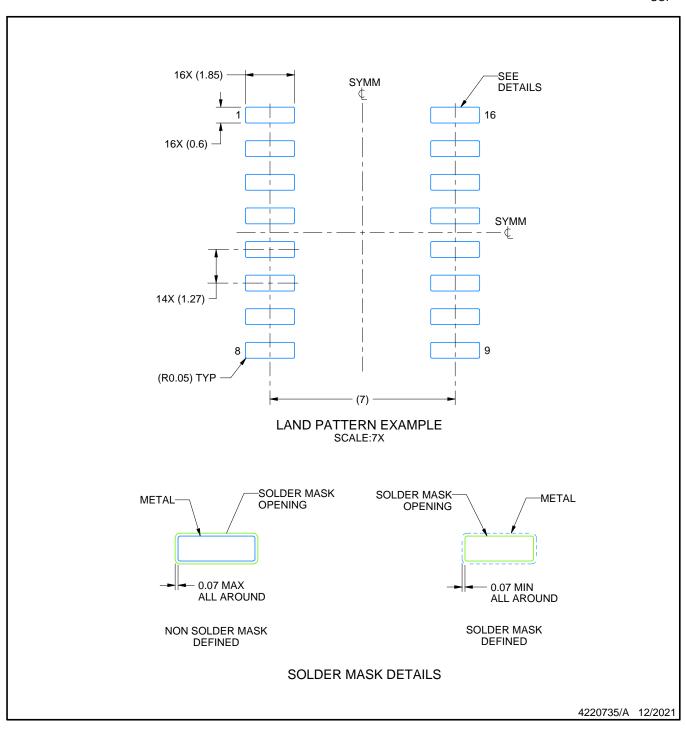
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

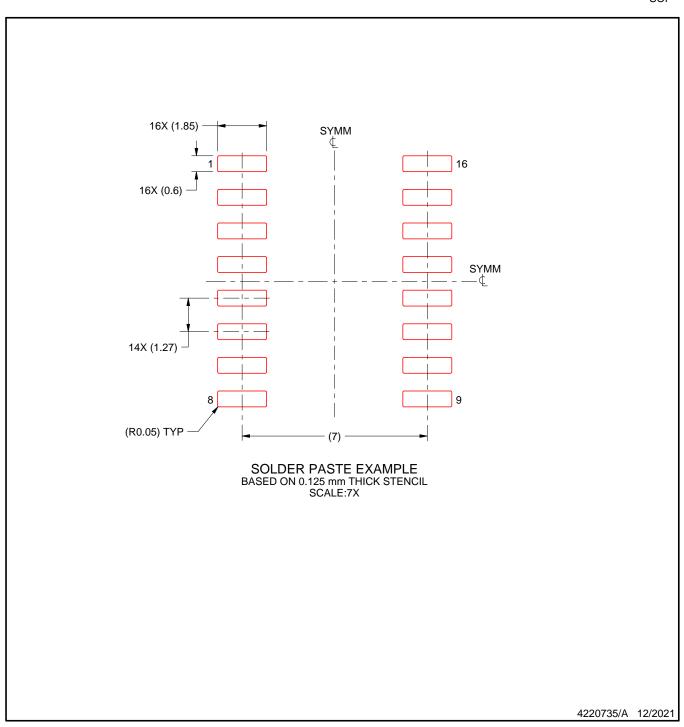
SOP


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

SOF



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated