
JAJSHN6C - JUNE 2019 - REVISED OCTOBER 2020

# TPS62864/6 I2C インターフェイス搭載、WCSP パッケージ、 2.4V~5.5V 入力、4A および 6A 同期整流降圧型コンバータ

# 1 特長

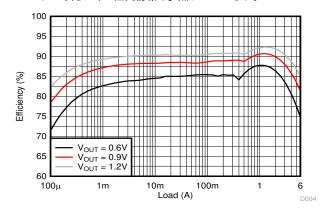
- 7mΩ および 6.5mΩ のパワー MOSFET を内蔵
- 90% を超える効率 (0.9V 出力)
- DCS-Control トポロジにより、高速過渡応答を実現
- ±1%の出力電圧精度
- 動作時の静止電流:4µA
- 入力電圧範囲:2.4V~5.5V
- 2.4MHz のスイッチング周波数
- 外付け抵抗による選択
  - スタートアップ時の出力電圧
  - I<sup>2</sup>C スレーブ・アドレス
- ・  $I^2C$  インターフェイスによる選択
  - パワー・セーブ・モードまたは強制 PWM モー
  - 出力放電
  - ヒカップまたはラッチ付き短絡保護
  - 出力電圧のランプ速度
- VID ピンによる動的電圧スケーリング (DVS)
- サーマル事前警告およびサーマル・シャットダウン
- パワー・グッド・インジケータ・ピンのオプション
- I<sup>2</sup>C 互換インターフェイス:最高 3.4Mbps
- 1.05mm×1.78mm×0.5mm、15ピン、0.35mmピ ッチの WCSP パッケージで供給
- ・ WEBENCH® Power Designer により、TPS62866 を使用するカスタム設計を作成



代表的なアプリケーション

### 2 アプリケーション

- FPGA、CPU、ASIC、ビデオ・チップセット用の コア電源
- カメラ・モジュール
- ソリッドステート・ドライブ
- 光モジュール


### 3 概要

TPS62864 および TPS62866 は、高効率、適応型、高 電力密度ソリューションを実現する I<sup>2</sup>C インターフェ イス付き高周波数同期整流降圧型コンバータです。中 負荷から重負荷では PWM モードで動作し、軽負荷時 には自動的に省電力モードへ移行するため、負荷電流 の全範囲にわたって高効率が維持されます。このデバ イスは、強制的に PWM モードで動作させ、出力電圧 リップルを最小化することもできます。DCS-Control アーキテクチャと相まって、優れた負荷過渡性能と厳 格な出力電圧精度を実現します。I<sup>2</sup>C インターフェイ スと専用 VID ピンにより、常に変化するアプリケーシ ョンの性能要件に合わせて負荷の消費電力を変化させ るために、出力電圧を素早く調整できます。

### 製品情報

| 型番       | パッケージ <sup>(1)</sup><br>(1ページ) | 本体サイズ (公称)             |
|----------|--------------------------------|------------------------|
| TPS62864 | WCSP (15)                      | 1.05 x 1.78 x 0.5mm    |
| TPS62866 | WC3F (15)                      | 1.05 x 1.76 x 0.511111 |

利用可能なすべてのパッケージについては、このデータシー トの末尾にある注文情報を参照してください。



V<sub>IN</sub> = 3.3V での効率



# **Table of Contents**

| 1 特長                                                 | 1              | 8.6 Register Map                                   | 17                 |
|------------------------------------------------------|----------------|----------------------------------------------------|--------------------|
| 2 アプリケーション                                           | 1              | 9 Application and Implementation                   |                    |
| 3 概要                                                 |                | 9.1 Application Information                        |                    |
| 4 Revision History                                   | <mark>2</mark> | 9.2 Typical Applications                           |                    |
| 5 Device Options                                     | 3              | 10 Power Supply Recommendations                    |                    |
| 6 Pin Configuration and Functions                    | 4              | 11 Layout                                          |                    |
| 7 Specifications                                     |                | 11.1 Layout Guidelines                             |                    |
| 7.1 Absolute Maximum Ratings                         |                | 11.2 Layout Example                                |                    |
| 7.2 ESD Ratings                                      | 5              | 11.3 Thermal Considerations                        | 28                 |
| 7.3 Recommended Operating Conditions                 | 5              | 12 Device and Documentation Support                | 29                 |
| 7.4 Thermal Information                              | <mark>5</mark> | 12.1 Device Support                                | <mark>2</mark> 9   |
| 7.5 Electrical Characteristics                       | 6              | 12.2 Documentation Support                         | <mark>2</mark> 9   |
| 7.6 I <sup>2</sup> C InterfaceTiming Characteristics | 7              | 12.3 Support Resources                             |                    |
| 7.7 Typical Characteristics                          | 9              | 12.4 Receiving Notification of Documentation Updat | es <mark>29</mark> |
| 8 Detailed Description                               | 10             | 12.5 Trademarks                                    | 29                 |
| 8.1 Overview                                         | 10             | 12.6 Electrostatic Discharge Caution               | 29                 |
| 8.2 Functional Block Diagram                         |                | 12.7 Glossary                                      | 29                 |
| 8.3 Feature Description                              | 10             | 13 Mechanical, Packaging, and Orderable            |                    |
| 8.4 Device Functional Modes                          | 12             | Information                                        | <mark>2</mark> 9   |
| 8.5 Programming                                      | 14             |                                                    |                    |
|                                                      |                |                                                    |                    |

4 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

| Changes from Revision B (March 2020) to Revision C (October 2020)  | Page |
|--------------------------------------------------------------------|------|
| • QFN パッケージのインスタンスを削除                                              | 1    |
| • 文書全体にわたって表、図、相互参照の採番方法を更新                                        |      |
| Updated Device Options                                             | 3    |
| Removed Power Good (PG) section                                    | 13   |
| Updated I <sup>2</sup> C Register Reset section                    | 16   |
| Changes from Revision A (December 2019) to Revision B (March 2020) | Page |
| Updated 図 9-12                                                     |      |
| Changes from Revision * (June 2019) to Revision A (December 2019)  | Page |
| <ul><li>デバイス・ステータスを事前情報から量産データに変更</li></ul>                        | 1    |



# **5 Device Options**

| PART NUMBER <sup>(1)</sup> | START-UP OUTPUT VOLTAGE     | OUTPUT CURRENT | VID OR PG PIN |
|----------------------------|-----------------------------|----------------|---------------|
| TPS62864 <b>0A</b> YCG     | 0.4 V to 1.15 V. Selectable | 4 A            | VID           |
| TPS62864 <b>0B</b> YCG     |                             | 4.0            | PG            |
| TPS62866 <b>0A</b> YCG     | 0.4 V to 1.13 V, Gelectable | 6 A            | VID           |
| TPS62866 <b>0B</b> YCG     |                             |                | PG            |

<sup>(1)</sup> For all available packages, see the orderable addendum at the end of the data sheet.



# **6 Pin Configuration and Functions**

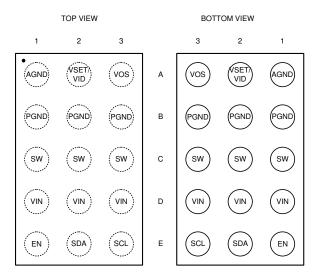



図 6-1. YCG (15 Pin)

表 6-1. Pin Functions

| PII      | N        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME     | NO.      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AGND     | A1       | Analog ground pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VSET/VID | A2       | Start-up output voltage and device address selection pin. An external resistor must be connected. After start-up, the pin can be used to select the $V_{OUT}$ registers for the output voltage. (Low = $V_{OUT}$ register 1; High = $V_{OUT}$ register 2). See $\pm 29 \times 8.4.4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VSET/ PG | A2       | Start-up output voltage and device address selection pin. An external resistor must be connected. After start-up, the pin is used for the power good indicator. When the output voltage is not regulated, the pin is driven high. When the output voltage is regulated, the pin is pulled low through the external resistor. The function after start-up depends on the device option. See $tobelow{1}{2}$ $tobelow{2}$ $tobelow{3}$ $tobelow{4}$ |
| vos      | A3       | Output voltage sense pin. This pin must be directly connected to the output capacitor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PGND     | B1,B2,B3 | Power ground pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SW       | C1,C2,C3 | Switch pin of the power stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VIN      | D1,D2,D3 | Power supply input voltage pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EN       | E1       | Device enable pin. To enable the device, this pin needs to be pulled high. Pulling this pin low disables the device. Do not leave floating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SDA      | E2       | I <sup>2</sup> C serial data pin. Do not leave it floating. Connect it to AGND if not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SCL      | E3       | I <sup>2</sup> C serial clock pin. Do not leave it floating. Connect it to AGND if not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

# 7 Specifications

# 7.1 Absolute Maximum Ratings

|                           |                                           | MIN  | MAX                   | UNIT |
|---------------------------|-------------------------------------------|------|-----------------------|------|
| Voltage <sup>(1)</sup>    | VIN, EN, SDA, SCL, VOS, VSET/VID, VSET/PG | -0.3 | 6                     |      |
|                           | SW (DC)                                   | -0.3 | V <sub>IN</sub> + 0.3 | V    |
|                           | SW (AC, less than 10ns) <sup>(2)</sup>    | -2.5 | 10                    |      |
| I <sub>SOURCE_PG</sub>    | Source current at VSET/PG                 |      | 1                     | mA   |
| I <sub>SINK_SDA,SCL</sub> | Sink current at SDA, SCL                  |      | 2                     | mA   |
| TJ                        | Junction temperature                      | -40  | 150                   | °C   |
| T <sub>stg</sub>          | Storage temperature                       | -65  | 150                   | °C   |

- (1) All voltage values are with respect to network ground terminal.
- (2) While switching.

## 7.2 ESD Ratings

|                    |                          |                                                                                          | VALUE | UNIT     |
|--------------------|--------------------------|------------------------------------------------------------------------------------------|-------|----------|
| V                  | Electrostatic discharge  | Human body model (HBM), per ANSI/ESDA/<br>JEDEC JS-001, all pins <sup>(1)</sup>          | ±2000 | V        |
| V <sub>(ESD)</sub> | Liectrostatic discriarge | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins <sup>(2)</sup> | ±500  | <b>V</b> |

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

# 7.3 Recommended Operating Conditions

|                    |                                               | MIN | NOM MAX | UNIT  |
|--------------------|-----------------------------------------------|-----|---------|-------|
| V <sub>IN</sub>    | Input voltage                                 | 2.4 | 5.5     | V     |
| t <sub>F_VIN</sub> | Falling transition time at VIN <sup>(1)</sup> |     | 10      | mV/μs |
|                    | Output current, TPS62864 (2)                  | 0   | 4       | ۸     |
| Гоит               | Output current, TPS62866 (3)                  | 0   | 6       | A     |
| TJ                 | Junction temperature                          | -40 | 125     | °C    |

- (1) The falling slew rate of  $V_{\text{IN}}$  should be limited if  $V_{\text{IN}}$  goes below  $V_{\text{UVLO}}$ .
- (2) Lifetime is reduced when operating continuously at 4-A output current and the junction temperature is higher than 105 °C.
- (3) Lifetime is reduced when operating continuously at 6-A output current and the junction temperature is higher than 85 °C.

### 7.4 Thermal Information

|                       |                                              | TPS628     | 6x YCG             |      |
|-----------------------|----------------------------------------------|------------|--------------------|------|
|                       | THERMAL METRIC <sup>(1)</sup>                | JEDEC 51-7 | TPS62866EVM-051    | UNIT |
|                       |                                              | 15 PINS    | 15 PINS            |      |
| $R_{\theta JA}$       | Junction-to-ambient thermal resistance       | 91.8       | 56.5               | °C/W |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance    | 0.8        | n/a <sup>(2)</sup> | °C/W |
| $R_{\theta JB}$       | Junction-to-board thermal resistance         | 23.5       | n/a <sup>(2)</sup> | °C/W |
| $\Psi_{JT}$           | Junction-to-top characterization parameter   | 0.4        | 0.4                | °C/W |
| $\Psi_{JB}$           | Junction-to-board characterization parameter | 23.3       | 27.3               | °C/W |

<sup>(1)</sup> For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Not applicable to an EVM.



### 7.5 Electrical Characteristics

 $T_{J}$  = -40 °C to 125 °C, and  $V_{IN}$  = 2.4 V to 5.5 V. Typical values are at  $T_{J}$  = 25 °C and  $V_{IN}$  = 5 V, unless otherwise noted.

|                      | PARAMETER                                                    | TEST CONDITIONS                                                          | MIN | TYP  | MAX  | UNIT           |
|----------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|-----|------|------|----------------|
| SUPPLY               |                                                              |                                                                          |     |      |      |                |
| I <sub>Q</sub>       | Quiescent current                                            | EN = High, no load, device not switching                                 |     | 4    | 10   | μA             |
| I <sub>SD</sub>      | Shutdown current                                             | EN = Low, T <sub>J</sub> = -40°C to 85°C                                 |     | 0.1  | 1    | μΑ             |
| . ,                  |                                                              | V <sub>IN</sub> rising                                                   | 2.2 | 2.3  | 2.4  | V              |
| $V_{UVLO}$           | Under voltage lock out threshold                             | V <sub>IN</sub> falling                                                  | 2.1 | 2.2  | 2.3  | V              |
| _                    | Thermal warning threshold                                    | T <sub>J</sub> rising                                                    |     | 130  |      | °C             |
| $T_JW$               | Thermal warning hysteresis                                   | T <sub>J</sub> falling                                                   |     | 20   |      | °C             |
|                      | Thermal shutdown threshold                                   | T <sub>J</sub> rising                                                    |     | 150  |      | °C             |
| $T_{JSD}$            | Thermal shutdown hysteresis                                  | T <sub>J</sub> falling                                                   |     | 20   |      | °C             |
| LOGIC IN             | NTERFACE EN, SDA, SCL                                        |                                                                          |     |      |      |                |
| V <sub>IH</sub>      | High-level input threshold voltage at EN, SCL, SDA, VSET/VID |                                                                          | 1.0 |      |      | V              |
| V <sub>IL</sub>      | Low-level input threshold voltage at EN, SCL, SDA, VSET/VID  |                                                                          |     |      | 0.4  | V              |
| I <sub>SCL,LKG</sub> | Input leakage current into SCL pin                           |                                                                          |     | 0.01 | 0.2  | μA             |
| I <sub>SDA,LKG</sub> | Input leakage current into SDA pin                           |                                                                          |     | 0.01 | 0.1  | <u>.</u><br>μΑ |
| I <sub>EN,LKG</sub>  | Input leakage current into EN pin                            |                                                                          |     | 0.01 | 0.1  | μA             |
| C <sub>SCL</sub>     | Parasitic capacitance at SCL                                 |                                                                          |     | 1    |      | pF             |
| C <sub>SDA</sub>     | Parasitic capacitance at SCL                                 |                                                                          |     | 2.4  |      | pF             |
| STARTU               | P, POWER GOOD                                                |                                                                          |     |      |      |                |
| t <sub>Delay</sub>   | Enable delay time                                            | Time from EN high to device starts switching, R1 = $249k\Omega$          | 420 | 700  | 1100 | μs             |
| t <sub>Ramp</sub>    | Output voltage ramp time                                     | Time from device starts switching to power good                          | 0.9 | 1    | 1.5  | ms             |
|                      | Power good lower threshold                                   | V <sub>VOS</sub> referenced to V <sub>OUT</sub> nominal                  | 85  | 91   | 96   | %              |
| $V_{PG}$             | Power good upper threshold                                   | V <sub>VOS</sub> referenced to V <sub>OUT</sub> nominal                  | 103 | 111  | 120  | %              |
| t <sub>PG,DLY</sub>  | Power good deglitch delay                                    | Rising and falling edges                                                 |     | 34   |      | μs             |
| OUTPUT               | -                                                            |                                                                          |     |      |      |                |
| .,                   | (1)                                                          | V <sub>OUT</sub> ≥ 0.59 V, FPWM, no Load, T <sub>J</sub> = 25°C to 125°C | -1  |      | 1    | %              |
| V <sub>OUT</sub>     | Output voltage accuracy <sup>(1)</sup>                       | V <sub>OUT</sub> < 0.59 V, FPWM, no Load, T <sub>J</sub> = 25°C to 125°C | -2  |      | 2    | %              |
|                      |                                                              | EN = High, V <sub>VOS</sub> = 1.8 V                                      |     | 18   |      | μA             |
| I <sub>VOS,LKG</sub> | Input leakage current into VOS pin                           | EN = Low, Output discharge disabled, V <sub>VOS</sub> = 1.8 V            |     | 0.2  | 2.5  | μΑ             |
| R <sub>DIS</sub>     | Output discharge resistor at VOS pin                         |                                                                          |     | 15   |      | Ω              |
|                      | Load regulation                                              | V <sub>OUT</sub> = 0.9 V, FPWM                                           |     | 0.04 |      | %/A            |
| POWER                | SWITCH                                                       |                                                                          |     |      |      |                |
|                      | High-side FET on-resistance                                  |                                                                          |     | 7    |      | mΩ             |
| $R_{DS(on)}$         | Low-side FET on-resistance                                   |                                                                          |     | 6.5  |      | mΩ             |
|                      | High side FET forms 1 1 1 1 1                                | TPS62864                                                                 | 5   | 5.5  | 6    | Α              |
|                      | High-side FET forward current limit                          | TPS62866                                                                 | 7   | 7.7  | 8.5  | Α              |
| I <sub>LIM</sub>     | Lauraida FFT famorad accoment live in                        | TPS62864                                                                 |     | 4.5  |      | Α              |
|                      | Low-side FET forward current limit                           | TPS62866                                                                 |     | 6.5  |      | Α              |
|                      | Low-side FET negative current limit                          | TPS62864, TPS62866                                                       |     | -3   |      | Α              |

Submit Document Feedback



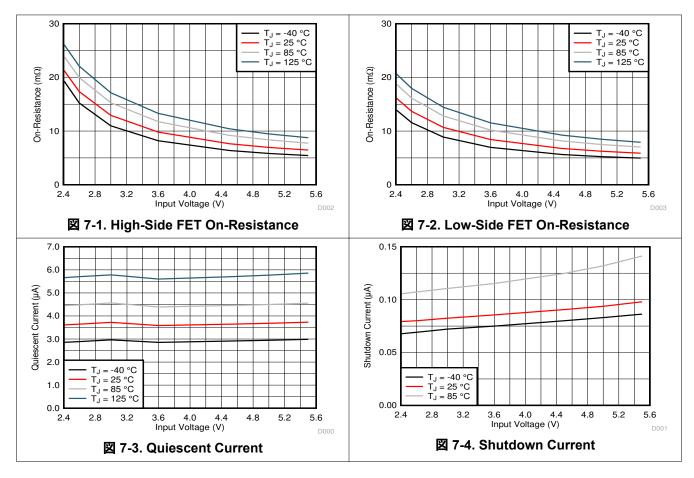
# 7.5 Electrical Characteristics (continued)

 $T_J$  = -40 °C to 125 °C, and  $V_{IN}$  = 2.4 V to 5.5 V. Typical values are at  $T_J$  = 25 °C and  $V_{IN}$  = 5 V, unless otherwise noted.

| PARAMETER       |                         | METER TEST CONDITIONS                            |  | TYP | MAX | UNIT |
|-----------------|-------------------------|--------------------------------------------------|--|-----|-----|------|
| f <sub>SW</sub> | PWM switching frequency | I <sub>OUT</sub> = 1 A, V <sub>OUT</sub> = 0.9 V |  | 2.4 |     | MHz  |

<sup>(1)</sup> Exclude codes: 0x20 (560 mV), 0x40 (720 mV), 0x60 (880 mV), 0x80 (1040 mV), 0xC4 (1360 mV), 0xE0 (1520 mV).

# 7.6 I<sup>2</sup>C InterfaceTiming Characteristics


|                                    | PARAMETER                                        | TEST CONDITIONS                                                | MIN | MAX  | UNIT |
|------------------------------------|--------------------------------------------------|----------------------------------------------------------------|-----|------|------|
|                                    |                                                  | Standard mode                                                  |     | 100  | kHz  |
|                                    |                                                  | Fast mode                                                      |     | 400  | kHz  |
|                                    | SCL Clock Frequency                              | Fast mode plus                                                 |     | 1    | MHz  |
| f <sub>(SCL)</sub>                 |                                                  | High-speed mode (write operation), C <sub>B</sub> – 100 pF max |     | 3.4  | MHz  |
|                                    |                                                  | High-speed mode (read operation), C <sub>B</sub> – 100 pF max  |     | 3.4  | MHz  |
|                                    |                                                  | High-speed mode (write operation), C <sub>B</sub> – 400 pF max |     | 1.7  | MHz  |
|                                    |                                                  | High-speed mode (read operation), C <sub>B</sub> – 400 pF max  |     | 1.7  | MHz  |
|                                    |                                                  | Standard mode                                                  | 4.7 |      | μs   |
| t <sub>BUF</sub>                   | Bus Free Time Between a STOP and START Condition | Fast mode                                                      | 1.3 |      | μs   |
|                                    | CIACT Conducti                                   | Fast mode plus                                                 | 0.5 |      | μs   |
|                                    |                                                  | Standard mode                                                  | 4   |      | μs   |
|                                    | Hold Time (Repeated) START                       | Fast mode                                                      | 600 |      | ns   |
| t <sub>HD</sub> , t <sub>STA</sub> | condition                                        | Fast mode plus                                                 | 260 |      | ns   |
|                                    |                                                  | High-speed mode                                                | 160 |      | ns   |
|                                    | LOW Period of the SCL Clock                      | Standard mode                                                  | 4.7 |      | μs   |
|                                    |                                                  | Fast mode                                                      | 1.3 |      | μs   |
| $t_{LOW}$                          |                                                  | Fast mode plus                                                 | 0.5 |      | μs   |
|                                    |                                                  | High-speed mode, C <sub>B</sub> – 100 pF max                   | 160 |      | ns   |
|                                    |                                                  | High-speed mode, C <sub>B</sub> – 400 pF max                   | 320 |      | ns   |
|                                    |                                                  | Standard mode                                                  | 4   |      | μs   |
|                                    |                                                  | Fast mode                                                      | 600 |      | ns   |
| t <sub>HIGH</sub>                  | HIGH Period of the SCL Clock                     | Fast mode plus                                                 | 260 |      | ns   |
|                                    |                                                  | High-speed mode, C <sub>B</sub> – 100 pF max                   | 60  |      | ns   |
|                                    |                                                  | High-speed mode, C <sub>B</sub> – 400 pF max                   | 120 |      | ns   |
|                                    |                                                  | Standard mode                                                  | 4.7 |      | μs   |
|                                    | Setup Time for a Repeated START                  | Fast mode                                                      | 600 |      | ns   |
| t <sub>SU</sub> , t <sub>STA</sub> | Condition                                        | Fast mode plus                                                 | 260 |      | ns   |
|                                    |                                                  | High-speed mode                                                | 160 |      | ns   |
|                                    |                                                  | Standard mode                                                  | 250 |      | ns   |
|                                    | Data Oatas Time                                  | Fast mode                                                      | 100 |      | ns   |
| t <sub>SU</sub> , t <sub>DAT</sub> | Data Setup Time                                  | Fast mode plus                                                 | 50  |      | ns   |
|                                    |                                                  | High-speed mode                                                | 10  |      | ns   |
|                                    |                                                  | Standard mode                                                  | 0   | 3.45 | μs   |
|                                    |                                                  | Fast mode                                                      | 0   | 0.9  | μs   |
| t <sub>HD</sub> , t <sub>DAT</sub> | Data Hold Time                                   | Fast mode plus                                                 | 0   |      | μs   |
|                                    |                                                  | High-speed mode, C <sub>B</sub> – 100 pF max                   | 0   | 70   | ns   |
|                                    |                                                  | High-speed mode, C <sub>B</sub> – 400 pF max                   | 0   | 150  | ns   |

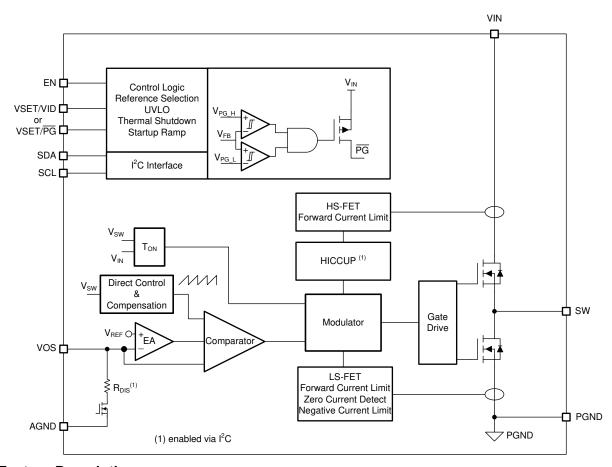


|                                                                         | PARAMETER                                                             | TEST CONDITIONS                              | MIN                        | MAX  | UNIT |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|----------------------------|------|------|
|                                                                         |                                                                       | Standard mode                                |                            | 1000 | ns   |
|                                                                         |                                                                       | Fast mode                                    | 20 +<br>0.1 C <sub>B</sub> | 300  | ns   |
| t <sub>RCL</sub>                                                        | Rise Time of SCL Signal                                               | Fast mode plus                               |                            | 120  | ns   |
|                                                                         |                                                                       | High-speed mode, C <sub>B</sub> – 100 pF max | 10                         | 40   | ns   |
|                                                                         |                                                                       | High-speed mode, C <sub>B</sub> – 400 pF max | 20                         | 80   | ns   |
|                                                                         |                                                                       | Standard mode                                | 20 +<br>0.1 C <sub>B</sub> | 1000 | ns   |
| t <sub>RCI 1</sub>                                                      | Rise Time of SCL Signal After a<br>Repeated START Condition and After | Fast mode                                    | 20 +<br>0.1 C <sub>B</sub> | 300  | ns   |
| t <sub>RCL1</sub> Repeated START Condition and After an Acknowledge BIT | Fast mode plus                                                        |                                              | 120                        | ns   |      |
|                                                                         |                                                                       | High-speed mode, C <sub>B</sub> – 100 pF max | 10                         | 80   | ns   |
|                                                                         |                                                                       | High-speed mode, C <sub>B</sub> – 400 pF max | 20                         | 160  | ns   |
|                                                                         |                                                                       | Standard mode                                | 20 +<br>0.1 C <sub>B</sub> | 300  | ns   |
| t <sub>FCL</sub> Fall Time of SCL Signal                                | E 11 T                                                                | Fast mode                                    |                            | 300  | ns   |
|                                                                         | Fast mode plus                                                        |                                              | 120                        | ns   |      |
|                                                                         |                                                                       | High-speed mode, C <sub>B</sub> – 100 pF max | 10                         | 40   | ns   |
|                                                                         |                                                                       | High-speed mode, C <sub>B</sub> – 400 pF max | 20                         | 80   | ns   |
|                                                                         | Rise Time of SDA Signal                                               | Standard mode                                |                            | 1000 | ns   |
|                                                                         |                                                                       | Fast mode                                    | 20 +<br>0.1 C <sub>B</sub> | 300  | ns   |
| t <sub>RDA</sub>                                                        |                                                                       | Fast mode plus                               |                            | 120  | ns   |
|                                                                         |                                                                       | High-speed mode, C <sub>B</sub> – 100 pF max | 10                         | 80   | ns   |
|                                                                         |                                                                       | High-speed mode, C <sub>B</sub> – 400 pF max | 20                         | 160  | ns   |
|                                                                         |                                                                       | Standard mode                                |                            | 300  | ns   |
|                                                                         |                                                                       | Fast mode                                    | 20 +<br>0.1 C <sub>B</sub> | 300  | ns   |
| t <sub>FDA</sub>                                                        | Fall Time of SDA Signal                                               | Fast mode plus                               |                            | 120  | ns   |
|                                                                         |                                                                       | High-speed mode, C <sub>B</sub> – 100 pF max | 10                         | 80   | ns   |
|                                                                         |                                                                       | High-speed mode, C <sub>B</sub> – 400 pF max | 20                         | 160  | ns   |
|                                                                         |                                                                       | Standard mode                                | 4                          |      | μs   |
|                                                                         | Setup Time of STOP Condition                                          | Fast mode                                    | 600                        |      | ns   |
| t <sub>SU,</sub> t <sub>STO</sub>                                       | Setup Time of STOP Condition                                          | Fast mode plus                               | 260                        |      | ns   |
|                                                                         |                                                                       | High-Speed mode                              | 160                        |      | ns   |
|                                                                         |                                                                       | Standard mode                                |                            | 400  | pF   |
| C-                                                                      | Capacitive Load for SDA and SCL                                       | Fast mode                                    |                            | 400  | pF   |
| C <sub>B</sub>                                                          | Capacitive Load for SDA and SCL                                       | Fast mode plus                               |                            | 550  | pF   |
|                                                                         |                                                                       | High-Speed mode                              |                            | 400  | pF   |



# 7.7 Typical Characteristics




# 8 Detailed Description

### 8.1 Overview

The TPS62864 and TPS62866 synchronous step-down converters use the DCS-Control (Direct Control with Seamless transition into Power Save Mode) topology. This is an advanced regulation topology that combines the advantages of hysteretic and current-mode control schemes.

The DCS-Control™ topology operates in PWM (pulse width modulation) mode for medium to heavy load conditions and in Power Save Mode at light load currents. In PWM mode, the converter operates with its nominal switching frequency of 2.4 MHz, having a controlled frequency variation over the input voltage range. Because DCS-Control supports both operation modes (PWM and PFM) within a single building block, the transition from PWM mode to Power Save Mode is seamless without affecting the output voltage. The devices offer both excellent DC voltage and superior load transient regulation, combined with very low output voltage ripple.

### 8.2 Functional Block Diagram



### 8.3 Feature Description

### 8.3.1 Power Save Mode

As the load current decreases, the device enters Power Save Mode (PSM) operation. PSM occurs when the inductor current becomes discontinuous, which is when it reaches 0 A during a switching cycle. Power Save Mode is based on a fixed on-time architecture, as shown in  $\pm$  1.

$$t_{ON} = \frac{V_{OUT}}{V_{IN}} \cdot 416ns \tag{1}$$

In Power Save Mode, the output voltage rises slightly above the nominal output voltage. This effect is minimized by increasing the output capacitor or inductor value.

### 8.3.2 Forced PWM Mode

With I<sup>2</sup>C, set the device in forced PWM (FPWM) mode by the CONTROL register. The device switches at 2.4 MHz, even with a light load. This reduces the output voltage ripple and allows simple filtering of the switching frequency for noise-sensitive applications. Efficiency at light load is lower in FPWM mode.

### 8.3.3 Start-up

After enabling the device, there is an enable delay ( $t_{Delay}$ ) before the device starts switching. During this period, the device sets the internal reference voltage, and determines the start-up output voltage through the resistor connected to the VSET/VID or VSET/ $\overline{PG}$  pin. After  $t_{delay}$ , all registers can be read and written by the I  $^2$ C interface.

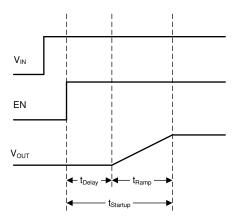



図 8-1. Start-up Sequence

After the enable delay, an internal soft start-up circuitry ramps up the output voltage with a period of 1 ms ( $t_{Ramp}$ ). This avoids excessive inrush current and creates a smooth output voltage rising-slope. It also prevents excessive voltage drops of primary cells and rechargeable batteries with high internal impedance.

The device is able to start into a pre-biased output capacitor. It starts with the applied bias voltage and ramps the output voltage to its nominal value.

### 8.3.4 Switch Current Limit and HICCUP Short-Circuit Protection

The switch current limit prevents the device from high inductor current and drawing excessive current from the battery or input voltage rail. Excessive current can occur with a shorted or saturated inductor or a heavy load or shorted output circuit condition. If the inductor current reaches the threshold I<sub>LIM</sub>, cycle by cycle, the high-side MOSFET is turned off and the low-side MOSFET is turned on, while the inductor current ramps down to the low-side MOSFET current limit.

When the high-side MOSFET current limit is triggered 32 times, the device stops switching. The device then automatically re-starts, with an internal soft start-up, after a typical delay time of 128 µs has passed. This is named HICCUP short-circuit protection. The device repeats this mode until the high load condition disappears.

The HICCUP is disabled by the CONTROL register bit Enable HICCUP. Disabling HICCUP changes the overcurrent protection to latching protection. The device stops switching after the high-side MOSFET current limit is triggered 32 times. Toggling the EN pin, removing and reapplying the input voltage, or writing to the CONTROL register bit Software Enable Device unlatches the device.

## 8.3.5 Undervoltage Lockout (UVLO)

To avoid mis-operation of the device at low input voltages, undervoltage lockout (UVLO) is implemented when the input voltage is lower than  $V_{UVLO}$ . The device stops switching and the output voltage discharge is active (if enabled through  $I^2C$ ) when the device is in UVLO. When the input voltage recovers, the device automatically returns to operation with an internal soft start-up. During UVLO, the internal register values are kept.

The UVLO bit in the STATUS Register is set when the input voltage is less than the UVLO falling threshold. When the input voltage is below 1.8 V (typ), all registers are reset.

### 8.3.6 Thermal Warning and Shutdown

When the junction temperature goes up to  $T_{JW}$ , the device gives a pre-warning indicator in the STATUS register. The device keeps running.

When the junction temperature exceeds  $T_{JSD}$ , the device goes into thermal shutdown, stops switching, and activates the output voltage discharge. When the device temperature falls below the threshold by 20°C, the device returns to normal operation automatically with an internal soft start-up. During thermal shutdown, the internal register values are kept.

### 8.4 Device Functional Modes

### 8.4.1 Enable and Disable (EN)

The device is enabled by setting the EN pin to a logic High. In shutdown mode (EN = Low), the internal power switches as well as the entire control circuitry are turned off, and all the registers are reset, except for the Enable Output Discharge bit. Do not leave the EN pin floating.

In shutdown mode (EN = Low), all registers cannot be read and written by the  $I^2C$  interface.

The typical threshold value of the EN pin is 0.61 V for rising input signals, and 0.51 V for falling input signals.

The device is also enabled or disabled by setting the bit, Software Enable Device in CONTROL register while EN = High. After being disabled/enabled by this bit, the device stops switching and has a new start-up beginning with  $t_{Ramp}$ . There is no  $T_{Delay}$  time and the registers are not reset.

### 8.4.2 Output Discharge

An internal MOSFET switch smoothly discharges the output through the VOS pin in shutdown mode (EN = Low or Software Enable Device bit = 0). The output discharge is also active when the device is in thermal shutdown and UVLO.

When the Enable Output Discharge bit is set to 0, the output discharge function is disabled. The input voltage must remain higher than 1 V (TYP) to keep the output discharge function operational and the status of the Enable Output Discharge bit retained. The Enable Output Discharge bit is reset on the rising edge of the EN pin.

### 8.4.3 Start-up Output Voltage and I<sup>2</sup>C Slave Address Selection (VSET)

During the enable delay ( $t_{Delay}$ ), the start-up output voltage and device I<sup>2</sup>C slave address are set by an external resistor connected to the VSET/VID or VSET/  $\overline{PG}$  pin through an internal R2D (resistor to digital) converter.  $\overline{\xi}$  8-1 shows the options.

表 8-1. Start-up Output Voltage and I<sup>2</sup>C Slave Address Options

| RESISTOR (E96 SERIES, ±1% ACCURACY) AT VSET/VID OR VSET/ PG | START-UP OUTPUT VOLTAGE (TYP) | I <sup>2</sup> C SLAVE ADDRESS |
|-------------------------------------------------------------|-------------------------------|--------------------------------|
| 249 kΩ                                                      | 1.15 V                        | 1000 110                       |
| 205 kΩ                                                      | 1.10 V                        | 1000 101                       |
| 162 kΩ                                                      | 1.05 V                        | 1000 100                       |
| 133 kΩ                                                      | 1.00 V                        | 1000 011                       |
| 105 kΩ                                                      | 0.95 V                        | 1000 010                       |
| 86.6 kΩ                                                     | 0.90 V                        | 1000 001                       |
| 68.1 kΩ                                                     | 0.85 V                        | 1001 000                       |
| 56.2 kΩ                                                     | 0.80 V                        | 1001 001                       |
| 44.2 kΩ                                                     | 0.75 V                        | 1001 010                       |
| 36.5 kΩ                                                     | 0.70 V                        | 1001 011                       |
| 28.7 kΩ                                                     | 0.65 V                        | 1001 100                       |
| 23.7 kΩ                                                     | 0.60 V                        | 1001 101                       |

Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

表 8-1. Start-up Output Voltage and I<sup>2</sup>C Slave Address Options (continued)

| RESISTOR (E96 SERIES, ±1% ACCURACY) AT VSET/VID OR VSET/ PG | START-UP OUTPUT VOLTAGE (TYP) | I <sup>2</sup> C SLAVE ADDRESS |
|-------------------------------------------------------------|-------------------------------|--------------------------------|
| 18.7 kΩ                                                     | 0.55 V                        | 1001 110                       |
| 15.4 kΩ                                                     | 0.50 V                        | 1001 111                       |
| 12.1 kΩ                                                     | 0.45 V                        | 1000 000                       |
| 10 kΩ                                                       | 0.40 V                        | 1000 111                       |

The R2D converter has an internal current source which applies current through the external resistor, and an internal ADC which reads back the resulting voltage level. Depending on the level, the correct start-up output voltage and I<sup>2</sup>C slave address are set. Once this R2D conversion is finished, the current source is turned off to avoid current flowing through the external resistor. Ensure that there is no additional current path or capacitance greater than 30 pF from this pin to GND during R2D conversion. Otherwise a false value is set.

During the ramp up period ( $t_{Ramp}$ ), the output voltage ramps to the target value set by VSET first, then ramps up or down to the new value when the value of the output register is changed by  $I^2C$  interface commands.

## 8.4.4 Select Output Voltage Registers (VID)

After the start-up period ( $t_{Startup}$ ), the output voltage can be selected between two output voltage registers by the VID pin. When VID is pulled low, the output voltage is set by  $\frac{1}{8}$  8-4. When VID is pulled high, the output voltage is set by  $\frac{1}{8}$  8-5. This is also called dynamic voltage scaling (DVS).

During an output voltage change through I<sup>2</sup>C or the VSET/VID pin, the device can be set in FPWM by the Enable FPWM Mode during Output Voltage Change bit in CONTROL register. The output voltage change speed is set by the Voltage Ramp Speed bit.

### 8.4.5 Power Good (PG)

The TPS62864 and TPS62864 families provide device options with the VSET/ PG pin, instead of a VSET/VID pin, shown in ☑ 9-1.

After the enable delay ( $t_{Delay}$ ), the device starts to compare the output voltage with the nominal value set by the external resistor or the output voltage registers.  $\frac{1}{5}$  8-2 shows the logic level of the  $\frac{1}{5}$  pin. The pin is driven up to the input voltage for a logic high. The pin is pulled down to GND by the external resistor R1 for a logic low.

For the VSET/ PG option devices, be aware of the following:

- VSET/ PG can not be connected to GND. A resistor, R1, must be connected between VSET/ PG and GND, for the start-up output voltage and I<sup>2</sup>C slave address setup.
- The source current of the VSET/ PG pin is up to 1 mA.
- V<sub>OUT</sub> Register 2 is disabled.
- When the device is in shutdown, the shutdown current is high because of the leakage current through the external resistor, R1, when the VSET/ PG pin is high.

The VSET/  $\overline{PG}$  has a deglitch time, before the signal goes high or low, during normal operation. For start-up, the VSET/  $\overline{PG}$  has a delay time of 200 µs after the output voltage reaches the nominal voltage.

表 8-2. VSET/ PG Pin Logic

|                                                                        | DEVICE CONDITIONS                                                            | PG LOGIC | C STATUS |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|----------|--|
|                                                                        | DEVICE CONDITIONS                                                            | HIGH     | LOW      |  |
| Enable                                                                 | 0.91 x V <sub>OUT_NOM</sub> ≤ V <sub>VOS</sub> ≤ 1.11 x V <sub>OUT_NOM</sub> |          | √        |  |
| $V_{VOS}$ < 0.91 x $V_{OUT\_NOM}$ or $V_{VOS}$ > 1.11 x $V_{OUT\_NOM}$ |                                                                              | √        |          |  |
| Shutdown                                                               | EN = Low                                                                     | √        |          |  |
| Thermal Shutdown                                                       | $T_{J} > T_{JSD}$                                                            |          |          |  |
| UVLO                                                                   | 1.8 V < V <sub>IN</sub> < V <sub>UVLO</sub>                                  | √        |          |  |
| Power Supply Removal                                                   | V <sub>IN</sub> < 1.8 V                                                      | unde     | fined    |  |

## 8.5 Programming

### 8.5.1 Serial Interface Description

I<sup>2</sup>C is a 2-wire serial interface developed by Philips Semiconductor, now NXP Semiconductors. The bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the bus is *idle*, both SDA and SCL lines are pulled high. All the I<sup>2</sup>C compatible devices connect to the I<sup>2</sup>C bus through open drain I/O pins, SDA and SCL. A *master* device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A *slave* device receives or transmits data on the bus under control of the master device, or both.

The device works as a *slave* and supports the following data transfer *modes*, as defined in the I <sup>2</sup>C-Bus Specification: standard mode (100 kbps) and fast mode (400 kbps), fast mode plus (1 Mbps) and high-speed mode (3.4 Mbps). The interface adds flexibility to the power supply solution, enabling most functions to be programmed to new values depending on the instantaneous application requirements. Register contents remain intact as long as the input voltage remains above 1.8 V.

The data transfer protocol for standard and fast modes is exactly the same, therefore, they are referred to as F/S-mode in this document. The protocol for high-speed mode is different from F/S-mode, and it is referred to as HS-mode.

It is recommended that the  $I^2C$  master initiates a STOP condition on the  $I^2C$  bus after the initial power up of SDA and SCL pullup voltages to ensure reset of the  $I^2C$  engine.

### 8.5.2 Standard-, Fast-, and Fast-Mode Plus Protocol

The master initiates data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in ⊠ 8-2. All I<sup>2</sup>C-compatible devices recognize a start condition.

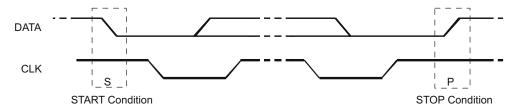



図 8-2. START and STOP Conditions

The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see 8-3). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an acknowledge (see 8-4) by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with a slave has been established.

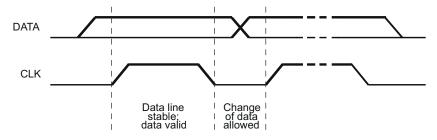



図 8-3. Bit Transfer on the Serial Interface

The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data from the slave (R/W bit 0). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary.

To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to high while the SCL line is high (see  $\boxtimes$  8-2). This releases the bus and stops the communication link with the addressed slave. All I $^2$ C compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for a start condition followed by a matching address.

Attempting to read data from register addresses not listed in this section results in 00h being read out.

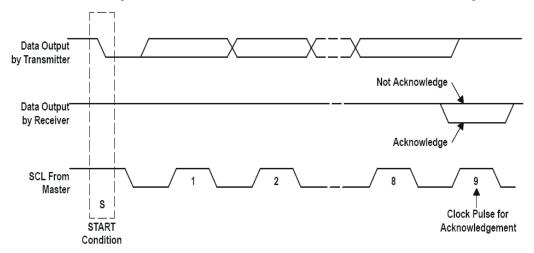



図 8-4. Acknowledge on the I<sup>2</sup>C Bus

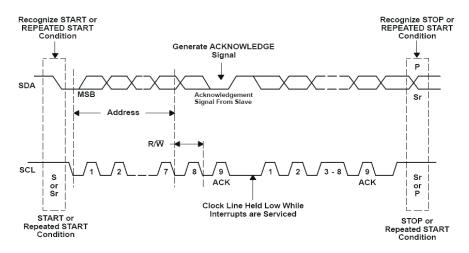
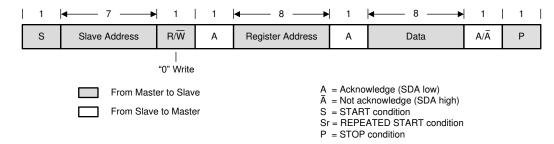



図 8-5. Bus Protocol

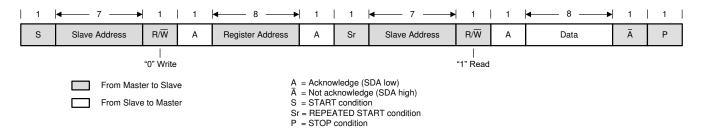
### 8.5.3 HS-Mode Protocol

The master generates a start condition followed by a valid serial byte containing HS master code 00001XXX. This transmission is made in F/S-mode at no more than 400 Kbps. No device is allowed to acknowledge the HS master code, but all devices must recognize it and switch their internal setting to support 3.4 Mbps operation.

The master then generates a *repeated start condition* (a repeated start condition has the same timing as the start condition). After this repeated start condition, the protocol is the same as F/S-mode, except that transmission speeds up to 3.4 Mbps are allowed. A stop condition ends the HS-mode and switches all the




internal settings of the slave devices to support the F/S-mode. Instead of using a stop condition, repeated start conditions must be used to secure the bus in HS-mode.


Attempting to read data from register addresses not listed in this section results in 00h being read out.

### 8.5.4 I<sup>2</sup>C Update Sequence

The sequence requires a start condition, a valid I<sup>2</sup>C slave address, a register address byte, and a data byte for a single update. After the receipt of each byte, the device acknowledges by pulling the SDA line low during the high period of a single clock pulse. A valid I<sup>2</sup>C address selects the device. The device performs an update on the falling edge of the acknowledge signal that follows the LSB byte.



### 図 8-6. "Write" Data Transfer Format in Standard-, Fast, and Fast-Plus Modes



### 図 8-7. "Read" Data Transfer Format in Standard-, Fast, and Fast-Plus Modes

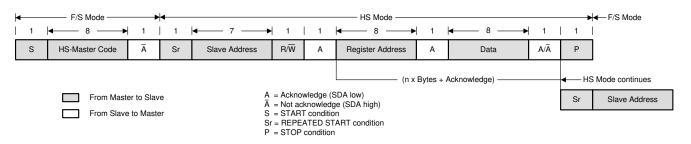



図 8-8. Data Transfer Format in HS-Mode

### 8.5.5 I<sup>2</sup>C Register Reset

The I<sup>2</sup>C registers can be reset by:

- Pulling the input voltage below 1.8 V (typ)
- A high to low transition on EN.
- Setting the Reset bit in the CONTROL register. When Reset is set to 1, all registers are reset to the default values and a new start-up is begun immediately. After t<sub>Delav</sub>, the I<sup>2</sup>C registers can be programmed again.

# 8.6 Register Map

### 表 8-3. Register Map

| REGISTER ADDRESS<br>(HEX) | REGISTER NAME               | FACTORY DEFAULT<br>(HEX) | DESCRIPTION                           |
|---------------------------|-----------------------------|--------------------------|---------------------------------------|
| 0x01                      | V <sub>OUT</sub> Register 1 | 0x64                     | Sets the target output voltage        |
| 0x02                      | V <sub>OUT</sub> Register 2 | 0x64                     | Sets the target output voltage        |
| 0x03                      | CONTROL Register            | 0x6F                     | Sets miscellaneous configuration bits |
| 0x05                      | STATUS Register             | 0x00                     | Returns status flags                  |

### 8.6.1 Slave Address Byte

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |
|---|---|---|---|---|---|---|-----|
| 1 | х | х | х | х | х | х | R/W |

The slave address byte is the first byte received following the START condition from the master device. The slave addresses can be assigned by an external resistor, see 表 8-1.

### 8.6.2 Register Address Byte

| 7 | 6 | 5 | 4 | 3 | 2  | 1  | 0  |
|---|---|---|---|---|----|----|----|
| 0 | 0 | 0 | 0 | 0 | D2 | D1 | D0 |

Following the successful acknowledgment of the slave address, the bus master sends a byte to the device, which contains the address of the register to be accessed.

# 8.6.3 V<sub>OUT</sub> Register 1

表 8-4. V<sub>OUT</sub> Register 1 Description

| REGISTER ADDRESS 0X01 READ/WRITE |         |             |                         |  |  |
|----------------------------------|---------|-------------|-------------------------|--|--|
| BIT                              | FIELD   | VALUE (HEX) | OUTPUT VOLTAGE (TYP)(1) |  |  |
|                                  |         | 0x00        | 400 mV                  |  |  |
|                                  |         | 0x01        | 405 mV                  |  |  |
| 7:0 VO1_                         | VO1_SET |             |                         |  |  |
|                                  |         | 0x64        | 900 mV                  |  |  |
|                                  |         |             |                         |  |  |
|                                  |         | 0xFE        | 1670 mV                 |  |  |
|                                  |         | 0xFF        | 1675 mV                 |  |  |

<sup>(1)</sup> It is not recommended to use the following codes, as their output voltage accuracy may have a wider tolerance than the specification: 0x20 (560 mV), 0x40 (720 mV), 0x60 (880 mV), 0x80 (1040 mV), 0xC4 (1360 mV), 0xE0 (1520 mV).



# 8.6.4 V<sub>OUT</sub> Register 2

# 表 8-5. V<sub>OUT</sub> Register 2 Description

| REGISTER ADDRESS 0X02 READ/WRITE |             |             |                                     |  |  |
|----------------------------------|-------------|-------------|-------------------------------------|--|--|
| BIT                              | FIELD       | VALUE (HEX) | OUTPUT VOLTAGE (TYP) <sup>(1)</sup> |  |  |
|                                  |             | 0x00        | 400 mV                              |  |  |
| 7:0 VO2_SET                      | 0x01        | 405 mV      |                                     |  |  |
|                                  |             |             |                                     |  |  |
|                                  | 7:0 VO2_SET | 0x64        | 900 mV (default value)              |  |  |
|                                  |             |             |                                     |  |  |
|                                  |             | 0xFE        | 1670 mV                             |  |  |
|                                  |             | 0xFF        | 1675 mV                             |  |  |

<sup>(1)</sup> It is not recommended to use the following codes, as their output voltage accuracy may have a wider tolerance than the specification: 0x20 (560 mV), 0x40 (720 mV), 0x60 (880 mV), 0x80 (1040 mV), 0xC4 (1360 mV), 0xE0 (1520 mV).

Product Folder Links: TPS62864 TPS62866

# 8.6.5 CONTROL Register

# 表 8-6. CONTROL Register Description

| REGISTER | R ADDRESS 0X03 WRITE ONLY                     |      |         |                                                                                                                                                     |
|----------|-----------------------------------------------|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| BIT      | FIELD                                         | TYPE | DEFAULT | DESCRIPTION                                                                                                                                         |
| 7        | Reset                                         | R/W  | 0       | 1 - Reset all registers to default.                                                                                                                 |
| 6        | Enable FPWM Mode during Output Voltage Change | R/W  | 1       | 0 - Keep the current mode status during output voltage change 1 - Force the device in FPWM during output voltage change                             |
| 5        | Software Enable Device                        | R/W  | 1       | O - Disable the device. All registers values are still kept.     1 - Re-enable the device with a new startup without the t <sub>Delay</sub> period. |
| 4        | Enable FPWM Mode                              | R/W  | 0       | 0 - set the device in power save mode at light loads. 1 - set the device in forced PWM mode at light loads.                                         |
| 3        | Enable Output Discharge                       | R/W  | 1       | 0 - Disable output discharge<br>1 - Enable output discharge                                                                                         |
| 2        | Enable HICCUP                                 | R/W  | 1       | O - Disable HICCUP. Enable latching protection.     1 - Enable HICCUP, Disable latching protection.                                                 |
| 0:1      | Voltage Ramp Speed                            | R/W  | 11      | 00 - 20mV/μs (0.25 μs/step)<br>01 - 10 mV/μs (0.5 μs/step)<br>10 - 5 mV/μs (1 μs/step)<br>11 - 1 mV/μs (5 μs/step, default)                         |

# 8.6.6 STATUS Register

## 表 8-7. STATUS Register Description

|          | 20 11 0 11 11 00 1 to glotoi 2000 il piloti    |      |         |                                                                 |  |  |
|----------|------------------------------------------------|------|---------|-----------------------------------------------------------------|--|--|
| REGISTER | REGISTER ADDRESS 0X05 READ ONLY <sup>(1)</sup> |      |         |                                                                 |  |  |
| BIT      | FIELD                                          | TYPE | DEFAULT | DESCRIPTION                                                     |  |  |
| 7:5      | Reserved                                       |      |         |                                                                 |  |  |
| 4        | Thermal Warning                                | R    | 0       | 1: Junction temperature is higher than 130°C                    |  |  |
| 3        | HICCUP                                         | R    | 0       | 1: Device has HICCUP status once                                |  |  |
| 2        | Reserved                                       |      |         |                                                                 |  |  |
| 1        | Reserved                                       |      |         |                                                                 |  |  |
| 0        | UVLO                                           | R    | 0       | 1: The input voltage is less than UVLO threshold (falling edge) |  |  |

<sup>(1)</sup> All bit values are latched until the device is reset, or the STATUS register is read. Then, the STATUS register is reset to its default values.

# 9 Application and Implementation

### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

## 9.1 Application Information

The following section discusses the design of the external components to complete the power supply design for several input and output voltage options by using typical applications as a reference.

# 9.2 Typical Applications

### 9.2.1 6-A Output Current Application

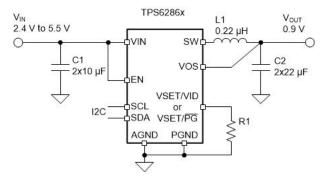



図 9-1. Typical Application

### 9.2.1.1 Design Requirements

For this design example, use the parameters listed in 表 9-1 as the input parameters.

表 9-1. Design Parameters

| DESIGN PARAMETER       | EXAMPLE VALUE  |
|------------------------|----------------|
| Input voltage          | 2.4 V to 5.5 V |
| Output voltage         | 0.9 V          |
| Maximum output current | 6 A            |

### 表 9-2 lists the components used for the example.

表 9-2. List of Components of Figure 9-1

| REFERENCE | DESCRIPTION                                                         | MANUFACTURER <sup>(1)</sup>   |  |
|-----------|---------------------------------------------------------------------|-------------------------------|--|
| C1        | 10 μF, Ceramic capacitor, 6.3 V, X7R, size 0603, CL10B106MQ8NRNC    | Samsung Electro-<br>Mechanics |  |
| C2        | 22 μF, Ceramic capacitor, 6.3 V, X7R, size 0805, GRM21BZ70J226ME44L | Murata                        |  |
| L1        | 0.22 μH, Power inductor, XAL4020-221ME (12 A, 5.81 mΩ)              | Coilcraft                     |  |
| R1        | Depending on the start-up output voltage, size 0603                 | Std                           |  |

(1) See *Third-party Products* disclaimer.

### 9.2.1.2 Detailed Design Procedure

### 9.2.1.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPS62866 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V<sub>IN</sub>), output voltage (V<sub>OUT</sub>), and output current (I<sub>OUT</sub>) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- · Run thermal simulations to understand board thermal performance
- · Export customized schematic and layout into popular CAD formats
- · Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

### 9.2.1.2.2 Setting The Output Voltage

The initial output voltage is set by an external resistor connected to the VSET/VID or VSET/PG pin, according to 表 8-1. After the soft start-up, the output voltage can be changed in the V<sub>OUT</sub> Registers. Refer to 表 8-4 and 表 8-5.

### 9.2.1.2.3 Output Filter Design

The inductor and the output capacitor together provide a low-pass filter. To simplify this process, 表 9-3 outlines possible inductor and capacitor value combinations for most applications. Checked cells represent combinations that are proven for stability by simulation and lab test. Further combinations should be checked for each individual application.

表 9-3. Matrix of Output Capacitor and Inductor Combinations

| NOMINAL L [µH] <sup>(2)</sup> | NOMINAL C <sub>OUT</sub> [µF] <sup>(3)</sup> |              |        |     |  |  |  |  |
|-------------------------------|----------------------------------------------|--------------|--------|-----|--|--|--|--|
| ΝΟΜΙΝΑΣ Ε [μπ].               | 22                                           | 2 x 22 or 47 | 3 x 22 | 150 |  |  |  |  |
| 0.24                          |                                              | +(1)         | +      | +   |  |  |  |  |

- (1) This LC combination is the standard value and recommended for most applications.
- (2) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and -30%.
- (3) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by 20% and -30%.

### 9.2.1.2.4 Inductor Selection

The main parameter for the inductor selection is the inductor value and then the saturation current of the inductor. To calculate the maximum inductor current under static load conditions, Equation 2 is given.

$$I_{L,MAX} = I_{OUT,MAX} + \frac{\Delta I_L}{2}$$

$$\Delta I_{L} = V_{OUT} \times \frac{1 - \frac{V_{OUT}}{V_{IN}}}{L \times f_{SW}}$$
(2)

### where

- I<sub>OUT,MAX</sub> = maximum output current
- ΔI<sub>L</sub> = inductor current ripple
- f<sub>SW</sub> = switching frequency



### L = inductor value

It is recommended to choose a saturation current for the inductor that is approximately 20% to 30% higher than  $I_{L,MAX}$ . In addition, DC resistance and size must also be taken into account when selecting an appropriate inductor. 表 9-4 lists recommended inductors.

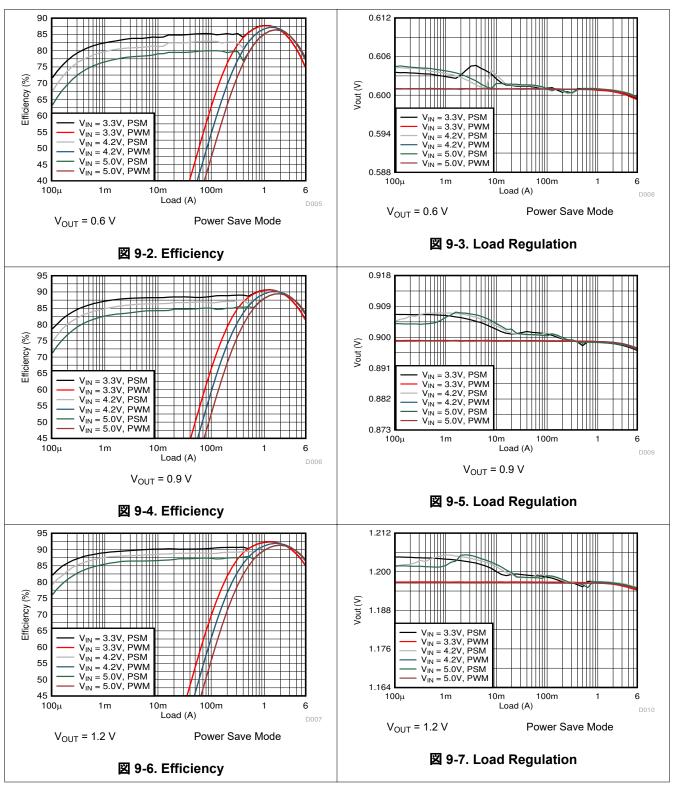
表 9-4. List of Recommended Inductors

| INDUCTANCE [µH] | CURRENT RATING,<br>I <sub>SAT</sub> [A] | DIMENSIONS<br>[L x W x H mm] | DC RESISTANCE<br>[mΩ] | PART NUMBER <sup>(1)</sup> |
|-----------------|-----------------------------------------|------------------------------|-----------------------|----------------------------|
| 0.22            | 18.7                                    | 4 x 4 x 2                    | 5.81                  | Coilcraft, XAL4020-221ME   |
| 0.24            | 6.6                                     | 2 x 1.6 x 1.2                | 13                    | Murata, DFE201612E-R24M    |

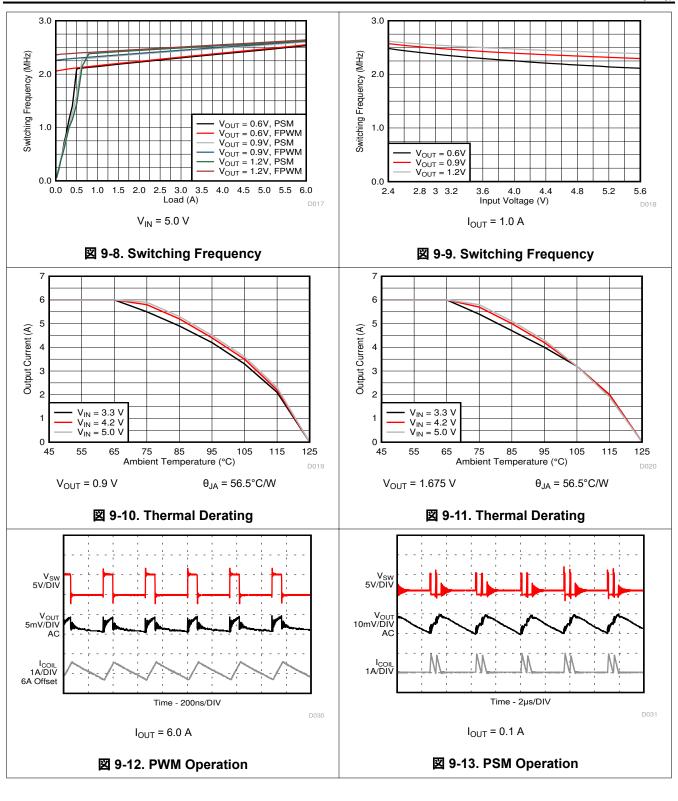
<sup>(1)</sup> See Third-party Products disclaimer.

### 9.2.1.2.5 Capacitor Selection

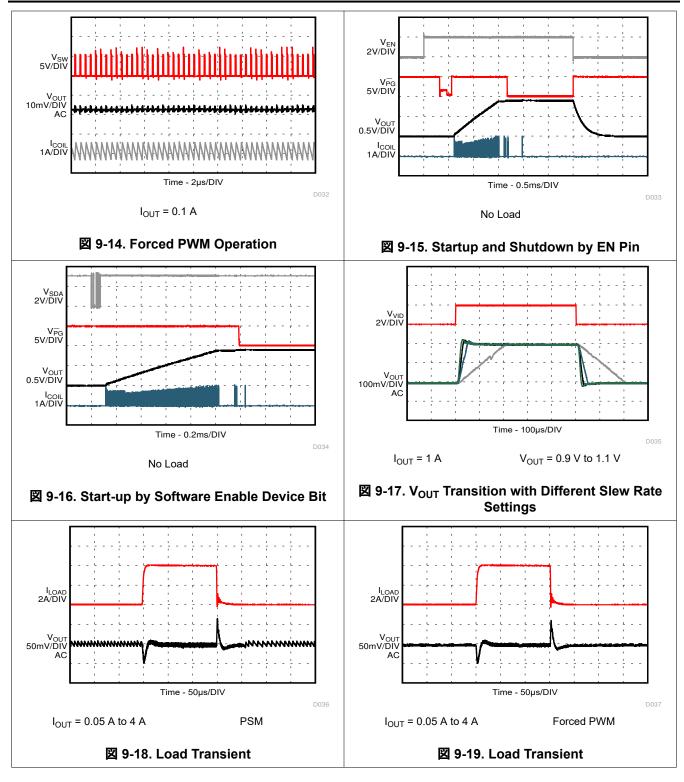
The input capacitor is the low-impedance energy source for the converter which helps to provide stable operation. A low-ESR multilayer ceramic capacitor is recommended for best filtering and must be placed between VIN and PGND as close as possible to those pins. For most applications,  $8~\mu F$  is a sufficient value for the effective input capacitance, though a larger value reduces input current ripple.

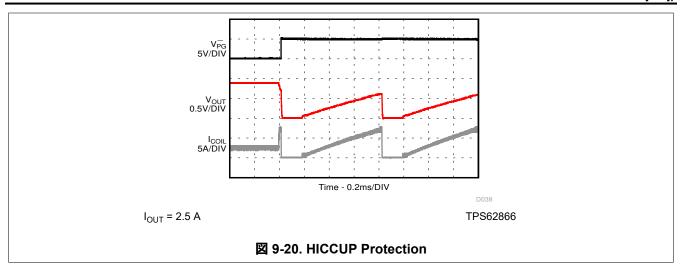

The architecture of the device allows the use of tiny ceramic output capacitors with low equivalent series resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends using X7R or X5R dielectrics. The recommended minimum output effective capacitance is 30  $\mu$ F; this capacitance can vary over a wide range as outline in the output filter selection table.

Product Folder Links: TPS62864 TPS62866




### 9.2.1.3 Application Curves


 $V_{IN} = 5.0 \text{ V}$ ,  $V_{OUT} = 0.9 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ , BOM =  $\frac{1}{8}$  9-2, unless otherwise noted.














### 9.2.2 Smaller Application Solution

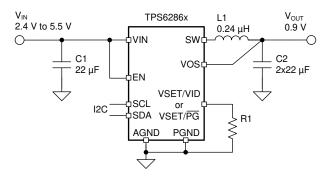



図 9-21. Smaller Application

### 9.2.2.1 Design Requirements

For this design, use the parameters listed in  $\frac{1}{8}$  9-5 as the input parameters. The design ( $\frac{1}{8}$  9-6) is optimized for the smallest solution size.

 DESIGN PARAMETER
 EXAMPLE VALUE

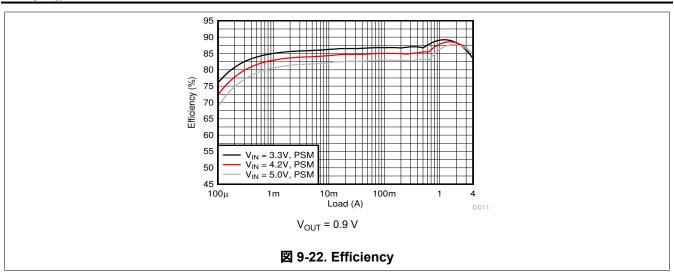
 Input voltage
 3.3 V

 Output voltage
 0.9 V

 Maximum output current
 4 A

 Ambient temperature
 25°C

表 9-5. Design Parameters


表 9-6. List of Components of Table 9-5

| REFERENCE | REFERENCE DESCRIPTION                                              |        |  |  |
|-----------|--------------------------------------------------------------------|--------|--|--|
| C1, C2    | 22 μF, Ceramic capacitor, 6.3 V, X5R, size 0402, GRM155R60J226ME11 | Murata |  |  |
| L1        | 0.24 μH, Power inductor, size 0806, DFE201612E-R24M                | Murata |  |  |
| R1        | Depending on the startup output voltage, size 0402                 | Std    |  |  |

(1) See Third-party Products disclaimer.

## 9.2.2.2 Application Curves

 $V_{IN}$  = 5.0 V,  $V_{OUT}$  = 0.9 V,  $T_A$  = 25°C, BOM =  $\frac{1}{5}$  9-6, unless otherwise noted.



# 10 Power Supply Recommendations

The device is designed to operate from an input voltage supply range from 2.4 V to 5.5 V. Ensure that the input power supply has a sufficient current rating for the application. The power supply must avoid a fast ramp down. The falling ramp speed must be slower than 10 mV/ $\mu$ s, if the input voltage drops below V<sub>UVLO</sub>.

### 11 Layout

# 11.1 Layout Guidelines

The printed-circuit-board (PCB) layout is an important step to maintain the high performance of the device.

- The input/output capacitors and the inductor must be placed as close as possible to the IC. This keeps the
  power traces short. Routing these power traces direct and wide results in low trace resistance and low
  parasitic inductance.
- The low side of the input and output capacitors must be connected properly to the PGND to avoid a GND potential shift.
- The sense traces connected to the VOS pin is a signal trace. Special care must be taken to avoid noise being induced. Keep the trace away from SW.
- Refer to 🗵 11-1 for an example of component placement, routing, and thermal design.

### 11.2 Layout Example

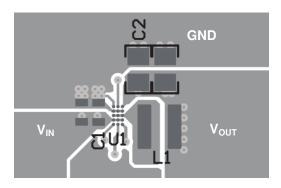



図 11-1. Layout Example

### 11.3 Thermal Considerations

Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of a given component.

Two basic approaches for enhancing thermal performance are improving the power dissipation capability of the PCB design and introducing airflow in the system. For more details on how to use the thermal parameters, see the Semiconductor and IC Package Thermal Metrics Application Report.

# 12 Device and Documentation Support

### 12.1 Device Support

# 12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

### **12.2 Documentation Support**

### 12.2.1 Related Documentation

For related documentation, see the following:

Texas Instruments, Semiconductor and IC Package Thermal Metrics Application Report

### 12.3 Support Resources

TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

# 12.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

### 12.5 Trademarks

DCS-Control<sup>™</sup> is a trademark of TI.

TI E2E™ is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

### 12.6 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

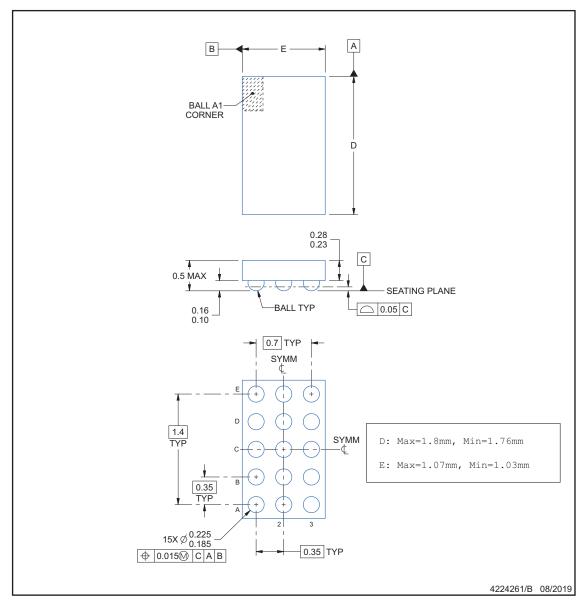
### 12.7 Glossary

**TI Glossary** This glossary lists and explains terms, acronyms, and definitions.

## 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

YCG0015






## **PACKAGE OUTLINE**

# DSBGA - 0.5 mm max height

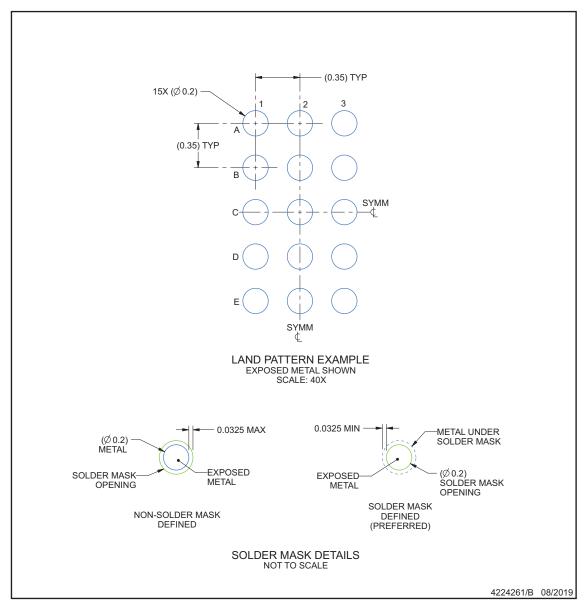
DIE SIZE BALL GRID ARRAY



### NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
   This drawing is subject to change without notice.






### **EXAMPLE BOARD LAYOUT**

# YCG0015

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).





# **EXAMPLE STENCIL DESIGN**

# YCG0015

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY (0.35) TYP (R0.05) TYP 15X (□ 0.21) (0.35) TYP METAL-TYP SYMM SOLDER PASTE EXAMPLE BASED ON 0.075 mm THICK STENCIL SCALE: 40X

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



4224261/B 08/2019

www.ti.com 9-Nov-2025

### PACKAGING INFORMATION

| Orderable part number | Status | Material type | Package   Pins   | Package qty   Carrier | RoHS | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking |
|-----------------------|--------|---------------|------------------|-----------------------|------|-------------------------------|----------------------------|--------------|--------------|
|                       | (1)    | (2)           |                  |                       | (3)  | (4)                           | (5)                        |              | (6)          |
| TPS628640AYCGR        | Active | Production    | DSBGA (YCG)   15 | 3000   LARGE T&R      | Yes  | SNAGCU                        | Level-1-260C-UNLIM         | -40 to 125   | 8640A        |
| TPS628640AYCGR.A      | Active | Production    | DSBGA (YCG)   15 | 3000   LARGE T&R      | Yes  | SNAGCU                        | Level-1-260C-UNLIM         | -40 to 125   | 8640A        |
| TPS628640BYCGR        | Active | Production    | DSBGA (YCG)   15 | 3000   LARGE T&R      | Yes  | SNAGCU                        | Level-1-260C-UNLIM         | -40 to 125   | 8640B        |
| TPS628640BYCGR.A      | Active | Production    | DSBGA (YCG)   15 | 3000   LARGE T&R      | Yes  | SNAGCU                        | Level-1-260C-UNLIM         | -40 to 125   | 8640B        |
| TPS628660AYCGR        | Active | Production    | DSBGA (YCG)   15 | 3000   LARGE T&R      | Yes  | SNAGCU                        | Level-1-260C-UNLIM         | -40 to 125   | 8660A        |
| TPS628660AYCGR.A      | Active | Production    | DSBGA (YCG)   15 | 3000   LARGE T&R      | Yes  | SNAGCU                        | Level-1-260C-UNLIM         | -40 to 125   | 8660A        |
| TPS628660BYCGR        | Active | Production    | DSBGA (YCG)   15 | 3000   LARGE T&R      | Yes  | SNAGCU                        | Level-1-260C-UNLIM         | -40 to 125   | 8660B        |
| TPS628660BYCGR.A      | Active | Production    | DSBGA (YCG)   15 | 3000   LARGE T&R      | Yes  | SNAGCU                        | Level-1-260C-UNLIM         | -40 to 125   | 8660B        |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

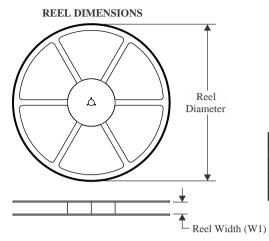
<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

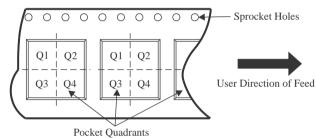
# **PACKAGE OPTION ADDENDUM**


www.ti.com 9-Nov-2025

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

**PACKAGE MATERIALS INFORMATION** 

www.ti.com 7-Feb-2025

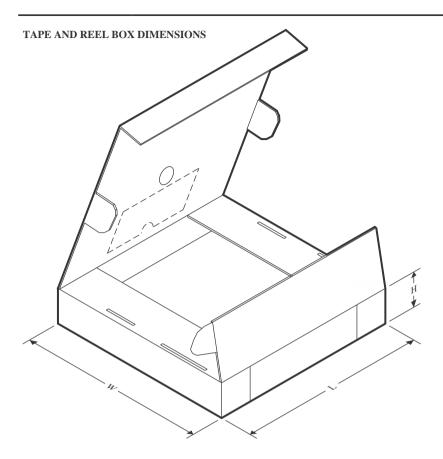

## TAPE AND REEL INFORMATION



# TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

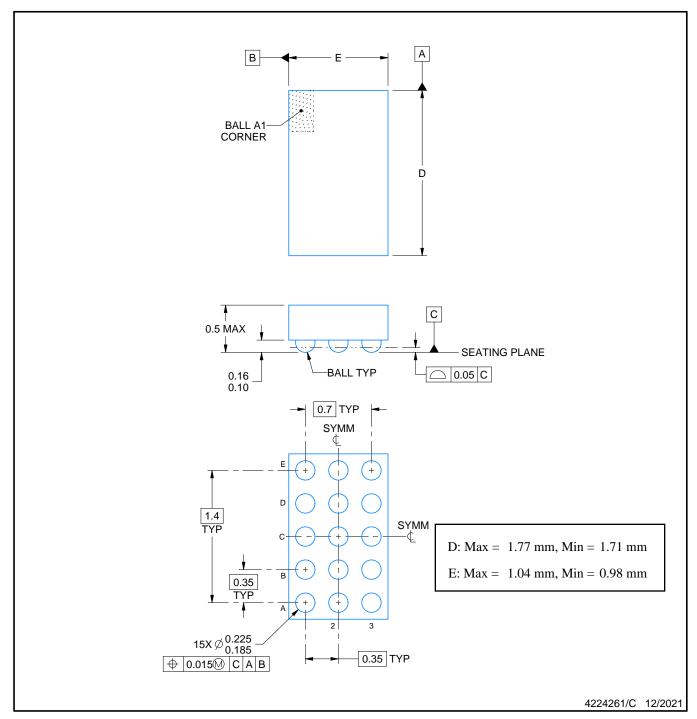



### \*All dimensions are nominal

| Device         | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TPS628640AYCGR | DSBGA           | YCG                | 15 | 3000 | 180.0                    | 8.4                      | 1.22       | 1.95       | 0.6        | 4.0        | 8.0       | Q1               |
| TPS628640BYCGR | DSBGA           | YCG                | 15 | 3000 | 180.0                    | 8.4                      | 1.22       | 1.95       | 0.6        | 4.0        | 8.0       | Q1               |
| TPS628660AYCGR | DSBGA           | YCG                | 15 | 3000 | 180.0                    | 8.4                      | 1.22       | 1.95       | 0.6        | 4.0        | 8.0       | Q1               |
| TPS628660BYCGR | DSBGA           | YCG                | 15 | 3000 | 180.0                    | 8.4                      | 1.22       | 1.95       | 0.6        | 4.0        | 8.0       | Q1               |



www.ti.com 7-Feb-2025



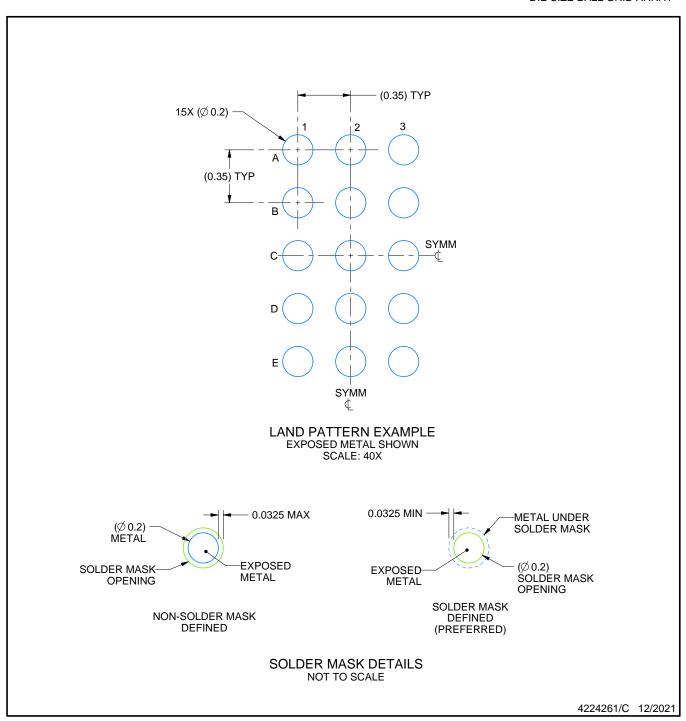

### \*All dimensions are nominal

| Device         | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS628640AYCGR | DSBGA        | YCG             | 15   | 3000 | 182.0       | 182.0      | 20.0        |
| TPS628640BYCGR | DSBGA        | YCG             | 15   | 3000 | 182.0       | 182.0      | 20.0        |
| TPS628660AYCGR | DSBGA        | YCG             | 15   | 3000 | 182.0       | 182.0      | 20.0        |
| TPS628660BYCGR | DSBGA        | YCG             | 15   | 3000 | 182.0       | 182.0      | 20.0        |



DIE SIZE BALL GRID ARRAY



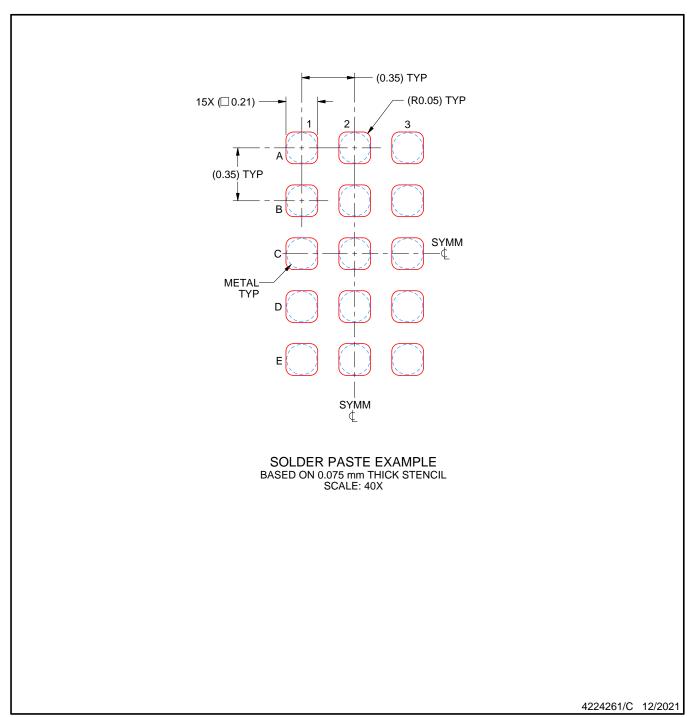

### NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

  2. This drawing is subject to change without notice.



DIE SIZE BALL GRID ARRAY




NOTES: (continued)

Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).



DIE SIZE BALL GRID ARRAY



### NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



## 重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月