

Now

CC1310

JAJSFV9D-SEPTEMBER 2015-REVISED JULY 2018

CC1310 SimpleLink™超低消費電力Sub-1GHz ワイヤレスMCU

デバイスの概要 1

Texas

INSTRUMENTS

1.1 特長

- マイコン
 - パワフルな Arm[®] Cortex[®]-M3プロセッサ
 - EEMBC CoreMark[®]スコア: 142
 - EEMBC ULPBench™スコア: 158
 - 最高48MHzのクロック速度
 - 32KB、64KB、128KBのシステム内プログラム可能 フラッシュ
 - キャッシュ用SRAM: 8KB (汎用RAMとしても使用可能)
 - 超低リークSRAM: 20KB
 - 2ピンcJTAGおよびJTAGデバッグ
 - OTA(Over-the-air)更新をサポート
- 超低消費電力センサ・コントローラ
 - システムの他の部分から自律して動作可能
 - 16ビット・アーキテクチャ
 - 超低リークSRAM: 2KB(コードおよびデータ用)
- 効率的なコード・サイズのアーキテクチャ: ROM内に TI-RTOS、ドライバ、、ブートローダを配置
- RoHS準拠のパッケージ
 - 7mm×7mm RGZ VQFN48 (30GPIO)
 - 5mm×5mm RHB VQFN32 (15GPIO)
 - 4mm×4mm RSM VQFN32 (10GPIO)
- ペリフェラル
 - すべてのデジタル・ペリフェラル・ピンを任意のGPIO に配線可能
 - 4個の汎用タイマ・モジュール (8個の16ビットまたは4個の32ビット・タイマ、それ ぞれPWM)
 - 12ビットADC、200kサンプル/s、8チャネル・アナロ グMUX
 - 連続時間コンパレータ
 - 超低消費電力クロック・コンパレータ
 - プログラマブル電流ソース
 - UART
 - SSIx2(SPI, MICROWIRE, TI)
 - I²C, I2S
 - リアルタイム・クロック(RTC)
 - AES-128セキュリティ・モジュール
 - TRNG (True Random Number Generator)
 - 8個の容量性センシング・ボタンをサポート
 - 組み込みの温度センサ

- 外部システム
 - オンチップの内蔵DC/DCコンバータ
 - シームレスに統合された SimpleLink™CC1190 レンジ・エクステンダ
- 低消費電力
 - 幅広い電源電圧範囲: 1.8~3.8V
 - RX: 5.4mA
 - +10dBmでのTX: 13.4mA
 - アクティブ・モード時のマイコン 48MHz 実行 Coremark: 2.5mA (51µA/MHz)
 - アクティブ・モード時のマイコン: 48.5 CoreMark/mA
 - アクティブ・モード時のセンサ・コントローラ(24MHz): 0.4mA + 8.2µA/MHz
 - センサ・コントローラ。毎秒1回のウェイクアップで、 12ビットADCサンプリングを1回実行: 0.95µA
 - スタンバイ: 0.7µA (RTC動作、RAM/CPU保持)
 - シャットダウン: 185nA (外部イベントでウェイクアッ プ)
- RF部
 - 優れたレシーバ感度:-124dBm(長距離モード使 用)、-110dBm (50kbps)
 - 優れた選択性(±100kHz): 56dB
 - 優れたブロッキング性能(±10MHz): 90dB
 - 出力電力をプログラム可能: 最大+15dBm
 - シングル・エンドまたは差動RFインターフェイス
 - 国際的な無線周波数規制への準拠を目標としたシ ステムに最適
 - ETSI EN 300 220、EN 303 204 (ヨーロッパ)
 - FCC CFR47 Part 15 (米国)
 - ARIB STD-T108 (日本)
 - ワイヤレスM-Bus (EN 13757-4)および IEEE[®] 802.15.4g PHY
- ツールおよび開発環境
 - フル機能および低コストの開発キット
 - 異なるRF構成用の複数のリファレンス・デザイン
 - Packet Sniffer PCソフトウェア
 - Sensor Controller Studio
 - SmartRF™Studio
 - SmartRF Flash Programmer 2
 - IAR Embedded Workbench[®] for ARM
 - Code Composer Studio™(CCS)IDE
 - CCS UniFlash

- 1.2 アプリケーション
- 315/433/470/500/779/868/915/920MHz のISM/SRDシステム
- 50kHz~5MHzのチャネル間隔の 低消費電力ワイヤレス・システム
- ホーム/ビル・オートメーション
- ワイヤレス・アラームとセキュリティ・システム
- 産業用監視および産業用制御
- スマート・グリッドと自動メーター読み取り
- ワイヤレス医療用アプリケーション

- ワイヤレス・センサ・ネットワーク
- アクティブRFID
- IEEE 802.15.4g、IP-Enabled Smart Objects (6LoWPAN)、ワイヤレス M-Bus, KNXシステム、 Wi-SUN™、および独自システム
- エネルギー・ハーベスティング・アプリケーション
- 電子棚札(ESL)
- 長距離センサ・アプリケーション
- ヒート・コスト・アロケータ

1.3 概要

CC1310デバイスはコスト効率が優れ、非常に低消費電力のSub-1GHzの Texas Instruments[™]製RFデバイス で、SimpleLink[™]マイクロコントローラ(MCU)プラットフォームの一部です。このプラットフォームは Wi-Fi[®]、 *Bluetooth[®]* Low Energy、Sub-1GHz、イーサネット、Zigbee[®]、Thread、ホストMCUで構成されます。これらのデ バイスはすべて、中心となる単一のソフトウェア開発キット(SDK)と豊富なツール・セットを持つ、共通の使いやすい 開発環境を共有しています。SimpleLinkプラットフォームを使用すると、一度で統合を実現でき、製品ラインアップ のいずれのデバイスの組み合わせでも設計に追加できることから、設計要件変更の際もコードの100%再利用が可 能です。詳細については、www.tij.co.jp/simplelinkをご覧ください。

CC1310デバイスは、アクティブ時のRFおよびMCU消費電流が非常に小さく、さらに柔軟な低消費電力モードがあるため、バッテリ駆動時間において非常に優れており、小さなコイン型電池や環境発電アプリケーションで長距離の動作が可能になります。

CC1310は、Sub-1GHzのRF周波数を扱える、コスト効率の優れた超低消費電力ワイヤレスMCUであるCC13xx およびCC26xxファミリのデバイスです。CC1310デバイスは、複数の物理層およびRF規格をサポートするプラット フォームにおいて、柔軟な超低消費電力RFトランシーバと、強力な48MHz Arm[®] Cortex[®]-M3マイクロコントローラ を組み合わせた製品です。専用の無線コントローラ(Cortex[®]-M0)により、ROMまたはRAMに格納された低レベル のRFプロトコル・コマンドを処理します。これによって、柔軟性と超低消費電力が保証されます。CC1310デバイスの 低消費電力は、RF性能を犠牲にすることなく実現され、非常に優れた感度と堅牢性(選択性とブロッキング)を備え ています。

CC1310デバイスは、高度に統合された真のシングルチップ・ソリューションで、完全なRFシステムとオンチップ DC/DCコンバータが内蔵されています。

アナログとデジタルのセンサを操作するように構成可能な、専用の自律式超低消費電力MCUにより、非常に低い消費電力でセンサを操作可能です。これによって、メインMCU (Arm[®] Cortex[®]-M3)のスリープ時間を最大限にできます。

CC1310デバイスの電力およびクロック管理と無線システムが正しく動作するには、TI-RTOSに実装されているソフトウェアによる特定の構成および処理が必要です。デバイス上のすべてのアプリケーション開発に、このソフトウェア・フレームワークを使用することを推奨します。完全なTI-RTOSおよびデバイス・ドライバは、ソースコード形式で無償で提供されます。

www.tij.co.jp

製品情報⁽¹⁾

型番	パッケージ	本体サイズ(公称)
CC1310F128RGZ	VQFN (48)	7.00mm×7.00mm
CC1310F128RHB	VQFN (32)	5.00mm×5.00mm
CC1310F128RSM	VQFN (32)	4.00mm×4.00mm
CC1310F64RGZ	VQFN (48)	7.00mm×7.00mm
CC1310F64RHB	VQFN (32)	5.00mm×5.00mm
CC1310F64RSM	VQFN (32)	4.00mm×4.00mm
CC1310F32RGZ	VQFN (48)	7.00mm×7.00mm
CC1310F32RHB	VQFN (32)	5.00mm×5.00mm
CC1310F32RSM	VQFN (32)	4.00mm×4.00mm

(1) 詳細については、9を参照してください。

1.4 機能ブロック図

図 1-1にCC1310デバイスのブロック図を示します。

Copyright © 2016, Texas Instruments Incorporated

TEXAS INSTRUMENTS www.tij.co.jp

Table of Contents

1	デバィ	イスの概要	1
	1.1	特長	. 1
	1.2	アプリケーション	<u>2</u>
	1.3	概要	<u>2</u>
	1.4	機能ブロック図	<u>4</u>
2	改訂關	履歴	<u>6</u>
3	Devid	ce Comparison	<u>7</u>
	3.1	Related Products	<u> </u>
4	Term	inal Configuration and Functions	<u>8</u>
	4.1	Pin Diagram – RSM Package	<u>8</u>
	4.2	Signal Descriptions – RSM Package	<u>9</u>
	4.3	Pin Diagram – RHB Package	<u>10</u>
	4.4	Signal Descriptions – RHB Package	<u>11</u>
	4.5	Pin Diagram – RGZ Package	<u>12</u>
	4.6	Signal Descriptions – RGZ Package	<u>13</u>
5	Spec	ifications	<u>15</u>
	5.1	Absolute Maximum Ratings	<u>15</u>
	5.2	ESD Ratings	<u>15</u>
	5.3	Recommended Operating Conditions	<u>15</u>
	5.4	Power Consumption Summary	<u>16</u>
	5.5	RF Characteristics	<u>16</u>
	5.6	Receive (RX) Parameters, 861 MHz to 1054 MHz .	<u>17</u>
	5.7	Receive (RX) Parameters, 431 MHz to 527 MHz	<u>23</u>
	5.8	Transmit (TX) Parameters, 861 MHz to 1054 MHz .	<u>25</u>
	5.9	Transmit (TX) Parameters, 431 MHz to 527 MHz	<u>26</u>
	5.10	PLL Parameters	<u>26</u>
	5.11	ADC Characteristics	<u>26</u>
	5.12	Temperature Sensor	<u>28</u>
	5.13	Battery Monitor	<u>28</u>
	5.14	Continuous Time Comparator	<u>28</u>
	5.15	Low-Power Clocked Comparator	<u>28</u>
	5.16	Programmable Current Source	<u>29</u>

	5.17	DC Characteristics	29
	5.18	Thermal Characteristics	30
	5.19	Timing and Switching Characteristics	30
	5.20	Typical Characteristics	34
6	Deta	iled Description	38
	6.1	Overview	38
	6.2	Main CPU	38
	6.3	RF Core	39
	6.4	Sensor Controller	40
	6.5	Memory	41
	6.6	Debug	41
	6.7	Power Management	42
	6.8	Clock Systems	43
	6.9	General Peripherals and Modules	43
	6.10	Voltage Supply Domains	44
	~	Out the state of t	11
	6.11	System Architecture	44
7	6.11 Appl	ication, Implementation, and Layout	44 45
7	6.11 Appl 7.1	ication, Implementation, and Layout	44 45 45
7	6.11 Appl 7.1 7.2	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design	44 45 45 46
7 8	6.11 Appl 7.1 7.2 デバ・	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート	44 45 45 46 47
7 8	6.11 Appl 7.1 7.2 デバー 8.1	ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記	44 45 45 46 47 47
7 8	6.11 Appl 7.1 7.2 デバ・ 8.1 8.2	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記 ツールとソフトウェア	44 45 45 46 47 47 48
7 8	6.11 Appl 7.1 7.2 デバー 8.1 8.2 8.3	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記 ツールとソフトウェア. ドキュメントのサポート	44 45 45 46 47 47 47 48 50
7 8	6.11 Appl 7.1 7.2 デバン 8.1 8.2 8.3 8.4	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記 ツールとソフトウェア ドキュメントのサポート テキサス・インスツルメンツのローパワーRF Webサイト.	44 45 45 46 47 47 47 48 50 50
7 8	6.11 Appl 7.1 7.2 デバー 8.1 8.2 8.3 8.4 8.5	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記 ツールとソフトウェア ドキュメントのサポート デキサス・インスツルメンツのローパワーRF Webサイト 追加情報	44 45 45 46 47 47 48 50 50 50
7 8	6.11 Appl 7.1 7.2 デバー 8.1 8.2 8.3 8.4 8.5 8.6	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記 ツールとソフトウェア ドキュメントのサポート テキサス・インスツルメンツのローパワーRF Webサイト 追加情報 コミュニティ・リソース	44 45 45 46 47 47 48 50 50 50 50 50 50 50
8	6.11 Appl 7.1 7.2 デバ 8.1 8.2 8.3 8.4 8.5 8.6 8.7	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記 ツールとソフトウェア ドキュメントのサポート ラキサス・インスツルメンツのローパワーRF Webサイト 追加情報 コミュニティ・リソース 商標	44 45 45 46 47 47 47 48 50 50 50 50 50 51
8	6.11 Appl 7.1 7.2 デバー 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記 ツールとソフトウェア ドキュメントのサポート テキサス・インスツルメンツのローパワーRF Webサイト 追加情報 コミュニティ・リソース 商標 静電気放電に関する注意事項	44 45 45 46 47 48 50 50 50 50 51 51
8	6.11 Appl 7.1 7.2 デバ・ 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	System Architecture ication, Implementation, and Layout Application Information. TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記 ツールとソフトウェア ドキュメントのサポート テキサス・インスツルメンツのローパワーRF Webサイト 追加情報 コミュニティ・リソース 商標 静電気放電に関する注意事項 Export Control Notice	44 45 45 46 47 48 50 50 50 50 51 51
8	6.11 Appl 7.1 7.2 デバー 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記 ツールとソフトウェア ドキュメントのサポート テキサス・インスツルメンツのローパワーRF Webサイト 追加情報 コミュニティ・リソース 商標 静電気放電に関する注意事項 Export Control Notice Glossary	44 45 45 46 47 48 50 50 51 51 51 51
7 8 9	6.11 Appl 7.1 7.2 デバー 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 メカニ	System Architecture ication, Implementation, and Layout Application Information TI Design or Reference Design イスおよびドキュメントのサポート デバイスの項目表記 ツールとソフトウェア ドキュメントのサポート テキサス・インスツルメンツのローパワーRF Webサイト 追加情報 コミュニティ・リソース 商標 静電気放電に関する注意事項 Export Control Notice Glossary カル、パッケージ、および注文情報	44 45 46 47 48 50 50 51 50 50 51 51 51 51 51 51 51 51 51 51

Page

Page

Copyright © 2015–2018, Texas Instruments Incorporated

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

2 改訂履歴

2016年10月27日発行分から2018年07月13日発行分への変更

•	Code Composer Studio UniFlash 追加	1
•	「概要」セクションを 変更	2
•	Changed Table 3-1	7
•	Changed Figure 4-1	8
•	Changed Figure 4-2	10
•	Added support for split supply rail to Section 5.3	15
•	Changed Operating supply voltage	15
•	Added test conditions at 433.92 MHz to Section 5.4	16
•	Moved footnote to specific values in Section 5.5	16
•	Changed footnote in Section 5.5	16
•	Changed test conditions for Receiver sensitivity, 50 kbps in Section 5.6	17
•	Added parameters to Section 5.6	17
•	Added Receiver sensitivity parameters to Section 5.7	23
•	Changed	31
•	Changed footnote in	31
•	追加 「ソフトウェア」セクション	48

2015年10月28日発行分から2016年10月27日発行分への変更

•	「特長」の箇条書きのシステム内プログラム可能フラッシュに32KBおよび64KBを 追加	. 1
•	「特長」の箇条書きRoHS準拠のパッケージを正しいピン数に 変更	. 1
•	CC1310ブロック図 変更	4
•	Changed Figure 4-2, corrected typo in pin name	10
•	Changed the table note in Section 5.1 from: VDDS to: ground	15
•	Changed ESD ratings for all pins in Section 5.2	15
•	Added OOK modulation power consumption to Section 5.4	16
•	Added OOK modulation sensitivity to Section 5.6	22
•	Added receive parameters for 431-MHz to 527-MHz band in Section 5.7	23
•	Added transmit parameters for 431-MHz to 527-MHz band in Section 5.9	26
•	Changed ADC reference voltage to correct value in Section 5.11	27
•	Added thermal characteristics for RHB and RSM packages in Section 5.18	30
•	Changed Standby MCU Current Consumption, 32-kHz Clock, RAM and MCU Retention by extending the	
	temperature	34
•	Changed BOD restriction footnote in Table 6-2—restriction does not apply to die revision B and later	42
•	Added Section 6.10	44
•	変更 図 8-1	47

2015年9月30日発行分から2015年10月28日発行分への変更

•	Added the RSM and RHB packages	8
		<u> </u>

2015年8月31日発行分から2015年09月30日発行分への変更

•	デバイスのステータスを製品プレビューから量産データに 変更	1
٠	Removed the RSM and RHB packages	8

EXAS NSTRUMENTS

www.ti.com

Page

Page

3 Device Comparison

Table 3-1 lists the device family overview.

DEVICE	RADIO SUPPORT	FLASH (KB)	RAM (KB)	GPIOs	PACKAGE SIZE	
CC1310F128RGZ		128	20	30		
CC1310F64RGZ	Proprietary, Wireless M-Bus,	64	16	30	RGZ (7 mm × 7 mm VQFN48)	
CC1310F32RGZ	1222 002.10.4g	32	16	30		
CC1310F128RHB		128	20	15		
CC1310F64RHB	Proprietary, Wireless M-Bus,	64	16	15	RHB (5 mm × 5 mm VQFN32)	
CC1310F32RHB	1222 002.10.4g	32	16	15		
CC1310F128RSM		128	20	10		
CC1310F64RSM	Proprietary, Wireless M-Bus,	64	16	10	RSM (4 mm × 4 mm VQFN32)	
CC1310F32RSM	1222 002.10.4g	32	16	10		
CC1350	Sub-1 GHz Bluetooth low energy	128	20	10-30	RGZ (7 mm × 7 mm VQFN48) RHB (5 mm × 5 mm VQFN32) RSM (4 mm × 4 mm VQFN32)	
CC2640R2	Bluetooth 5 low energy 2.4-GHz proprietary FSK-based formats	128	20	10-31	RGZ (7 mm × 7 mm VQFN48) RHB (5 mm × 5 mm VQFN32) RSM (4 mm × 4 mm VQFN32) YFV (2.7 mm × 2.7 mm DSBGA34)	
CC1312R	Sub-1 GHz Proprietary, Wireless M-Bus, IEEE 802.15.4g	352	80	30	RGZ (7 mm × 7 mm VQFN48)	
CC1352R	Dual-band (2.4-GHz and Sub-1 GHz) Multiprotocol	352	80	28	RGZ (7 mm × 7 mm VQFN48)	
CC2652R	Multiprotocol Bluetooth 5 low energy Zigbee Thread 2.4-GHz proprietary FSK-based formats	352	80	31	RGZ (7 mm × 7 mm VQFN48)	

Table 3-1. Device Family Overview

3.1 Related Products

Wireless Connectivity The wireless connectivity portfolio offers a wide selection of low-power RF solutions suitable for a broad range of application. The offerings range from fully customized solutions to turnkey offerings with precertified hardware and software (protocol).

Sub-1 GHz Long-range, low power wireless connectivity solutions are offered in a wide range of Sub-1 GHz ISM bands.

Companion Products Review products that are frequently purchased or used with this product.

4 Terminal Configuration and Functions

4.1 Pin Diagram – RSM Package

Figure 4-1 shows the RSM pinout diagram.

Figure 4-1. RSM (4-mm × 4-mm) Pinout, 0.4-mm Pitch Top View

I/O pins marked in Figure 4-1 in **bold** have high-drive capabilities; they are as follows:

- Pin 8, DIO_0
- Pin 9, DIO_1
- Pin 10, DIO_2
- Pin 13, JTAG_TMSC
- Pin 15, DIO_3
- Pin 16, DIO_4

I/O pins marked in Figure 4-1 in *italics* have analog capabilities; they are as follows:

- Pin 22, DIO_5
- Pin 23, DIO_6
- Pin 24, DIO_7
- Pin 25, DIO_8
- Pin 26, DIO_9

4.2 Signal Descriptions – RSM Package

PIN				
NAME	NO.	TYPE	DESCRIPTION	
DCDC_SW	18	Power	Output from internal DC/DC ⁽¹⁾	
DCOUPL	12	Power	1.27-V regulated digital-supply decoupling capacitor ⁽²⁾	
DIO_0	8	Digital I/O	GPIO, Sensor Controller, high-drive capability	
DIO_1	9	Digital I/O	GPIO, Sensor Controller, high-drive capability	
DIO_2	10	Digital I/O	GPIO, Sensor Controller, high-drive capability	
DIO_3	15	Digital I/O	GPIO, high-drive capability, JTAG_TDO	
DIO_4	16	Digital I/O	GPIO, high-drive capability, JTAG_TDI	
DIO_5	22	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_6	23	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_7	24	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_8	25	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_9	26	Digital or analog I/O	GPIO, Sensor Controller, analog	
EGP	-	Power	Ground; exposed ground pad	
JTAG_TMSC	13	Digital I/O	JTAG TMSC	
JTAG_TCKC	14	Digital I/O	JTAG TCKC ⁽³⁾	
RESET_N	21	Digital input	Reset, active low. No internal pullup.	
RF_N	2	RF I/O	Negative RF input signal to LNA during RX Negative RF output signal from PA during TX	
RF_P	1	RF I/O	Positive RF input signal to LNA during RX Positive RF output signal from PA during TX	
RX_TX	4	RF I/O	Optional bias pin for the RF LNA	
VDDS	27	Power	1.8-V to 3.8-V main chip supply ⁽¹⁾	
VDDS2	11	Power	1.8-V to 3.8-V GPIO supply ⁽¹⁾	
VDDS_DCDC	19	Power	1.8-V to 3.8-V DC/DC supply	
VDDR	28	Power	1.7-V to 1.95-V supply, connect to output of internal DC/DC ⁽²⁾⁽⁴⁾	
VDDR_RF	32	Power	1.7-V to 1.95-V supply, connect to output of internal DC/DC $^{(2)(5)}$	
VSS	3, 7, 17, 20, 29	Power	Ground	
X32K_Q1	5	Analog I/O	32-kHz crystal oscillator pin 1	
X32K_Q2	6	Analog I/O	32-kHz crystal oscillator pin 2	
X24M_N	30	Analog I/O	24-MHz crystal oscillator pin 1	
X24M_P	31	Analog I/O	24-MHz crystal oscillator pin 2	

Table 4-1. Signal Descriptions – RSM Package

See the technical reference manual listed in 8.3 for more details. (1)

Do not supply external circuitry from this pin. (2)

For design consideration regrading noise immunity for this pin, see the JTAG Interface chapter in the CC13x0, CC26x0 SimpleLink™ (3) Wireless MCU Technical Reference Manual. If internal DC/DC is not used, this pin is supplied internally from the main LDO.

(4)

If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO. (5)

4.3 Pin Diagram – RHB Package

Figure 4-2 shows the RHB pinout diagram.

Figure 4-2. RHB (5-mm × 5-mm) Pinout, 0.5-mm Pitch Top View

I/O pins marked in Figure 4-2 in **bold** have high-drive capabilities; they are as follows:

- Pin 8, DIO_2
- Pin 9, DIO_3
- Pin 10, DIO_4
- Pin 15, DIO_5
- Pin 16, DIO_6

I/O pins marked in Figure 4-2 in *italics* have analog capabilities; they are as follows:

- Pin 20, DIO_7
- Pin 21, DIO_8
- Pin 22, DIO_9
- Pin 23, DIO_10
- Pin 24, DIO_11
- Pin 25, DIO_12
- Pin 26, DIO_13
- Pin 27, DIO_14

4.4 Signal Descriptions – RHB Package

PIN	I	TVDE	DESCRIPTION	
NAME	NO.	ITPE		
DCDC_SW	17	Power	Output from internal DC/DC ⁽¹⁾	
DCOUPL	12	Power	1.27-V regulated digital-supply decoupling ⁽²⁾	
DIO_0	6	Digital I/O	GPIO, Sensor Controller	
DIO_1	7	Digital I/O	GPIO, Sensor Controller	
DIO_2	8	Digital I/O	GPIO, Sensor Controller, high-drive capability	
DIO_3	9	Digital I/O	GPIO, Sensor Controller, high-drive capability	
DIO_4	10	Digital I/O	GPIO, Sensor Controller, high-drive capability	
DIO_5	15	Digital I/O	GPIO, high-drive capability, JTAG_TDO	
DIO_6	16	Digital I/O	GPIO, high-drive capability, JTAG_TDI	
DIO_7	20	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_8	21	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_9	22	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_10	23	Digital or analog I/O	GPIO, Sensor Controller, Analog	
DIO_11	24	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_12	25	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_13	26	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_14	27	Digital or analog I/O	GPIO, Sensor Controller, analog	
EGP	-	Power	Ground; exposed ground pad	
JTAG_TMSC	13	Digital I/O	JTAG TMSC, high-drive capability	
JTAG_TCKC	14	Digital I/O	JTAG TCKC ⁽³⁾	
RESET_N	19	Digital input	Reset, active low. No internal pullup.	
RF_N	2	RF I/O	Negative RF input signal to LNA during RX Negative RF output signal from PA during TX	
RF_P	1	RF I/O	Positive RF input signal to LNA during RX Positive RF output signal from PA during TX	
RX_TX	3	RF I/O	Optional bias pin for the RF LNA	
VDDR	29	Power	1.7-V to 1.95-V supply, connect to output of internal DC/DC ⁽²⁾⁽⁴⁾	
VDDR_RF	32	Power	1.7-V to 1.95-V supply, connect to output of internal DC/DC ⁽²⁾⁽⁵⁾	
VDDS	28	Power	1.8-V to 3.8-V main chip supply ⁽¹⁾	
VDDS2	11	Power	1.8-V to 3.8-V GPIO supply ⁽¹⁾	
VDDS_DCDC	18	Power	1.8-V to 3.8-V DC/DC supply	
X24M_N	30	Analog I/O	24-MHz crystal oscillator pin 1	
X24M_P	31	Analog I/O	24-MHz crystal oscillator pin 2	
X32K_Q1	4	Analog I/O	32-kHz crystal oscillator pin 1	
X32K_Q2	5	Analog I/O	32-kHz crystal oscillator pin 2	

(1) For more details, see the technical reference manual listed in 8.3.

 (2) Do not supply external circuitry from this pin.
 (3) For design consideration regrading noise immunity for this pin, see the *JTAG Interface* chapter in the CC13x0, CC26x0 SimpleLink[™] *Wireless MCU Technical Reference Manual.* If internal DC/DC is not used, this pin is supplied internally from the main LDO.

(4)

(5) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.

4.5 Pin Diagram – RGZ Package

Figure 4-3 shows the RGZ pinout diagram.

Figure 4-3. RGZ (7-mm × 7-mm) Pinout, 0.5-mm Pitch Top View

I/O pins marked in Figure 4-3 in **bold** have high-drive capabilities; they are as follows:

- Pin 10, DIO_5
- Pin 11, DIO_6
- Pin 12, DIO_7
- Pin 24, JTAG_TMSC
- Pin 26, DIO_16
- Pin 27, DIO_17

I/O pins marked in Figure 4-3 in *italics* have analog capabilities; they are as follows:

- Pin 36, DIO_23
- Pin 37, DIO_24
- Pin 38, DIO_25
- Pin 39, DIO_26
- Pin 40, DIO_27
- Pin 41, DIO_28
- Pin 42, DIO_29
- Pin 43, DIO_30

Signal Descriptions – RGZ Package 4.6

Table 4-3. Signal Descriptions – RGZ Pa

PI	N	TYPE	DESCRIPTION	
NAME	NO.	ITPE	DESCRIPTION	
DCDC_SW	33	Power	Output from internal DC/DC ⁽¹⁾⁽²⁾	
DCOUPL	23	Power	1.27-V regulated digital-supply (decoupling capacitor) ⁽²⁾	
DIO_1	6	Digital I/O	GPIO, Sensor Controller	
DIO_2	7	Digital I/O	GPIO, Sensor Controller	
DIO_3	8	Digital I/O	GPIO, Sensor Controller	
DIO_4	9	Digital I/O	GPIO, Sensor Controller	
DIO_5	10	Digital I/O	GPIO, Sensor Controller, high-drive capability	
DIO_6	11	Digital I/O	GPIO, Sensor Controller, high-drive capability	
DIO_7	12	Digital I/O	GPIO, Sensor Controller, high-drive capability	
DIO_8	14	Digital I/O	GPIO	
DIO_9	15	Digital I/O	GPIO	
DIO_10	16	Digital I/O	GPIO	
DIO_11	17	Digital I/O	GPIO	
DIO_12	18	Digital I/O	GPIO	
DIO_13	19	Digital I/O	GPIO	
DIO_14	20	Digital I/O	GPIO	
DIO_15	21	Digital I/O	GPIO	
DIO_16	26	Digital I/O	GPIO, JTAG_TDO, high-drive capability	
DIO_17	27	Digital I/O	GPIO, JTAG_TDI, high-drive capability	
DIO_18	28	Digital I/O	GPIO	
DIO_19	29	Digital I/O	GPIO	
DIO_20	30	Digital I/O	GPIO	
DIO_21	31	Digital I/O	GPIO	
DIO_22	32	Digital I/O	GPIO	
DIO_23	36	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_24	37	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_25	38	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_26	39	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_27	40	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_28	41	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_29	42	Digital or analog I/O	GPIO, Sensor Controller, analog	
DIO_30	43	Digital or analog I/O	GPIO, Sensor Controller, analog	
EGP	_	Power	Ground; exposed ground pad	
JTAG_TMSC	24	Digital I/O	JTAG TMSC, high-drive capability	
JTAG_TCKC	25	Digital I/O	JTAG TCKC ⁽³⁾	
RESET_N	35	Digital input	Reset, active-low. No internal pullup.	
RF_N	2	RF I/O	Negative RF input signal to LNA during RX Negative RF output signal from PA during TX	
RF_P	1	RF I/O	Positive RF input signal to LNA during RX Positive RF output signal from PA during TX	

(1) See technical reference manual listed in 8.3 for more details.

Do not supply external circuitry from this pin.

(2) (3) For design consideration regrading noise immunity for this pin, see the JTAG Interface chapter in the CC13x0, CC26x0 SimpleLinkTM Wireless MCU Technical Reference Manual.

PI	N	TYPE	DESCRIPTION	
NAME	NO.	ITPE	DESCRIPTION	
VDDR	45	Power	1.7-V to 1.95-V supply, connect to output of internal DC/DC ⁽²⁾⁽⁴⁾	
VDDR_RF	48	Power	1.7-V to 1.95-V supply, connect to output of internal DC/DC $^{(2)(5)}$	
VDDS	44	Power	1.8-V to 3.8-V main chip supply ⁽¹⁾	
VDDS2	13	Power	1.8-V to 3.8-V DIO supply ⁽¹⁾	
VDDS3	22	Power	1.8-V to 3.8-V DIO supply ⁽¹⁾	
VDDS_DCDC	34	Power	1.8-V to 3.8-V DC/DC supply	
X24M_N	46	Analog I/O	24-MHz crystal oscillator pin 1	
X24M_P	47	Analog I/O	24-MHz crystal oscillator pin 2	
RX_TX	3	RF I/O	Optional bias pin for the RF LNA	
X32K_Q1	4	Analog I/O	32-kHz crystal oscillator pin 1	
X32K_Q2	5	Analog I/O	32-kHz crystal oscillator pin 2	

Table 4-3. Signal Descriptions – RGZ Package (continued)

(4) If internal DC/DC is not used, this pin is supplied internally from the main LDO.
(5) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
Supply voltage (VDDS, VDDS2, and VDDS3)		-0.3	4.1	V
Voltage on any digital pin ⁽³⁾	(4)	-0.3	VDDSn + 0.3, max 4.1	V
Voltage on crystal oscillator pins X32K_Q1, X32K_Q2, X24M_N, and X24M_P		-0.3	VDDR + 0.3, max 2.25	V
	Voltage scaling enabled	-0.3	VDDS	
Voltage on ADC input (V _{in})	Voltage scaling disabled, internal reference	-0.3	1.49	V
	Voltage scaling disabled, VDDS as reference	-0.3	VDDS / 2.9	-
Input RF level			10	dBm
Storage temperature (T _{stq})		-40	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to ground, unless otherwise noted.

(3) Including analog-capable DIO.

(4) Each pin is referenced to a specific VDDSn (VDDS, VDDS2 or VDDS3). For a pin-to-VDDS mapping table, see Table 6-3.

5.2 ESD Ratings

				VALUE	UNIT
V _{ESD} Electrostatic discharge	Electrostatio discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS001 ⁽¹⁾	All pins	±3000	V
	Electrostatic discharge	Charged device model (CDM), per JESD22-C101 ⁽²⁾	All pins	±500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
Ambient temperature				85	°C
Operating supply voltage (VDDS)	For operation in battery-powered and		1.8	3.8	V
Operating supply voltages (VDDS2 and VDDS3)	3.3-V systems (internal DC/DC can be	VDDS < 2.7 V	1.8	3.8	V
Operating supply voltages (VDDS2 and VDDS3)	used to minimize power consumption)	VDDS ≥ 2.7 V	1.9	3.8	V
Rising supply voltage slew rate			0	100	mV/µs
Falling supply voltage slew rate			0	20	mV/µs
Falling supply voltage slew rate, with low-power flash setting ⁽¹⁾				3	mV/µs
Positive temperature gradient in standby ⁽²⁾ No limitation for negative temperature gradient, or outside standby mode				5	°C/s

(1) For small coin-cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDDS input capacitor must be used to ensure compliance with this slew rate.

(2) Applications using RCOSC_LF as sleep timer must also consider the drift in frequency caused by a change in temperature (see).

5.4 **Power Consumption Summary**

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design unless otherwise noted. $T_c = 25^{\circ}C$, $V_{DDS} = 3.6 V$ with DC/DC enabled, unless otherwise noted. Using boost mode (increasing VDDR to 1.95 V), will increase currents in this table by 15% (does not apply to TX 14-dBm setting where this current is already included).

	PARAMETER	TEST CONDITIONS	ТУР	UNIT
		Boost RESET N pin apported or V/DDS below power on react		
		threshold	100	nA
		Shutdown. No clocks running, no retention	185	
	Standby. With RTC, CPU, RAM, and (partial) register retention. RCOSC_LF	0.7		
	Standby. With RTC, CPU, RAM, and (partial) register retention. XOSC_LF	0.8	μA	
		Idle. Supply Systems and RAM powered.	570	
		Active. MCU running CoreMark at 48 MHz	1.2 mA + 25.5 µA/MHz	
I _{core} Core current consumption	Active. MCU running CoreMark at 48 MHz	2.5		
	Active. MCU running CoreMark at 24 MHz	1.9	mA	
	Radio RX, 868 MHz	5.5	mA	
	Radio TX, 10-dBm output power, (G)FSK, 868 MHz	13.4	mA	
	Radio TX, OOK modulation, 10-dBm output power, AVG	11.2	mA	
		Radio TX, boost mode (VDDR = 1.95 V), 14-dBm output power, (G)FSK, 868 MHz	23.5	mA
	Radio TX, OOK modulation, boost mode (VDDR = 1.95 V), 14- dBm, AVG	14.8	mA	
	Radio TX, boost mode (VDDR = 1.95 V), 15-dBm output power, (G)FSK, measured on CC1310EM-7XD-4251, 433.92 MHz	25.1	mA	
		Radio TX, 10-dBm output power, measured on CC1310EM- 7XD-4251, 433.92 MHz	13.2	mA
PERIPH	IERAL CURRENT CONSU	JMPTION ⁽¹⁾⁽²⁾⁽³⁾		
	Peripheral power domain	Delta current with domain enabled	20	
	Serial power domain	Delta current with domain enabled	13	
	RF core	Delta current with power domain enabled, clock enabled, RF core idle	237	
ı.	μDMA	Delta current with clock enabled, module idle	130	ıΔ
'peri	μDMA Timers	Delta current with clock enabled, module idle	113	μΛ
	I ² C	Delta current with clock enabled, module idle	12	
	12S	Delta current with clock enabled, module idle	36	
	SSI	Delta current with clock enabled, module idle	93	
	UART	Delta current with clock enabled, module idle	164	1

Adds to core current I_{core} for each peripheral unit activated (1)

 I_{peri} is not supported in standby or shutdown modes. Measured at 3.0 V (2)

(3)

5.5 **RF Characteristics**

over operating free-air temperature range (unless otherwise noted)

PARAMETER	MIN	TYP MAX	UNIT
	287 ⁽¹⁾	351 ⁽¹⁾	
	359 ⁽¹⁾	439 ⁽¹⁾	
Frequency bands	431	527	MHz
	718 ⁽¹⁾	878 ⁽¹⁾	
	861	1054	

These frequency bands are functionally verified. Radio settings for specific physical layer parameters can be made available upon (1) request.

5.6 Receive (RX) Parameters, 861 MHz to 1054 MHz

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with $T_c = 25^{\circ}C$, $V_{DDS} = 3.0$ V, DC/DC enabled, $f_{RF} = 868$ MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path.

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Data rate		Up to 4 Mbps		bps
Data rate offset tolerance, IEEE 802.15.4g PHY	50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-3}	1600		ppm
Data rate step size		1.5		bps
Digital channel filter programmable bandwidth	Using VCO divide by 5 setting	40	4000	kHz
Receiver sensitivity, 50 kbps	50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2} . 868 MHz and 915 MHz	-110		dBm
Receiver saturation	50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	10		dBm
Selectivity, ±200 kHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	44, 47		dB
Selectivity, ±400 kHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	48, 53		dB
Blocking ±1 MHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	59, 62		dB
Blocking ±2 MHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	64, 65		dB
Blocking ±5 MHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	67, 68		dB
Blocking ±10 MHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	76, 76		dB
Spurious emissions 1 GHz to 13 GHz (VCO leakage at 3.5 GHz) and 30 MHz to 1 GHz	Conducted emissions measured according to ETSI EN 300 220	-70		dBm
Image rejection (image compensation enabled, the image compensation is calibrated in production), 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	44		dB
RSSI dynamic range	50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode). Starting from the sensitivity limit. This range will give an accuracy of ± 2 dB.	95		dB
RSSI accuracy	50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode). Starting from the sensitivity limit across the given dynamic range.	±2		dB
Receiver sensitivity, 500 kbps	GFSK, 175-kHz deviation, 1.243-MHz RX bandwidth, BER = 10^{-2}	-97		dBm
Blocking, ±2 MHz, 500 kbps	Wanted signal 3 dB above sensitivity limit. 500 kbps, GFSK, 175-kHz deviation, 1.243-MHz RX bandwidth, BER = 10^{-2}	35, 36		dB

Copyright © 2015–2018, Texas Instruments Incorporated

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Blocking, ±10 MHz, 500 kbps	Wanted signal 3 dB above sensitivity limit. 500 kbps, GFSK, 175-kHz deviation, 1.243-MHz RX bandwidth, BER = 10^{-2}	55, 47		dB
Receiver sensitivity, long-range mode, 5 kbps	20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2, 49-kHz RX bandwidth, BER = 10 ⁻² . 868 MHz and 915 MHz	-119		dBm
Receiver sensitivity, long-range mode, 2.5 kbps	20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 4, 49-kHz RX bandwidth, BER = 10 ⁻² . 868 MHz and 915 MHz	-120		dBm
Receiver sensitivity, long-range mode, 1.25 kbps	20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 49-kHz RX bandwidth, BER = 10^{-2} . 868 MHz and 915 MHz	-121		dBm
Selectivity, ±100 kHz, long-range mode, 5 kbps	Wanted signal 3 dB above sensitivity limit. 20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2, 49-kHz RX bandwidth, BER = 10^{-2}	47, 47		dB
Selectivity, ±200 kHz, long-range mode, 5 kbps	Wanted signal 3 dB above sensitivity limit. 20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2, 49-kHz RX bandwidth, BER = 10^{-2}	54, 55		dB
Selectivity, ±300 kHz, long-range mode, 5 kbps	Wanted signal 3 dB above sensitivity limit. 20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2, 49-kHz RX bandwidth, BER = 10^{-2}	57, 56		dB
Blocking, ±1 MHz, long-range mode, 5 kbps	Wanted signal 3 dB above sensitivity limit. 20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2, 49-kHz RX bandwidth, BER = 10^{-2}	68, 67		dB
Blocking, ±2 MHz, long-range mode, 5 kbps	Wanted signal 3 dB above sensitivity limit. 20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2, 49-kHz RX bandwidth, BER = 10^{-2}	74, 74		dB
Blocking, ±10 MHz, long-range mode, 5 kbps	Wanted signal 3 dB above sensitivity limit. 20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2, 49-kHz RX bandwidth, BER = 10^{-2}	85, 85		dB
Image rejection (image compensation enabled, the image compensation is calibrated in production), long-range mode, 5 kbps	Wanted signal 3 dB above sensitivity limit. 20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2, 49-kHz RX bandwidth, BER = 10^{-2}	52		dB
Receiver sensitivity, wM-BUS S2-mode, 32.768 kbps	f_{RF} = 868.3 MHz, 32.768 ksym/s, Manchester coding, FSK, 50-kHz deviation, 196-kHz RX bandwidth, BER = 10^{-2}	-111		dBm
Selectivity, ±200 kHz, wM-BUS S2-mode, 32.768 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.3 MHz, 32.768 ksym/s, Manchester coding, FSK, 50-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	42, 43		dB
Selectivity, ±400 kHz, wM-BUS S2-mode, 32.768 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.3 MHz, 32.768 ksym/s, Manchester coding, FSK, 50-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	41, 47		dB
Blocking, ±1 MHz, wM-BUS S2-mode, 32.768 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.3 MHz, 32.768 ksym/s, Manchester coding, FSK, 50-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	43, 52		dB
Blocking, ±2 MHz, wM-BUS S2-mode, 32.768 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.3 MHz, 32.768 ksym/s, Manchester coding, FSK, 50-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	52, 55		dB
Blocking, ±10 MHz, wM-BUS S2-mode, 32.768 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.3 MHz, 32.768 ksym/s, Manchester coding, FSK, 50-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	68, 72		dB

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Image rejection (image compensation enabled, the image compensation is calibrated in production), wM-BUS S2-mode, 32.768 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.3 MHz, 32.768 ksym/s, Manchester coding, FSK, 50-kHz deviation, 196-kHz RX bandwidth, BER = 10^{-2}	43		dB
Receiver sensitivity, wM-BUS C-mode, 100 kbps	f_{RF} = 868.95 MHz, 100 ksym/s, NRZ coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10^{-2}	-107		dBm
Selectivity, ±400 kHz, wM-BUS C-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, NRZ coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	41, 46		dB
Selectivity, ±800 kHz, wM-BUS C-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, NRZ coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	41, 50		dB
Blocking, ±1 MHz, wM-BUS C-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, NRZ coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10^{-2}	43, 51		dB
Blocking, ±2 MHz, wM-BUS C-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, NRZ coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	51, 53		dB
Blocking, ±5 MHz, wM-BUS C-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, NRZ coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	55, 61		dB
Blocking, ±10 MHz, wM-BUS C-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, NRZ coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	67, 68		dB
Receiver sensitivity, wM-BUS T-mode, 100 kbps	f_{RF} = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10 ⁻²	-105		dBm
Selectivity, ±400 kHz, wM-BUS T-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10^{-2}	41, 46		dB
Selectivity, ±800 kHz, wM-BUS T-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10^{-2}	41, 50		dB
Blocking, ±1 MHz, wM-BUS T-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10^{-2}	42, 51		dB
Blocking, ±2 MHz, wM-BUS T-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10^{-2}	51, 52		dB
Blocking, ±5 MHz, wM-BUS T-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10^{-2}	54, 60		dB
Blocking, ±10 MHz, wM-BUS T-mode, 100 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK, 45-kHz deviation, 196-kHz RX bandwidth, BER = 10^{-2}	67, 68		dB
Receiver sensitivity, WideBand-DSSS (WB-DSSS), 30 kbps	f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 8, 622-kHz RX bandwidth, BER = 10 ⁻²	-109		dBm
Blocking, ±1 MHz, WB-DSSS, 30 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 8, 622-kHz RX bandwidth, BER = 10 ⁻²	57, 57		dB
Blocking, ±2 MHz, WB-DSSS, 30 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 8, 622-kHz RX bandwidth, BER = 10 ⁻²	58, 58		dB

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Blocking, ±5 MHz, WB-DSSS, 30 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 8, 622-kHz RX bandwidth, BER = 10 ⁻²	59, 57		dB
Blocking, ±10 MHz, WB-DSSS, 30 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 8, 622-kHz RX bandwidth, BER = 10 ⁻²	71, 68		dB
Receiver sensitivity, WideBand-DSSS (WB-DSSS), 60 kbps	f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 4, 622-kHz RX bandwidth, BER = 10 ⁻²	-108		dBm
Blocking, ±1 MHz, WB-DSSS, 60 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 4, 622-kHz RX bandwidth, BER = 10 ⁻²	56, 56		dB
Blocking, ±2 MHz, WB-DSSS, 60 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 4, 622-kHz RX bandwidth, BER = 10 ⁻²	57, 57		dB
Blocking, ±5 MHz, WB-DSSS, 60 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 4, 622-kHz RX bandwidth, BER = 10 ⁻²	57, 56		dB
Blocking, ±10 MHz, WB-DSSS, 60 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 4, 622-kHz RX bandwidth, BER = 10 ⁻²	70, 67		dB
Receiver sensitivity, WideBand-DSSS (WB-DSSS), 120 kbps	f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 2, 622-kHz RX bandwidth, BER = 10 ⁻²	-106		dBm
Blocking, ±1 MHz, WB-DSSS, 120 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 2, 622-kHz RX bandwidth, BER = 10 ⁻²	54, 54		dB
Blocking, ±2 MHz, WB-DSSS, 120 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 2, 622-kHz RX bandwidth, BER = 10 ⁻²	55, 55		dB
Blocking, ±5 MHz, WB-DSSS, 120 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 2, 622-kHz RX bandwidth, BER = 10 ⁻²	55, 54		dB
Blocking, ±10 MHz, WB-DSSS, 120 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 2, 622-kHz RX bandwidth, BER = 10 ⁻²	69, 65		dB
Receiver sensitivity, WideBand-DSSS (WB-DSSS), 240 kbps	f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 1, 622-kHz RX bandwidth, BER = 10 ⁻²	-105		dBm
Blocking, ±1 MHz, WB-DSSS, 240 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 1, 622-kHz RX bandwidth, BER = 10 ⁻²	53, 53		dB
Blocking, ±2 MHz, WB-DSSS, 240 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 1, 622-kHz RX bandwidth, BER = 10 ⁻²	53, 54		dB

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with $T_c = 25^{\circ}$ C, $V_{DDS} = 3.0$ V, DC/DC enabled, $f_{RF} = 868$ MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path.

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Blocking, ±5 MHz, WB-DSSS, 240 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 1, 622-kHz RX bandwidth, BER = 10 ⁻²	53, 54		dB
Blocking, ±10 MHz, WB-DSSS, 240 kbps	Wanted signal 3 dB above sensitivity limit. f_{RF} = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation, FEC (half rate), DSSS = 1, 622-kHz RX bandwidth, BER = 10 ⁻²	68, 64		dB
Receiver sensitivity, 10 kbps	GFSK, 19-kHz deviation, 78-kHz RX bandwidth, BER = 10 ⁻²	-114		dBm
Selectivity, ±100 kHz, 10 kbps	Wanted signal 3 dB above sensitivity limit. 10 kbps, GFSK, 19-kHz deviation, 78-kHz RX bandwidth, BER = 10 ⁻²	40, 40		dB
Selectivity, ±200 kHz, 10 kbps	Wanted signal 3 dB above sensitivity limit. 10 kbps, GFSK, 19-kHz deviation, 78-kHz RX bandwidth, BER = 10 ⁻²	46, 44		dB
Selectivity, ±400 kHz, 10 kbps	Wanted signal 3 dB above sensitivity limit. 10 kbps, GFSK, 19-kHz deviation, 78-kHz RX bandwidth, BER = 10 ⁻²	50, 45		dB
Blocking, ±2 MHz, 10 kbps	Wanted signal 3 dB above sensitivity limit. 10 kbps, GFSK, 19-kHz deviation, 78-kHz RX bandwidth, BER = 10 ⁻²	62, 61		dB
Blocking, ±10 MHz, 10 kbps	Wanted signal 3 dB above sensitivity limit. 10 kbps, GFSK, 19-kHz deviation, 78-kHz RX bandwidth, BER = 10 ⁻²	76, 72		dB
Image rejection (image compensation enabled, the image compensation is calibrated in production), 10 kbps	Wanted signal 3 dB above sensitivity limit. 10 kbps, GFSK, 19-kHz deviation, 78-kHz RX bandwidth, BER = 10^{-2}	43		dB
Receiver sensitivity, 4.8 kbps	GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth, BER = 10^{-2}	-114		dBm
Selectivity, ±100 kHz, 4.8 kbps	Wanted signal 3 dB above sensitivity limit. 4.8 kbps, GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth, BER = 10 ⁻²	44, 43		dB
Selectivity, ±200 kHz, 4.8 kbps	Wanted signal 3 dB above sensitivity limit. 4.8 kbps, GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth, BER = 10 ⁻²	49, 48		dB
Selectivity, ±400 kHz, 4.8 kbps	Wanted signal 3 dB above sensitivity limit. 4.8 kbps, GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth, BER = 10 ⁻²	52, 49		dB
Blocking, ±2 MHz, 4.8 kbps	Wanted signal 3 dB above sensitivity limit. 4.8 kbps, GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth, BER = 10^{-2}	64, 63		dB
Blocking, ±10 MHz, 4.8 kbps	Wanted signal 3 dB above sensitivity limit. 4.8 kbps, GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth, BER = 10^{-2}	73, 72		dB
Image rejection (image compensation enabled, the image compensation is calibrated in production), 4.8 kbps	Wanted signal 3 dB above sensitivity limit. 4.8 kbps, GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth, BER = 10^{-2}	43		dB
Receiver sensitivity, CC1101 compatible mode, 2.4 kbps	GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}	-116		dBm
Selectivity, ±100 kHz, CC1101 compatible mode, 2.4 kbps	Wanted signal 3 dB above sensitivity limit. 2.4 kbps, GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}	45, 44		dB
Selectivity, ±200 kHz, CC1101 compatible mode, 2.4 kbps	Wanted signal 3 dB above sensitivity limit. 2.4 kbps, GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}	51, 47		dB

Copyright © 2015–2018, Texas Instruments Incorporated

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Blocking, ±2 MHz, CC1101 compatible mode, 2.4 kbps	Wanted signal 3 dB above sensitivity limit. 2.4 kbps, GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}		63, 62		dB
Blocking, ±10 MHz, CC1101 compatible mode, 2.4 kbps	Wanted signal 3 dB above sensitivity limit. 2.4 kbps, GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}		76, 71		dB
Image rejection (image compensation enabled, the image compensation is calibrated in production), CC1101 compatible mode, 2.4 kbps	Wanted signal 3 dB above sensitivity limit. 2.4 kbps, GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}		45		dB
Receiver sensitivity, CC1101 compatible mode, 1.2 kbps	GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}		-117		dBm
Selectivity, ±100 kHz, CC1101 compatible mode, 1.2 kbps	Wanted signal 3 dB above sensitivity limit. 1.2 kbps, GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}		45, 44		dB
Selectivity, ±200 kHz, CC1101 compatible mode, 1.2 kbps	Wanted signal 3 dB above sensitivity limit. 1.2 kbps, GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}		51, 47		dB
Blocking, ±2 MHz, CC1101 compatible mode, 1.2 kbps	Wanted signal 3 dB above sensitivity limit. 1.2 kbps, GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}		63, 62		dB
Blocking, ±10 MHz, CC1101 compatible mode, 1.2 kbps	Wanted signal 3 dB above sensitivity limit. 1.2 kbps, GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}		81, 81		dB
Image rejection (image compensation enabled, the image compensation is calibrated in production), CC1101 compatible mode, 1.2 kbps	Wanted signal 3 dB above sensitivity limit. 1.2 kbps, GFSK, 5.2-kHz deviation (commonly used settings on CC1101), 49-kHz RX bandwidth, BER = 10^{-2}		45		dB
Receiver sensitivity, legacy long-range mode, 625 bps	10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10 ⁻² . 868 MHz and 915 MHz.		-124		dBm
Selectivity, ±100 kHz, legacy long-range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}		56, 56		dB
Selectivity, ±200 kHz, legacy long-range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}		62, 65		dB
Blocking ±1 MHz, legacy long-range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}		73, 77		dB
Blocking ±2 MHz, legacy long-range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}		79, 79		dB
Blocking ±10 MHz, legacy long-range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}		91, 91		dB
Receiver sensitivity, OOK, 4.8 kbps	4.8 kbps, OOK, 40-kHz RX bandwidth, BER = 10^{-2} . 868 MHz and 915 MHz		-115		dBm

www.ti.com

5.7 Receive (RX) Parameters, 431 MHz to 527 MHz

Measured on the Texas Instruments CC1310EM-7XD-4251 reference design with $T_c = 25^{\circ}$ C, $V_{DDS} = 3.0$ V, DC/DC enabled, $f_{RF} = 433.92$ MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. This frequency band is supported on die Revision B and later.

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Receiver sensitivity, 50 kbps	50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	-110		dBm
Receiver saturation	50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	10		dBm
Selectivity, ±200 kHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	40, 42		dB
Selectivity, ±400 kHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	42, 50		dB
Blocking ±1 MHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	53, 58		dB
Blocking ±2 MHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	59, 60		dB
Blocking ±10 MHz, 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	74, 74		dB
Spurious emissions 1 GHz to 13 GHz (VCO leakage at 3.5 GHz) and 30 MHz to 1 GHz	Conducted emissions measured according to ETSI EN 300 220	-74		dBm
Image rejection (image compensation enabled, the image compensation is calibrated in production), 50 kbps	Wanted signal 3 dB above sensitivity limit. 50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same modulation format as IEEE 802.15.4g mandatory mode), BER = 10^{-2}	43		dB
Receiver sensitivity, long-range mode, 5 kbps	20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2, 49-kHz RX bandwidth, BER = 10^{-2} . 433 MHz	-119		dBm
Receiver sensitivity, long-range mode, 2.5 kbps	20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 4, 49-kHz RX bandwidth, BER = 10^{-2} . 433 MHz	-120		dBm
Receiver sensitivity, long-range mode, 1.25 kbps	20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 49-kHz RX bandwidth, BER = 10^{-2} . 433 MHz	-121		dBm
Receiver sensitivity, legacy long-range mode, 625 bps	10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2} . 868 MHz and 915 MHZ.	-124		dBm
Selectivity, ±100 kHz, legacy long-range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}	57, 58		dB
Selectivity, ±200 kHz, legacy long-range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}	56, 60		dB
Blocking ±1 MHz, legacy long-range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}	68, 73		dB
Blocking ±2 MHz, legacy long-range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}	74, 74		dB
Blocking ±10 MHz, legacy long-range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}	88, 89		dB

Copyright © 2015–2018, Texas Instruments Incorporated

Measured on the Texas Instruments CC1310EM-7XD-4251 reference design with $T_c = 25^{\circ}$ C, $V_{DDS} = 3.0$ V, DC/DC enabled, $f_{RF} = 433.92$ MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. This frequency band is supported on die Revision B and later.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Image rejection (image compensation enabled, the image compensation is calibrated in production), legacy long- range mode, 625 bps	Wanted signal 3 dB above sensitivity limit. 10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8, 40-kHz RX bandwidth, BER = 10^{-2}		55		dB

www.ti.com

5.8 Transmit (TX) Parameters, 861 MHz to 1054 MHz

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with $T_c = 25^{\circ}C$, $V_{DDS} = 3.0$ V, DC/DC enabled, $f_{RF} = 868$ MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path.

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT	
Maximum output power, b	ooost mode	VDDR = 1.95 V Minimum VDDS for boost mode is 2.1 V 868 MHz and 915 MHz	14		dBm	
Maximum output power		868 MHz and 915 MHz	12		dBm	
Output power programma	ble range		24		dB	
Output power variation		Tested at +10-dBm setting	±0.9		dB	
Output power variation, be	post mode	+14 dBm	±0.5		dB	
	30 MHz to 1 GHz	Transmitting +14 dBm ETSI restricted bands	<-59			
Spurious emissions (excluding harmonics) ⁽¹⁾		Transmitting +14 dBm outside ETSI restricted bands	<-51		dBm	
	1 GHz to 12.75 GHz	Transmitting +14 dBm measured in 1-MHz bandwidth (ETSI)	<-37			
	Second harmonic	Transmitting +14 dBm, conducted 868 MHz, 915 MHz	-52, -55			
Harmonics	Third harmonic	Transmitting +14 dBm, conducted 868 MHz, 915 MHz	-58, -55	–55 dBi		
	Fourth harmonic	Transmitting +14 dBm, conducted 868 MHz, 915 MHz	-56, -56			
	30 MHz to 88 MHz (within FCC restricted bands)	Transmitting +14 dBm, conducted	<-66	6		
	88 MHz to 216 MHz (within FCC restricted bands)	Transmitting +14 dBm, conducted	<-65			
Spurious emissions	216 MHz to 960 MHz (within FCC restricted bands)	Transmitting +14 dBm, conducted	<-65		dBm	
915 MHz ⁽¹⁾	960 MHz to 2390 MHz and above 2483.5 MHz (within FCC restricted band)	Transmitting +14 dBm, conducted	<-52		abiii	
	1 GHz to 12.75 GHz (outside FCC restricted bands)	Transmitting +14 dBm, conducted	<-43			
	Below 710 MHz (ARIB T-108)	Transmitting +14 dBm, conducted	<-50			
	710 MHz to 900 MHz (ARIB T-108)	Transmitting +14 dBm, conducted	<-60			
Spurious emissions out-of-band, 920.6 MHz ⁽¹⁾	900 MHz to 915 MHz (ARIB T-108)	Transmitting +14 dBm, conducted	<-57		dD rea	
	930 MHz to 1000 MHz (ARIB T-108)	Transmitting +14 dBm, conducted	<-57		aBW	
	1000 MHz to 1215 MHz (ARIB T-108) Transmitting +14 dBm, conducted		<–59			
	Above 1215 MHz (ARIB T-108)	Transmitting +14 dBm, conducted	<-45			

(1) Suitable for systems targeting compliance with EN 300 220, EN 54-25, EN 303 204, FCC CFR47 Part 15, ARIB STD-T108.

5.9 Transmit (TX) Parameters, 431 MHz to 527 MHz

Measured on the Texas Instruments CC1310EM-7XD-4251 reference design with $T_c = 25^{\circ}$ C, $V_{DDS} = 3.0$ V, DC/DC enabled, $f_{RF} = 433.92$ MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. This frequency band is supported on die Revision B and later.

PARAMETER		TEST CONDITIONS	MIN TY	P MAX	UNIT
Maximum output power, boost mode		VDDR = 1.95 V Minimum VDDS for boost mode is 2.1 V		15	dBm
Maximum output power				14	dBm
Spurious emissions (excluding harmonics) ⁽¹⁾		Transmitting +10 dBm, 433 MHz Inside ETSI restricted bands	<	63	
		Transmitting +10 dBm, 433 MHz Outside ETSI restricted bands	<	39	
	s emissions ng harmonics) ⁽¹⁾	Transmitting +10 dBm, 433 MHz Outside ETSI restricted bands, measured in 1-MHz bandwidth (ETSI)	<	52	dBm
		Transmitting +10 dBm, 433 MHz Inside ETSI restricted bands, measured in 1-MHz bandwidth (ETSI)	<-{	58	

(1) Suitable for systems targeting compliance with EN 300 220, EN 54-25, EN 303 204, FCC CFR47 Part 15, ARIB STD-T108.

5.10 PLL Parameters

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with $T_c = 25^{\circ}$ C, $V_{DDS} = 3.0$ V

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
	±100-kHz offset	-101		
_	±200-kHz offset	-108		
	±400-kHz offset	-115		dDa/Ll=
Phase hoise in the 868-MHZ band	±1000-kHz offset	-124		abc/Hz
	±2000-kHz offset	-131		
	±10000-kHz offset	-140		
	±100-kHz offset	-98		
	±200-kHz offset	-106		
Dhase noise in the O15 MUz hand	±400-kHz offset	-114		dDa/Ll=
Phase holse in the 915-MHZ band	±1000-kHz offset	-122		
	±2000-kHz offset	-130		
	±10000-kHz offset	-140		

5.11 ADC Characteristics

 $T_c = 25^{\circ}C$, $V_{DDS} = 3.0$ V, DC/DC disabled. Input voltage scaling enabled, unless otherwise noted.⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input voltage range		0		V_{DDS}	V
	Resolution			12		Bits
	Sample rate				200	ksamples/s
	Offset	Internal 4.3-V equivalent reference ⁽²⁾		2.1		LSB
	Gain error	Internal 4.3-V equivalent reference ⁽²⁾		-0.14		LSB
DNL ⁽³⁾	Differential nonlinearity			>-1		LSB
INL ⁽⁴⁾	Integral nonlinearity			±2		LSB

(1) Using IEEE Std 1241[™] 2010 for terminology and test methods.

(4) For a typical example, see Figure 5-6.

26 Specifications

⁽²⁾ Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V. Applied voltage must be within the absolute maximum ratings (see Section 5.1) at all times.

⁽³⁾ No missing codes. Positive DNL typically varies from 0.3 to 1.7, depending on the device (see Figure 5-7).

ADC Characteristics (continued)

$T_{0} = 25^{\circ}C$, $V_{DDS} = 3.0$) V. DC/DC disabled. Ir	nput voltage scaling enabled	d. unless otherwise noted. ⁽¹⁾
	, ,		.,

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT	
		Internal 4.3-V equivalent reference ⁽²⁾ , 200 ksamples/s, 9.6-kHz input tone	10.0			
ENOB	Effective number of	VDDS as reference, 200 ksamples/s, 9.6-kHz input tone	10.2		Bits	
	Dita	Internal 1.44-V reference, voltage scaling disabled, 32 samples average, 200 ksamples/s, 300-Hz input tone	11.1			
		Internal 4.3-V equivalent reference ⁽²⁾ , 200 ksamples/s, 9.6-kHz input tone	-65			
THD	Total harmonic	VDDS as reference, 200 ksamples/s, 9.6-kHz input tone	-72		dB	
		Internal 1.44-V reference, voltage scaling disabled, 32 samples average, 200 ksamples/s, 300-Hz input tone	-75			
		Internal 4.3-V equivalent reference ⁽²⁾ , 200 ksamples/s, 9.6-kHz input tone	62			
SINAD and	Signal-to-noise and	VDDS as reference, 200 ksamples/s, 9.6-kHz input tone	63		dB	
SNDR		Internal 1.44-V reference, voltage scaling disabled, 32 samples average, 200 ksamples/s, 300-Hz input tone	69			
		Internal 4.3-V equivalent reference ⁽²⁾ , 200 ksamples/s, 9.6-kHz input tone	74			
SFDR	SFDR Spurious-free	VDDS as reference, 200 ksamples/s, 9.6-kHz input tone	75		dB	
		Internal 1.44-V reference, voltage scaling disabled, 32 samples average, 200 ksamples/s, 300-Hz input tone	75			
	Conversion time	Including sampling time	5		μs	
	Current consumption	Internal 4.3-V equivalent reference ⁽²⁾	0.66		mA	
	Current consumption	VDDS as reference	0.75		mA	
	Reference voltage	Equivalent fixed internal reference(voltage scaling enabled) ⁽²⁾ For best accuracy, the ADC conversion should be initiated through the TI-RTOS API in order to include the gain/offset compensation factors stored in FCFG1.	4.3		V	
	Reference voltage	Fixed internal reference (input voltage scaling disabled). ⁽²⁾ For best accuracy, the ADC conversion should be initiated through the TI-RTOS API in order to include the gain/offset compensation factors stored in FCFG1. This value is derived from the scaled value (4.3 V) as follows: $V_{ref} = 4.3 V \times 1408 / 4095$	1.48		V	
	Reference voltage	VDDS as reference (Also known as RELATIVE) (input voltage scaling enabled)	VDDS		V	
	Reference voltage	VDDS as reference (Also known as RELATIVE) (input voltage scaling disabled)	VDDS / 2.82		V	
	Input Impedance	200 ksamples/s, voltage scaling enabled. Capacitive input, input impedance depends on sampling frequency and sampling time	>1		MΩ	

5.12 Temperature Sensor

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Resolution			4		°C
Range		-40		85	°C
Accuracy			±5		°C
Supply voltage coefficient ⁽¹⁾			3.2		°C/V

(1) Automatically compensated when using supplied driver libraries.

5.13 Battery Monitor

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Resolution			50		mV
Range		1.8		3.8	V
Accuracy			13		mV

5.14 Continuous Time Comparator

 $T_c = 25^{\circ}C$, $V_{DDS} = 3.0$ V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input voltage range		0		V_{DDS}	V
External reference voltage		0		V_{DDS}	V
Internal reference voltage	DCOUPL as reference		1.27		V
Offset			3		mV
Hysteresis			<2		mV
Decision time	Step from -10 mV to 10 mV		0.72		μs
Current consumption when enabled ⁽¹⁾			8.6		μA

(1) Additionally, the bias module must be enabled when running in standby mode.

5.15 Low-Power Clocked Comparator

 $T_c = 25^{\circ}C$, $V_{DDS} = 3.0$ V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Input voltage range		0		V_{DDS}	V
Clock frequency			32.8		kHz
Internal reference voltage, VDDS / 2			1.49 to 1.51		V
Internal reference voltage, VDDS / 3			1.01 to 1.03		V
Internal reference voltage, VDDS / 4			0.78 to 0.79		V
Internal reference voltage, DCOUPL / 1			1.25 to 1.28		V
Internal reference voltage, DCOUPL / 2			0.63 to 0.65		V
Internal reference voltage, DCOUPL / 3			0.42 to 0.44		V
Internal reference voltage, DCOUPL / 4			0.33 to 0.34		V
Offset			<2		mV
Hysteresis			<5		mV
Decision time	Step from -50 mV to 50 mV		1		clock-cycle
Current consumption when enabled			362		nA

5.16 Programmable Current Source

 $T_c = 25^{\circ}C$, $V_{DDS} = 3.0$ V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	ΓΥΡ ΜΑΧ	UNIT
Current source programmable output range		0.25 te	o 20	μA
Resolution		(0.25	μA
Current consumption ⁽¹⁾	Including current source at maximum programmable output		23	μA

(1) Additionally, the bias module must be enabled when running in standby mode.

5.17 DC Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _A = 25°C, V _{DDS} = 1.8 V					
GPIO VOH at 8-mA load	IOCURR = 2, high-drive GPIOs only	1.32	1.54		V
GPIO VOL at 8-mA load	IOCURR = 2, high-drive GPIOs only		0.26	0.32	V
GPIO VOH at 4-mA load	IOCURR = 1	1.32	1.58		V
GPIO VOL at 4-mA load	IOCURR = 1		0.21	0.32	V
GPIO pullup current	Input mode, pullup enabled, Vpad = 0 V		71.7		μΑ
GPIO pulldown current	Input mode, pulldown enabled, Vpad = VDDS		21.1		μΑ
GPIO high/low input transition, no hysteresis	IH = 0, transition between reading 0 and reading 1		0.88		V
GPIO low-to-high input transition, with hysteresis	IH = 1, transition voltage for input read as $0 \rightarrow 1$		1.07		V
GPIO high-to-low input transition, with hysteresis	IH = 1, transition voltage for input read as $1 \rightarrow 0$		0.74		V
GPIO input hysteresis	IH = 1, difference between $0 \rightarrow 1$ and $1 \rightarrow 0$ voltage transition points		0.33		V
$T_{A} = 25^{\circ}C, V_{DDS} = 3.0 V$					
GPIO VOH at 8-mA load	IOCURR = 2, high-drive GPIOs only		2.68		V
GPIO VOL at 8-mA load	IOCURR = 2, high-drive GPIOs only		0.33		V
GPIO VOH at 4-mA load	IOCURR = 1		2.72		V
GPIO VOL at 4-mA load	IOCURR = 1		0.28		V
$T_A = 25^{\circ}C, V_{DDS} = 3.8 V$					
GPIO pullup current	Input mode, pullup enabled, Vpad = 0 V		277		μA
GPIO pulldown current	Input mode, pulldown enabled, Vpad = VDDS		113		μA
GPIO high/low input transition, no hysteresis	IH = 0, transition between reading 0 and reading 1		1.67		V
GPIO low-to-high input transition, with hysteresis	IH = 1, transition voltage for input read as $0 \rightarrow 1$		1.94		V
GPIO high-to-low input transition, with hysteresis	IH = 1, transition voltage for input read as $1 \rightarrow 0$		1.54		V
GPIO input hysteresis	IH = 1, difference between $0 \rightarrow 1$ and $1 \rightarrow 0$ voltage transition points		0.4		V
VIH	Lowest GPIO input voltage reliably interpreted as a <i>High</i>			0.8	VDDS ⁽¹⁾
VIL	Highest GPIO input voltage reliably interpreted as a <i>Low</i>	0.2			VDDS ⁽¹⁾

(1) Each GPIO is referenced to a specific VDDS pin. See the technical reference manual listed in 8.3 for more details.

5.18 Thermal Characteristics

		CC1310				
THERMAL METRIC ⁽¹⁾		RSM (VQFN)	RHB (VQFN)	RGZ (VQFN)	UNIT ⁽²⁾	
		32 PINS	32 PINS	48 PINS		
R_{\thetaJA}	Junction-to-ambient thermal resistance	36.9	32.8	29.6	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	30.3	24.0	15.7	°C/W	
R_{\thetaJB}	Junction-to-board thermal resistance	7.6	6.8	6.2	°C/W	
ΨJT	Junction-to-top characterization parameter	0.4	0.3	0.3	°C/W	
Ψ_{JB}	Junction-to-board characterization parameter	7.4	6.8	6.2	°C/W	
Re (bot)	Junction-to-case (bottom) thermal resistance	2.1	1.9	1.9	°C/W	

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

(2) $^{\circ}C/W =$ degrees Celsius per watt.

5.19 Timing and Switching Characteristics

5.19.1 Reset Timing

PARAMETER	MIN	TYP	MAX	UNIT
RESET_N low duration	1			μs

5.19.2 Wakeup Timing

Table 5-2. Wakeup Timing

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted. The times listed here do not include RTOS overhead.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
MCU, Idle \rightarrow Active			14		μs
MCU, Standby \rightarrow Active			174		μs
MCU, Shutdown \rightarrow Active			1097		μs

5.19.3 Clock Specifications

Table 5-3. 24-MHz Crystal Oscillator (XOSC_HF)

 $T_c = 25^{\circ}C$, $V_{DDS} = 3.0$ V, unless otherwise noted. Section 5.19.1

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ESR equivalent series resistanceSection 5.19.2	6 pF < C _L ≤ 9 pF		20	60	Ω
ESR equivalent series resistanceSection 5.19.2	5 pF < C _L ≤ 6 pF			80	Ω
L _M motional inductanceSection 5.19.2	Relates to load capacitance $(C_L \text{ in Farads})$	< 1.6 ×	10 ^{–24} / C	L ²	н
C _L crystal load capacitanceSection 5.19.2		5		9	pF
Crystal frequencySection 5.19.2			24		MHz
Start-up time			150		μs

Table 5-4. 32.768-kHz Crystal Oscillator (XOSC_LF)

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with $T_c = 25^{\circ}$ C, $V_{DDS} = 3.0$ V, unless otherwise noted.⁽¹⁾

	MIN	TYP	MAX	UNIT
Crystal frequency		32.768		kHz
ESR equivalent series resistance		30	100	kΩ
Crystal load capacitance (CL)	6		12	pF

(1) Probing or otherwise stopping the crystal while the DC/DC converter is enabled may cause permanent damage to the device.

Table 5-5. 48-MHz RC Oscillator (RCOSC_HF)

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with $T_c = 25^{\circ}$ C, $V_{DDS} = 3.0$ V, unless otherwise noted.

	MIN	TYP MAX	UNIT
Frequency		48	MHz
Uncalibrated frequency accuracy		±1%	
Calibrated frequency accuracy ⁽¹⁾	±().25%	
Startup time		5	μs

(1) Accuracy relative to the calibration source (XOSC_HF)

Table 5-6. 32-kHz RC Oscillator (RCOSC_LF)

Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted.

	MIN	ТҮР	MAX	UNIT
Calibrated frequency ⁽¹⁾		32.768		kHz
Temperature coefficient		50		ppm/°C

(1) The frequency accuracy of the Real Time Clock (RTC) is not directly dependent on the frequency accuracy of the 32-kHz RC Oscillator. The RTC can be calibrated by measuring the frequency error of RCOSC_LF relative to XOSC_HF and compensating for the RTC tick speed.

5.19.4 Flash Memory Characteristics

Table 5-7. Flash Memory Characteristics

-	0-00		0 0 1 1			
$I_{c} =$	25°C,	$V_{DDS} =$	3.0 V,	unless	otherwise	noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supported flash erase cycles before failure		100			k Cycles
Flash page or sector erase current	Average delta current		12.6		mA
Flash page or sector erase time ⁽¹⁾			8		ms
Flash page or sector size			4		KB
Flash write current	Average delta current, 4 bytes at a time		8.15		mA
Flash write time ⁽¹⁾	4 bytes at a time		8		μs

(1) This number is dependent on flash aging and increases over time and erase cycles.

5.19.5 Synchronous Serial Interface (SSI) Characteristics

Table 5-8. Synchronous Serial Interface (SSI) Characteristics

$\Gamma_{c} = 25^{\circ}C, V_{DDS} = 3.0 V$, unless otherwise noted.
---	---------------------------

PARAMETER NO.		PARAMETER	MIN	ТҮР	МАХ	UNIT
S1	t _{clk_per}	SSIClk cycle time	12		65024	system clocks
S2 ⁽¹⁾	t _{clk_high}	SSIClk high time		0.5 × t _{clk_per}		
S3 ⁽¹⁾	t _{clk_low}	SSICIk low time		0.5 × t _{clk_per}		

(1) See the SSI timing diagrams, Figure 5-1, Figure 5-2, and Figure 5-3.

Figure 5-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement

Figure 5-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer

Figure 5-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1

EXAS

www.ti.com

NSTRUMENTS

5.20 Typical Characteristics

www.ti.com

6 Detailed Description

6.1 Overview

1.4 shows a block diagram of the core modules of the CC13xx product family.

6.2 Main CPU

The CC1310 SimpleLink Wireless MCU contains an ARM Cortex-M3 (CM3) 32-bit CPU, which runs the application and the higher layers of the protocol stack.

The CM3 processor provides a high-performance, low-cost platform that meets the system requirements of minimal memory implementation and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

The CM3 features include the following:

- 32-bit ARM Cortex-M3 architecture optimized for small-footprint embedded applications
- Outstanding processing performance combined with fast interrupt handling
- ARM Thumb[®]-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit ARM core in a compact memory size usually associated with 8- and 16-bit devices, typically in the range of a few kilobytes of memory for microcontroller-class applications:
 - Single-cycle multiply instruction and hardware divide
 - Atomic bit manipulation (bit-banding), delivering maximum memory use and streamlined peripheral control
 - Unaligned data access, enabling data to be efficiently packed into memory
- Fast code execution permits slower processor clock or increases sleep mode time
- Harvard architecture characterized by separate buses for instruction and data
- Efficient processor core, system, and memories
- Hardware division and fast digital-signal-processing oriented multiply accumulate
- Saturating arithmetic for signal processing
- Deterministic, high-performance interrupt handling for time-critical applications
- Enhanced system debug with extensive breakpoint and trace capabilities
- · Serial wire trace reduces the number of pins required for debugging and tracing
- Migration from the ARM7[™] processor family for better performance and power efficiency
- · Optimized for single-cycle flash memory use
- Ultra-low power consumption with integrated sleep modes
- 1.25 DMIPS per MHz

6.3 RF Core

The RF core is a highly flexible and capable radio system that interfaces the analog RF and baseband circuits, handles data to and from the system side, and assembles the information bits in a given packet structure.

The RF core can autonomously handle the time-critical aspects of the radio protocols, thus offloading the main CPU and leaving more resources for the user application. The RF core offers a high-level, command-based API to the main CPU.

The RF core supports a wide range of modulation formats, frequency bands, and accelerator features, which include the following:

- Wide range of data rates:
 - From 625 bps (offering long range and high robustness) to as high as 4 Mbps
- Wide range of modulation formats:
 - Multilevel (G) FSK and MSK
 - On-Off Keying (OOK) with optimized shaping to minimize adjacent channel leakage
 - Coding-gain support for long range
- Dedicated packet handling accelerators:
 - Forward error correction
 - Data whitening
 - 802.15.4g mode-switch support
 - Automatic CRC
- Automatic listen-before-talk (LBT) and clear channel assist (CCA)
- Digital RSSI
- Highly configurable channel filtering, supporting channel spacing schemes from 40 kHz to 4 MHz
- High degree of flexibility, offering a future-proof solution

The RF core interfaces a highly flexible radio, with a high-performance synthesizer that can support a wide range of frequency bands.

6.4 Sensor Controller

The Sensor Controller contains circuitry that can be selectively enabled in standby mode. The peripherals in this domain may be controlled by the Sensor Controller Engine, which is a proprietary power-optimized CPU. This CPU can read and monitor sensors or perform other tasks autonomously; thereby significantly reducing power consumption and offloading the main CM3 CPU.

A PC-based development tool called *Sensor Controller Studio* is used to write, test, and debug code for the Sensor Controller. The tool produces C driver source code, which the System CPU application uses to control and exchange data with the Sensor Controller. Typical use cases may be (but are not limited to) the following:

- Analog sensors using integrated ADC
- Digital sensors using GPIOs with bit-banged I²C or SPI
- Capacitive sensing
- Waveform generation
- Pulse counting
- Key scan
- Quadrature decoder for polling rotational sensors

The peripherals in the Sensor Controller include the following:

- The low-power clocked comparator can be used to wake the device from any state in which the comparator is active. A configurable internal reference can be used with the comparator. The output of the comparator can also be used to trigger an interrupt or the ADC.
- Capacitive sensing functionality is implemented through the use of a constant current source, a timeto-digital converter, and a comparator. The continuous time comparator in this block can also be used as a higher-accuracy alternative to the low-power clocked comparator. The Sensor Controller takes care of baseline tracking, hysteresis, filtering, and other related functions.
- The ADC is a 12-bit, 200-ksamples/s ADC with 8 inputs and a built-in voltage reference. The ADC can be triggered by many different sources, including timers, I/O pins, software, the analog comparator, and the RTC.
- The analog modules can be connected to up to eight different GPIOs (see Table 6-1).

The peripherals in the Sensor Controller can also be controlled from the main application processor.

		CC13x0	
ANALOG CAPABLE	7 × 7 RGZ DIO NUMBER	5 × 5 RHB DIO NUMBER	4 × 4 RSM DIO NUMBER
Y	30	14	
Y	29	13	
Y	28	12	
Y	27	11	9
Y	26	9	8
Y	25	10	7
Y	24	8	6
Y	23	7	5
Ν	7	4	2
N	6	3	1
Ν	5	2	0
Ν	4	1	
N	3	0	
N	2		
Ν	1		
Ν	0		

Table 6-1. GPIOs Connected to the Sensor Controller⁽¹⁾

(1) Depending on the package size, up to 15 pins can be connected to the Sensor Controller. Up to eight of these pins can be connected to analog modules.

6.5 Memory

The flash memory provides nonvolatile storage for code and data. The flash memory is in-system programmable.

The SRAM (static RAM) is split into two 4-KB blocks and two 6-KB blocks and can be used to store data and execute code. Retention of the RAM contents in standby mode can be enabled or disabled individually for each block to minimize power consumption. In addition, if flash cache is disabled, the 8-KB cache can be used as general-purpose RAM.

The ROM provides preprogrammed, embedded TI-RTOS kernel and Driverlib. The ROM also contains a bootloader that can be used to reprogram the device using SPI or UART.

6.6 Debug

The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1) interface.

6.7 Power Management

To minimize power consumption, the CC1310 device supports a number of power modes and powermanagement features (see Table 6-2).

MODE	SOFTV	VARE-CONFIGURABLE	POWER MODES		RESET PIN
MODE	ACTIVE	IDLE	STANDBY	SHUTDOWN	HELD
CPU	Active	Off	Off	Off	Off
Flash	On	Available	Off	Off	Off
SRAM	On	On	On	Off	Off
Radio	Available	Available	Off	Off	Off
Supply System	On	On	Duty Cycled	Off	Off
Current	1.2 mA + 25.5 µA/MHz	570 µA	0.6 µA	185 nA	0.1 µA
Wake-up Time to CPU Active ⁽¹⁾	-	14 µs	174 µs	1015 µs	1015 µs
Register Retention	Full	Full	Partial	No	No
SRAM Retention	Full	Full	Full	No	No
High-Speed Clock	XOSC_HF or RCOSC_HF	XOSC_HF or RCOSC_HF	Off	Off	Off
Low-Speed Clock	XOSC_LF or RCOSC_LF	XOSC_LF or RCOSC_LF	XOSC_LF or RCOSC_LF	Off	Off
Peripherals	Available	Available	Off	Off	Off
Sensor Controller	Available	Available	Available	Off	Off
Wake-up on RTC	Available	Available	Available	Off	Off
Wake-up on Pin Edge	Available	Available	Available	Available	Off
Wake-up on Reset Pin	Available	Available	Available	Available	Available
Brown Out Detector (BOD)	Active	Active	Duty Cycled ⁽²⁾	Off	N/A
Power On Reset (POR)	Active	Active	Active	Active	N/A

Table 6-2. Power Modes

(1) Not including RTOS overhead.

(2) The Brown Out Detector is disabled between recharge periods in STANDBY. Lowering the supply voltage below the BOD threshold between two recharge periods while in STANDBY may cause the BOD to lock the device upon wakeup until a Reset/POR releases it. To avoid this, it is recommended that STANDBY mode is avoided if there is a risk that the supply voltage (VDDS) may drop below the specified operating voltage range. For the same reason, it is also good practice to ensure that a power cycling operation, such as a battery replacement, triggers a Power-on-reset by ensuring that the VDDS decoupling network is fully depleted before applying supply voltage again (for example, inserting new batteries). This restriction does not apply to CC1310 die revision B or later.

In active mode, the application CM3 CPU is actively executing code. Active mode provides normal operation of the processor and all of the peripherals that are currently enabled. The system clock can be any available clock source (see Table 6-2).

In idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not clocked and no code is executed. Any interrupt event returns the processor to active mode.

In standby mode, only the always-on (AON) domain is active. An external wake-up event, RTC event, or Sensor Controller event is required to return the device to active mode. MCU peripherals with retention do not need to be reconfigured when waking up again, and the CPU continues execution from where it went into standby mode. All GPIOs are latched in standby mode.

In shutdown mode, the device is entirely turned off (including the AON domain and Sensor Controller), and the I/Os are latched with the value they had before entering shutdown mode. A change of state on any I/O pin defined as a *wake from shutdown pin* wakes up the device and functions as a reset trigger. The CPU can differentiate between reset in this way and reset-by-reset pin or POR by reading the reset status register. The only state retained in this mode is the latched I/O state and the flash memory contents.

The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor Controller independent of the main CPU. This means that the main CPU does not have to wake up, for example to execute an ADC sample or poll a digital sensor over SPI, thus saving both current and wakeup time that would otherwise be wasted. The Sensor Controller Studio lets the user configure the Sensor Controller and choose which peripherals are controlled and which conditions wake up the main CPU.

6.8 Clock Systems

The CC1310 device supports two external and two internal clock sources.

A 24-MHz external crystal is required as the frequency reference for the radio. This signal is doubled internally to create a 48-MHz clock.

The 32.768-kHz crystal is optional. The low-speed crystal oscillator is designed for use with a 32.768-kHz watch-type crystal.

The internal high-speed RC oscillator (48-MHz) can be used as a clock source for the CPU subsystem.

The internal low-speed RC oscillator (32-kHz) can be used as a reference if the low-power crystal oscillator is not used.

The 32-kHz clock source can be used as external clocking reference through GPIO.

6.9 General Peripherals and Modules

The I/O controller controls the digital I/O pins and contains multiplexer circuitry to assign a set of peripherals to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a programmable pullup and pulldown function, and can generate an interrupt on a negative or positive edge (configurable). When configured as an output, pins can function as either push-pull or open-drain. Five GPIOs have high-drive capabilities, which are marked in **bold** in Section 4.

The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and TI's synchronous serial interfaces. The SSIs support both SPI master and slave up to 4 MHz.

The UART implements a universal asynchronous receiver and transmitter function. The UART supports flexible baud-rate generation up to a maximum of 3 Mbps.

Timer 0 is a general-purpose timer module (GPTM) that provides two 16-bit timers. The GPTM can be configured to operate as a single 32-bit timer, dual 16-bit timers, or as a PWM module.

Timer 1, Timer 2, and Timer 3 are also GPTMs; each timer is functionally equivalent to Timer 0.

In addition to these four timers, a separate timer in the RF core handles timing for RF protocols; the RF timer can be synchronized to the RTC.

The I2S interface is used to handle digital audio (for more information, see the CC13x0, CC26x0 SimpleLink[™] Wireless MCU Technical Reference Manual).

The I²C interface is used to communicate with devices compatible with the I²C standard. The I²C interface can handle 100-kHz and 400-kHz operation, and can serve as both I²C master and I²C slave.

The TRNG module provides a true, nondeterministic noise source for the purpose of generating keys, initialization vectors (IVs), and other random number requirements. The TRNG is built on 24 ring oscillators that create unpredictable output to feed a complex nonlinear-combinatorial circuit.

The watchdog timer is used to regain control if the system fails due to a software error after an external device fails to respond as expected. The watchdog timer can generate an interrupt or a reset when a predefined time-out value is reached.

The device includes a direct memory access (μ DMA) controller. The μ DMA controller provides a way to offload data-transfer tasks from the CM3 CPU, thus allowing for more efficient use of the processor and the available bus bandwidth. The μ DMA controller can perform transfer between memory and peripherals. The μ DMA controller has dedicated channels for each supported on-chip module and can be programmed to automatically perform transfers between peripherals and memory when the peripheral is ready to transfer more data.

Some features of the μ DMA controller follow (this is not an exhaustive list):

- Highly flexible and configurable channel operation of up to 32 channels
- Transfer modes: memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-peripheral
- Data sizes of 8, 16, and 32 bits

The AON domain contains circuitry that is always enabled, except when in shutdown mode (where the digital supply is off). This circuitry includes the following:

- The RTC can be used to wake the device from any state where it is active. The RTC contains three compare registers and one capture register. With software support, the RTC can be used for clock and calendar operation. The RTC is clocked from the 32-kHz RC oscillator or crystal. The RTC can also be compensated to tick at the correct frequency even when the internal 32-kHz RC oscillator is used instead of a crystal.
- The battery monitor and temperature sensor are accessible by software and provide a battery status indication as well as a coarse temperature measure.

6.10 Voltage Supply Domains

The CC1310 device can interface to two or three different voltage domains depending on the package type. On-chip level converters ensure correct operation as long as the signal voltage on each input/output pin is set with respect to the corresponding supply pin (VDDS, VDDS2, or VDDS3). Table 6-3 lists the pin-to-VDDS mapping.

		Package	
	VQFN 7 × 7 (RGZ)	VQFN 5 × 5 (RHB)	VQFN 4 × 4 (RSM)
VDDS ⁽¹⁾	DIO 23–30 Reset_N	DIO 7–14 Reset_N	DIO 5–9 Reset_N
VDDS2	DIO 1–11	DIO 0–6 JTAG_TCKC JTAG_TMSC	DIO 0–4 JTAG_TCKC JTAG_TMSC
VDDS3	DIO 12–22 JTAG_TCKC JTAG_TMSC	NA	NA

Table 6-3.	Pin	Function	to	VDDS	Mapping	Table

(1) The VDDS_DCDC pin must always be connected to the same voltage as the VDDS pin.

6.11 System Architecture

Depending on the product configuration, the CC1310 device can function as a wireless network processor (WNP – a device running the wireless protocol stack, with the application running on a separate host MCU), or as a system-on-chip (SoC) with the application and protocol stack running on the ARM CM3 core inside the device.

In the first case, the external host MCU communicates with the device using SPI or UART. In the second case, the application must be written according to the application framework supplied with the wireless protocol stack.

7 Application, Implementation, and Layout

NOTE

Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

7.1 Application Information

Few external components are required for the operation of the CC1310 device. Figure 7-1 shows a typical application circuit.

The board layout greatly influences the RF performance of the CC1310 device.

On the Texas Instruments CC1310EM-7XD-7793 reference design, the optimal differential impedance seen from the RF pins into the balun and filter and antenna is 44 + j15.

Figure 7-1 does not show decoupling capacitors for power pins. For a complete reference design, see the product folder on www.ti.com.

7.2 TI Design or Reference Design

The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jumpstart your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market.

Humidity and Temperature Sensor Node for Sub-1 GHz Star Networks Enabling 10+ Year Coin Cell Battery Life

This reference design uses TI's nano-power system timer, boost converter, SimpleLink[™] ultra-low-power Sub-1GHzwireless MCU platform, and humidity-sensing technologies to demonstrate an ultra-low-power method to duty-cycle sensor end nodes leading to extremely long battery life. The TI Design includes techniques for system design, detailed test results, and information to get the design operating running quickly.

SimpleLink[™] Sub-1 GHz Sensor to Cloud Gateway Reference Design for TI-RTOS Systems

This reference design demonstrates how to connect sensors to the cloud over a long-range Sub-1 GHz wireless network, suitable for industrial settings such as building control and asset tracking. The solution is based on a TI-RTOS gateway. This design provides a complete end-to-end solution for creating a Sub-1 GHz sensor network with an Internet of Things (IoT) gateway solution and cloud connectivity. The gateway solution is based on the low-power, SimpleLink[™] Wi-Fi[®] CC3220 wireless microcontroller (MCU), which hosts the gateway application and the SimpleLink Sub-1 GHz CC1310/CC1312R or the multi-band CC1350/ CC1352R wireless MCU as the MAC Co-Processor. The reference design also includes sensor node example applications running on the SimpleLink Sub-1 GHz CC1312R/CC1310 and multi-band CC1352R/CC1350 wireless MCUs.

Low-Power Wireless M-Bus Communications Module Reference Design

This reference design explains how to use the TI wireless M-Bus stack for CC1310 and CC1350 wireless MCUs and integrate it into a smart meter or data-collector product. This software stack is compatible with the Open Metering System (OMS) v3.0.1 specification. This design offers ready-to-use binary images for any of the wireless M-Bus S-, T-, or C-modes at 868 MHz with unidirectional (meter) or bidirectional configurations (both meter and data collector).

Low-Power Water Flow Measurement With Inductive Sensing Reference Design

This reference design demonstrates a highly-integrated solution for this application using an inductive sensing technique enabled by the CC1310/CC1350 SimpleLink[™] Wireless MCU and FemtoFET[™] MOSFET. This reference design also provides the platform for integration of wireless communications such as wireless M-Bus, Sigfox[™], or a proprietary protocol.

Heat Cost Allocator with wM-Bus at 868 MHz Reference Design

This reference design implements a heat cost allocator system following the EN834 standard with the 'two-sensor measurement method'. The solution achieves better than 0.5 degrees Celsius accuracy across a range of +20 to +85°C. Two analog temperature sensors are available as matched pairs to eliminate the need for calibration during manufacturing and lowering OEM system cost. The CC1310 wireless MCU provides a single-chip solution for heat measurement (control of the two temperature sensors) and RF communications (example code using 868 MHz wM-Bus S, T and C-modes "Meter" device).

Sub-1 GHz Sensor to Cloud Industrial IoT Gateway Reference Design for Linux Systems

This reference design demonstrates how to connect sensors to the cloud over a long-range Sub-1 GHz wireless network, suitable for industrial settings such as building control and asset tracking. This design provides a complete end-to-end solution for creating a Sub-1 GHz sensor network with an Internet of Things (IoT) gateway solution and cloud connectivity. The gateway solution is based on the low-power, SimpleLink™ Wi-Fi® CC3220 wireless microcontroller (MCU), which hosts the gateway application and the SimpleLink Sub-1 GHz CC1312R/CC1310 or the multi-band CC1352R/CC1350 wireless MCU as the MAC Co-Processor.

8 デバイスおよびドキュメントのサポート

TIでは、幅広い開発ツールを提供しています。デバイスの性能評価、コード生成、ソリューション開発用のツールとソフトウェアについて、以下に記載します。

8.1 デバイスの項目表記

製品開発サイクルの段階を示すために、TIではすべての型番や日付コードに接頭辞を割り当てます。各デバイスには、X、P、または空白(接頭辞なし)のいずれかの接頭辞/識別子があります(たとえば、CC1310は量産中なので、接頭辞/識別子が割り当てられません)。

デバイス開発の段階は次のとおりです。

- X 実験的デバイス。最終デバイスの電気的特性を必ずしも表さず、量産アセンブリ・フローを使用しない可能性があります。
- **P** プロトタイプ・デバイス。最終的なシリコン・ダイとは限らず、最終的な電気的特性を満たさない可能性があります。

空白 認定済みのシリコン・ダイの量産バージョン。

量産デバイスの特性は完全に明確化されており、デバイスの品質と信頼性が十分に示されています。TIの標準保証が適用されます。

プロトタイプ・デバイス(XまたはP)の方が標準的な量産デバイスに比べて故障率が大きいと予測されます。これらの デバイスは予測される最終使用時の故障率が未定義であるため、テキサス・インスツルメンツではそれらのデバイス を量産システムで使用しないよう推奨しています。認定された量産デバイスのみを使用する必要があります。

TIデバイスの項目表記には、デバイス・ファミリ名の接尾辞も含まれます。この接尾辞はパッケージ・タイプを示します(例 RGZ)。

RSM (4mm×4mm)、RHB (5mm×5mm)、またはRGZ (7mm×7mm) パッケージ・タイプのCC1310デバイスの発注 型番については、このドキュメントのパッケージ・オプションの付録を参照するか、TIのWebサイト(www.ti.com)をご 覧いただくか、TIの販売代理店にお問い合わせください。

Copyright © 2015–2018, Texas Instruments Incorporated

8.2 ツールとソフトウェア

開発キット:

SimpleLink™ Sub-1GHz CC1310ワイヤレスMCU LaunchPad™開発キット

SimpleLink[™] Sub-1GHz CC1310ワイヤレス・マイクロコントローラ(MCU) LaunchPad[™]開発キット は、Sub-1GHz無線に対応する初のLaunchPadキットで、長距離のコネクティビティと32ビットの Arm[®] Cortex[®]-M3プロセッサをシングル・チップに統合しています。

CC1310デバイスは、低消費電力で長距離のワイヤレス・アプリケーションを対象としたワイヤレス MCUです。CC1310ワイヤレスMCUには、メイン・プロセッサとして48MHzで動作する32ビットArm Cortex-M3プロセッサと、独自の超低消費電力センサ・コントローラなどの豊富なペリフェラル機能が 搭載されています。このセンサ・コントローラは、外部センサとのインターフェイスとして最適で、システ ムの他の部分がスリープ・モードのときにアナログ・データとデジタル・データを自律的に収集します。

ソフトウェア:

SimpleLink[™] CC13x0 SDK

SimpleLink™ Sub-1GHz CC13x0ソフトウェア開発キット(SDK)は、Sub-1GHz CC1310とデュア ル・バンドCC1350の各ワイヤレスMCU向けの包括的なSub-1GHzソフトウェア・パッケージで、以下 のものが含まれています。

- TI 15.4-Stack Sub-1GHz ISMバンド(433MHz、868MHz、915MHz)用の、IEEE 802.15.4e/g ベースのスター・トポロジのネットワーク・ソリューション
- 独自ソリューションのサポート RFドライバとEasyLinkアブストラクション・レイヤをベースとする Sub-1GHz向け独自RFサンプル
- Bluetooth Low Energy Bluetoothコア仕様4.2の機能すべてをサポートするスタックと、デュアル・バンドCC1350ワイヤレスMCUを使用している顧客をサポートするためのBLEマイクロスタック

TIのSimpleLink MCUプラットフォームの一部であるSimpleLink CC13x0 SDKは、有線およびワイ ヤレスのアプリケーションを開発するための柔軟なハードウェア、ソフトウェア、ツール・オプションを提 供する、単一の開発環境です。SimpleLink MCU プラットフォームの詳細については、 www.tij.co.jp/simplelink を参照してください。

ソフトウェア・ツール:

SmartRF[™] Studio 7

SmartRF™ Studioは、無線システムの設計者が設計プロセスの初期段階でRF-ICを簡単に評価するのに役立つ、PC用アプリケーションです。

- 無線パケット送受信機能と連続波送受信機能のテスト
- RFをサポート対象の評価ボードかデバッガに接続することで、カスタム・ボード上でRF性能を評価
- 無線構成設定の生成、編集、エクスポートをする場合は、ハードウェアがなくても使用可能
 - テキサス・インスツルメンツのCC1310 RF-IC用の開発キットと組み合わせて使用可能

Sensor Controller Studio Sensor Controller Studio は、CC1310 Sensor Controller 用開発環境を提供しま す。Sensor Controller は CC1310 内に搭載されている独自の電力最適化CPUであり、単純なバッ クグラウンド・タスクを自動的に実行し、システムCPUの状態には依存しません。

Sensor Controller タスク・アルゴリズムを、Cライクのプログラミング言語を用いて実行可能

- Sensor Controller インターフェイス・ドライバを出力 (生成された Sensor Controller マシン・ コードと関連する定義を含む)
- 統合された Sensor Controller タスク・テストとデバッグ機能を用いた迅速な開発が可能。これに より、センサ・データおよびアルゴリズム検証のライブでの可視化が可能になります。

IDEとコンパイラ:

Code Composer Studio[™] IDE

- プロジェクト管理ツールとエディタの付属した統合開発環境(IDE)
- Code Composer Studio (CCS) 6.1およびそれ以降にはCC1310デバイス・ファミリのサポートが 組み込み済み
- XDSデバッガ、XDS100v3、XDS110、XDS200を最大限にサポート
- TI-RTOSとの高度な統合、TI-RTOS Object Viewのサポート

Code Composer Studio[™] Cloud IDE

Code Composer Studio™ (CCS) CloudはWebベースのIDEで、CCSとEnergiaのプロジェクトの 作成、編集、ビルドに使用できます。プロジェクトのビルドに成功した後で、接続されている LaunchPad™開発キットにダウンロードして実行できます。ブレークポイントの設定や、変数の値の表 示など、基本的なデバッグ機能がCCS Cloudでサポートされるようになりました。

CCS UniFlash

CCS Uniflashは、TI MCU上のオンチップ・フラッシュ・メモリのプログラミングに使用するスタンドアロン・ツールです。Uniflashは、GUI、コマンド・ライン、スクリプト・インターフェイスを備えています。 CCS Uniflashは無料で利用できます。

IAR Embedded Workbench[®] for Arm

- プロジェクト管理ツールとエディタの付属した統合開発環境
- IAR EWARM 7.30.3およびそれ以降にはCC1310デバイス・ファミリのサポートが組み込み済み
- 広範なデバッガのサポート: XDS100v3、XDS200、IAR I-jet[®]、SEGGER J-Link™
- プロジェクト管理ツールとエディタの付属した統合開発環境
- **TI-RTOS**で使用可能な**RTOS**プラグイン

CC1310プラットフォーム用の開発サポート・ツールの完全なリストについては、テキサス・インスツルメンツのWeb サイト(www.ti.com)を参照してください。価格と在庫状況については、お近くのTIフィールド・セールス・オフィス、または認可代理店にお問い合わせください。

8.3 ドキュメントのサポート

ドキュメントの更新についての通知を受け取るには、ti.com (CC1310)のデバイス製品フォルダを開いてください。 右上の「アラートを受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

CC1310デバイスと関連ペリフェラルについて記述されている最新のドキュメントや、他の技術資料のリストを以下に示します。

正誤表

『CC1310 SimpleLink™超低消費電力Sub-1GHzワイヤレスMCUシリコン・リビジョンB、Aシリコン正誤表』

テクニカル・リファレンス・マニュアル

『CC13xx、CC26xx SimpleLink™ワイヤレスMCUテクニカル・リファレンス・マニュアル』

リファレンス・ガイド

『CC26xx/CC13xx電力管理ソフトウェア開発者リファレンス・ガイド』

8.4 テキサス・インスツルメンツのローパワーRF Webサイト

TIのローパワーRF Webサイトには、最新製品、アプリケーション・ノートおよびデザイン・ノート、FAQ、最新のニュースおよびイベント情報が記載されています。www.ti.com/longrangeをご覧ください。

8.5 追加情報

テキサス・インスツルメンツでは、産業用および民生用分野で使用できる独自設計および標準ベースのワイヤレス・ アプリケーション向けに、コスト効率の優れた低消費電力RFソリューションを豊富に提供しています。ソリューション には、Sub-1GHzと2.4GHz周波数帯用のさまざまなソフトウェア・ソリューションに加えて、RFトランシーバ、RFトラン スミッタ、RFフロント・エンド、システム・オン・チップがあります。

さらに、テキサス・インスツルメンツでは、開発ツール、技術資料、リファレンス・デザイン、アプリケーションの専門知 識、カスタマ・サポート、サードパーティおよび大学向けプログラムなど、さまざまなサポートを提供しています。

テクニカル・サポート・フォーラム、ビデオ、ブログに加えて、ローパワー RF E2E オンライン・コミュニティで世界中の エンジニアとやり取りする機会も提供しています。

幅広い製品ソリューション、エンド・アプリケーションのさまざまな可能性、広範なテクニカル・サポートとともに、テキサス・インスツルメンツは低消費電力RF製品の最も充実したラインアップを提供しています。

8.6 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community The TI engineer-to-engineer (E2E) community was created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

TI組み込みプロセッサWiki TIの組み込みプロセッサに関するWiki。テキサス・インスツルメンツの組み込みプロ セッサを使用し始める開発者を支援し、これらのデバイスを取り巻くハードウェアとソフトウェアに関す る一般知識の強化とイノベーションの促進を図るために、開設されました。

www.tij.co.jp

8.7 商標

SimpleLink, SmartRF, Code Composer Studio, Texas Instruments, FemtoFET, E2E are trademarks of Texas Instruments.

ARM7 is a trademark of ARM Limited (or its subsidiaries).

Arm, Cortex, Thumb are registered trademarks of Arm Limited (or its subsidiaries).

Bluetooth is a registered trademark of Bluetooth SIG, Inc.

ULPBench is a trademark of Embedded Microprocessor Benchmark Consortium.

CoreMark is a registered trademark of Embedded Microprocessor Benchmark Consortium.

IAR Embedded Workbench, I-jet are registered trademarks of IAR Systems AB.

IEEE Std 1241 is a trademark of Institute of Electrical and Electronics Engineers, Incorporated.

IEEE is a registered trademark of Institute of Electrical and Electronics Engineers, Incorporated.

J-Link is a trademark of SEGGER Microcontroller GmbH.

Wi-Fi is a registered trademark of Wi-Fi Alliance.

Wi-SUN is a trademark of Wi-SUN Alliance, Inc.

Zigbee is a registered trademark of Zigbee Alliance.

All other trademarks are the property of their respective owners.

8.8 静電気放電に関する注意事項

すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。

静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感 であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

8.9 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

8.10 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 メカニカル、パッケージ、および注文情報

9.1 パッケージ情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。これらの情報は、指定のデバイスに対して提供されている最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが 改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
CC1310F128RGZR	ACTIVE	VQFN	RGZ	48	2500	RoHS & Green	Call TI NIPDAUAG NIPDAU	Level-3-260C-168 HR	-40 to 85	CC1310 F128	Samples
CC1310F128RGZT	ACTIVE	VQFN	RGZ	48	250	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F128	Samples
CC1310F128RHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F128	Samples
CC1310F128RHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F128	Samples
CC1310F128RSMR	ACTIVE	VQFN	RSM	32	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F128	Samples
CC1310F128RSMT	ACTIVE	VQFN	RSM	32	250	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F128	Samples
CC1310F32RGZR	ACTIVE	VQFN	RGZ	48	2500	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F32	Samples
CC1310F32RGZT	ACTIVE	VQFN	RGZ	48	250	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F32	Samples
CC1310F32RHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	CC1310 F32	Samples
CC1310F32RHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F32	Samples
CC1310F32RSMR	ACTIVE	VQFN	RSM	32	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F32	Samples
CC1310F32RSMT	ACTIVE	VQFN	RSM	32	250	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F32	Samples
CC1310F64RGZR	ACTIVE	VQFN	RGZ	48	2500	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F64	Samples
CC1310F64RGZT	ACTIVE	VQFN	RGZ	48	250	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F64	Samples
CC1310F64RHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F64	Samples
CC1310F64RHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F64	Samples
CC1310F64RSMR	ACTIVE	VQFN	RSM	32	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
										F64	
CC1310F64RSMT	ACTIVE	VQFN	RSM	32	250	RoHS & Green	NIPDAU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1310 F64	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CC1310F128RGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2
CC1310F128RHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

www.ti.com

PACKAGE MATERIALS INFORMATION

28-Feb-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CC1310F128RGZT	VQFN	RGZ	48	250	210.0	185.0	35.0
CC1310F128RHBT	VQFN	RHB	32	250	210.0	185.0	35.0

Texas **INSTRUMENTS**

www.ti.com

TRAY

PACKAGE MATERIALS INFORMATION

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

Device	Package	Package	Pins	SPQ	Unit array	Max	L (mm)	W (mm)	K0 (um)	P1 (mm)	CL (mm)	CW (mm)
	Hame	турс			maunx	(°C)		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(μπ)	()	()	()
CC1310F128RHBR	RHB	VQFN	32	3000	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F128RHBT	RHB	VQFN	32	250	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F128RSMR	RSM	VQFN	32	3000	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F128RSMT	RSM	VQFN	32	250	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F128RSMT	RSM	VQFN	32	250	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F32RGZR	RGZ	VQFN	48	2500	26 x 10	150	315	135.9	7620	11.8	10	10.35
CC1310F32RGZR	RGZ	VQFN	48	2500	26 x 10	150	315	135.9	7620	11.8	10	10.35
CC1310F32RGZT	RGZ	VQFN	48	250	26 x 10	150	315	135.9	7620	11.8	10	10.35
CC1310F32RGZT	RGZ	VQFN	48	250	26 x 10	150	315	135.9	7620	11.8	10	10.35
CC1310F32RHBR	RHB	VQFN	32	3000	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F32RHBT	RHB	VQFN	32	250	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F32RHBT	RHB	VQFN	32	250	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F32RSMR	RSM	VQFN	32	3000	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F32RSMT	RSM	VQFN	32	250	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F64RGZR	RGZ	VQFN	48	2500	26 x 10	150	315	135.9	7620	11.8	10	10.35
CC1310F64RGZT	RGZ	VQFN	48	250	26 x 10	150	315	135.9	7620	11.8	10	10.35
CC1310F64RHBR	RHB	VQFN	32	3000	14 x 35	150	315	135.9	7620	8.8	7.9	8.15

28-Feb-2025

www.ti.com

28-Feb-2025

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
CC1310F64RHBT	RHB	VQFN	32	250	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F64RSMR	RSM	VQFN	32	3000	14 x 35	150	315	135.9	7620	8.8	7.9	8.15
CC1310F64RSMT	RSM	VQFN	32	250	14 x 35	150	315	135.9	7620	8.8	7.9	8.15

RHB 32

5 x 5, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RHB0032E

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

RHB0032E

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

RHB0032E

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

RGZ 48

7 x 7, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUADFLAT PACK- NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RGZ0048A

PACKAGE OUTLINE VQFN - 1 mm max height

VQI II IIIIII IIIAX Holgiii

PLASTIC QUADFLAT PACK- NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUADFLAT PACK- NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

RGZ0048A

RGZ0048A

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUADFLAT PACK- NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

RSM 32

4 x 4, 0.4 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RSM0032B

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

RSM0032B

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

RSM0032B

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みま す)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある 「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証 も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様 のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様の アプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任 を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツル メンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらの リソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権の ライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、 費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは 一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ ースを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありませ ん。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated