
TPS3813xxx ファミリ プロセッサ監視回路、ウィンドウ・ウォッチドッグ搭載

1 特長

- 遅延とウインドウ比率をプログラム可能なウインドウ ウォッヂドッグ
- 6 ピン SOT-23 パッケージ
- 消費電流 9 μ A (標準値)
- 25ms の固定遅延時間を持つパワー オンリセット ジェネレータ
- 高精度の電源電圧モニタ (V_{IT}):
2.5V、3V、3.3V、5V
- オープンドレインリセット出力
- 温度範囲: -40°C~85°C

2 アプリケーション

- アクティブ・アンテナ・システム (AAS) の mMIMO
- ストレージ・エリア・ネットワーク
- 電気メーター
- 安全が重要なシステム
- 点滴用ポンプ
- HVAC コントローラ

Copyright © 2016, Texas Instruments Incorporated

代表的な動作回路

3 概要

TPS3813xxx ファミリの監視回路は、主に DSP およびプロセッサ ベースのシステムの回路の初期化とタイミングの監視を行います。

電源投入時に電源電圧 (V_{DD}) が 1.1V を上回ると、RESET がアサートされます。その後、監視回路は V_{DD} を監視し、 V_{DD} がスレッショルド電圧 (V_{IT}) よりも低く保たれている限り、RESET をアクティブに維持します。内蔵のタイマは、システムを確実に正しくリセットさせるため、出力が非アクティブ状態 (HIGH) に戻るのを遅らせます。この遅延時間 ($t_d = 25\text{ms}$ (標準値)) は、 V_{DD} がスレッショルド電圧 (V_{IT}) を上回ったときにカウントを開始します。

電源電圧がスレッショルド電圧 (V_{IT}) を下回ると、出力は再びアクティブ (Low) になります。外付け部品は不要です。このファミリの全デバイスには、内蔵分圧器で設定される固定検出スレッショルド電圧 (V_{IT}) があります。

安全が要求されるアプリケーション向けに、TPS3813xxx ファミリには、いわゆるウインドウ ウオッチドッグが組み込まれており、遅延とウインドウ比率をプログラム可能です。ウォッチドッグのタイムアウトの上限は、WDT ピンを GND または V_{DD} に接続するか、外付けコンデンサを使用することで設定できます。下限、すなわちウインドウ比率は、WDR ピンを GND または V_{DD} に接続することで設定されます。監視対象のプロセッサ は、このウインドウ内で TPS3813xxx をトリガして、リセットがアサートされないようにする必要があります。

この製品スペクトラムは、2.5V、3V、3.3V、5V の電源電圧用に設計されています。これらの回路は 6 ピンの SOT-23 パッケージで供給されます。

TPS3813xxx デバイスは、-40°C～85°Cの温度範囲で動作が想定されています

製品情報

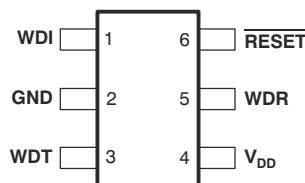
部品番号	パッケージ (1)	本体サイズ (公称) ⁽²⁾
TPS3813xxx	SOT-23 (6)	2.90mm × 1.60mm

(1) 利用可能なすべてのパッケージについては、データシートの末尾にある注文情報を参照してください。

(2) パッケージ サイズ (長さ × 幅) は公称値であり、該当する場合はインチも含まれます。

このリースの元の言語は英語です。翻訳は概要を便宜的に提供するもので、自動化ツール（機械翻訳）を使用していることがあり、TI では翻訳の正確性および妥当性につきましては一切保証いたしません。実際の設計などの前には、ti.com で必ず最新の英語版をご参照くださいますようお願いいたします。

Table of Contents


1 特長.....	1	7.3 Feature Description.....	8
2 アプリケーション.....	1	7.4 Device Functional Modes.....	10
3 概要.....	1	7.5 Programming.....	11
4 Device Comparison Table.....	3	8 Application and Implementation.....	14
5 Pin Configuration and Functions.....	3	8.1 Application Information.....	14
6 Specifications.....	4	8.2 Typical Application.....	14
6.1 Absolute Maximum Ratings.....	4	8.3 Power Supply Recommendations.....	15
6.2 ESD Ratings.....	4	8.4 Layout.....	16
6.3 Recommended Operating Conditions.....	4	9 Device and Documentation Support.....	17
6.4 Thermal Information.....	5	9.1 Related Links.....	17
6.5 Electrical Characteristics.....	5	9.2 ドキュメントの更新通知を受け取る方法.....	17
6.6 Timing Requirements.....	5	9.3 サポート・リソース.....	17
6.7 Switching Characteristics.....	6	9.4 Trademarks.....	17
6.8 Dissipation Ratings.....	6	9.5 静電気放電に関する注意事項.....	17
6.9 Typical Characteristics.....	7	9.6 用語集.....	17
7 Detailed Description.....	8	10 Revision History.....	17
7.1 Overview.....	8	11 Mechanical, Packaging, and Orderable	
7.2 Functional Block Diagram.....	8	Information.....	18

4 Device Comparison Table

T _A ⁽¹⁾	DEVICE NAME	THRESHOLD VOLTAGE	MARKING
–40°C to +85°C	TPS3813J25DBV	2.25V	PCDI
	TPS3813L30DBV	2.64V	PEZI
	TPS3813K33DBV	2.93V	PFAI
	TPS3813I50DBV	4.55V	PFBI

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the device product folder at www.ti.com.

5 Pin Configuration and Functions

**图 5-1. DBV Package
6-Pin SOT-23
Top View**

表 5-1. Pin Functions

PIN		I/O	DESCRIPTION
NO.	NAME		
1	WDI	I	Watchdog timer input. This input must be driven at all times and not left floating.
2	GND	I	Ground
3	WDT	I	Programmable watchdog delay input
4	V _{DD}	I	Supply voltage and supervising input
5	WDR	I	Selectable watchdog window ratio input. This input must be tied to V _{DD} or GND and not left floating.
6	RESET	O	Open-drain reset output

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted). ⁽¹⁾

		MIN	MAX	UNIT
V_{DD}	Supply voltage ⁽²⁾		6.5	V
	RESET	-0.3	$V_{DD} + 0.3$	V
	All other pins ⁽²⁾	-0.3	6.5	V
I_{OL}	Maximum low output current		5	mA
I_{OH}	Maximum high output current		-5	mA
I_{IK}	Input clamp current ($V_I < 0$ or $V_I > V_{DD}$)		± 20	mA
I_{OK}	Output clamp current ($V_O < 0$ or $V_O > V_{DD}$)		± 20	mA
	Continuous total power dissipation	See セクション 6.8		
	Soldering temperature		260	°C
T_A	Operating free-air temperature	-40	85	°C
T_{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to GND. For reliable operation, the device must not be operated at 7V for more than $t = 1000h$ continuously.

6.2 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	± 2000
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	± 750

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

At specified temperature range.

		MIN	MAX	UNIT
V_{DD}	Supply voltage	2	6	V
V_I	Input voltage	0	$V_{DD} + 0.3$	V
V_{IH}	High-level input voltage	$0.7 \times V_{DD}$		
V_{IL}	Low-level input voltage	$0.3 \times V_{DD}$		
$\Delta t/\Delta V$	Input transition rise and fall rate		100	ns/V
t_w	Pulse width of WDI trigger pulse		50	ns
T_A	Operating free-air temperature	-40	85	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		TPS3813xxx	UNIT
		DBV (SOT-23)	
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	208.5	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	123.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	37.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	14.6	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	36.3	°C/W
$R_{\theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	n/a	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

6.5 Electrical Characteristics

Over recommended operating free-air temperature range (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V_{OL}	Low-level output voltage	$V_{DD} = 2V$ to $6V$, $I_{OL} = 500\mu A$			0.2	V	
		$V_{DD} = 3.3V$ $I_{OL} = 2mA$			0.4		
		$V_{DD} = 6V$, $I_{OL} = mA$			0.4		
V_{POR}	Power up reset voltage ⁽¹⁾	$V_{DD} \geq 1.1V$, $I_{OL} = 50\mu A$			0.2	V	
V_{IT}	Negative-going input threshold voltage ⁽²⁾	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	2.2	2.25	2.3	V	
			2.58	2.64	2.7		
			2.87	2.93	3		
			4.45	4.55	4.65		
V_{HYS}	Hysteresis	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	30			mV	
			35				
			40				
			60				
I_{IH}	High-level input current	WDI, WDR	$WDI = V_{DD} = 6V$, $WDR = V_{DD} = 6V$	-25	25	nA	
		WDT	$WDT = V_{DD} = 6V$, $V_{DD} > V_{IT}$, $\text{RESET} = \text{High}$	-100	100		
I_{IL}	Low-level input current	WDI, WDR	$WDI = 0V$, $WDR = 0V$, $V_{DD} = 6V$	-25	25		
		WDT	$WDT = 0V$, $V_{DD} > V_{IT}$, $\text{RESET} = \text{High}$	-100	100		
I_{OH}	High-level output current		$V_{DD} = V_{IT} + 0.2V$, $V_{OH} = V_{DD}$		25	nA	
I_{DD}	Supply current		$V_{DD} = 2V$ output unconnected		9	13	μA
			$V_{DD} = 5V$ output unconnected		20	25	
C_i	Input capacitance		$V_I = 0V$ to V_{DD}		5	pF	

(1) The lowest supply voltage at which RESET becomes active. t_r , $V_{DD} \geq 15\mu s/V$.

(2) To provide best stability of the threshold voltage, a bypass capacitor (ceramic, $0.1\mu F$) must be placed near to the supply terminals.

6.6 Timing Requirements

At $R_L = 1M\Omega$, $C_L = 50pF$, and $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

		MIN	TYP	MAX	UNIT
t_{GL_VIT}	Glitch immunity V_{IT} (Pulse width at V_{DD})	$V_{DD} = V_{IT} + 0.2V$, $V_{DD} = V_{IT} - 0.2V$	3		μs

6.7 Switching Characteristics

At $R_L = 1M\Omega$, $C_L = 50pF$, and $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT			
t_d	Delay time	$V_{DD} \geq V_{IT} + 0.2V$, See 図 6-1	20	25	30	ms			
$t_{t(\text{out})}$ Watchdog time-out	Upper limit	WDT = 0V	0.2	0.25	0.3	s			
		WDT = V_{DD}	2	2.5	3				
		WDT = programmable (1)	See (2)		ms				
Watchdog window ratio		WDR = 0V, WDT = 0V	1:31.8						
		WDR = 0V, WDT = V_{DD}	1:32						
		WDR = 0V, WDT = programmable	1:25.8						
		WDR = V_{DD} , WDT = 0V	1:124.9						
		WDR = V_{DD} , WDT = V_{DD}	1:127.7						
		WDR = V_{DD} , WDT = programmable	1:64.5						
t_{PHL}	Propagation (delay) time, high-to-low-level output	$V_{IL} = V_{IT} - 0.2V$, $V_{IH} = V_{IT} + 0.2V$	30	50	50	μs			

(1) $155pF < C_{(\text{ext})} < 63nF$

(2) $(C_{(\text{ext})} \div 15.55pF + 1) \times 6.25\text{ms}$

6.8 Dissipation Ratings

PACKAGE	$T_A < 25^\circ\text{C}$ POWER RATING	DERATING FACTOR ABOVE $T_A = 25^\circ\text{C}$	$T_A = 70^\circ\text{C}$ POWER RATING	$T_A = 80^\circ\text{C}$ POWER RATING
DBV	437mW	3.5mW/°C	280mW	227mW

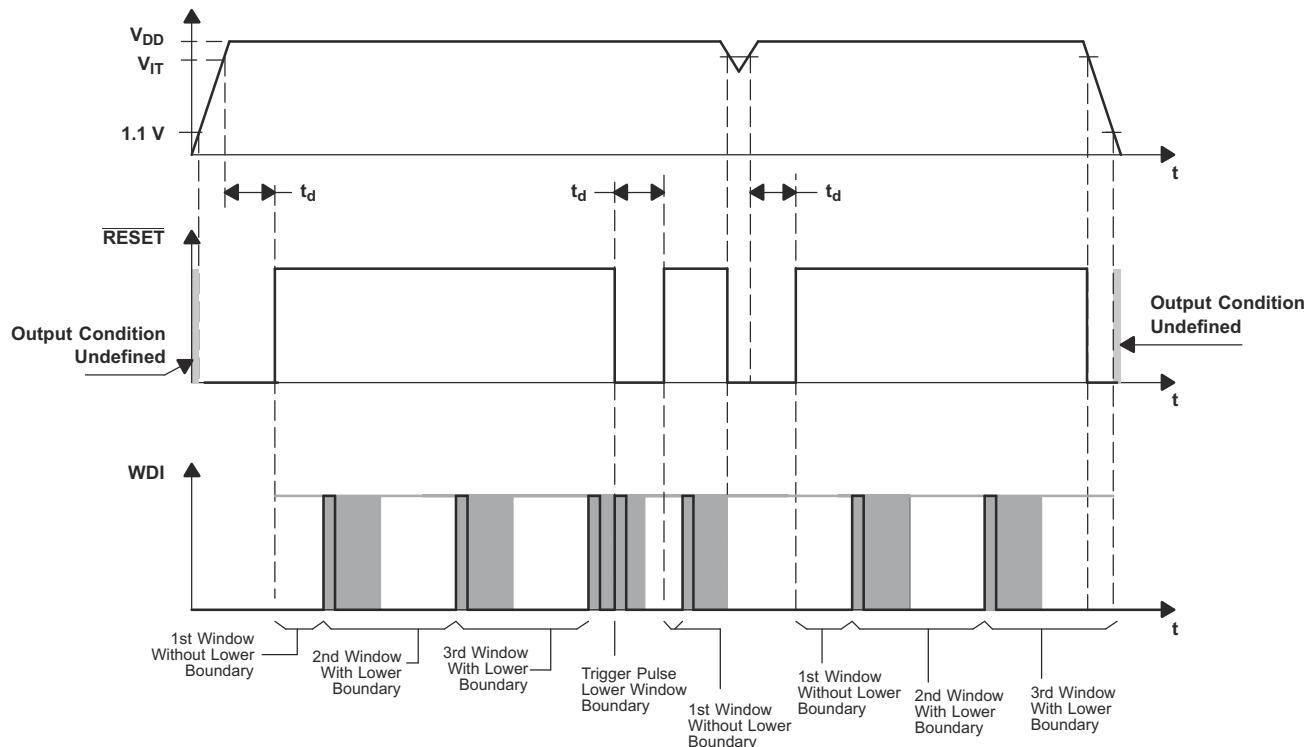


図 6-1. Timing Diagram

6.9 Typical Characteristics

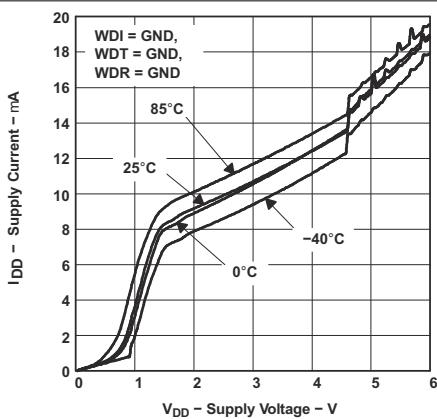


図 6-2. Supply Current vs Supply Voltage

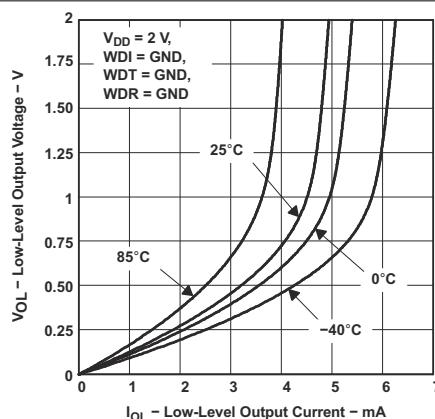


図 6-3. Low-Level Output Voltage vs Low-Level Output Current

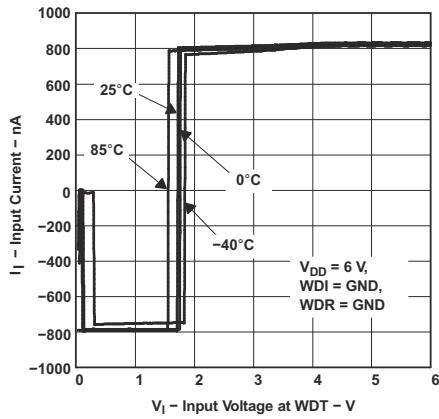


図 6-4. Input Current vs Input Voltage at WDT

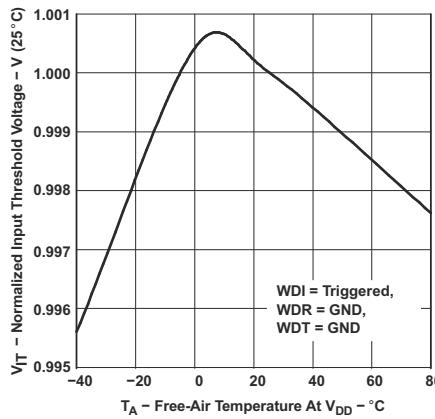


図 6-5. Normalized Input Threshold Voltage vs Free-Air Temperature at VDD

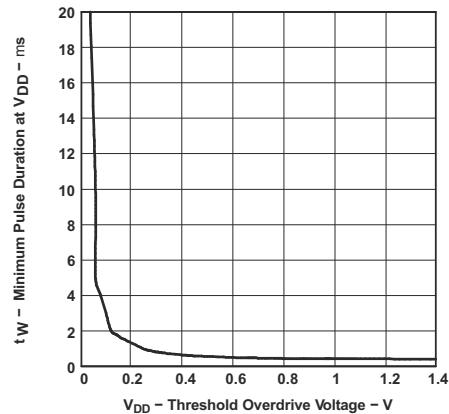
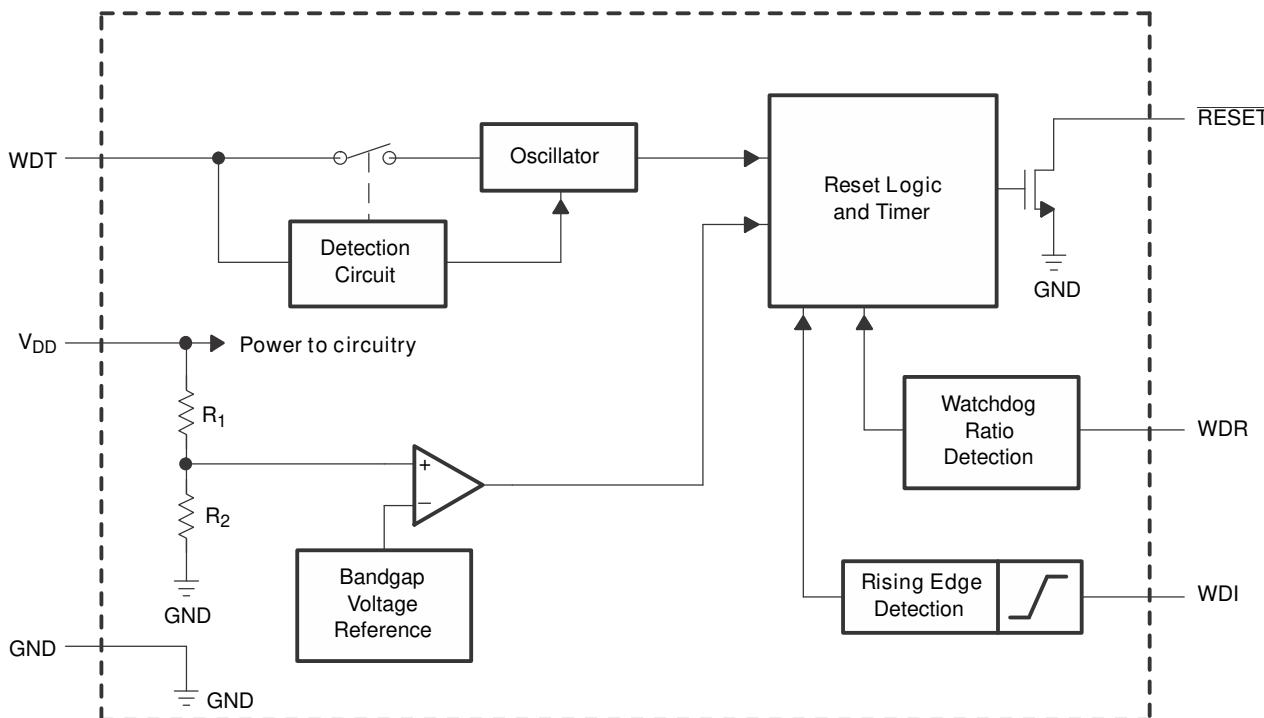


図 6-6. Minimum Pulse Duration at VDD vs VDD Threshold Overdrive Voltage


7 Detailed Description

7.1 Overview

The TPS3813xxx family of supervisory circuits provide circuit initialization and timing supervision signals. During power on, **RESET** is asserted (low) when the supply voltage (V_{DD}) increases above 1.1V. Thereafter, the supervisory circuit monitors V_{DD} and keeps **RESET** low as long as V_{DD} remains below the threshold voltage (V_{IT}). Once V_{DD} increases above V_{IT} , an internal timer delays the deassertion of the output to allow for a proper system reset before **RESET** transitions to a high state. The delay time (t_d) is 25ms typical and starts after V_{DD} rises above the V_{IT} . When the supply voltage drops below V_{IT} , the output transitions low again. All the devices of this family have a fixed threshold voltage set by an internal voltage divider.

The TPS3813xxx family incorporates a so-called window-watchdog timer, which has a programmable delay and window ratio. The supervised processor must trigger the **WDI** pin of the TPS3813xxx within the user-programmable window to keep **RESET** from asserting. The upper limit of the watchdog time-out can be set by either connecting **WDT** to GND, V_{DD} , or using an external capacitor. The lower limit and thus the window ratio is set by connecting **WDR** to GND or V_{DD} .

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

7.3 Feature Description

The TPS3813xxx family incorporates both a voltage supervisor and a window-watchdog timer into a single device. The device monitors the input voltage and the supervised processor must trigger the **WDI** pin of the TPS3813xxx within the user-programmable window to keep **RESET** from asserting.

7.3.1 Input Voltage (VDD)

VDD pin is monitored by the internal comparator with integrated reference to indicate when VDD falls below the fixed threshold voltage. VDD also functions as the supply for the following:

- Internal bandgap (reference voltage)
- Internal regulator
- State machine
- Buffers
- Other control logic blocks

Good design practice involves placing a $0.1\mu\text{F}$ to $1\mu\text{F}$ bypass capacitor at VDD input for noisy applications and to make sure enough charge is available for the device to power up correctly. The reset output is undefined when VDD is below V_{POR} .

7.3.1.1 VDD Hysteresis

The internal comparator has built-in hysteresis to avoid erroneous output reset release. If the voltage at the VDD pin falls below the falling voltage threshold V_{IT} , the output reset is asserted. When the voltage at the VDD pin rises above the rising voltage threshold ($V_{\text{IT}+} = V_{\text{IT}} + V_{\text{HYS}}$), the output reset is deasserted after t_{D} reset time delay.

7.3.1.2 VDD Glitch Immunity

These devices are immune to quick voltage transient or excursion on VDD. Sensitivity to transients depends on both pulse duration ($t_{\text{GI_VIT}}$) found in [セクション 6.6](#) and transient overdrive. Overdrive is defined by how much VDD exceeds the specified threshold. Threshold overdrive is calculated as a percent of the threshold in question, as shown in [式 1](#).

$$\text{Overdrive} = |(V_{\text{DD}} / V_{\text{IT}}) - 1| \times 100\% \quad (1)$$

where

- $V_{\text{IT}} = V_{\text{IT}-}$ is the threshold voltage
- $V_{\text{IT}+} = V_{\text{IT}} + V_{\text{HYS}}$ is the rising threshold voltage
- VDD is the input voltage crossing V_{IT}

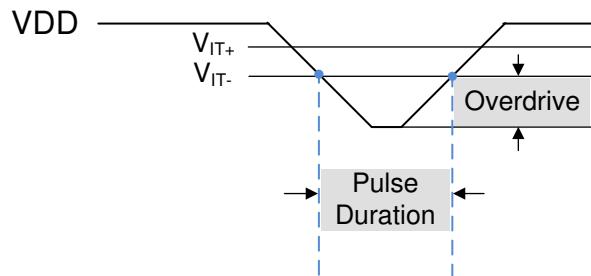


図 7-1. Overdrive Versus Pulse Duration

TPS3813xxx devices have built-in glitch immunity ($t_{\text{GI_VIT}}$) as shown in [セクション 6.6](#). 図 7-1 shows that VDD must fall below V_{IT} for $t_{\text{GI_VIT}}$, otherwise the falling transition is ignored. When VDD falls below V_{IT} for $t_{\text{GI_VIT}}$, $\overline{\text{RESET}}$ transitions low to indicate a fault condition after the propagation delay high-to-low (t_{PHL}). When VDD rises above $V_{\text{IT}+} = V_{\text{IT}} + V_{\text{HYS}}$, $\overline{\text{RESET}}$ deasserts to a logic high indicating there is no more fault condition only if VDD remains above $V_{\text{IT}+}$ for longer than the reset delay (t_{D}).

7.3.2 User-Programmable Watchdog Timer (WDI)

The TPS3813xxx family of devices have a watchdog timer that must be periodically triggered by either a positive or negative transition at the WDI pin to avoid a reset signal being issued. When the supervising system fails to retrigger the watchdog circuit within the time-out interval, $t_{t(\text{out})}$, $\overline{\text{RESET}}$ becomes asserted for the time period t_d . This event also reinitializes the watchdog timer. After the reset of the supervisor is released, the lower boundary of the first WDI window is disabled. After the first WDI low-to-high transition is detected, the lower boundary function of the window is enabled. All further WDI pulses must fit into the configured window frame.

Both the upper and lower boundary of the window can be adjusted by the user. See [セクション 7.5](#) for more details on how to set the upper and lower boundaries of the window.

7.3.3 $\overline{\text{RESET}}$ Output

$\overline{\text{RESET}}$ remains high (deasserted) as long as V_{DD} is above the threshold voltage (V_{IT}) and the user-programmable watchdog timer criteria are met. If V_{DD} falls below the V_{IT} or if WDI is not triggered within the appropriate window, then $\overline{\text{RESET}}$ is asserted, driving the $\overline{\text{RESET}}$ pin to a low impedance.

When V_{DD} is once again above V_{IT} , a delay circuit is enabled that holds $\overline{\text{RESET}}$ low for a specified reset delay period (t_d) which is 25ms typical. When the reset delay has elapsed, the $\overline{\text{RESET}}$ pin goes to a high-impedance state and uses a pullup resistor to hold $\overline{\text{RESET}}$ high. Connect the pullup resistor to the proper voltage rail to enable the outputs to be connected to other devices at the correct interface voltage level. $\overline{\text{RESET}}$ can be pulled up to any voltage up to 6V, independent of the device supply voltage. To ensure proper voltage levels, give some consideration when choosing the pullup resistor value and consider the required low-level output voltage (V_{OL}), the output capacitive loading, and the output leakage current.

7.4 Device Functional Modes

表 7-1 summarizes the various functional modes of the device.

表 7-1. TPS3813xxx Function/Truth Table

V_{DD}	WDI	RESET
$V_{DD} < V_{POR}$	—	Undefined
$V_{POR} < V_{DD} < V_{IT}$	—	L
$V_{DD} > V_{IT}$	Outside window	L
$V_{DD} > V_{IT}$	Inside window	H

7.4.1 Normal Operation ($V_{DD} > V_{IT}$)

When V_{DD} is greater than V_{IT} , the $\overline{\text{RESET}}$ signal is determined by the last WDI pulse.

- WDI pulse inside window: as long as pulses occur within the user-programmable window, the $\overline{\text{RESET}}$ signal remains high.
- WDI pulse outside window: if a pulse occurs outside the user-programmable window or not at all, the $\overline{\text{RESET}}$ signal goes low.

7.4.2 Above Power-On Reset But Less Than Threshold ($V_{POR} < V_{DD} < V_{IT}$)

When the voltage on V_{DD} is less than the V_{IT} voltage, and greater than the power-on reset voltage (V_{POR}), the $\overline{\text{RESET}}$ signal is asserted regardless of the WDI signal.

7.4.3 Below Power-On Reset ($V_{DD} < V_{POR}$)

When the voltage on V_{DD} is lower than V_{POR} , the device does not have enough voltage to internally pull the asserted output low, and $\overline{\text{RESET}}$ is undefined and must not be relied upon for proper device function.

7.5 Programming

7.5.1 Implementing Window-Watchdog Settings

There are two ways to configure the watchdog timer window the most flexible is to connect a capacitor to WDT to set the upper boundary of the window watchdog while connecting WDR to either V_{DD} or GND, thus setting the lower boundary. The other way to configure the timing is by wiring the WDT and WDR pin to either V_{DD} or GND. By hard-wiring the pins to either V_{DD} or GND there are four different timings available; these settings are listed in 表 7-2.

表 7-2. Cap-Free Timer Settings

SELECTED OPERATION MODE		WINDOW FRAME	LOWER WINDOW FRAME
WDT = 0V	WDR = 0V	Max = 0.3s	Max = 9.46ms
		Typ = 0.25s	Typ = 7.86ms
		Min = 0.2s	Min = 6.27ms
	WDR = V_{DD}	Max = 0.3s	Max = 2.43ms
		Typ = 0.25s	Typ = 2ms
		Min = 0.2s	Min = 1.58ms
WDT = V_{DD}	WDR = 0V	Max = 3s	Max = 93.8ms
		Typ = 2.5s	Typ = 78.2ms
		Min = 2s	Min = 62.5ms
	WDR = V_{DD}	Max = 3s	Max = 23.5ms
		Typ = 2.5s	Typ = 19.6ms
		Min = 2s	Min = 15.6ms

To visualize the values named in the table, a timing diagram was prepared. It is used to describe the upper and lower boundary settings. For an application, the important boundaries are the $t_{boundary,max}$ and $t_{window,min}$. Within these values, the watchdog timer must be retriggered to avoid a time-out condition or a boundary violation in the event of a trigger pulse in the lower boundary. The values in the table above are typical and worst-case conditions and are valid over the whole temperature range of -40°C to $+85^{\circ}\text{C}$.

The shaded areas shown in 図 7-2 are cases where undefined operation can happen. This device can not detect a violation if a WDI pulse occurs within these three shaded areas. The first shaded area addresses the situation of two consecutive rising edges occur within a quick amount of time. The typical time between rising edges must be more than 500 μs . The second and third shaded areas are defined by the min and max variance of the lower boundary ($t_{boundary}$) and upper boundary (t_{window}). Set the WDI rising edge within the $t_{boundary,max}$ and $t_{window,min}$ for correct operation.

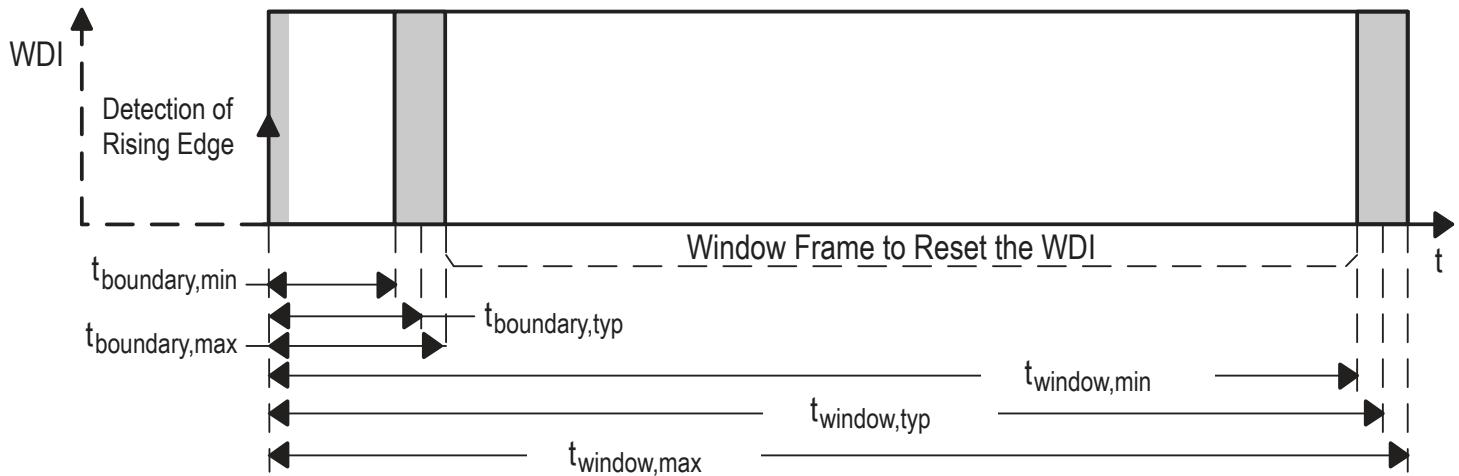


図 7-2. Upper and Lower Boundary Visualization

7.5.2 Programmable Window-Watchdog by Using an External Capacitor

The upper boundary of the watchdog timer can be set by an external capacitor connected between the WDT pin and GND. Common consumer electronic capacitors can be used to implement this feature. They must have low ESR, low leakage (< 5nA) and low tolerances because the tolerances have to be considered if the calculations are performed. The first formula is used to calculate the upper window frame. After calculating the upper window frame, the lower boundary can be calculated. As in the last example, the most important values are the $t_{\text{boundary,max}}$ and $t_{\text{window,min}}$. The trigger pulse has to fit into this window frame.

The external capacitor must have a value between a minimum of 155pF and a maximum of 63nF.

表 7-3. Setting Upper Window Using External Capacitor

SELECTED OPERATION MODE	WINDOW FRAME
WDT = external capacitor $C_{(\text{ext})}$	$t_{\text{window,max}} = 1.25 \times t_{\text{window,typ}}$
	$t_{\text{window,min}} = 0.75 \times t_{\text{window,typ}}$

$$t_{\text{window,typ}} = \left(\frac{C_{(\text{ext})}}{15.55 \text{ pF}} + 1 \right) \times 6.25 \text{ ms} \quad (2)$$

7.5.3 Lower Boundary Calculation

The lower boundary can be calculated based on the values given in セクション 6.7. Additionally, facts must be considered to verify that the lower boundary is where it is expected. Because the internal oscillator of the window watchdog is running free, any rising edge at the WDI pin is considered at the next internal clock cycle. This happens regardless of the external source. Because the shift between internal and external clock is not known, it is best to consider the worst-case condition for calculating this value.

表 7-4. Setting Lower Boundary Using External Cap

SELECTED OPERATION MODE	LOWER BOUNDARY OF FRAME
WDT = external capacitor $C_{(\text{ext})}$	$t_{\text{boundary,max}} = t_{\text{window,max}} / 23.5$
	$t_{\text{boundary,typ}} = t_{\text{window,typ}} / 25.8$
	$t_{\text{boundary,min}} = t_{\text{window,min}} / 28.7$
	$t_{\text{boundary,max}} = t_{\text{window,max}} / 51.6$
	$t_{\text{boundary,typ}} = t_{\text{window,typ}} / 64.5$
	$t_{\text{boundary,min}} = t_{\text{window,min}} / 92.7$

7.5.4 Watchdog Software Considerations

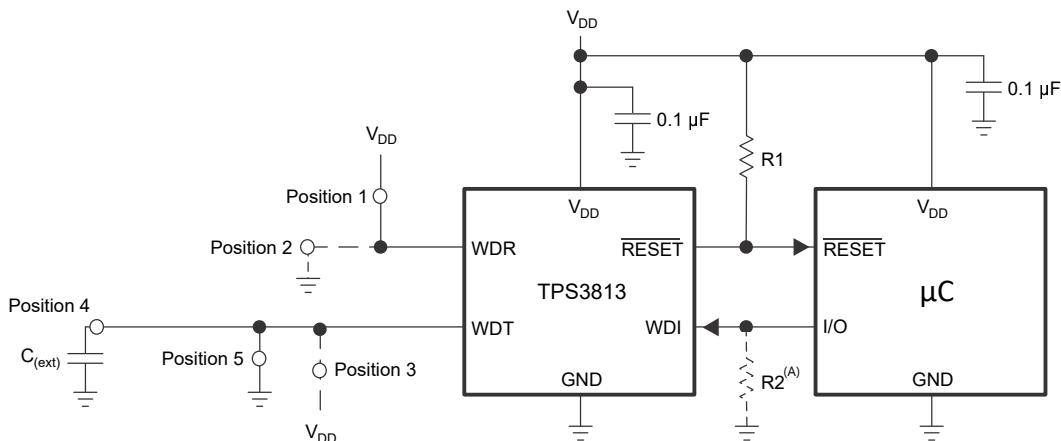
To benefit from the window watchdog feature and help the watchdog timer monitor the software execution more closely, TI recommends that the watchdog be set and reset at different points in the program rather than pulsing the watchdog input periodically by using the prescaler of a microcontroller or DSP. Furthermore, the watchdog trigger pulses must be set to different timings inside the window frame to release a defined reset, if the program must hang in any subroutine. This allows the window watchdog to detect time-outs of the trigger pulse, as well as pulses that distort the lower boundary.

7.5.5 Power-Up Considerations

Many microcontrollers use general-purpose input and output (GPIO) pins that can be programmed to be either inputs or outputs. During power-up, these I/O pins are typically configured as inputs. If a GPIO pin is used to drive the WDI input pin of the TPS3813xxx, then a pulldown resistor (shown as R2 in 図 8-1) must be added to keep the WDI pin from floating during power up.

8 Application and Implementation

注


以下のアプリケーション情報は、TI の製品仕様に含まれるものではなく、TI ではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

The TPS3813xxx is a voltage supervisor that incorporates a window-watchdog timer, allowing for comprehensive supervision of microcontrollers and other similar devices. The TPS3813xxx can be operated from a VDD rail of 2V to 6V with a user-programmable watchdog time-out from 0.25s to 2.5s. The following sections describe how to properly use this device, depending on the requirements of the final application.

8.2 Typical Application

A typical application example (see [図 8-1](#)) is used to describe the function of the watchdog in more detail. To configure the window watchdog function, two pins are provided by the TPS3813xxx. These pins set the window time-out and ratio. The window watchdog ratio is a fixed ratio, which determines the lower boundary of the window frame. It can be configured in two different frame sizes.

Copyright © 2016, Texas Instruments Incorporated

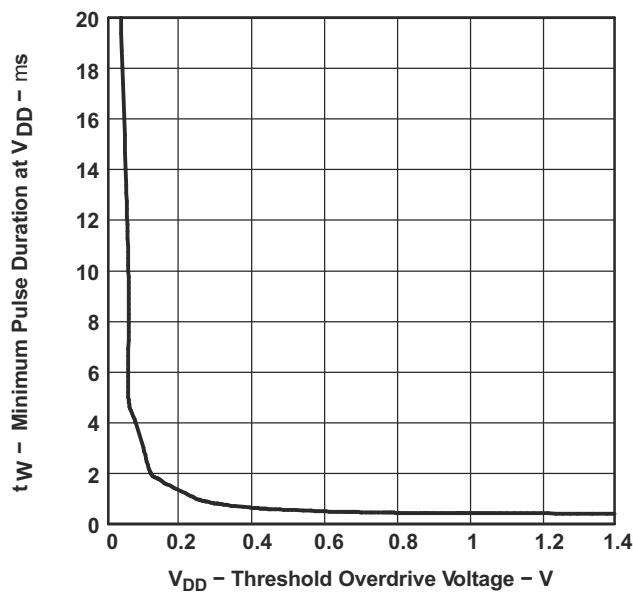
A. Use this pulldown resistor if a GPIO pin is used to drive the WDI input pin of the TPS3813xxx to keep the WDI pin from floating during power up.

図 8-1. Application Example

8.2.1 Design Requirements

The TPS3813xxx $\overline{\text{RESET}}$ output can be used to drive the $\overline{\text{RESET}}$ pin of a microcontroller to initiate a reset event. The $\overline{\text{RESET}}$ pin of the TPS3813xxx can be pulled high with a $1\text{M}\Omega$ resistor; the watchdog window timing is controlled by the WDT and WDR pins, and is set depending on the reset requirement times of the microprocessor.

8.2.2 Detailed Design Procedure


If the window watchdog ratio pin (WDR) is set to V_{DD} , Position 1 in [図 8-1](#), then the lower window frame is a value based on a ratio calculation of the overall window time-out size: For the watchdog time-out pin (WDT) connected to GND, it is a ratio of 1:124.9, for WDT connected to V_{DD} , it is a ratio of 1:127.7, and for an external capacitor connected to WDT, it is a ratio of 1:64.5.

If the window watchdog ratio pin (WDR) is set to GND, Position 2, the lower window frame is a value based on a ratio calculation of the overall window time-out size: For the watchdog time-out pin (WDT) connected to GND, it is a ratio of 1:31.8, for WDT connected to V_{DD} it is 1:32, and for an external capacitor connected to WDT it is 1:25.8.

The watchdog time-out can be set in two fixed timings of 0.25 seconds and 2.5 seconds for the window or can be programmed by connecting a external capacitor with a low leakage current at WDT.

Example: If the watchdog time-out pin (WDT) is connected to V_{DD} , the time-out is 2.5 seconds. If the window watchdog ratio pin (WDR) is set in this configuration to a ratio of 1:127.7 by connecting the pin to V_{DD} , the lower boundary is 19.6ms.

8.2.3 Application Curve

図 8-2. Minimum Pulse Duration at V_{DD} vs V_{DD} Threshold Overdrive Voltage

8.3 Power Supply Recommendations

These devices are designed to operate from an input supply with a voltage range from 2V to 6V. An input supply capacitor is not required for this device; however, if the input supply is noisy, then good analog practice is to place a $0.1\mu F$ capacitor between the VDD pin and the GND pin. This device has a 7V absolute maximum rating on the VDD pin. If the voltage supply providing power to VDD is susceptible to any large voltage transient that can exceed 7V, additional precautions must be taken.

In applications where the WDI input can experience a negative voltage while V_{DD} is ramping from 0V to 0.8V, the V_{DD} slew rate in this range must be greater than 10V/s. A negative voltage on the WDI input along with a slew rate less than 10V/s can result in a greatly reduced watchdog window time and reset output delay time.

8.4 Layout

8.4.1 Layout Guidelines

Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a $0.1\mu\text{F}$ ceramic bypass capacitor near the VDD pin.

8.4.2 Layout Example

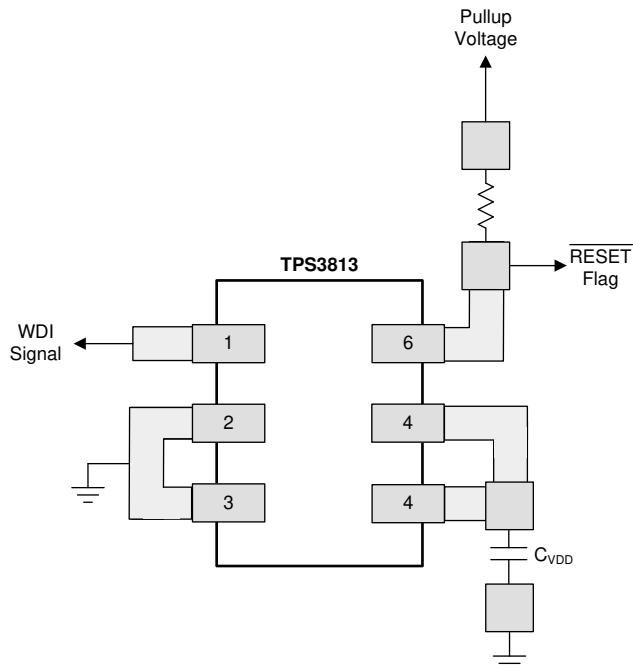


図 8-3. TPS3813xxx Layout Example

9 Device and Documentation Support

9.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

表 9-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TPS3813J25	Click here				
TPS3813L30	Click here				
TPS3813K33	Click here				
TPS3813I50	Click here				

9.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

9.3 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

9.4 Trademarks

テキサス・インスツルメンツ E2E™ is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

9.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことをお勧めします。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

9.6 用語集

[テキサス・インスツルメンツ用語集](#) この用語集には、用語や略語の一覧および定義が記載されています。

10 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision I (October 2021) to Revision J (October 2023)	Page
• Changed absolute maximum voltage rating to 6.5V.....	4
• Changed ESD HBM rating to 2000V post qualification.....	4
• Changed ESD CDM rating to 750V post qualification.....	4
• Updated 図 7-2 and description	11
• Updated external capacitor recommendation to have low leakage , ESR and tolerances	13

Changes from Revision H (February 2016) to Revision I (October 2021)	Page
• Changed t_w parameter name to t_{GI_VIT} in 7.6 <i>Timing Requirements</i> section and added <i>Glitch immunity V_{IT}</i> in parameter definition.	5
• Added Input Voltage (VDD), VDD Hysteresis, and VDD Glitch Immunity sections into datasheet.....	9

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TPS3813I50DBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	PFBI
TPS3813I50DBVR.A	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFBI
TPS3813I50DBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	PFBI
TPS3813I50DBVT.A	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFBI
TPS3813J25DBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	PCDI
TPS3813J25DBVR.A	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCDI
TPS3813J25DBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	PCDI
TPS3813J25DBVT.A	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCDI
TPS3813K33DBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	PFAI
TPS3813K33DBVR.A	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	PFAI
TPS3813K33DBVRG4	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	-	Call TI	Call TI	-40 to 85	
TPS3813K33DBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	PFAI
TPS3813K33DBVT.A	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFAI
TPS3813L30DBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	PEZI
TPS3813L30DBVR.A	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PEZI
TPS3813L30DBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	PEZI
TPS3813L30DBVT.A	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PEZI

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

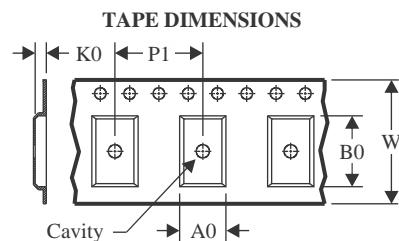
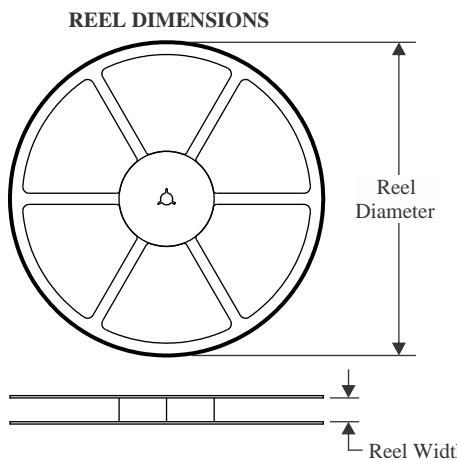
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

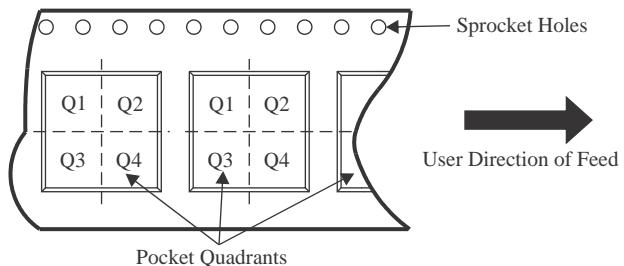
(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

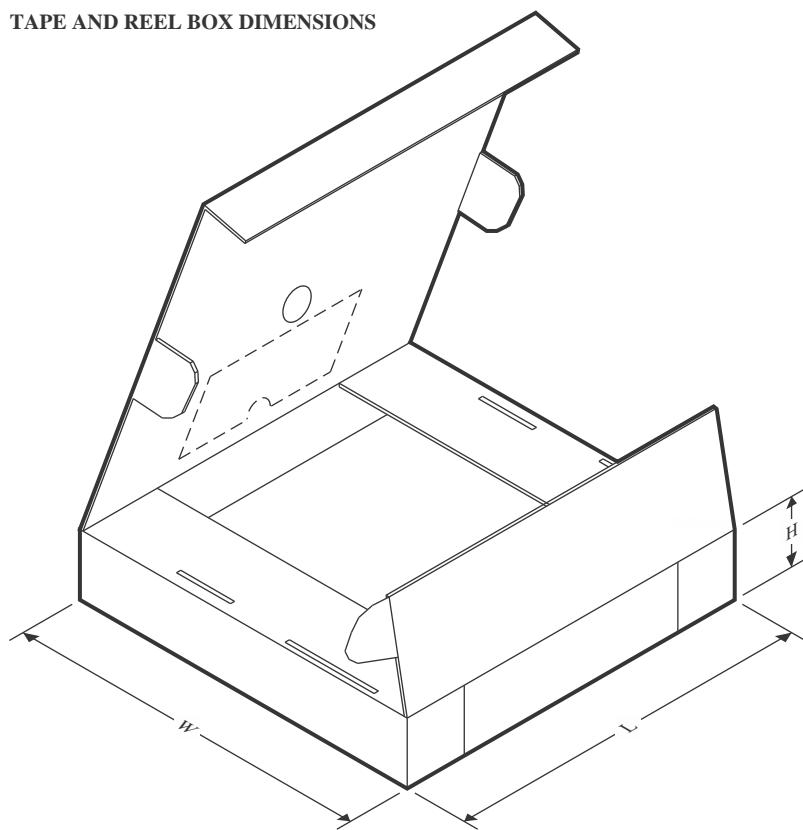


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS3813 :


- Automotive : [TPS3813-Q1](#)

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3813I50DBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS3813I50DBVR	SOT-23	DBV	6	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS3813I50DBVT	SOT-23	DBV	6	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS3813J25DBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS3813J25DBVR	SOT-23	DBV	6	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS3813J25DBVT	SOT-23	DBV	6	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS3813J25DBVT	SOT-23	DBV	6	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS3813K33DBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS3813K33DBVR	SOT-23	DBV	6	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS3813K33DBVT	SOT-23	DBV	6	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS3813L30DBVR	SOT-23	DBV	6	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS3813L30DBVT	SOT-23	DBV	6	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3813I50DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
TPS3813I50DBVR	SOT-23	DBV	6	3000	208.0	191.0	35.0
TPS3813I50DBVT	SOT-23	DBV	6	250	210.0	185.0	35.0
TPS3813J25DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
TPS3813J25DBVR	SOT-23	DBV	6	3000	210.0	185.0	35.0
TPS3813J25DBVT	SOT-23	DBV	6	250	180.0	180.0	18.0
TPS3813J25DBVT	SOT-23	DBV	6	250	210.0	185.0	35.0
TPS3813K33DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
TPS3813K33DBVR	SOT-23	DBV	6	3000	208.0	191.0	35.0
TPS3813K33DBVT	SOT-23	DBV	6	250	210.0	185.0	35.0
TPS3813L30DBVR	SOT-23	DBV	6	3000	208.0	191.0	35.0
TPS3813L30DBVT	SOT-23	DBV	6	250	210.0	185.0	35.0

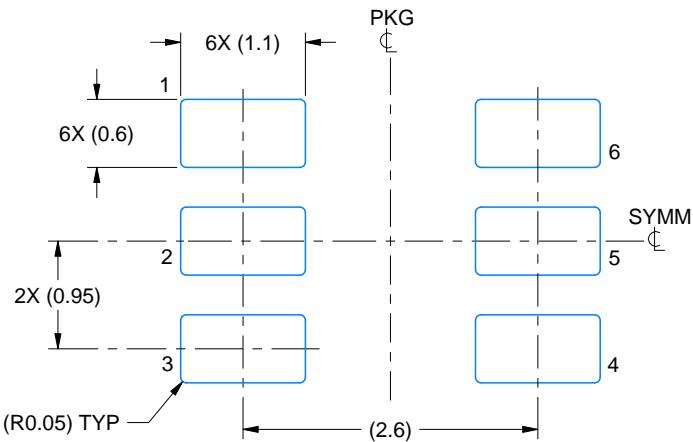
PACKAGE OUTLINE

DBV0006A

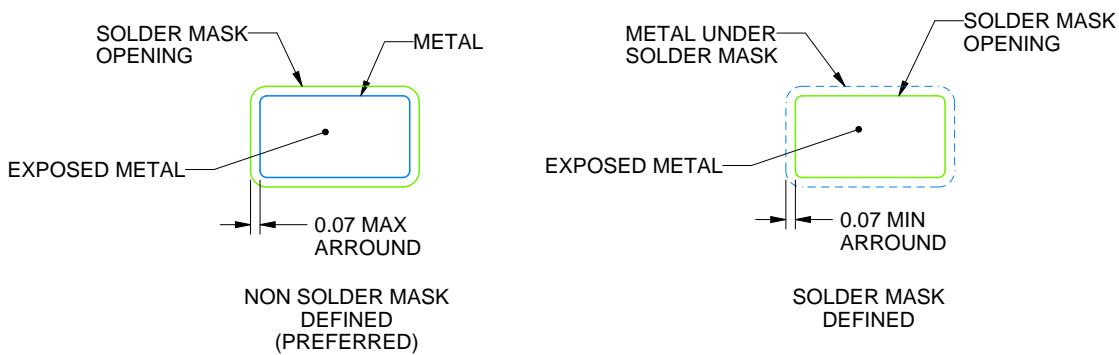
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
5. Reference JEDEC MO-178.

EXAMPLE BOARD LAYOUT


DBV0006A

SOT-23 - 1.45 mm max height

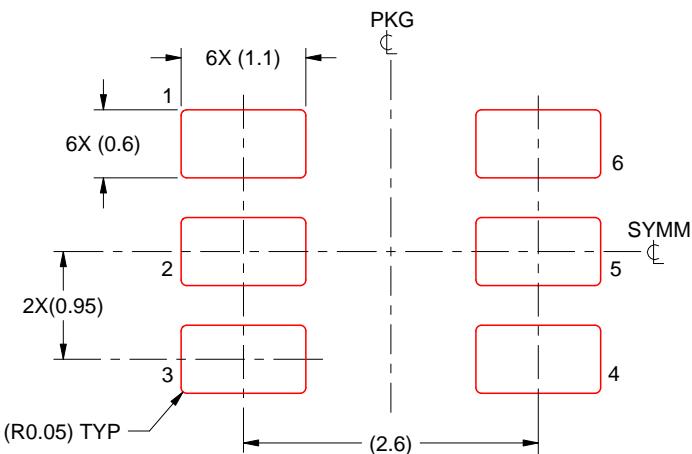
SMALL OUTLINE TRANSISTOR

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X

SOLDER MASK DETAILS

4214840/G 08/2024

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DBV0006A

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X

4214840/G 08/2024

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2026, Texas Instruments Incorporated

最終更新日：2025 年 10 月