

ADS868xW 16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply, SAR ADCs With **Bipolar Input Ranges**

1 Features

- 16-Bit ADCs with Integrated Analog Front-End
- 4-, 8-Channel MUX with Auto and Manual Scan
- Channel-Independent Programmable Inputs:
 - ±12.288V, ±6.144V, and ±3.072V
 - 12.288V to 0V and 6.144V to 0V
- 5V Analog Supply: 1.65V to 5V I/O Supply
- Constant Resistive Input Impedance: 1.2MΩ
- Input Overvoltage Protection: Up to ±20V
- On-Chip, 4.096V Reference with Low Drift
- **Excellent Performance:**
 - 500kSPS Aggregate Throughput
 - DNL: ±0.6LSB; INL: ±0.8LSB
 - Low Drift for Gain Error and Offset
 - SNR: 91.5dB; THD: -102dB
 - Low Power: 65mW
- AUX Input → Direct Connection to ADC Inputs
- ALARM → High and Low Thresholds per Channel
- SPI[™]-Compatible Interface with Daisy-Chain
- Industrial Temperature Range: -40°C to 125°C

Block Diagram

2 Applications

- Analog input modules
- AC transmission relays

3 Description

The ADS8684W and ADS8688W are 4-channel and 8-channel, integrated data acquisition systems based on a 16-bit successive approximation (SAR) analogto-digital converter (ADC), operating at a throughput of 500kSPS. The devices feature integrated analog front-end circuitry for each input channel with overvoltage protection up to ±20V, a 4-channel or 8-channel multiplexer with automatic and manual scanning modes, and an on-chip, 4.096V reference with low temperature drift. Operating on a single 5V analog supply, each input channel on the devices can independently support bipolar input ranges of ±12.288V, ±6.144V, and ±3.072V and unipolar input ranges of 12.288V to 0V and 6.144V to 0V.

The ADS8684W and ADS8688W offer a simple SPIcompatible serial interface to the digital host and also support daisy-chaining of multiple devices. The digital supply operates from 1.65V to 5.25V, enabling direct interface to a wide range of host controllers.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE(2)
ADS8684W, ADS8688W	DBT (TSSOP, 38)	9.70mm × 6.40mm

- For more information, see Section 12.
- The package size (length x width) is a nominal value and includes pins, where applicable.

Table of Contents

1 Features1	7.4 Device Functional Modes3
2 Applications1	8 Register Maps4
3 Description1	8.1 Command Register Description49
4 Device Comparison Table3	8.2 Program Register Description49
5 Pin Configuration and Functions3	9 Application and Implementation6
6 Specifications5	9.1 Application Information6
6.1 Absolute Maximum Ratings5	9.2 Typical Applications69
6.2 ESD Ratings5	9.3 Power Supply Recommendations66
6.3 Recommended Operating Conditions6	9.4 Layout6
6.4 Thermal Information6	10 Device and Documentation Support69
6.5 Electrical Characteristics7	10.1 Documentation Support69
6.6 Timing Requirements10	10.2 Receiving Notification of Documentation Updates69
6.7 Switching Characteristics11	10.3 Support Resources69
6.8 Timing Diagrams12	10.4 Trademarks69
6.9 Typical Characteristics13	10.5 Electrostatic Discharge Caution69
7 Detailed Description21	10.6 Glossary69
7.1 Overview21	11 Revision History69
7.2 Functional Block Diagram21	12 Mechanical, Packaging, and Orderable
7.3 Feature Description22	Information69

4 Device Comparison Table

PRODUCT	RESOLUTION (Bits)	CHANNELS	SAMPLE RATE (kSPS)
ADS8674	14	4, single-ended	500
ADS8678	14	8, single-ended	500

5 Pin Configuration and Functions

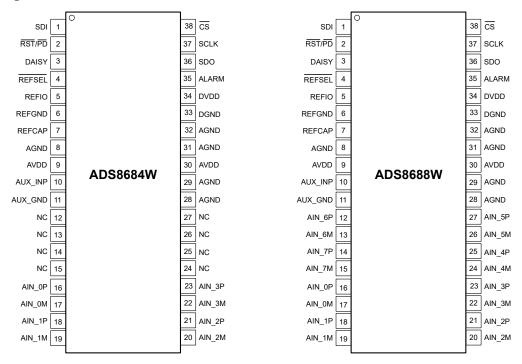


Figure 5-1. DBT Package 38-Pin TSSOP Top View (Not to Scale)

Table 5-1. Pin Functions

	PIN			
NO.	NA	ME	TYPE	DESCRIPTION
NO.	ADS8684W	ADS8688W		
1	SI	DI	Digital input	Data input for serial communication.
2	RST	/ PD	Digital input	Active low logic input. Dual functionality to reset or power-down the device.
3	DA	ISY	Digital input	Chain the data input during serial communication in daisy-chain mode.
4	REFSEL		Active low logic input to enable the internal reference. When low, the internal reference is enabled; REFSEL Digital input REFIO becomes an output that includes the V _{REF} voltage. When high, the internal reference is disabled; REFIO becomes an input to apply the external V _{REF} voltage.	
5	RE	FIO	Analog input, output	Internal reference output and external reference input pin. Decouple with REFGND on pin 6.
6	REF	GND	Power supply	Reference GND pin; short to the analog GND plane. Decouple with REFIO on pin 5 and REFCAP on pin 7.
7	REF	CAP	Analog output	ADC reference decoupling capacitor pin. Decouple with REFGND on pin 6.
8	AG	ND	Power supply	Analog ground pin. Decouple with AVDD on pin 9.
9	AV	DD	Power supply	Analog supply pin. Decouple with AGND on pin 8.
10	AUX_INP		Analog input	Auxiliary input channel: positive input. Decouple with AUX_GND on pin 11.
11	AUX_GND		Analog input	Auxiliary input channel: negative input. Decouple with AUX_INP on pin 10.
12	NC	AIN_6P	Analog input	Analog input channel 6, positive input. Decouple with AIN_6M on pin 13. No connection for the ADS8684W; this pin can be left floating or connected to AGND.

Table 5-1. Pin Functions (continued)

	PIN					
NO. NAME		TYPE	DESCRIPTION			
NO.	ADS8684W	ADS8688W				
13	NC	AIN_6M	Analog input	Analog input channel 6, negative input. Decouple with AIN_6P on pin 12. No connection for the ADS8684W; this pin can be left floating or connected to AGND.		
14	NC	AIN_7P	Analog input	Analog input channel 7, positive input. Decouple with AIN_7M on pin 15. No connection for the ADS8684W; this pin can be left floating or connected to AGND.		
15	NC	AIN_7M	Analog input	Analog input channel 7, negative input. Decouple with AIN_7P on pin 14. No connection for the ADS8684W; this pin can be left floating or connected to AGND.		
16	AIN	_0P	Analog input	Analog input channel 0, positive input. Decouple with AIN_0M on pin 17.		
17	AIN	_0M	Analog input	Analog input channel 0, negative input. Decouple with AIN_0P on pin 16.		
18	AIN	_1P	Analog input	Analog input channel 1, positive input. Decouple with AIN_1M on pin 19.		
19	AIN	_1M	Analog input	Analog input channel 1, negative input. Decouple with AIN_1P on pin 18.		
20	AIN	_2M	Analog input	Analog input channel 2, negative input. Decouple with AIN_2P on pin 21.		
21	AIN	_2P	Analog input	Analog input channel 2, positive input. Decouple with AIN_2M on pin 20.		
22	AIN.	_3M	Analog input	Analog input channel 3, negative input. Decouple with AIN_3P on pin 23.		
23	AIN	_3P	Analog input	Analog input channel 3, positive input. Decouple with AIN_3M on pin 22.		
24	NC	AIN_4M	Analog input	Analog input channel 4, negative input. Decouple with AIN_4P on pin 25. No connection for the ADS8684W; this pin can be left floating or connected to AGND.		
25	NC	AIN_4P	Analog input	Analog input channel 4, positive input. Decouple with AIN_4M on pin 24. No connection for the ADS8684W; this pin can be left floating or connected to AGND.		
26	NC	AIN_5M	Analog input	Analog input channel 5, negative input. Decouple with AIN_5P on pin 27. No connection for the ADS8684W; this pin can be left floating or connected to AGND.		
27	NC	AIN_5P	Analog input	Analog input channel 5, positive input. Decouple with AIN_5M on pin 26. No connection for the ADS8684W; this pin can be left floating or connected to AGND.		
28	AG	ND	Power supply	Analog ground pin		
29	AG	ND	Power supply	Analog ground pin		
30	AV	DD	Power supply	Analog supply pin. Decouple with AGND on pin 31.		
31	AG	ND	Power supply	Analog ground pin. Decouple with AVDD on pin 30.		
32	AG	ND	Power supply	Analog ground pin.		
33	DG	ND	Power supply	Digital ground pin. Decouple with DVDD on pin 34.		
34	DVDD		Power supply	Digital supply pin. Decouple with DGND on pin 33.		
35	ALARM		Digital output	Active high alarm output.		
36	SE	00	Digital output	Data output for serial communication.		
37	sc	ELK	Digital input	Clock input for serial communication. Connect a 100Ω resistor in series close to the SCLK pin.		
38	C	S	Digital input	Active low logic input; chip-select signal.		

6 Specifications

6.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
AIN and AIN and to ACNID	AVDD = 5V ⁽²⁾	-20	20	V
AIN_nP, AIN_nM to AGND	AVDD = Unpowered ⁽³⁾	-15	15	V
AUX_INP and AUX_GND to AGND	·	-0.3	AVDD + 0.3	V
AVDD to AGND or DVDD to DGND		-0.3	7	V
REFCAP to REFGND or REFIO to REFGND		-0.3	5.7	V
AGND to REFGND		-0.3	0.3	V
AGND to DGND		-0.3	0.3	V
Digital input pins to DGND		-0.3	DVDD + 0.3	V
Digital output pins to DGND		-0.3	DVDD + 0.3	V
Input current to any pin except supply pins		-10	10	mA
Junction temperature, T _J		-40	150	°C
Storage temperature, T _{stg}		-60	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

- (2) AVDD = 5V or offers source impedance $30k\Omega$ or less.
- (3) AVDD = floating with source impedance $30k\Omega$ or more.

6.2 ESD Ratings

			VALUE	UNIT
	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, analog input pins (AIN_nP, AIN_nM) ⁽¹⁾	±6000	
V _(ESD)		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all other pins ⁽¹⁾	±2000	V
		Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins ⁽²⁾	±500	

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUI	PPLY					
AVDD	Analog power supply	AVDD to AGND	4.75	5	5.25	V
DVDD	Digital interface power supply	DVDD to DGND	1.65	3.3	AVDD	V
REFERENC	VOLTAGE				'	
V _{REFIO_EXT}	External reference voltage on REFIO	REFIO pin configured as an input	4.046	4.096	4.146	V
ANALOG IN	PUTS				'	
	Full-scale input span (AIN_nP to AIN_nM)	Input range = ±3 × V _{REF}	-12.288		12.288	
		Input range = ±1.5 × V _{REF}	-6.144		6.144	V
AIN_x		Input range = ±0.75 × V _{REF}	-2.56	-	2.56	
	, <u>.</u> ,,	Input range = 2.5 × V _{REF}	0		10.24	
		Input range = 1.5 × V _{REF}	0		6.144	
TEMPERAT	URE RANGE				'	
T _A	Ambient temperature		-40	25	125	°C

6.4 Thermal Information

		ADS868xW	
	THERMAL METRIC ⁽¹⁾	DBT (TSSOP)	UNIT
		38 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	68.8	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	19.9	°C/W
R _{0JB}	Junction-to-board thermal resistance	30.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	1.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	29.8	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	NA	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

Product Folder Links: ADS8688W

6.5 Electrical Characteristics

all minimum and maximum specifications are at $T_A = -40^{\circ}\text{C}$ to +125°C; typical specifications are at $T_A = 25^{\circ}\text{C}$; AVDD = 5V, DVDD = 3.3V, $V_{REF} = 4.096\text{V}$ (internal), and maximum throughput (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALO	G INPUTS					
R _{IN}	Input impedance	All input ranges at AIN_nP pin = V _{IN} and AIN_nM = GND	1.02	1.2		МΩ
		Input range = $\pm 3 \times V_{REF}$ with voltage at the AIN_nP pin = V_{IN} and AIN_nM = GND	2	(V _{IN} – 2.5) / R _{IN}		
		Input range = $\pm 1.5 \times V_{REF}$ with voltage at the AIN_nP pin = V_{IN} and AIN_nM = GND	,	(V _{IN} – 2.0) / R _{IN}		
I _{IN}	Input current	Input range = $\pm 0.75 \times V_{REF}$ with voltage at the AIN_nP pin = V_{IN} and AIN_nM = GND		(V _{IN} – 1.6) / R _{IN}		μΑ
		Input range = $3 \times V_{REF}$ with voltage at the AIN_nP pin = V_{IN} and AIN_nM = GND	2	(V _{IN} – 2.6) / R _{IN}		
		Input range = 1.5 × V _{REF} with voltage at the AIN_ <i>n</i> P pin = V _{IN} and AIN_ <i>n</i> M = GND	2	(V _{IN} – 2.7) / R _{IN}		
INPUT C	OVERVOLTAGE PROTECTION CIRC	CUIT				
V-21/5	All input ranges	AVDD = 5V, all input ranges	-20		20	V
V _{OVP}	All illiput ratiges	AVDD = Floating, all input ranges	-15		15	v
INPUT B	BANDWIDTH					
f_3 dB	Small-signal Input bandwidth, – 3dB	All input ranges at T _A = 25°C		15		kHz
f_ _{0.1 dB}	Small-signal Input bandwidth, – 0.1dB	All input ranges at T _A = 25°C		2.5		kHz
DC PER	FORMANCE					
	Resolution		16			Bits
NMC	No missing codes		16			Bits
DNL	Differential nonlinearity	All input ranges	-0.9	±0.6	0.9	LSB
INII	Integral poplinggrity	All input bipolar ranges	-2	±0.8	2	LSB
INL	Integral nonlinearity	All unipolar ranges	-2	±0.6	2	LOD
E _O		Bipolar ranges = $\pm 3 \times V_{REF}$ and $\pm 1.5 \times V_{REF}$, $T_A = 25^{\circ}C$	-1.8	±0.2	1.8	mV
	Offset error	Bipolar range = $\pm 0.75 \times V_{REF}$, $T_A = 25$ °C	-4.5	±0.2	4.5	
E _O		Unipolar ranges = $3 \times V_{REF}$ and $1.5 \times V_{REF}$, $T_A = 25^{\circ}C$	-2.4	±0.2	2.4	mV
	Offset error drift with temperature	All input ranges	-4.5	±0.75	4.5	ppm/°C
E_G	Gain error	All input ranges at T _A = 25°C	-0.05	±0.01	0.05	%FSR
	Gain error drift with temperature	All input ranges	- 5	±1	5	ppm/°C
AC PER	FORMANCE					
		Input range = ±3 × V _{REF}	89.5	91.5		
		Input range = ±1.5 × V _{REF}	88.5	90.5		
SNR	Signal-to-noise ratio	Input range = ±0.75 × V _{REF}	85.5	87.8		dB
		Input range = 3 × V _{REF}	87.9	90		
		Input range = 1.5 × V _{REF}	85.5	87.8		
THD	Total harmonic distortion	All input ranges		-102		dB

all minimum and maximum specifications are at T_A = -40°C to +125°C; typical specifications are at T_A = 25°C; AVDD = 5V, DVDD = 3.3V, V_{REF} = 4.096V (internal), and maximum throughput (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Input range = ±3 × V _{REF}	87.2	91		
		Input range = ±1.5 × V _{REF}	86.8	90		
SINAD	Signal-to-noise + distortion	Input range = ±0.75 × V _{REF}	83.5	86.5		dB
		Input range = 3 × V _{REF}	85.7	89.5		
		Input range = 1.5 × V _{REF}	83.3	86.4		
SFDR	Spurious-free dynamic range	All Input ranges		103		dB
	Crosstalk isolation ⁽¹⁾	Aggressor channel input is overdriven to 2 × maximum input voltage		110		dB
	Crosstalk memory ⁽²⁾	Aggressor channel input is overdriven to 2 × maximum input voltage		90		dB
AUXILIAF	RY CHANNEL					
	Resolution		16			Bits
V _{AUX_IN}	AUX_IN voltage range	(AUX_INP – AUX_GND)	0		V_{REF}	V
	On another desired and	AUX_INP	0		V_{REF}	
	Operating input range	AUX_GND		0		V
		During sampling		75		
	Input capacitance	During conversion		5		pF
	Input leakage current		-	100		nA
	Differential nonlinearity		-0.99		1.5	LSB
	Integral nonlinearity		-4		4	LSB
	Gain error	at T _A = 25°C			±0.2	%FSR
	Offset error	at T _A = 25°C	-10		10	mV
	Signal-to-noise ratio	V _{AUX_IN} = -0.5dBFS at 1kHz	87	89		dB
	Total harmonic distortion	V _{AUX IN} = -0.5dBFS at 1kHz		-102		dB
	Signal-to-noise + distortion	V _{AUX IN} = -0.5dBFS at 1kHz	86	88.5		dB
	Spurious-free dynamic range	V _{AUX IN} = -0.5dBFS at 1kHz		103		dB
INTERNA	L REFERENCE OUTPUT	-				
V _{REFIO}	On the REFIO pin (configured as an output)	T _A = 25°C	4.092	4.096	4.1	V
dV _{REFIO} / dT _A	Internal reference temperature drift			5		ppm/°C
C _{OUT_REF}	Decoupling capacitor on REFIO pin		4.7			μF
V_{REFCAP}	Reference voltage to the ADC (on the REFCAP pin)		4.092	4.096	4.1	V
	Reference buffer output impedance			0.5	1	Ω
	Reference buffer temperature drift			0.5	1.5	ppm/°C
C _{OUT_REF}	Decoupling capacitor on REFCAP pin		10	22		μF
	Turn-on time	C _{OUT_REFCAP} = 10µF, C _{OUT_REFIO} = 10µF		20		ms
DIGITAL I	NPUTS					
V	Digital high input voltage logic	DVDD > 2.1V	0.7 × DVDD		DVDD + 0.3	V
V _{IH}	level	DVDD ≤ 2.1V	0.8 × DVDD		DVDD + 0.3	V

all minimum and maximum specifications are at $T_A = -40^{\circ}\text{C}$ to +125°C; typical specifications are at $T_A = 25^{\circ}\text{C}$; AVDD = 5V, DVDD = 3.3V, $V_{REF} = 4.096\text{V}$ (internal), and maximum throughput (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
					0.3 x	
V_{IL}	Digital low input voltage logic	DVDD > 2.1V	-0.3		DVDD	V
V IL	level	DVDD ≤ 2.1V	-0.3		0.2 x DVDD	v
	Input leakage current			100		nA
	Input pin capacitance			5		pF
DIGITAL (OUTPUTS					
V _{OH}	Digital high output voltage logic level	I _O = 500μA source	0.8 × DVDD		DVDD	V
V _{OL}	Digital low output voltage logic level	$I_{O} = 500\mu\text{A sink}$	0		0.2 × DVDD	V
	Floating state leakage current	Only for SDO		1		μA
	Internal pin capacitance			5		pF
POWER-S	SUPPLY REQUIREMENTS					
	Analog supply current, device	ADS8688W		13	16	
I _{AVDD_DY} N	converting at maximum throughput with internal reference	ADS8684W		8.5	11.5	mA
	Analog supply current, device not	ADS8688W		10	12	Л
I _{AVDD_STC}	converting with internal reference	ADS8684W		5.5	8.5	mA
I _{AVDD_STD}	Analog supply current, device in STANDBY mode	Device in STDBY mode and internal reference		3	4.5	mA
I _{AVDD_PD}	Analog supply current, device in PD mode	Device in PWR_DN mode		3	20	μA
I _{DVDD_DY} N	Digital supply current, maximum throughput	at DVDD = 3.3V, output = 0000h		0.5		mA

⁽¹⁾ Isolation crosstalk is measured by applying a full-scale sinusoidal signal up to 10kHz to a channel, not selected in the multiplexing sequence, and measuring the effect on the output of any selected channel.

⁽²⁾ Memory crosstalk is measured by applying a full-scale sinusoidal signal up to 10kHz to a channel, which is selected in the multiplexing sequence, and measuring the effect on the output of the next selected channel, for all combinations of input channels.

6.6 Timing Requirements

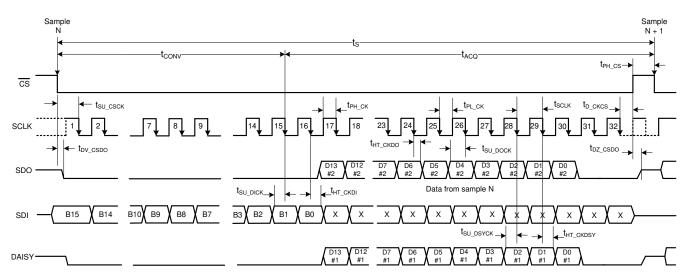
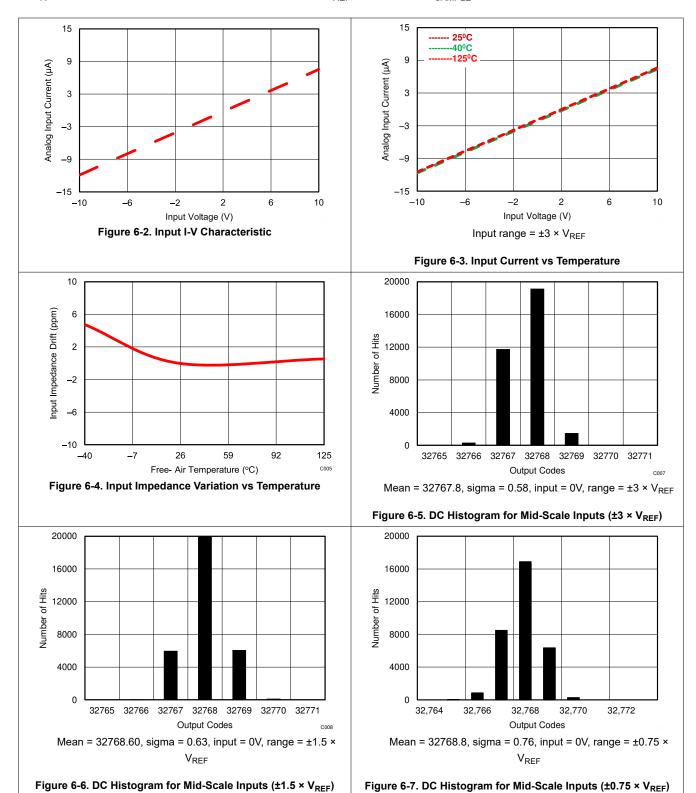
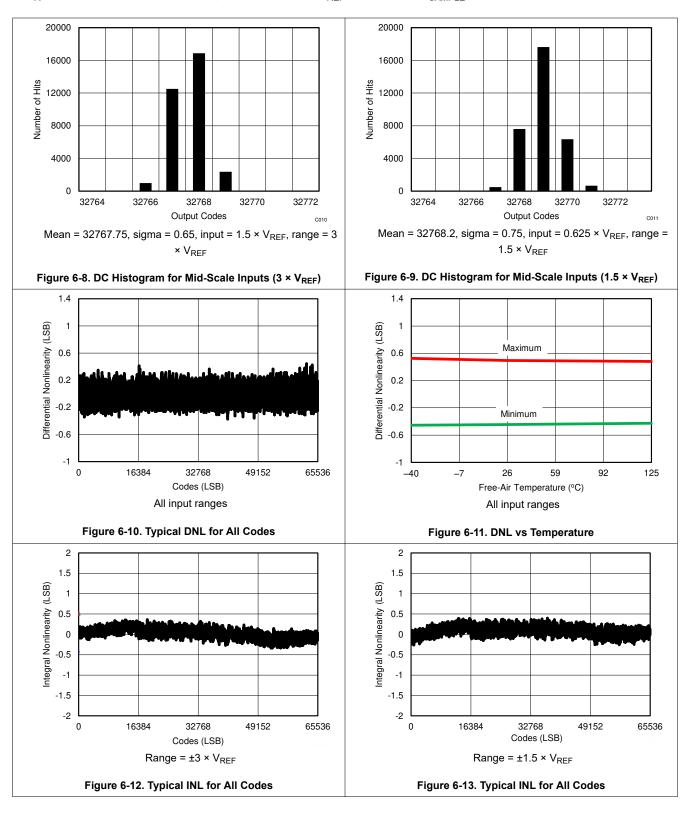
all minimum and maximum specifications are at $T_A = -40^{\circ}\text{C}$ to +125°C; typical specifications are at $T_A = 25^{\circ}\text{C}$; AVDD = 5V, DVDD = 3.3V, VREF = 4.096V (internal), and maximum throughput (unless otherwise noted)

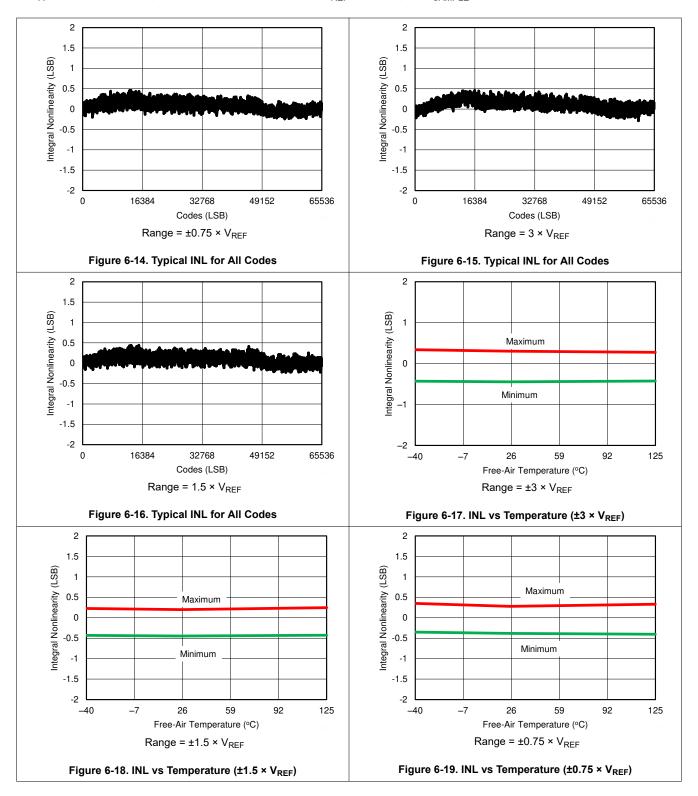
		MIN	TYP MAX	UNIT
CONVERS	ON CYCLE			
f _{cycle}	Sampling frequency		500	kSPS
t _{cycle}	ADC cycle time period	2		μs
t _{acq}	Acquisition time	1150		ns
ASYNCHR	ONOUS RESET			
t _{wl_RST}	Pulse duration: RST low	100		ns
SPI-COMP	ATIBLE SERIAL INTERFACE			
f _{SCLK}	Serial clock frequency		17	MHz
t _{SCLK}	Serial clock time period	1/f _{SCLK}		
t _{PH_CK}	SCLK high time	0.4	0.6	t _{CLK}
t _{PL_CK}	SCLK low time	0.4	0.6	t _{CLK}
t _{SU_CSCK}	Setup time: CS falling to first SCLK falling	30		ns
t _{SU_CKDI}	Setup time: SDI data valid to SCLK falling	5		ns
t _{HT_CKDI}	Hold time: SCLK falling to (previous) data valid on SDI	5		ns
t _{SU_CKDSY}	Setup time: DAISY data valid to SCLK falling	5		
t _{HT_CKDSY}	Hold time: SCLK falling to (previous) data valid on DAISY	5		

6.7 Switching Characteristics

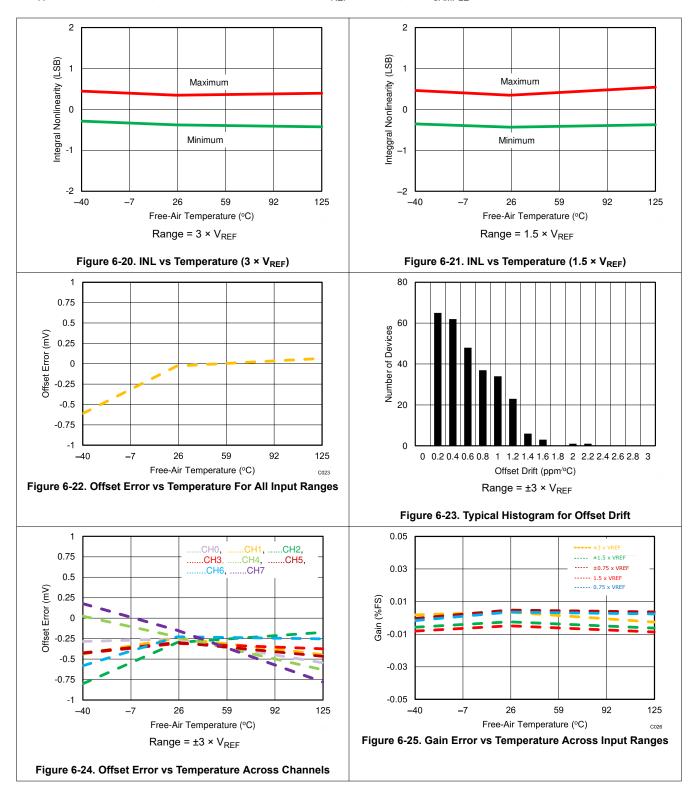
all minimum and maximum specifications are at $T_A = -40^{\circ}\text{C}$ to +125°C; typical specifications are at $T_A = 25^{\circ}\text{C}$; AVDD = 5V, DVDD = 3.3V, VREF = 4.096V (internal), and maximum throughput (unless otherwise noted)

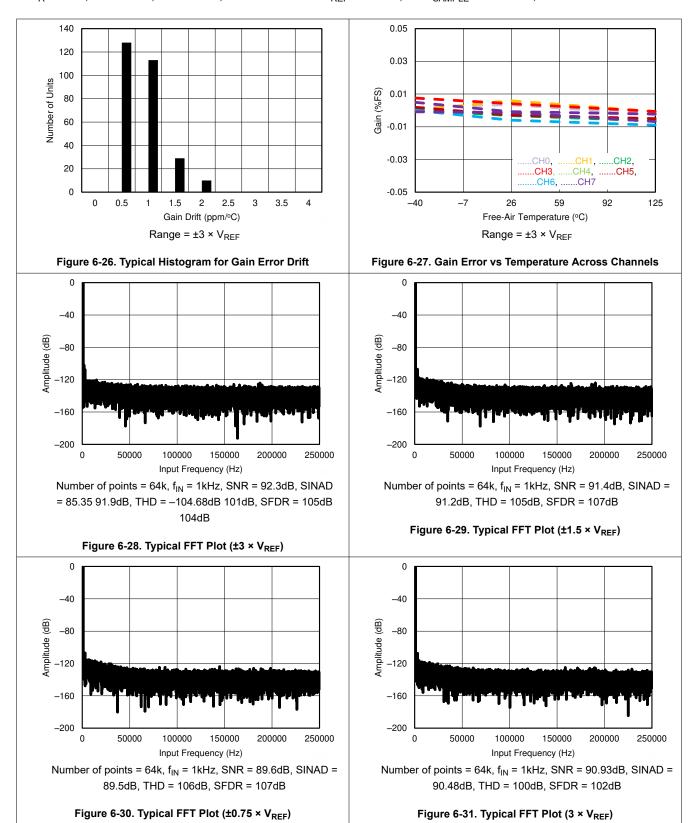
		MIN	TYP	MAX	UNIT
ASYNCHRO	NOUS RESET				
t _{conv}	Conversion time			850	ns
	Turn-on time		15		ms
SPI-COMPA	TIBLE SERIAL INTERFACE				
t _{HT_CKCS}	Delay time: last SCLK falling edge to $\overline{\text{CS}}$ rising	10			ns
t _{DEN_CSDO}	Delay time: CS falling edge to data enable			10	ns
t _{DZ_CSDO}	Delay time: CS rising to SDO going to 3-state	10			ns
t _{D_CKDO}	Delay time: SCLK falling edge to (next) data valid on SDO			25	ns
t _{HT_CKDO}	Delay time: SCLK falling edge to (previous) data valid on SDO	5			ns

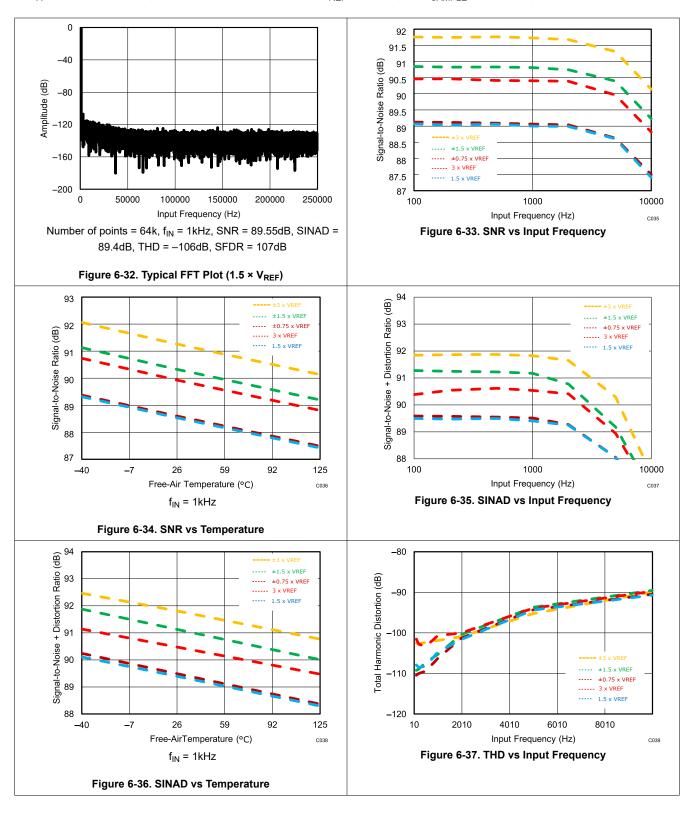




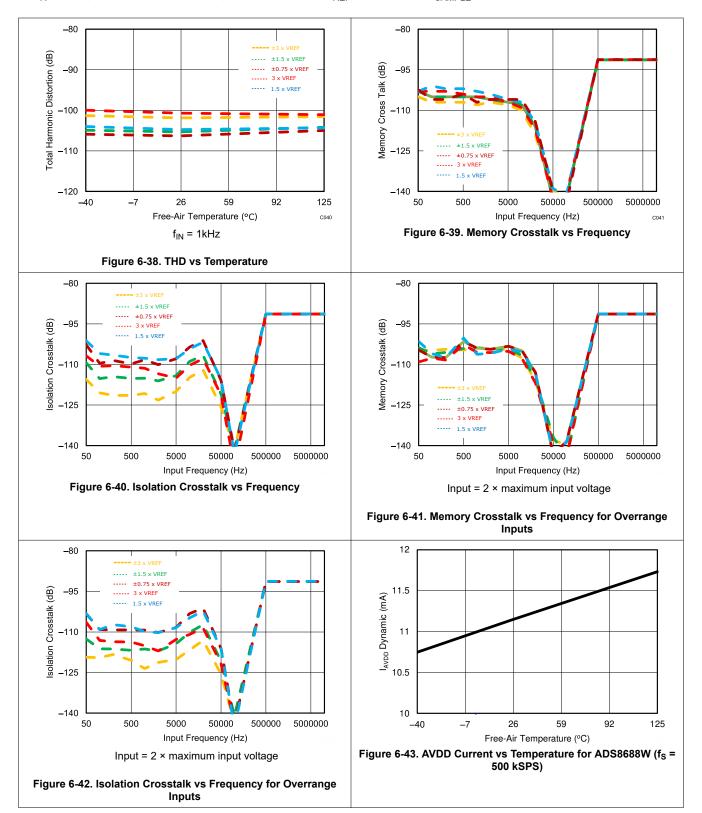

Figure 6-1. Serial Interface Timing Diagram

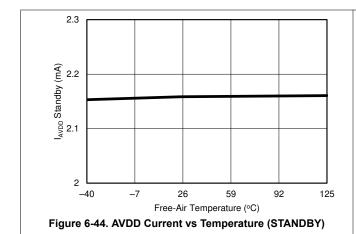
6.9 Typical Characteristics











At $T_A = 25^{\circ}$ C, AVDD = 5V, DVDD = 3V, internal reference $V_{REF} = 4.096$ V, and $f_{SAMPLE} = 500$ kSPS, unless otherwise noted.

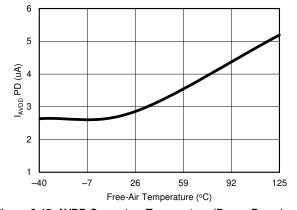
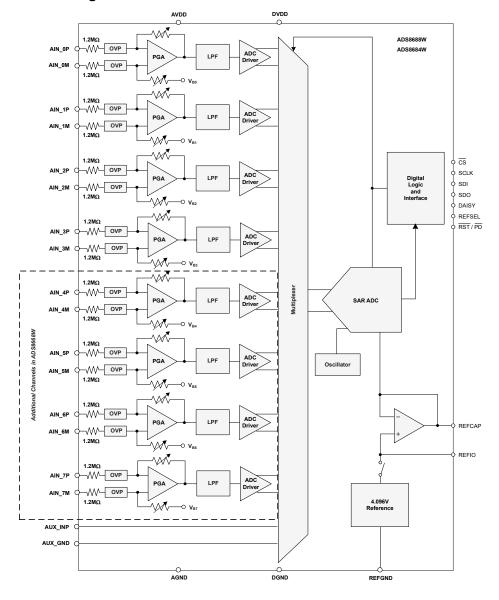


Figure 6-45. AVDD Current vs Temperature (Power Down)

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated


7 Detailed Description

7.1 Overview

The ADS8688W is a 16-bit data acquisition system with 8-channel analog inputs. Each analog input channel consists of an overvoltage protection circuit, a programmable gain amplifier (PGA), and a second-order, antialiasing filter that conditions the input signal before being fed into an 8-channel analog multiplexer (MUX). The output of the MUX is digitized using a 16-bit analog-to-digital converter (ADC), based on the successive approximation register (SAR) architecture. This overall system can achieve a maximum throughput of 500kSPS, combined across all channels. The devices feature a 4.096V internal reference with a fast-settling buffer and a simple SPI-compatible serial interface with daisy-chain (DAISY) and ALARM feature.

The devices operate from a single 5V analog supply and can accommodate true bipolar input signals up to $\pm 3 \times V_{REF}$. The device offers a constant $1.2 M\Omega$ resistive input impedance irrespective of the sampling frequency or the selected input range. The integration of multichannel precision analog front-end circuits with high input impedance and a precision ADC operating from a single 5V supply offers a simplified end solution without requiring external high-voltage bipolar supplies and complicated driver circuits.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Analog Inputs

The ADS8688W has eight analog input channels that support single-ended and differential analog inputs. Figure 7-1 shows the simplified circuit schematic for each analog input channel, including the input overvoltage protection circuit, PGA, low-pass filter (LPF), high-speed ADC driver, and analog multiplexer.

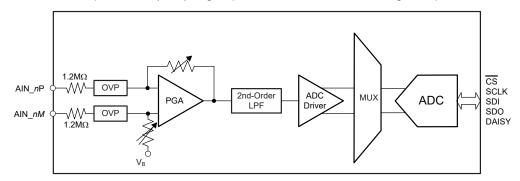


Figure 7-1. Front-End Circuit Schematic for Each Analog Input Channel

The devices can support multiple unipolar or bipolar, single-ended and differential input voltage ranges based on the configuration of the program registers. As explained in the *Range Select Registers* section, the input voltage range for each analog channel can be configured to bipolar ranges of ±12.288V, ±6.144V, and ±3.072V or unipolar ranges of 0V to 12.288V and 0V to 6.144V. Any of these input ranges can be assigned to any analog input channel of the device. For instance, the ±12.288V range can be assigned to AIN_1P, the ±6.144V range can be assigned to AIN_2P, the 0V to 12.288V range can be assigned to AIN_3P, and so forth.

The device samples the voltage difference (AIN_nP - AIN_nM) between the selected analog input channel. If the analog input pins (AIN_nP) to the devices are left floating, the output of the ADC corresponds to an internal biasing voltage. The output from the ADC must be considered as invalid if the devices are operated with floating input pins. This condition does not cause any damage to the device, which is fully functional when a valid input voltage is applied to the pins.

7.3.2 Analog Input Impedance

Each analog input channel in the device presents a constant resistive impedance of $1.2M\Omega$. The input impedance is independent of either the ADC sampling frequency, the input signal frequency, or range. The primary advantage of such high-impedance inputs is the ease of driving the ADC inputs without requiring driving amplifiers with low output impedance. Bipolar, high-voltage power supplies are not required in the system because this ADC does not require any high-voltage front-end drivers. In most applications, the signal sources or sensor outputs can be directly connected to the ADC input, thus significantly simplifying the design of the signal chain.

To maintain the dc accuracy of the system, matching the external source impedance on the AIN_nP input pin with an equivalent resistance on the AIN_nM pin is recommended. This matching helps to cancel any additional offset error contributed by the external resistance.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7.3.3 Input Overvoltage Protection Circuit

The ADS8688W features an internal overvoltage protection circuit on each of the analog input channels. Use these protection circuits as a secondary protection scheme to protect the device. Using external protection devices against surges, electrostatic discharge (ESD), and electrical fast transient (EFT) conditions is highly recommended. The conceptual block diagram of the internal overvoltage protection (OVP) circuit is shown in Figure 7-2.

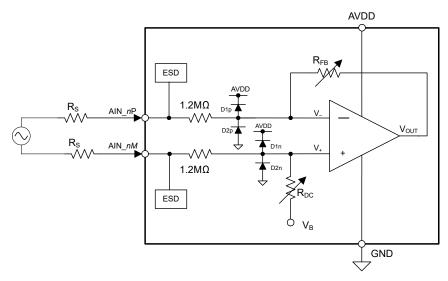


Figure 7-2. Input Overvoltage Protection Circuit Schematic

As shown in Figure 7-2, the combination of the $1.2M\Omega$ input resistors along with the PGA gain-setting resistors (R_{FB} and R_{DC}) limit the current flowing into the input pins. A combination of antiparallel diodes (D1 and D2) are added on each input pin to protect the internal circuitry and set the overvoltage protection limits.

Table 7-1 explains the various operating conditions for the device when the device is powered on. Table 7-1 indicates that when the AVDD pin of the device is connected to the proper supply voltage (AVDD = 5V) or offers a low impedance of < $30k\Omega$, the internal overvoltage protection circuit can withstand up to $\pm 20V$ on the analog input pins.

Table 7-1. Input Overvoltage Protection Limits When AVDD = 5V or Offers a Low Impedance of $< 30k\Omega$ (1)

INPUT (V _{OV}	TEST CONDITION	ADC OUTPUT	COMMENTS		
V _{IN} < V _{RANGE}	Within operating range	All input ranges	Valid	Device functions as per data sheet specifications	
V _{RANGE} < V _{IN} < V _{OVP}	Beyond operating range but within overvoltage range	All input ranges	Saturated	ADC output is saturated, but device is internally protected (not recommended for extended time)	
V _{IN} > V _{OVP}	Beyond overvoltage range	All input ranges	Saturated	This usage condition can cause irreversible damage to the device	

⁽¹⁾ GND = 0, AIN_nM = 0V, |V_{RANGE}| is the maximum input voltage for any selected input range, and |V_{OVP}| is the break-down voltage for the internal OVP circuit. Assume that R_S is approximately 0.

The results indicated in Table 7-1 are based on an assumption that the analog input pins are driven by very low impedance sources (R_S is approximately 0). However, if the sources driving the inputs have higher impedance, the current flowing through the protection diodes reduces further, thereby increasing the OVP voltage range. Note that higher source impedance results in gain errors and contributes to overall system noise performance.

Figure 7-3 shows the voltage versus current response of the internal overvoltage protection circuit when the device is powered on. According to this current-to-voltage (I-V) response, the current flowing into the device input pins is limited by the $1.2M\Omega$ input impedance. However, for voltages beyond $\pm 20V$, the internal node voltages surpass the break-down voltage for internal transistors, thus setting the limit for overvoltage protection on the input pins.

The same overvoltage protection circuit also provides protection to the device when the device is not powered on and AVDD is floating with an impedance > $30k\Omega$. This condition can arise when the input signals are applied before the ADC is fully powered on. The overvoltage protection limits for this condition are shown in Table 7-2.

Table 7-2. Input Overvoltage Protection Limits When AVDD = Floating with Impedance > $30k\Omega$ (1)

	INPUT CONDITION (V _{OVP} = ±11V)	TEST CONDITION	ADC OUTPUT	COMMENTS
V _{IN} < V _{OVP}	Within overvoltage range	All input ranges	Invalid	Device is not functional but is protected internally by the OVP circuit.
V _{IN} > V _{OVP}	Beyond overvoltage range	All input ranges	Invalid	This usage condition can cause irreversible damage to the device.

⁽¹⁾ AVDD = floating, GND = 0, AIN_nM = 0V, |V_{RANGE}| is the maximum input voltage for any selected input range, and |V_{OVP}| is the break-down voltage for the internal OVP circuit. Assume that R_S is approximately 0.

Figure 7-4 shows the voltage versus current response of the internal overvoltage protection circuit when the device is not powered on. According to this I-V response, the current flowing into the device input pins is limited by the $1.2M\Omega$ input impedance. However, for voltages beyond $\pm 11V$, the internal node voltages surpass the break-down voltage for internal transistors, thus setting the limit for overvoltage protection on the input pins.

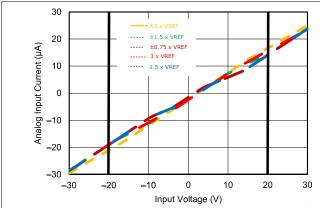


Figure 7-3. I-V Curve for an Input OVP Circuit (AVDD = 5V)

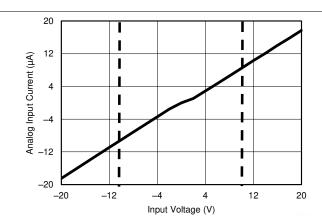


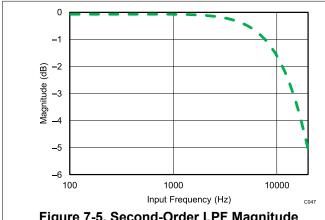
Figure 7-4. I-V Curve for an Input OVP Circuit (AVDD = Floating)

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7.3.4 Programmable Gain Amplifier (PGA)

The devices offer a programmable gain amplifier (PGA) at each individual analog input channel, which converts the original single-ended input signal into a fully-differential signal to drive the internal 16-bit ADC. The PGA also adjusts the common-mode level of the input signal before being fed into the ADC to provide maximum usage of the ADC input dynamic range. Depending on the range of the input signal, the PGA gain can be accordingly adjusted by setting the Range CHn[3:0] bits in the program register. The default or power-on state for the Range CHn[3:0] bits is 0000, which corresponds to an input signal range of ±3 × V_{RFF}. Table 7-3 lists the various configurations of the Range_CHn[3:0] bits for the different analog input voltage ranges.


The PGA uses a very highly-matched network of resistors for multiple gain configurations. Matching between these resistors and the amplifiers across all channels is accurately trimmed to keep the overall gain error low across all channels and input ranges.

iable i of inpat range colocion bite comigaration						
ANALOG INPUT RANGE		Range_CH <i>n</i> [3:0]				
ANALOG INPUT RANGE	BIT 3	BIT 2	BIT 1	BIT 0		
±3 × V _{REF}	0	0	0	0		
±1.5 × V _{REF}	0	0	0	1		
±0.75 × V _{REF}	0	0	1	0		
±0.3125 × V _{REF}	0	0	1	1		
±0.15625 × V _{REF}	1	0	1	1		
0 to 3 × V _{REF}	0	1	0	1		
0 to 1.5 × V _{REF}	0	1	1	0		
0 to 0.625 × V _{REF}	0	1	1	1		
0 to 0.3125 × V _{REF}	1	1	1	1		

Table 7-3, Input Range Selection Bits Configuration

7.3.5 Second-Order, Low-Pass Filter (LPF)

To mitigate the noise of the front-end amplifiers and gain resistors of the PGA, each analog input channel of the ADS8688W features a second-order, antialiasing LPF at the output of the PGA. The magnitude and phase response of the analog antialiasing filter are shown in Figure 7-5 and Figure 7-6, respectively. For maximum performance, the -3dB cutoff frequency for the antialiasing filter is typically set to 15kHz. The performance of the filter is consistent across all input ranges supported by the ADC.

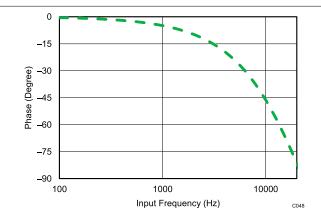


Figure 7-6. Second-Order LPF Phase Response

7.3.6 ADC Driver

To meet the performance of a 16-bit, SAR ADC at the maximum sampling rate (500 kSPS), the sample-and-hold capacitors at the input of the ADC must be successfully charged and discharged during the acquisition time window. This drive requirement at the inputs of the ADC necessitates the use of a high-bandwidth, low-noise, and stable amplifier buffer. Such an input driver is integrated in the front-end signal path of each analog input channel of the device. During transition from one channel of the multiplexer to another channel, the fast integrated driver verifies that the multiplexer output settles to a 16-bit accuracy within the acquisition time of the ADC, irrespective of the input levels on the respective channels.

7.3.7 Multiplexer (MUX)

The ADS8688W features an integrated analog multiplexer. For each analog input channel, the voltage difference between the positive analog input AIN_nP and the negative ground input AIN_nM is conditioned by the analog front-end circuitry before being fed into the multiplexer. The output of the multiplexer is directly sampled by the ADC. The multiplexer in the device can scan these analog inputs in either manual or auto-scan mode, as explained in the *Channel Sequencing Modes* section. In manual mode (MAN_Ch_n), the channel is selected for every sample via a register write; in auto-scan mode (AUTO_RST), the channel number is incremented automatically on every \overline{CS} falling edge after the present channel is sampled. The analog inputs can be selected for an auto scan with register settings (see the *Auto-Scan Sequencing Control Registers* section). The devices automatically scan only the selected analog inputs in ascending order.

The maximum overall throughput for the ADS8688W is specified at 500kSPS across all channels. The per channel throughput is dependent on the number of channels selected in the multiplexer scanning sequence. For example, the throughput per channel is equal to 250kSPS if only two channels are selected, but is equal to 125kSPS per channel if four channels are selected, and so forth.

See Table 8-1 for command register settings to switch between the auto-scan mode and manual mode for individual analog channels.

7.3.8 Reference

The ADS8688W can operate with either an internal voltage reference or an external voltage reference using the internal buffer. The internal or external reference selection is determined by an external REFSEL pin. The device has a built-in buffer amplifier to drive the actual reference input of the internal ADC core for maximizing performance.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7.3.8.1 Internal Reference

The device has an internal 4.096V (nominal value) reference. To select the internal reference, the REFSEL pin must be tied low or connected to AGND. When the internal reference is used, REFIO (pin 5) becomes an output pin with the internal reference value. Placing a 10µF (minimum) decoupling capacitor between the REFIO pin and REFGND (pin 6) is recommended, as shown in Figure 7-7. The capacitor must be placed as close to the REFIO pin as possible. The output impedance of the internal band-gap circuit creates a low-pass filter with this capacitor to band-limit the noise of the reference. The use of a smaller capacitor value allows higher reference noise in the system, thus degrading SNR and SINAD performance. Do not use the REFIO pin to drive external ac or dc loads because REFIO has limited current output capability. The REFIO pin can be used as a source if followed by a suitable op amp buffer (such as the OPA320).

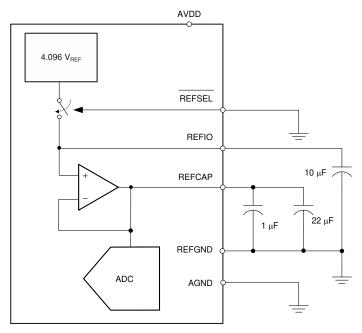


Figure 7-7. Device Connections for Using an Internal 4.096V Reference

The device internal reference is trimmed to a maximum initial accuracy of ±1mV. The histogram in Figure 7-8 shows the distribution of the internal voltage reference output taken from more than 3300 production devices.

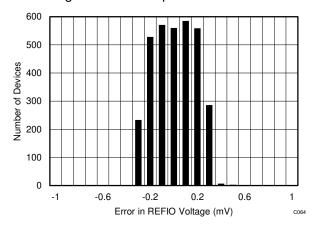


Figure 7-8. Internal Reference Accuracy at Room Temperature Histogram

The initial accuracy specification for the internal reference can be degraded if the die is exposed to any mechanical or thermal stress. Heating the device when being soldered to a PCB and any subsequent solder reflow is a primary cause for shifts in the V_{REF} value. The main cause of thermal hysteresis is a change in die stress and therefore is a function of the package, die-attach material, and molding compound, as well as the layout of the device.

To illustrate this effect, 80 devices are soldered using lead-free solder paste with the manufacturer's suggested reflow profile, as explained in the *AN-2029 Handling and Process Recommendations* application note. The internal voltage reference output is measured before and after the reflow process and the typical shift in value is shown in Figure 7-9. Although all tested units exhibit a positive shift in the output voltages, negative shifts are also possible. Note that the histogram in Figure 7-9 shows the typical shift for exposure to a single reflow profile. Exposure to multiple reflows, which is common on PCBs with surface-mount components on both sides, causes additional shifts in the output voltage. If the PCB is to be exposed to multiple reflows, solder the ADS8688W in the second pass to minimize device exposure to thermal stress.

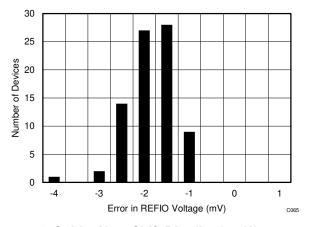


Figure 7-9. Solder Heat Shift Distribution Histogram

The internal reference is also temperature compensated to provide excellent temperature drift over an extended industrial temperature range of -40° C to 125° C. Figure 7-10 shows the variation of the internal reference voltage across temperature for different values of the AVDD supply voltage. The typical specified value of the reference voltage drift over temperature is 8ppm/°C (Figure 7-11) and the maximum specified temperature drift is equal to 20ppm/°C.

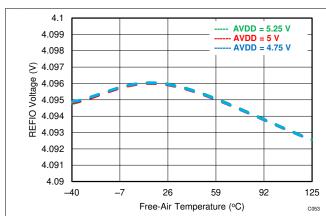
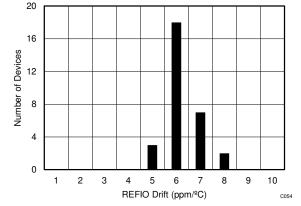



Figure 7-10. Variation of the Internal Reference Output (REFIO) Across Supply and Temperature

AVDD = 5V, number of devices = 30, $\Delta T = -40^{\circ}C$ to 125°C

Figure 7-11. Internal Reference Temperature Drift Histogram

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7.3.8.2 External Reference

For applications that require a better reference voltage or a common reference voltage for multiple devices, the ADS8688W offer a provision to use an external reference along with an internal buffer to drive the ADC reference pin. To select the external reference mode, either tie the REFSEL pin high or connect this pin to the DVDD supply. In this mode, an external 4.096V reference must be applied at REFIO (pin 5), which becomes an input pin. Any low-power, low-drift, or small-size external reference can be used in this mode because the internal buffer is optimally designed to handle the dynamic loading on the REFCAP pin, which is internally connected to the ADC reference input. The output of the external reference must be appropriately filtered to minimize the resulting effect of the reference noise on system performance. A typical connection diagram for this mode is shown in Figure 7-12.

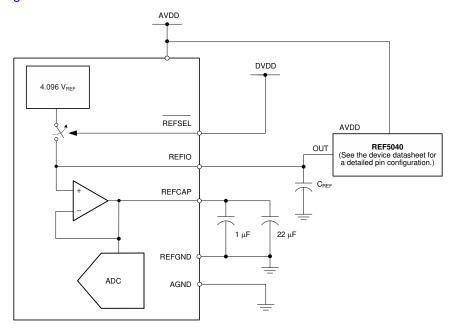
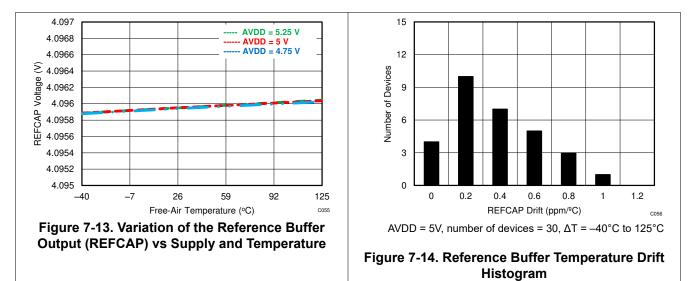
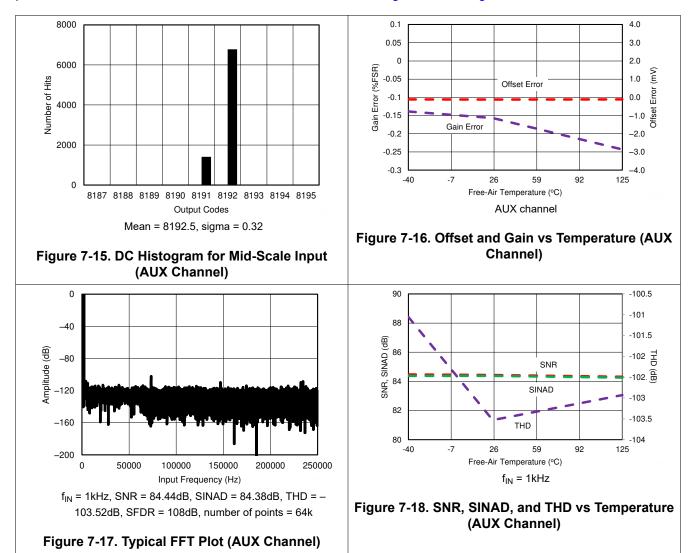



Figure 7-12. Device Connections for Using an External 4.096V Reference

The output of the internal reference buffer appears at the REFCAP pin. A minimum capacitance of $10\mu F$ must be placed between REFCAP (pin 7) and REFGND (pin 6). Place another capacitor of $1\mu F$ as close to the REFCAP pin as possible for decoupling high-frequency signals. Do not use the internal buffer to drive external ac or dc loads because of the limited current output capability of this buffer.

The performance of the internal buffer output is very stable across the entire operating temperature range of –40°C to 125°C. Figure 7-13 shows the variation in the REFCAP output across temperature for different values of the AVDD supply voltage. The typical specified value of the reference buffer drift over temperature is 1ppm/°C (Figure 7-14) and the maximum specified temperature drift is equal to 1.5ppm/°C.



7.3.9 Auxiliary Channel

The devices include a single-ended auxiliary input channel (AUX_IN and AUX_GND). The AUX channel provides direct interface to an internal, high-precision, 16-bit ADC through the multiplexer because this channel does not include the front-end analog signal conditioning that the other analog input channels have. The AUX channel supports a single unipolar input range of 0V to V_{REF} because there is no front-end PGA. The input signal on the AUX_IN pin can vary from 0V to V_{REF} , whereas the AUX_GND pin must be tied to GND.

When a conversion is initiated, the voltage between these pins is sampled directly on an internal sampling capacitor (75pF, typical). The input current required to charge the sampling capacitor is determined by several factors, including the sampling rate, input frequency, and source impedance. For slow applications that use a low-impedance source, the inputs of the AUX channel can be directly driven. When the throughput, input frequency, or the source impedance increases, a driving amplifier must be used at the input to achieve good ac performance from the AUX channel. Some key requirements of the driving amplifier are discussed in the *Input Driver for the AUX Channel* section.

The AUX channel in the ADS8688W offers a true 16-bit performance with no missing codes. Some typical performance characteristics of the AUX channel are shown in Figure 7-15 to Figure 7-18.

7.3.9.1 Input Driver for the AUX Channel

For applications that use the AUX input channels at high throughput and high input frequency, a driving amplifier with low output impedance is required to meet the ac performance of the internal 14-bit ADC. Some key specifications of the input driving amplifier are discussed below:

• Small-signal bandwidth. The small-signal bandwidth of the input driving amplifier must be much higher than the bandwidth of the AUX input to verify that there is no attenuation of the input signal resulting from the bandwidth limitation of the amplifier. In a typical data acquisition system, a low cut-off frequency, antialiasing filter is used at the inputs of a high-resolution ADC. The amplifier driving the antialiasing filter must have a low closed-loop output impedance for stability, thus implying a higher gain bandwidth for the amplifier. Higher small-signal bandwidth also minimizes the harmonic distortion at higher input frequencies. In general, the amplifier bandwidth requirements can be calculated on the basis of Equation 1.

$$GBW \ge 4 \times f_{-3 dB} \tag{1}$$

where:

- f_{-3dB} is the 3dB bandwidth of the RC filter.
- *Distortion.* To achieve the distortion performance of the AUX channel, the distortion of the input driver must be at least 10dB lower than the specified distortion of the internal ADC, as shown in Equation 2.

$$\mathsf{THD}_{\mathsf{AMP}} \leq \mathsf{THD}_{\mathsf{ADC}} - \mathsf{10} \big(\mathsf{dB} \big) \tag{2}$$

Noise. Careful considerations must be made to select a low-noise, front-end amplifier to prevent any
degradation in SNR performance of the system. As a general rule, to verify that the noise performance
of the data acquisition system is not limited by the front-end circuit, keep the total noise contribution from
the front-end circuit below 20% of the input-referred noise of the ADC. Noise from the input driver circuit is
band-limited by the low cut-off frequency of the input antialiasing filter, as explained in Equation 3.

$$N_{G} \times \sqrt{\left(\frac{V_{1/-AMP_PP}}{6.6}\right)^{2} + e_{n_RMS}^{2} \times \frac{\pi}{2} \times f_{-3dB}} \le \frac{1}{5} \times \frac{V_{FSR}}{2\sqrt{2}} \times 10^{-\frac{SNR(dB)}{20}}$$
(3)

where:

- V_{1/f AMP PP} is the peak-to-peak flicker noise,
- e_{n RMS} is the amplifier broadband noise density in nV/ $\sqrt{\rm Hz}$, and
- N_G is the noise gain of the front-end circuit, which is equal to 1 in a buffer configuration.

7.3.10 ADC Transfer Function

The output of the ADS8688W is in straight binary format for both bipolar and unipolar input ranges. The format for the output codes is the same across all analog channels.

The ideal transfer characteristic for each ADC channel for all input ranges is shown in Figure 7-19. The full-scale range (FSR) for each input signal is equal to the difference between the positive full-scale (PFS) input voltage and the negative full-scale (NFS) input voltage. The LSB size is equal to FSR / 2^{16} = FSR / 65536 because the resolution of the ADC is 16 bits. For a reference voltage of V_{REF} = 4.096V, the LSB values corresponding to the different input ranges are listed in Table 7-4.

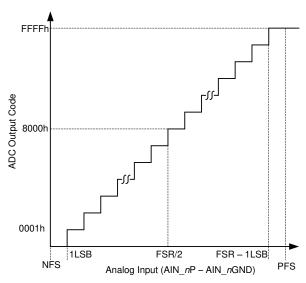


Figure 7-19. 16-Bit ADC Transfer Function (Straight-Binary Format)

Table 7-4. ADC LSB Values for Different Input Ranges ($V_{REF} = 4.096V$)

Table 1 To 1 T						
INPUT RANGE	POSITIVE FULL-SCALE	NEGATIVE FULL-SCALE	FULL-SCALE RANGE	LSB (µV)		
±3 × V _{REF}	12.288V	-12.288V	24.576V	312.50		
±1.5 × V _{REF}	6.144V	-6.144V	12.288V	156.25		
±0.75 × V _{REF}	3.072V	-3.072V	6.144V	78.125		
±0.3125 × V _{REF}	1.28V	-1.28V	2.56V	156.25		
±0.15625 × V _{REF}	0.64V	-0.64V	1.28V	78.125		
0 to 3 × V _{REF}	12.288V	0V	12.288V	156.25		
0 to 1.5 × V _{REF}	6.144V	0V	6.144V	78.125		
0 to 0.625 × V _{REF}	2.56V	0V	2.56V	156.25		
0 to 0.3125 × V _{REF}	1.28V	0V	1.28V	78.125		

7.3.11 Alarm Feature

The devices have an active-high ALARM output on pin 35. The ALARM signal is synchronous and changes the state on the 16th falling edge of the SCLK signal. A high level on ALARM indicates that the alarm flag has tripped on one or more channels of the device. This pin can be wired to interrupt the host input. When an ALARM interrupt is received, the alarm flag registers are read to determine which channels have an alarm. The devices feature independently-programmable alarms for each channel. There are two alarms per channel (a low and a high alarm) and each alarm threshold has a separate hysteresis setting.

The ADS8688W set a high alarm when the digital output for a particular channel exceeds the high alarm upper limit [high alarm threshold (T) + hysteresis (H)]. The alarm resets when the digital output for the channel is less than or equal to the high alarm lower limit (high alarm T - H - 2). This function is shown in Figure 7-20.

Similarly, the lower alarm is triggered when the digital output for a particular channel falls below the low alarm lower limit (low alarm threshold T - H - 1). The alarm resets when the digital output for the channel is greater than or equal to the low alarm higher limit (low alarm T + H + 1). This function is shown in Figure 7-21.

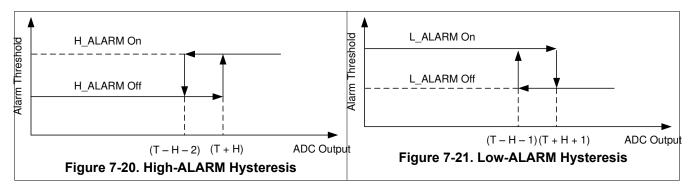


Figure 7-22 shows a functional block diagram for a single-channel alarm. There are two flags for each high and low alarm: active alarm flag and tripped alarm flag; see the *Alarm Flag Registers (Read-Only)* section for more details. The active alarm flag is triggered when an alarm condition is encountered for a particular channel; the active alarm flag resets when the alarm shuts off. A tripped alarm flag sets an alarm condition in the same manner as for an active alarm flag. However, the tripped alarm flag remains latched and resets only when the appropriate alarm flag register is read.

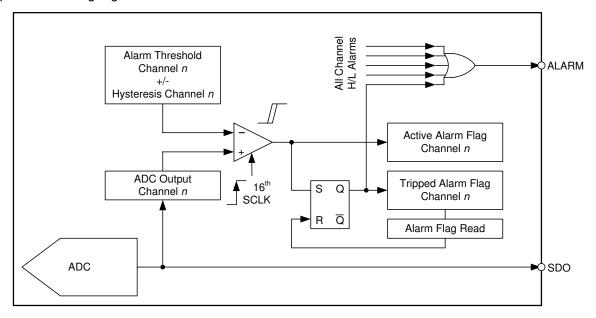


Figure 7-22. Alarm Functionality Schematic

Submit Document Feedback

7.4 Device Functional Modes

7.4.1 Device Interface

7.4.1.1 Digital Pin Description

The digital data interface for the ADS8688W is shown in Figure 7-23.

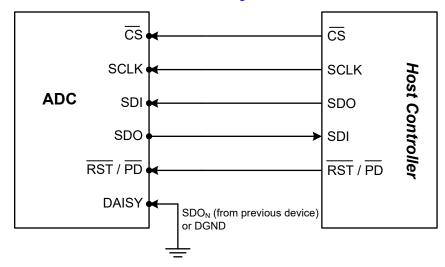


Figure 7-23. Pin Configuration for the Digital Interface

The signals shown in Figure 7-23 are summarized as follows:

7.4.1.1.1 CS (Input)

 $\overline{\text{CS}}$ indicates an active-low, chip-select signal. $\overline{\text{CS}}$ is also used as a control signal to trigger a conversion on the falling edge. Each data frame begins with the falling edge of the $\overline{\text{CS}}$ signal. The analog input channel to be converted during a particular frame is selected in the previous frame. On the $\overline{\text{CS}}$ falling edge, the devices sample the input signal from the selected channel and a conversion is initiated using the internal clock. The device settings for the next data frame can be input during this conversion process. When the $\overline{\text{CS}}$ signal is high, the ADC is considered to be in an idle state.

7.4.1.1.2 SCLK (Input)

This pin indicates the external clock input for the data interface. All synchronous accesses to the device are timed with respect to the falling edges of the SCLK signal.

7.4.1.1.3 SDI (Input)

SDI is the serial data input line. SDI is used by the host processor to program the internal device registers for device configuration. At the beginning of each data frame, the \overline{CS} signal goes low and the data on the SDI line are read by the device at every falling edge of the SCLK signal for the next 16 SCLK cycles. Any changes made to the device configuration in a particular data frame are applied to the device on the subsequent falling edge of the \overline{CS} signal.

7.4.1.1.4 SDO (Output)

SDO is the serial data output line. SDO is used by the device to output conversion data. The size of the data output frame varies depending on the register setting for the SDO format; see Table 8-18. A low level on $\overline{\text{CS}}$ releases the SDO pin from the Hi-Z state. SDO is kept low for the first 15 SCLK falling edges. The MSB of the output data stream is clocked out on SDO on the 16th SCLK falling edge, followed by the subsequent data bits on every falling edge thereafter. The SDO line goes low after the entire data frame is output and goes to a Hi-Z state when $\overline{\text{CS}}$ goes high.

7.4.1.1.5 DAISY (Input)

DAISY is a serial input pin. When multiple devices are connected in daisy-chain mode, as illustrated in Figure 7-26, the DAISY pin of the first device in the chain is connected to GND. The DAISY pin of every subsequent device is connected to the SDO output pin of the previous device, and the SDO output of the last device in the chain goes to the SDI of the host processor. If an application uses a stand-alone device, the DAISY pin is connected to GND.

7.4.1.1.6 RST / PD (Input)

RST/ PD is a dual-function pin. Figure 7-24 shows the timing of this pin and Table 7-5 explains the usage of this pin.

Figure 7-24. RST/ PD Pin Timing

Table 7-5. RST/ PD Pin Functionality

CONDITION	DEVICE MODE
40ns < t _{PL_RST_PD} ≤ 100ns	The device is in RST mode and does not enter PWR_DN mode.
100ns < t _{PL_RST_PD} < 400ns	The device is in RST mode and may or may not enter PWR_DN mode. NOTE: This setting is not recommended.
t _{PL_RST_PD} ≥ 400ns	The device enters PWR_DN mode and the program registers are reset to default value.

The devices can be placed into power-down (PWR_DN) mode by pulling the $\overline{RST}/\overline{PD}$ pin to a logic low state for at least 400ns. The $\overline{RST}/\overline{PD}$ pin is asynchronous to the clock; thus, $\overline{RST}/\overline{PD}$ can be triggered at any time regardless of the status of other pins (including the analog input channels). When the device is in power-down mode, any activity on the digital input pins (apart from the $\overline{RST}/\overline{PD}$ pin) is ignored.

The program registers in the device can be reset to the default values (RST) by pulling the $\overline{RST}/\overline{PD}$ pin to a logic low state for no longer than 100ns. This input is asynchronous to the clock. When $\overline{RST}/\overline{PD}$ is pulled back to a logic high state, the devices are placed in normal mode. One valid write operation must be executed on the program register to configure the device, followed by an appropriate command (AUTO_RST or MAN) to initiate conversions.

When the $\overline{RST}/\overline{PD}$ pin is pulled back to a logic high level, the devices wake-up in a default state in which the program registers are reset to the default values.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7.4.1.2 Data Acquisition Example

This section provides an example of how a host processor can use the device interface to configure the device internal registers as well as convert and acquire data for sampling a particular input channel. The timing diagram shown in Figure 7-25 provides further details.

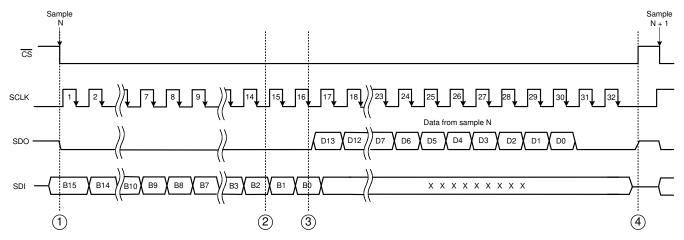


Figure 7-25. Device Operation Using the Serial Interface Timing Diagram

There are four events shown in Figure 7-25. These events are described below:

- Event 1: The host initiates a data conversion frame through a falling edge of the \overline{CS} signal. The analog input signal at the instant of the \overline{CS} falling edge is sampled by the ADC and conversion is performed using an internal oscillator clock. The analog input channel converted during this frame is selected in the previous data frame. The internal register settings of the device for the next conversion can be input during this data frame using the SDI and SCLK inputs. Initiate SCLK at this instant and latch data on the SDI line into the device on every SCLK falling edge for the next 16 SCLK cycles. At this instant, SDO goes low because the device does not output internal conversion data on the SDO line during the first 16 SCLK cycles.
- Event 2: During the first 16 SCLK cycles, the device completes the internal conversion process and data are
 now ready within the converter. However, the device does not output data bits on SDO until the 16th falling
 edge appears on the SCLK input. Because the ADC conversion time is fixed (the maximum value is given
 in the Electrical Characteristics table), the 16th SCLK falling edge must appear after the internal conversion
 is over, otherwise data output from the device is incorrect. Therefore, the SCLK frequency cannot exceed a
 maximum value, as provided in the Timing Requirements: Serial Interface table.
- **Event 3:** At the 16th falling edge of the SCLK signal, the device reads the LSB of the input word on the SDI line. The device does not read anything from the SDI line for the remaining data frame. On the same edge, the MSB of the conversion data is output on the SDO line and can be read by the host processor on the subsequent falling edge of the SCLK signal. For 14 bits of output data, the LSB can be read on the 30th SCLK falling edge. The SDO outputs 0 on subsequent SCLK falling edges until the next conversion is initiated.
- **Event 4:** When the internal data from the device is received, the host terminates the data frame by deactivating the \overline{CS} signal to high. The SDO output goes into a Hi-Z state until the next data frame is initiated, as explained in Event 1.

7.4.1.3 Host-to-Device Connection Topologies

The digital interface of the ADS8688W offers a lot of flexibility in the ways that a host controller can exchange data or commands with the device. A typical connection between a host controller and a stand-alone device is illustrated in Figure 7-23. However, there are applications that require multiple ADCs but the host controller has limited interfacing capability. This section describes two connection topologies that can be used to address the requirements of such applications.

7.4.1.3.1 Daisy-Chain Topology

A typical connection diagram showing multiple devices in daisy-chain mode is shown in Figure 7-26. The \overline{CS} , SCLK, and SDI inputs of all devices are connected together and controlled by a single \overline{CS} , SCLK, and SDO pin of the host controller, respectively. The DAISY₁ input pin of the first ADC in the chain is connected to DGND, the SDO₁ output pin is connected to the DAISY₂ input of ADC₂, and so forth. The SDO_N pin of the Nth ADC in the chain is connected to the SDI pin of the host controller. The devices do not require any special hardware or software configuration to enter daisy-chain mode.

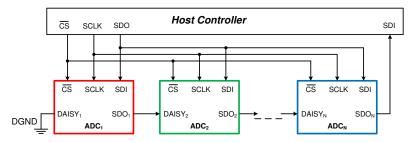


Figure 7-26. Daisy-Chain Connection Schematic

A typical timing diagram for three devices connected in daisy-chain mode is shown in Figure 7-27.

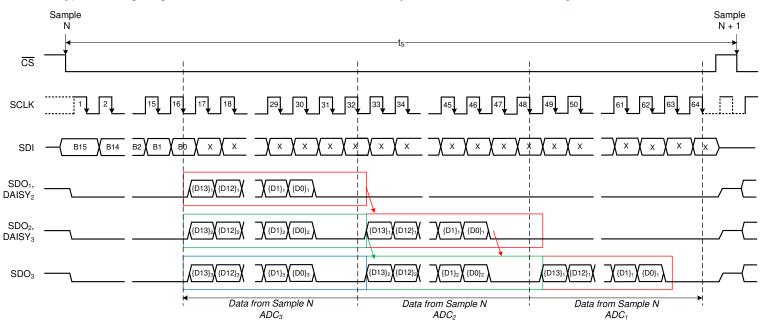


Figure 7-27. Three Devices Connected in Daisy-Chain Mode Timing Diagram

At the falling edge of the $\overline{\text{CS}}$ signal, all devices sample the input signal at the respective selected channels and enter into conversion phase. For the first 16 SCLK cycles, the internal register settings for the next conversion can be entered using the SDI line that is common to all devices in the chain. During this time period, the SDO outputs for all devices remain low. At the end of conversion, every ADC in the chain loads the own conversion result into an internal 16-bit shift register. For the 14-bit device, the internal shift register is loaded with 14 bits of output data followed by 00 in the LSB. At the 16th SCLK falling edge, every ADC in the chain outputs the MSB bit on the own SDO output pin. On every subsequent SCLK falling edge, the internal shift register of each ADC latches the data available on the DAISY pin and shifts out the next bit of data on the SDO pin. Therefore, the digital host receives the data of ADC_N, followed by the data of ADC_{N-1}, and so forth (in MSB-first fashion). In total, a minimum of 16 × N SCLK falling edges are required to capture the outputs of all N devices in the chain. This example uses three devices in a daisy-chain connection, so 3 × 16 = 48 SCLK cycles are required to capture the outputs of all devices in the chain along with the 16 SCLK cycles to input the register settings for the

Submit Document Feedback

next conversion, resulting in a total of 64 SCLK cycles for the entire data frame. Note that the overall throughput of the system is proportionally reduced with the number of devices connected in a daisy-chain configuration.

The following points must be noted about the daisy-chain configuration illustrated in Figure 7-26:

- The SDI pins for all devices are connected together so each device operates with the same internal configuration. This limitation can be overcome by spending additional host controller resources to control the $\overline{\text{CS}}$ or SDI input of devices with unique configurations.
- If the number of devices connected in daisy-chain is more than four, loading increases on the shared output lines from the host controller (\overline{CS} , SDO, and SCLK). This increased loading can lead to digital timing errors. This limitation can be overcome by using digital buffers on the shared outputs from the host controller before feeding the shared digital lines into additional devices.

7.4.1.3.2 Star Topology

A typical connection diagram showing multiple devices in the star topology is shown in Figure 7-28. The SDI and SCLK inputs of all devices are connected together and are controlled by a single SDO and SCLK pin of the host controller, respectively. Similarly, the SDO outputs of all devices are tied together and connected to the SDI input pin of the host controller. The $\overline{\text{CS}}$ input pin of each device is individually controlled by separate $\overline{\text{CS}}$ control lines from the host controller.

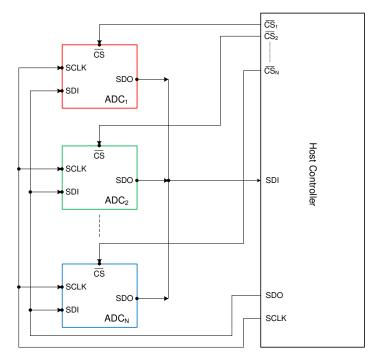


Figure 7-28. Star Topology Connection Schematic

The timing diagram for a typical data frame in the star topology is the same as in a stand-alone device operation, as illustrated in Figure 7-25. The data frame for a particular device starts with the falling edge of the \overline{CS} signal and ends when the \overline{CS} signal goes high. Because the host controller provides separate \overline{CS} control signals for each device in this topology, the user can select the devices in any order and initiate a conversion by bringing down the \overline{CS} signal for that particular device. As explained in Figure 7-25, when \overline{CS} goes high at the end of each data frame, the SDO output of the device is placed into a Hi-Z state. Therefore, the shared SDO line in the star topology is controlled only by the device with an active data frame (\overline{CS} is low). To avoid any conflict related to multiple devices driving the SDO line at the same time, verify that the host controller pulls down the \overline{CS} signal for only one device at any particular time.

TI recommends connecting a maximum of four devices in the star topology. Beyond that, loading can increase on the shared output lines from the host controller (SDO and SCLK). This loading can lead to digital timing

errors. This limitation can be overcome by using digital buffers on the shared outputs from the host controller before being fed into additional devices.

7.4.2 Device Modes

The ADS8688W support multiple modes of operation that are software programmable. After powering up, the device is placed into idle mode and does not perform any function until a command is received from the user. Table 8-1 lists all commands to enter the different modes of the device. After power-up, the program registers wake up with the default values and require appropriate configuration settings before performing any conversion. The diagram in Figure 7-29 explains how to switch the device from one mode of operation to another.

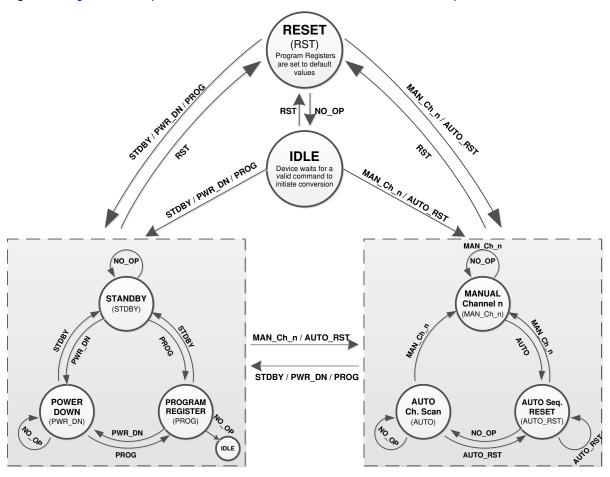


Figure 7-29. State Transition Diagram

7.4.2.1 Continued Operation in the Selected Mode (NO OP)

Holding the SDI line low continuously (equivalent to writing a 0 to all 16 bits) during device operation continues device operation in the last selected mode (STDBY, PWR_DN, AUTO_RST, or MAN_Ch_n). In this mode, the device follows the same settings that are already configured in the program registers.

If a NO_OP condition occurs when the device is performing any read or write operation in the program register (PROG mode), then the device retains the current settings of the program registers. The device goes back to IDLE mode and waits for the user to enter a proper command to execute the program register read or write configuration.

Submit Document Feedback

7.4.2.2 Frame Abort Condition (FRAME_ABORT)

As explained in the *Data Acquisition Example* section, the device digital interface is designed such that each data frame starts with a falling edge of the \overline{CS} signal. During the first 16 SCLK cycles, the device reads the 16-bit command word on the SDI line. The device waits to execute the command until the last bit of the command is received, which is latched on the 16th SCLK falling edge. During this operation, the \overline{CS} signal must stay low. If the \overline{CS} signal goes high for any reason before the data transmission is complete, the device goes into an INVALID state and waits for a proper command to be written. This condition is called the FRAME_ABORT condition. When the device is operating in this INVALID mode, any read operation on the device returns invalid data on the SDO line. The output of the ALARM pin continues to reflect the status of input signal on the previously selected channel.

7.4.2.3 STANDBY Mode (STDBY)

The devices support a low-power standby mode (STDBY) in which only part of the circuit is powered down. The internal reference and buffer is not powered down, and therefore, the devices can be quickly powered up in 20µs on exiting the STDBY mode. When the device comes out of STDBY mode, the program registers are not reset to the default values.

To enter STDBY mode, execute a valid write operation to the command register with a STDBY command of 8200h, as shown in Figure 7-30. The command is executed and the device enters STDBY mode on the next $\overline{\text{CS}}$ rising edge following this write operation. The device remains in STDBY mode if no valid conversion command (AUTO_RST or MAN_Ch_n) is executed and SDI remains low (see the *Continued Operation in the Selected Mode* section) during the subsequent data frames. When the device operates in STDBY mode, the program register settings can be updated (as explained in the *Program Register Read/Write Operation* section) using 16 SCLK cycles. However, if 32 complete SCLK cycles are provided, then the device returns invalid data on the SDO line because there is no ongoing conversion in STDBY mode. The program register read operation can take place normally during this mode.

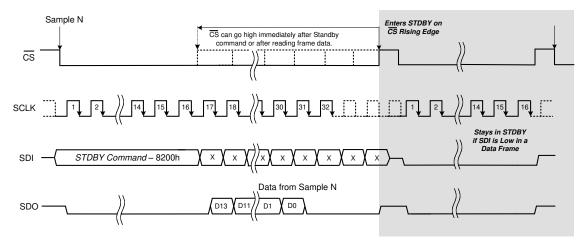


Figure 7-30. Enter and Remain in STDBY Mode Timing Diagram

To exit STDBY mode a valid 16-bit write command must be executed to enter auto (AUTO_RST) or manual (MAN_CH_n) scan mode, as shown in Figure 7-31. The device starts exiting STDBY mode on the next \overline{CS} rising edge. At the next \overline{CS} falling edge, the device samples the analog input at the channel selected by the MAN_CH_n command or the first channel of the AUTO_RST mode sequence. To verify that the input signal is sampled correctly, keep the minimum width of the \overline{CS} signal at 20 μ s after exiting STDBY mode so the device internal circuitry can be fully powered up and biased properly before taking the sample. The data output for the selected channel can be read during the same data frame, as explained in Figure 7-25.

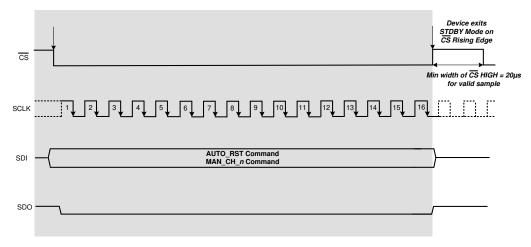


Figure 7-31. Exit STDBY Mode Timing Diagram

7.4.2.4 Power-Down Mode (PWR_DN)

The devices support a hardware and software power-down mode (PWR_DN) in which all internal circuitry is powered down, including the internal reference and buffer. A minimum time of 15ms is required for the device to power up and convert the selected analog input channel after exiting PWR_DN mode, if the device is operating in the internal reference mode (REFSEL = 0). The hardware power mode for the device is explained in the RST / PD (Input) section. The primary difference between the hardware and software power-down modes is that the program registers are reset to default values when the devices wake up from hardware power-down, but the previous settings of the program registers are retained when the devices wake up from software power-down.

To enter PWR_DN mode using software, execute a valid write operation on the command register with a software PWR_DN command of 8300h, as shown in Figure 7-32. The command is executed and the device enters PWR_DN mode on the next \overline{CS} rising edge following this write operation. The device remains in PWR_DN mode if no valid conversion command (AUTO_RST or MAN_Ch_n) is executed and SDI remains low (see the *Continued Operation in the Selected Mode* section) during the subsequent data frames. When the device operates in PWR_DN mode, the program register settings can be updated (as explained in the *Program Register Read/Write Operation* section) using 16 SCLK cycles. However, if 32 complete SCLK cycles are provided, then the device returns invalid data on the SDO line because there is no ongoing conversion in PWR_DN mode. The program register read operation can take place normally during this mode.

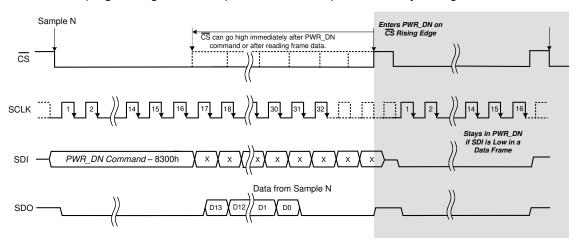


Figure 7-32. Enter and Remain in PWR DN Mode Timing Diagram

To exit from PWR_DN mode a valid 16-bit write command must be executed, as shown in Figure 7-33. The device comes out of PWR_DN mode on the next \overline{CS} rising edge. For operation in internal reference mode ($\overline{REFSEL} = 0$), 15ms are required for the device to power-up the reference and other internal circuits and settle to the required accuracy before valid conversion data are output for the selected input channel.

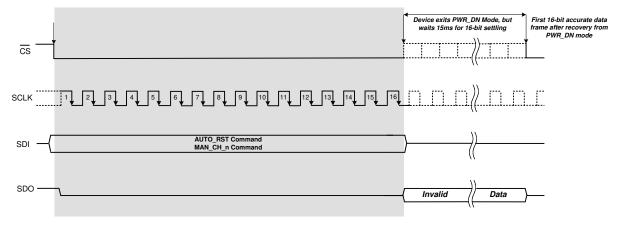


Figure 7-33. Exit PWR DN Mode Timing Diagram

7.4.2.5 Auto Channel Enable With Reset (AUTO_RST)

The devices can be programmed to scan the input signal on all analog channels automatically by writing a valid auto channel sequence with a reset (AUTO_RST, A000h) command in the command register, as explained in Figure 7-34. As shown in Figure 7-34, the $\overline{\text{CS}}$ signal can be pulled high immediately after the AUTO_RST command or after reading the output data of the frame. However, to accurately acquire and convert the input signal on the first selected channel in the next data frame, the command frame must be a complete frame of 32 SCLK cycles.

The sequence of channels for the automatic scan can be configured by the AUTO SCAN sequencing control register (01h to 02h) in the program register; see the *Program Register Map* section. In this mode, the devices continuously cycle through the selected channels in ascending order, beginning with the lowest channel and converting all channels selected in the program register. On completion of the sequence, the devices return to the lowest count channel in the program register and repeat the sequence. The input voltage range for each channel in the auto-scan sequence can be configured by setting the *Range Select Registers* of the program registers.

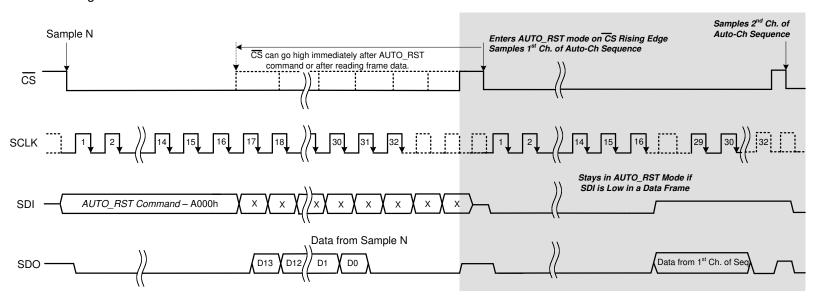


Figure 7-34. Enter AUTO_RST Mode Timing Diagram

The devices remain in AUTO_RST mode if no other valid command is executed and SDI is kept low (see the *Continued Operation in the Selected Mode (NO_OP)* section) during subsequent data frames. If the AUTO_RST command is executed again at any time during this mode of operation, then the sequence of the scanned channels is reset. The devices return to the lowest count channel of the auto-scan sequence in the program register and repeat the sequence. The timing diagram in Figure 7-35 shows this behavior using an example in which channels 0 to 2 are selected in the auto sequence. For switching between AUTO_RST mode and MAN_Ch_n mode; see the *Channel Sequencing Modes* section.

Submit Document Feedback

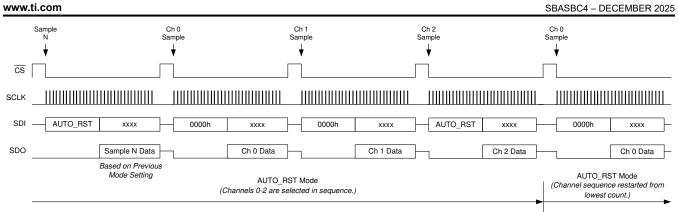


Figure 7-35. Device Operation Example in AUTO_RST Mode

7.4.2.6 Manual Channel n Select (MAN Ch n)

The devices can be programmed to convert a particular analog input channel by operating in manual channel n scan mode (MAN_Ch_n). This programming is done by writing a valid manual channel n select command (MAN_Ch_n) in the command register, as shown in Figure 7-36. As shown in Figure 7-36, the \overline{CS} signal can be pulled high immediately after the MAN_Ch_n command or after reading the output data of the frame. However, to accurately acquire and convert the input signal on the next channel, the command frame must be a complete frame of 32 SCLK cycles. See Table 8-1 for a list of commands to select individual channels during MAN_Ch_n mode.

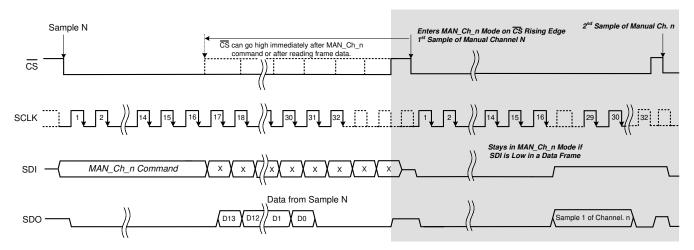


Figure 7-36. Enter MAN_Ch_n Scan Mode Timing Diagram

The manual channel *n* select command (MAN_Ch_n) is executed and the devices sample the analog input on the selected channel on the $\overline{\text{CS}}$ falling edge of the next data frame following this write operation. The input voltage range for each channel in the MAN_Ch_n mode can be configured by setting the *Range Select Registers* in the program registers. The device continues to sample the analog input on the same channel if no other valid command is executed and SDI is kept low (see the *Continued Operation in the Selected Mode (NO_OP)* section) during subsequent data frames. The timing diagram in Figure 7-37 shows this behavior using an example in which channel 1 is selected in the manual sequencing mode. For switching between MAN_Ch_n mode and AUTO RST mode; see the *Channel Sequencing Modes* section.

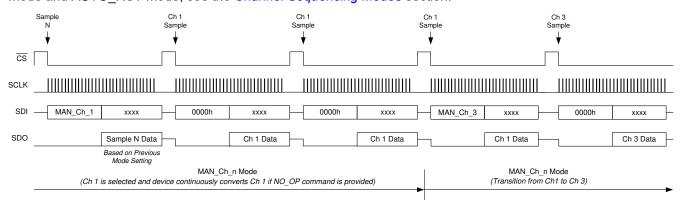


Figure 7-37. Device Operation in MAN_Ch_n Mode

Submit Document Feedback

7.4.2.7 Channel Sequencing Modes

The devices offer two channel sequencing modes: AUTO_RST and MAN_Ch_n.

In AUTO_RST mode, the channel number automatically increments in every subsequent frame. As explained in the *Auto-Scan Sequencing Control Registers* section, the analog inputs can be selected for an automatic scan with a register setting. The device automatically scans only the selected analog inputs in ascending order. The unselected analog input channels can also be powered down for optimizing power consumption in this mode of operation. The auto-mode sequence can be reset at any time during an automatic scan (using the AUTO_RST command). When the reset command is received, the ongoing auto-mode sequence is reset and restarts from the lowest selected channel in the sequence.

In MAN_Ch_n mode, the same input channel is selected during every data conversion frame. The input command words to select individual analog channels in MAN_Ch_n mode are listed in Table 8-1. If a particular input channel is selected during a data frame, then the analog inputs on the same channel are sampled during the next data frame. Figure 7-38 shows the SDI command sequence for transitions from AUTO_RST to MAN_Ch_n mode.

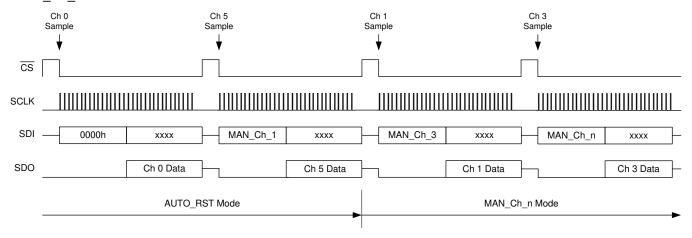


Figure 7-38. Transitioning from AUTO_RST to MAN_Ch_n Mode (Channels 0 and 5 are Selected for Auto Sequence)

Figure 7-39 shows the SDI command sequence for transitions from MAN_Ch_n to AUTO_RST mode. Note that each SDI command is executed on the next $\overline{\text{CS}}$ falling edge. A RST command can be issued at any instant during any channel sequencing mode, after which the device is placed into a default power-up state in the next data frame.

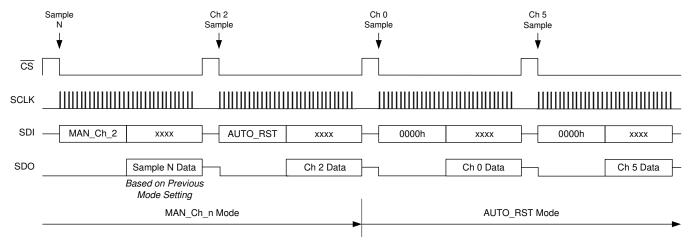


Figure 7-39. Transitioning from MAN_Ch_n to AUTO_RST Mode (Channels 0 and 5 are Selected for Auto Sequence)

7.4.2.8 Reset Program Registers (RST)

The devices support a hardware and software reset (RST) mode in which all program registers are reset to the default values. The devices can be put into RST mode using a hardware pin, as explained in the RST / PD (Input) section.

The device program registers can be reset to the default values during any data frame by executing a valid write operation on the command register with a RST command of 8500h, as shown in Figure 7-40. The device remains in RST mode if no valid conversion command (AUTO_RST or MAN_Ch_n) is executed and SDI remains low (see the *Continued Operation in the Selected Mode (NO_OP)* section) during the subsequent data frames. When the device operates in RST mode, the program register settings can be updated (as explained in the *Program Register Read/Write Operation* section) using 16 SCLK cycles. However, if 32 complete SCLK cycles are provided, then the device returns invalid data on the SDO line because there is no ongoing conversion in RST mode. The values of the program register can be read normally during this mode. A valid AUTO_RST or MAN_CH_n channel selection command must be executed for initiating a conversion on a particular analog channel using the default program register settings.

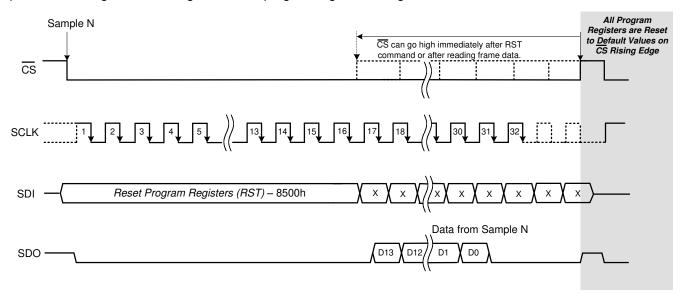


Figure 7-40. Reset Program Registers (RST) Timing Diagram

Submit Document Feedback

8 Register Maps

The internal registers are categorized into two categories: command registers and program registers.

The command registers are used to select the channel sequencing mode (AUTO_RST or MAN_Ch_n), configure the device in standby (STDBY) or power-down (PWR_DN) mode, and reset (RST) the program registers to the default values.

The program registers are used to select the sequence of channels for AUTO_RST mode, select the SDO output format, control input range settings for individual channels, control the ALARM feature, reading the alarm flags, and programming the alarm thresholds for each channel.

8.1 Command Register Description

The command register is a 16-bit, write-only register that is used to set the operating modes of the ADC. The settings in this register are used to select the channel sequencing mode (AUTO_RST or MAN_Ch_n), configure the device in standby (STDBY) or power-down (PWR_DN) mode, and reset (RST) the program registers to the default values. All command settings for this register are listed in Table 8-1. During power-up or reset, the default content of the command register is all 0s and the device waits for a command to be written before being placed into any mode of operation. See Serial Interface Timing Diagram for a typical timing diagram for writing a 16-bit command into the device. The device executes the command at the end of this particular data frame when the $\overline{\text{CS}}$ signal goes high.

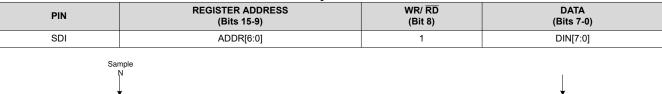
Table 8-1. Command Register Map

	Table 6-1. Command Register Map												
REGISTER				MSB	BYTE				LSB BYTE	COMMAND	OPERATION IN NEXT FRAME		
REGISTER	B15	B14	B13	B12	B11	B10	В9	B8	B[7:0]	(Hex)	OFERATION IN NEXT FRANCE		
Continued Operation (NO_OP)	0	0	0	0	0	0	0	0	0000 0000	0000h	Continue operation in previous mode		
Standby (STDBY)	1	0	0	0	0	0	1	0	0000 0000	8200h	Device is placed into standby mode		
Power Down (PWR_DN)	1	0	0	0	0	0	1	1	0000 0000	8300h	Device is powered down		
Reset program registers (RST)	1	0	0	0	0	1	0	1	0000 0000	8500h	Program register is reset to default		
Auto Ch. Sequence with Reset (AUTO_RST)	1	0	1	0	0	0	0	0	0000 0000	A000h	Auto mode enabled following a reset		
Manual Ch 0 Selection (MAN_Ch_0)	1	1	0	0	0	0	0	0	0000 0000	C000h	Channel 0 input is selected		
Manual Ch 1 Selection (MAN_Ch_1)	1	1	0	0	0	1	0	0	0000 0000	C400h	Channel 1 input is selected		
Manual Ch 2 Selection (MAN_Ch_2)	1	1	0	0	1	0	0	0	0000 0000	C800h	Channel 2 input is selected		
Manual Ch 3 Selection (MAN_Ch_3)	1	1	0	0	1	1	0	0	0000 0000	CC00h	Channel 3 input is selected		
Manual Ch 4 Selection (MAN_Ch_4) ⁽¹⁾	1	1	0	1	0	0	0	0	0000 0000	D000h	Channel 4 input is selected		
Manual Ch 5 Selection (MAN_Ch_5)	1	1	0	1	0	1	0	0	0000 0000	D400h	Channel 5 input is selected		
Manual Ch 6 Selection (MAN_Ch_6)	1	1	0	1	1	0	0	0	0000 0000	D800h	Channel 6 input is selected		
Manual Ch 7 Selection (MAN_Ch_7)	1	1	0	1	1	1	0	0	0000 0000	DC00h	Channel 7 input is selected		
Manual AUX Selection (MAN_AUX)	1	1	1	0	0	0	0	0	0000 0000	E000h	AUX channel input is selected		

⁽¹⁾ Shading indicates bits or registers not included in the 4-channel version of the device.

8.2 Program Register Description

The program register is a 16-bit register used to set the operating modes of the ADS8688W. The settings in this register are used to select the channel sequence for AUTO_RST mode, configure the device ID in daisy-chain


mode, select the SDO output format, control input range settings for individual channels, control the ALARM feature, reading the alarm flags, and programming the alarm thresholds for each channel. All program settings for this register are listed in Table 8-4. During power-up or reset, the different program registers in the device wake up with the default values and the device waits for a command to be written before being placed into any mode of operation.

8.2.1 Program Register Read/Write Operation

The program register is a 16-bit read or write register. There must be a minimum of 24 SCLKs after the \overline{CS} falling edge for any read or write operation to the program registers. When \overline{CS} goes low, the SDO line goes low as well. The device receives the command (see Table 8-2 and Table 8-3) through SDI where the first seven bits (bits 15-9) represent the register address and the eighth bit (bit 8) is the write or read instruction.

For a write cycle, the next eight bits (bits 7-0) on SDI are the desired data for the addressed register. Over the next eight SCLK cycles, the device outputs this 8-bit data that is written into the register. This data readback allows verification to determine if the correct data are entered into the device. A typical timing diagram for a program register write cycle is shown in Figure 8-1.

Table 8-2. Write Cycle Command Word

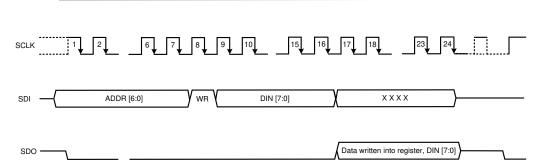


Figure 8-1. Program Register Write Cycle Timing Diagram

Submit Document Feedback

For a read cycle, the next eight bits (bits 7-0) on SDI are *don't care* bits and SDO stays low. From the 16th SCLK falling edge and onwards, SDO outputs the 8-bit data from the addressed register during the next eight clocks, in MSB-first fashion. A typical timing diagram for a program register read cycle is shown in Figure 8-2.

Table 8-3. Read Cycle Command Word

PIN	REGISTER ADDRESS (Bits 15-9)	WR/ RD (Bit 8)	DATA (Bits 7-0)
SDI	ADDR[6:0]	0	XXXXX
SDO	0000 000	0	DOUT[7:0]

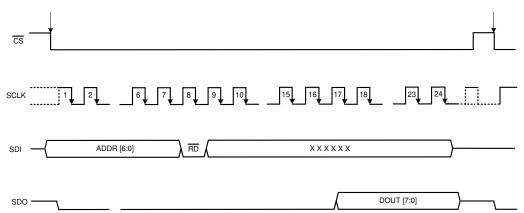


Figure 8-2. Program Register Read Cycle Timing Diagram

52

8.2.2 Program Register Map

This section provides a bit-by-bit description of each program register.

Table 8-4. Program Register Map

			Table 6	4. Program	Register W	aμ				
REGISTER	REGISTER ADDRESS BITS[15:9]	DEFAULT VALUE ⁽¹⁾	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
AUTO SCAN SEQUENCING CONTROL					,			II.		
AUTO_SEQ_EN	01h	FFh	CH7_EN ⁽²⁾	CH6_EN	CH5_EN	CH4_EN	CH3_EN	CH2_EN	CH1_EN	CH0_EN
Channel Power Down	02h	00h	CH7_PD	CH6_PD	CH5_PD	CH4_PD	CH3_PD	CH2_PD	CH1_PD	CH0_PD
DEVICE FEATURES SELECTION CONTROL										
Feature Select	03h	00h	DEV	/ [1:0]	0	ALARM_EN 0	0		SDO [2:0]	
RANGE SELECT REGISTERS										
Channel 0 Input Range	05h	00h	0	0	0	0		Range Select	Channel 0[3:0]	
Channel 1 Input Range	06h	00h	0	0	0	0		Range Select	Channel 1[3:0]	
Channel 2 Input Range	07h	00h	0	0	0	0	Range Select Channel 2[3:0]			
Channel 3 Input Range	08h	00h	0	0	0	0	Range Select Channel 3[3:0]			
Channel 4 Input Range	09h	00h	0	0	0	0	Range Select Channel 4[3:0]			
Channel 5 Input Range	0Ah	00h	0	0	0	0	Range Select Channel 5[3:0]			
Channel 6 Input Range	0Bh	00h	0	0	0	0		Range Select	Channel 6[3:0]	
Channel 7 Input Range	0Ch	00h	0	0	0	0		Range Select	Channel 7[3:0]	
ALARM FLAG REGISTERS (Read-Only)										
ALARM Overview Tripped-Flag	10h	00h	Tripped Alarm Flag Ch7	Tripped Alarm Flag Ch6	Tripped Alarm Flag Ch5	Tripped Alarm Flag Ch4	Tripped Alarm Flag Ch3	Tripped Alarm Flag Ch2	Tripped Alarm Flag Ch1	Tripped Alarm Flag Ch0
ALARM Ch 0-3 Tripped-Flag	11h	00h	Tripped Alarm Flag Ch0 Low	Tripped Alarm Flag Ch0 High	Tripped Alarm Flag Ch1 Low	Tripped Alarm Flag Ch1 High	Tripped Alarm Flag Ch2 Low	Tripped Alarm Flag Ch2 High	Tripped Alarm Flag Ch3 Low	Tripped Alarm Flag Ch3 High
ALARM Ch 0-3 Active-Flag	12h	00h	Active Alarm Flag Ch0 Low	Active Alarm Flag Ch0 High	Active Alarm Flag Ch1 Low	Active Alarm Flag Ch1 High	Active Alarm Flag Ch2 Low	Active Alarm Flag Ch2 High	Active Alarm Flag Ch3 Low	Active Alarm Flag Ch3 High
ALARM Ch 4-7 Tripped-Flag	13h	00h	Tripped Alarm Flag Ch4 Low	Tripped Alarm Flag Ch4 High	Tripped Alarm Flag Ch5 Low	Tripped Alarm Flag Ch5 High	Tripped Alarm Flag Ch6 Low	Tripped Alarm Flag Ch6 High	Tripped Alarm Flag Ch7 Low	Tripped Alarm Flag Ch7 High
ALARM Ch 4-7 Active-Flag	14h	00h	Active Alarm Flag Ch4 Low	Active Alarm Flag Ch4 High	Active Alarm Flag Ch5 Low	Active Alarm Flag Ch5 High	Active Alarm Flag Ch6 Low	Active Alarm Flag Ch6 High	Active Alarm Flag Ch7 Low	Active Alarm Flag Ch7 High

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

Table 8-4. Program Register Map (continued)

		Iu	DIC 0 4. 1 10	g. a rtog.c	oto: Map (co	aoa,				
REGISTER	REGISTER ADDRESS BITS[15:9]	DEFAULT VALUE ⁽¹⁾	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
ALARM THRESHOLD REGISTERS	•									
Ch 0 Hysteresis	15h	00h			CH0 ⁻ H,	YST[5:0]			0	0
Ch 0 High Threshold MSB	16h	FFh				CH0_F	HT[13:6]			
Ch 0 High Threshold LSB	17h	FCh		CH0_HT[5:0] 0 0						
Ch 0 Low Threshold MSB	18h	00h		CH0_LT[13:6]						
Ch 0 Low Threshold LSB	19h	00h		CH0_LT[5:0] 0 0						
			See the Alarm Threshold Setting Registers for details regarding the ALARM threshold settings registers.							
Ch 7 Hysteresis	38h	00h			CH7_H	YST[5:0]			0	0
Ch 7 High Threshold MSB	39h	FFh				CH7_F	HT[13:6]			
Ch 7 High Threshold LSB	3Ah	FCh			CH7_I	HT[5:0]			0	0
Ch 7 Low Threshold MSB	3Bh	00h	CH7_LT[13:6]							
Ch 7 Low Threshold LSB	3Ch	00h			CH7_	LT[5:0]			0	0
COMMAND READ BACK (Read-Only)	•									
Command Read Back	3Fh	00h				COMMAND	_WORD[7:0]			

⁽¹⁾ All registers are reset to the default values at power-on or at device reset using the register settings method.

⁽²⁾ Shading indicates bits or registers that are not included in the 4-channel version of the device. A write operation on any of these bits or registers has no effect on device behavior. A read operation on any of these bits or registers outputs all 1's on the SDO line.

8.2.2.1 Auto-Scan Sequencing Control Registers

In AUTO_RST mode, the device automatically scans the preselected channels in ascending order with a new channel selected for every conversion. Each individual channel can be selectively included in the auto channel sequencing. For channels not selected for auto sequencing, the analog front-end circuitry can be individually powered down.

8.2.2.1.1 Auto-Scan Sequence Enable Register (address = 01h)

This register selects individual channels for sequencing in AUTO_RST mode. The default value for this register is FFh, which implies that in default condition all channels are included in the auto-scan sequence. If no channels are included in the auto sequence (that is, the value for this register is 00h), then channel 0 is selected for conversion by default.

Figure 8-3. AUTO_SEQ_EN Register

7	6	5	4	3	2	1	0
CH7_EN ⁽¹⁾	CH6_EN	CH5_EN	CH4_EN	CH3_EN	CH2_EN	CH1_EN	CH0_EN
R/W-1h	R/W-1h	R/W-1h	R/W-1h	R/W-1h	R/W-1h	R/W-1h	R/W-1h

LEGEND: R/W = Read/Write: -n = value after reset

(1) Shading indicates bits or registers that are not included in the 4-channel version of the device. A write operation on any of these bits or registers has no effect on device behavior. A read operation on any of these bits or registers outputs all 1's on the SDO line.

Table 8-5. AUTO SEQ EN Field Descriptions

	Table 6-5. AUTO_SEQ_EN Field Descriptions										
Bit	Field	Туре	Reset	Description							
7	CH7_EN	R/W	1h	Channel 7 enable. 0 = Channel 7 is not selected for sequencing in AUTO_RST mode 1 = Channel 7 is selected for sequencing in AUTO_RST mode							
6	CH6_EN	R/W	1h	Channel 6 enable. 0 = Channel 6 is not selected for sequencing in AUTO_RST mode 1 = Channel 6 is selected for sequencing in AUTO_RST mode							
5	CH5_EN	R/W	1h	Channel 5 enable. 0 = Channel 5 is not selected for sequencing in AUTO_RST mode 1 = Channel 5 is selected for sequencing in AUTO_RST mode							
4	CH4_EN	R/W	1h	Channel 4 enable. 0 = Channel 4 is not selected for sequencing in AUTO_RST mode 1 = Channel 4 is selected for sequencing in AUTO_RST mode							
3	CH3_EN	R/W	1h	Channel 3 enable. 0 = Channel 3 is not selected for sequencing in AUTO_RST mode 1 = Channel 3 is selected for sequencing in AUTO_RST mode							
2	CH2_EN	R/W	1h	Channel 2 enable. 0 = Channel 2 is not selected for sequencing in AUTO_RST mode 1 = Channel 2 is selected for sequencing in AUTO_RST mode							
1	CH1_EN	R/W	1h	Channel 1 enable. 0 = Channel 1 is not selected for sequencing in AUTO_RST mode 1 = Channel 1 is selected for sequencing in AUTO_RST mode							
0	CH0_EN	R/W	1h	Channel 0 enable. 0 = Channel 0 is not selected for sequencing in AUTO_RST mode 1 = Channel 0 is selected for sequencing in AUTO_RST mode							

Submit Document Feedback Copyright © 2025

Product Folder Links: ADS8688W

8.2.2.1.2 Channel Power Down Register (address = 02h)

This register powers down individual channels that are not included for sequencing in AUTO_RST mode. The default value for this register is 00h, which implies that in default condition all channels are powered up. If all channels are powered down (that is, the value for this register is FFh), then the analog front-end circuits for all channels are powered down and the output of the ADC contains invalid data. If the device is in MAN-Ch_n mode and the selected channel is powered down, then the device yields invalid output that can also trigger a false alarm condition.

Figure 8-4. Channel Power Down Register

7	6	5	4	3	2	1	0
CH7_PD ⁽¹⁾	CH6_PD	CH5_PD	CH4_PD	CH3_PD	CH2_PD	CH1_PD	CH0_PD
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h

LEGEND: R/W = Read/Write; -n = value after reset

(1) Shading indicates bits or registers that are not included in the 4-channel version of the device. A write operation on any of these bits or registers has no effect on device behavior. A read operation on any of these bits or registers outputs all 1's on the SDO line.

Table 8-6. Channel Power Down Register Field Descriptions

Bit	Field	Type	Reset	Description
7	CH7_PD	R/W	0h	Channel 7 power-down. 0 = The analog front-end on channel 7 is powered up and channel 7 can be included in the AUTO_RST sequence 1 = The analog front-end on channel 7 is powered down and channel 7 cannot be included in the AUTO_RST sequence
6	CH6_PD	R/W	0h	Channel 6 power-down. 0 = The analog front-end on channel 6 is powered up and channel 6 can be included in the AUTO_RST sequence 1 = The analog front-end on channel 6 is powered down and channel 6 cannot be included in the AUTO_RST sequence
5	CH5_PD	R/W	0h	Channel 5 power-down. 0 = The analog front-end on channel 5 is powered up and channel 5 can be included in the AUTO_RST sequence 1 = The analog front-end on channel 5 is powered down and channel 5 cannot be included in the AUTO_RST sequence
4	CH4_PD	R/W	0h	Channel 4 power-down. 0 = The analog front-end on channel 4 is powered up and channel 4 can be included in the AUTO_RST sequence 1 = The analog front-end on channel 4 is powered down and channel 4 cannot be included in the AUTO_RST sequence
3	CH3_PD	R/W	0h	Channel 3 power-down. 0 = The analog front-end on channel 3 is powered up and channel 3 can be included in the AUTO_RST sequence 1 = The analog front end on channel 3 is powered down and channel 3 cannot be included in the AUTO_RST sequence
2	CH2_PD	R/W	0h	Channel 2 power-down. 0 = The analog front end on channel 2 is powered up and channel 2 can be included in the AUTO_RST sequence 1 = The analog front end on channel 2 is powered down and channel 2 cannot be included in the AUTO_RST sequence
1	CH1_PD	R/W	0h	Channel 1 power-down. 0 = The analog front end on channel 1 is powered up and channel 1 can be included in the AUTO_RST sequence 1 = The analog front end on channel 1 is powered down and channel 1 cannot be included in the AUTO_RST sequence
0	CH0_PD	R/W	0h	Channel 0 power-down. 0 = The analog front end on channel 0 is powered up and channel 0 can be included in the AUTO_RST sequence 1 = The analog front end on channel 0 is powered down and channel 0 cannot be included in the AUTO_RST sequence

8.2.2.2 Alarm Flag Registers (Read-Only)

The alarm conditions related to individual channels are stored in these registers. The flags can be read when an alarm interrupt is received on the ALARM pin. There are two types of flag for every alarm: active and tripped. The active flag is set to 1 under the alarm condition (when data cross the alarm limit) and remains so as long as the alarm condition persists. The tripped flag turns on the alarm condition similar to the active flag, but remains set until read. This feature relieves the device from having to track alarms.

8.2.2.2.1 ALARM Overview Tripped-Flag Register (address = 10h)

The ALARM overview tripper-flags register contains the logical OR of high or low tripped alarm flags for all eight channels.

Figure 8-5. ALARM Overview Tripped-Flag Register

7	6	5	4	3	2	1	0
Tripped Alarm Flag Ch7 ⁽¹⁾	Tripped Alarm Flag Ch6	Tripped Alarm Flag Ch5	Tripped Alarm Flag Ch4	Tripped Alarm Flag Ch3	Tripped Alarm Flag Ch2	Tripped Alarm Flag Ch1	Tripped Alarm Flag Ch0
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h

LEGEND: R = Read only; -n = value after reset

(1) Shading indicates bits or registers that are not included in the 4-channel version of the device. A write operation on any of these bits or registers has no effect on device behavior. A read operation on any of these bits or registers outputs all 1's on the SDO line.

Table 8-7. ALARM Overview Tripped-Flag Register Field Descriptions

Bit	Field	Type	Reset	Description
7	Tripped Alarm Flag Ch7	R	0h	Tripped alarm flag for all analog channels at a glance.
6	Tripped Alarm Flag Ch6	R	0h	Each individual bit indicates a tripped alarm flag status for each channel, as per the alarm flags register for channels 7 to 0, respectively.
5	Tripped Alarm Flag Ch5	R	0h	0 = No alarm detected
4	Tripped Alarm Flag Ch4	R	0h	1 = Alarm detected
3	Tripped Alarm Flag Ch3	R	0h	
2	Tripped Alarm Flag Ch2	R	0h	
1	Tripped Alarm Flag Ch1	R	0h	
0	Tripped Alarm Flag Ch0	R	0h	

Product Folder Links: ADS8688W

8.2.2.2.2 Alarm Flag Registers: Tripped and Active (address = 11h to 14h)

There are two alarm thresholds (high and low) per channel, with two flags for each threshold. An active alarm flag is enabled when an alarm is triggered (when data cross the alarm threshold) and remains enabled as long as the alarm condition persists. A tripped alarm flag is enabled in the same manner as an active alarm flag, but remains latched until read. Registers 11h to 14h in the program registers store the active and tripped alarm flags for all individual eight channels.

Figure 8-6. ALARM Ch0-3 Tripped-Flag Register (address = 11h)

					•	,	
7	6	5	4	3	2	1	0
Tripped Alarm Flag Ch0 Low	Tripped Alarm Flag Ch0 High	Tripped Alarm Flag Ch1 Low	Tripped Alarm Flag Ch1 High	Tripped Alarm Flag Ch2 Low	Tripped Alarm Flag Ch2 High	Tripped Alarm Flag Ch3 Low	Tripped Alarm Flag Ch3 High
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h

LEGEND: R = Read only; -n = value after reset

Table 8-8. ALARM Ch0-3 Tripped-Flag Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Tripped Alarm Flag Ch n Low or High (n = 0 to 3)	R	0h	Tripped alarm flag high, low for channel n (n = 0 to 3) Each individual bit indicates an active high or low alarm flag status for each channel, as per the alarm flags register for channels 0 to 7. 0 = No alarm detected 1 = Alarm detected

Figure 8-7. ALARM Ch0-3 Active-Flag Register (address = 12h)

7	6	5	4	3	2	1	0	
Active Alarm Flag Ch0 Low	Active Alarm Flag Ch0 High	Active Alarm Flag Ch1 Low	Active Alarm Flag Ch1 High	Active Alarm Flag Ch2 Low	Active Alarm Flag Ch2 High	Active Alarm Flag Ch3 Low	Active Alarm Flag Ch3 High	
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	

LEGEND: R = Read only; -n = value after reset

Table 8-9. ALARM Ch0-3 Active-Flag Register Field Descriptions

Bit	Field	Туре	Reset	Description
	Active Alarm Flag Ch n Low or High (n = 0 to 3)	R	0h	Active alarm flag high, low for channel n (n = 0 to 3) Each individual bit indicates an active high or low alarm flag status for each channel, as per the alarm flags register for channels 0 to 7. 0 = No alarm detected 1 = Alarm detected

Figure 8-8. ALARM Ch4-7 Tripped-Flag Register (address = 13h) (1)

7	7 6 5		4	3	2	1	0
Tripped Alarm Flag Ch4 Low ⁽¹⁾	Tripped Alarm Flag Ch4 High	Tripped Alarm Flag Ch5 Low	Tripped Alarm Flag Ch5 High	Tripped Alarm Flag Ch6 Low	Tripped Alarm Flag Ch6 High	Tripped Alarm Flag Ch7 Low	Tripped Alarm Flag Ch7 High
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h

LEGEND: R = Read only; -n = value after reset

(1) This register is not included in the 4-channel version of the device. A write operation on this register has no effect on device behavior. A read operation on this register outputs all 1's on the SDO line.

Table 8-10. ALARM Ch4-7 Tripped-Flag Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Tripped Alarm Flag Ch n Low or High (n = 4 to 7)	R		Tripped alarm flag high, low for channel n (n = 4 to 7). Each individual bit indicates an active high or low alarm flag status for each channel, as per the alarm flags register for channels 0 to 7. 0 = No alarm detected 1 = Alarm detected

Figure 8-9. ALARM Ch4-7 Active-Flag Register (address = 14h) (1)

7	6	5	4	3	2	1	0
Active Alarm Flag Ch4 Low	Active Alarm Flag Ch4 High	Active Alarm Flag Ch5 Low	Active Alarm Flag Ch5 High	Active Alarm Flag Ch6 Low	Active Alarm Flag Ch6 High	Active Alarm Flag Ch7 Low	Active Alarm Flag Ch7 High
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h

LEGEND: R = Read only; -n = value after reset

(1) This register is not included in the 4-channel version of the device. A write operation on this register has no effect on device behavior. A read operation on this register outputs all 1's on the SDO line.

Table 8-11. ALARM Ch4-7 Active-Flag Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Active Alarm Flag Ch n Low or High (n = 4 to 7)	R	Oh	Active alarm flag high, low for channel n (n = 4 to 7). Each individual bit indicates an active high or low alarm flag status for each channel, as per the alarm flags register for channels 0 to 7. 0 = No alarm detected 1 = Alarm detected

Submit Document Feedback

8.2.2.2.3 Alarm Threshold Setting Registers

The ADS8688W feature individual high and low alarm threshold settings for each channel. Each alarm threshold is 16 bits wide with 8-bit hysteresis, which is the same for both high and low threshold settings. This 40-bit setting is accomplished through five 8-bit registers associated with every high and low alarm.

NAME ⁽¹⁾	ADDR	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Ch 0 Hysteresis	15h		•	CH0_H	YST[5:0]			0	0
Ch 0 High Threshold MSB	16h				CH0_I	HT[13:6]		•	
Ch 0 High Threshold LSB	17h			CH0_l	HT[5:0]			0	0
Ch 0 Low Threshold MSB	18h				CH0_l	LT[13:6]			
Ch 0 Low Threshold LSB	19h			CH0_	LT[5:0]			0	0
Ch 1 Hysteresis	1Ah			CH1_H	YST[5:0]			0	0
Ch 1 High Threshold MSB	1Bh				CH1_I	HT[13:6]		1	•
Ch 1 High Threshold LSB	1Ch			CH1_l	HT[5:0]			0	0
Ch 1 Low Threshold MSB	1Dh				CH1_l	LT[13:6]			
Ch 1 Low Threshold LSB	1Eh			CH1_	LT[5:0]			0	0
Ch 2 Hysteresis	1Fh			CH2_H	YST[5:0]			0	0
Ch 2 High Threshold MSB	20h				CH2_I	HT[13:6]		1	•
Ch 2 High Threshold LSB	21h			CH2_I	HT[5:0]			0	0
Ch 2 Low Threshold MSB	22h				CH2_I	LT[13:6]			•
Ch 2 Low Threshold LSB	23h			CH2_	LT[5:0]			0	0
Ch 3 Hysteresis	24h			CH3_H	YST[5:0]			0	0
Ch 3 High Threshold MSB	25h				CH3_I	HT[13:6]		-	
Ch 3 High Threshold LSB	26h			0	0				
Ch 3 Low Threshold MSB	27h								
Ch 3 Low Threshold LSB	28h		CH3_LT[5:0]						0
Ch 4 Hysteresis ⁽¹⁾	29h		CH4_HYST[5:0]						0
Ch 4 High Threshold MSB	2Ah				CH4_I	HT[13:6]		<u>'</u>	<u>' </u>
Ch 4 High Threshold LSB	2Bh			CH4_I	HT[5:0]			0	0
Ch 4 Low Threshold MSB	2Ch				CH4_I	LT[13:6]		<u> </u>	•
Ch 4 Low Threshold LSB	2Dh			CH4_	LT[5:0]			0	0
Ch 5 Hysteresis	2Eh			CH5_H	YST[5:0]			0	0
Ch 5 High Threshold MSB	2Fh				CH5_I	HT[13:6]		<u>'</u>	<u>' </u>
Ch 5 High Threshold LSB	30h			CH5_I	HT[5:0]			0	0
Ch 5 Low Threshold MSB	31h				CH5_I	LT[13:6]		<u> </u>	•
Ch 5 Low Threshold LSB	32h			CH5_	LT[5:0]			0	0
Ch 6 Hysteresis	33h			CH6_H	YST[5:0]			0	0
Ch 6 High Threshold MSB	34h				CH6_I	HT[13:6]		<u>'</u>	<u>' </u>
Ch 6 High Threshold LSB	35h			CH6_I	HT[5:0]			0	0
Ch 6 Low Threshold MSB	36h				CH6_I	LT[13:6]		<u> </u>	•
Ch 6 Low Threshold LSB	37h			CH6_	LT[5:0]			0	0
Ch 7 Hysteresis	38h		CH7_HYST[5:0]						0
Ch 7 High Threshold MSB	39h								
Ch 7 High Threshold LSB	3Ah			CH7_I	HT[5:0]			0	0
Ch 7 Low Threshold MSB	3Bh				CH7_I	LT[13:6]			
Ch 7 Low Threshold LSB	3Ch			CH7_	LT[5:0]			0	0

⁽¹⁾ Shading indicates bits or registers not included in the 4-channel version of the device.

Figure 8-10. Ch n Hysteresis Registers

		•		, ,			
7	6	5	4	3	2	1	0
CHn_HYST[5:0]							0
R/W-0h						R-0h	R-0h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8-12. Channel n Hysteresis Register Field Descriptions (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W)

Bit	Field	Туре	Reset	Description
7-0	Channel <i>n</i> Hysteresis[7-0] (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W)	R/W	Oh	These bits set the channel high and low alarm hysteresis for channel n (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W) For example, bits 7-0 of the channel 0 register (address 15h) set the channel 0 alarm hysteresis. 00000000 = No hysteresis 00000001 = ±1LSB hysteresis 00000010 to 111111110 = ±2LSB to ±62LSB hysteresis 11111111 = ±63LSB hysteresis

Figure 8-11. Ch n High Threshold MSB Registers

7	6	5	4	3	2	1	0			
	CHn_HT[15:8]									
	R/W-1h									

LEGEND: R/W = Read/Write; -n = value after reset

Table 8-13. Channel n High Threshold MSB Register Field Descriptions (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W)

Bit	Field	Туре	Reset	Description
7-0	CH <i>n</i> _HT[15:8] (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W)	R/W	1h	These bits set the MSB byte for the 16-bit channel <i>n</i> high alarm. For example, bits 7-0 of the channel 0 register (address 16h) set the MSB byte for the channel 0 high alarm threshold. The channel 0 high alarm threshold is AAFFh when bits 7-0 of the ch 0 high threshold MSB register (address 16h) are set to AAh and bits 7-0 of the ch 0 high threshold LSB register (address 17h) are set to FFh. 0000 0000 = MSB byte is 00h 0000 0001 = MSB byte is 01h 0000 0010 to 1110 1111 = MSB byte is 02h to FEh 1111 1111 = MSB byte is FFh

Product Folder Links: ADS8688W

Figure 8-12. Ch n High Threshold LSB Registers

7	6	5	4	3	2	1	0		
	CHn_HT[7:0]								
	R/W-1hR-0hR-0h								

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8-14. Channel n High Threshold LSB Register Field Descriptions (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W)

Bit	Field	Туре	Reset	Description
7-0	CHn_HT[7-0] (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W)	R/W	1h	These bits set the LSB for the 16-bit channel <i>n</i> high alarm. For example, bits 7-0 of the channel 0 register (address 17h) set the LSB for the channel 0 high alarm threshold. The channel 0 high alarm threshold is AAFFh when bits 7-0 of the ch 0 high threshold MSB register (address 16h) are set to AAh and bits 7-0 of the ch 0 high threshold LSB register (address 17h) are set to FFh. 0000 0000 = LSB is 00h 0000 0001 = LSB is 01h 0000 0010 to 1111 1110 = LSB is 02h to FEh 1111 1111 = LSB byte is FFh

Figure 8-13. Ch n Low Threshold MSB Registers

7	6	5	4	3	2	1	0
			CHn_L	T[15:8]			
			R/W	/-0h			

LEGEND: R/W = Read/Write; -n = value after reset

Table 8-15. Channel n Low Threshold MSB Register Field Descriptions (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W)

Bit	Field	Туре	Reset	Description
7-0	CHn_LT[15:8] (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W)	R/W	Oh	These bits set the MSB byte for the 16-bit channel <i>n</i> low alarm. For example, bits 7-0 of the channel 0 register (address 18h) set the MSB byte for the channel 0 low alarm threshold. The channel 0 low alarm threshold is AAFFh when bits 7-0 of the ch 0 low threshold MSB register (address 18h) are set to AAh and bits 7-0 of the ch 0 low threshold LSB register (address 19h) are set to FFh. 0000 0000 = MSB byte is 00h 0000 0001 = MSB byte is 01h 0000 0010 to 1110 1111 = MSB byte is 02h to FEh 1111 1111 = MSB byte is FFh

Figure 8-14. Ch n Low Threshold LSB Registers

7	6	5	4	3	2	1	0
			CHn_L	_T[7:0]			
			R/W	/-0h			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8-16. Channel n Low Threshold MSB Register Field Descriptions (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W)

Bit	Field	Туре	Reset	Description
7-0	CH <i>n</i> _LT[7-0] (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W)	R/W	Oh	These bits set the LSB for the 16-bit channel <i>n</i> low alarm. For example, bits 7-0 of the channel 0 register (address 19h) set the LSB for the channel 0 low alarm threshold. The channel 0 low alarm threshold is AAFFh when bits 7-0 of the ch 0 low threshold MSB register (address 18h) are set to AAh and bits 7-0 of the ch 0 low threshold LSB register (address 19h) are set to FFh. 0000 0000 = LSB byte is 00h 0000 0001 = LSB byte is 01h 0000 0010 to 1110 1111 = LSB byte is 02h to FEh

Submit Document Feedback

Product Folder Links: ADS8688W

8.2.2.3 Device Features Selection Control Register (address = 03h)

The bits in this register can be used to configure the device ID for daisy-chain operation, enable the ALARM feature, and configure the output bit format on SDO.

Figure 8-15. Feature Select Register

7	6	5	4	3	2	1	0
DEV	[1:0]	0	ALARM_EN	0		SDO[2:0]	
R/V	V-0h	R-0h	R/W-0h	R-0h		R/W-0h	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8-17. Feature Select Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	DEV[1:0]	R/W	Oh	Device ID bits. 00 = ID for device 0 in daisy-chain mode 01 = ID for device 1 in daisy-chain mode 10 = ID for device 2 in daisy-chain mode 11 = ID for device 3 in daisy-chain mode
5	0	R	0h	Must always be set to 0
4	0	R/W	0h	ALARM feature enable. 0 = ALARM feature is disabled 1 = ALARM feature is enabled
3	0	R	0h	Must always be set to 0
2-0	SDO[2:0]	R/W	0h	SDO data format bits (see Table 8-18).

Table 8-18. Description of Program Register Bits for SDO Data Format

SDO FORMAT	BEGINNING OF THE	OUT	PUT FORMAT		
SDO[2:0]	OUTPUT BIT STREAM	BITS 24-9	BITS 8-5	BITS 4-3	BITS 2-0
000	16th SCLK falling edge, no latency	Conversion result for selected channel (MSB-first)	SDO	pulled low	
001	16th SCLK falling edge, no latency	Conversion result for selected channel (MSB-first)	Channel address ⁽¹⁾	SDO p	ulled low
010	16th SCLK falling edge, no latency	Conversion result for selected channel (MSB-first)	Channel address ⁽¹⁾	Device address ⁽¹⁾	SDO pulled low
011	16th SCLK falling edge, no latency	Conversion result for selected channel (MSB-first)	Channel address ⁽¹⁾	Device address ⁽¹⁾	Input range ⁽¹⁾

(1) Table 8-19 lists the bit descriptions for these channel addresses, device addresses, and input range.

Table 8-19. Bit Description for the SDO Data

	Table 6-19. Bit Description for the 3DO Data
BIT	BIT DESCRIPTION
24-9	16 bits of conversion result for the channel represented in MSB-first format.
8-5	Four bits of channel address. 0000 = Channel 0 0001 = Channel 1 0010 = Channel 2 0011 = Channel 3 0100 = Channel 4 (valid only for the ADS8688W) 0101 = Channel 5 (valid only for the ADS8688W) 0110 = Channel 6 (valid only for the ADS8688W) 0111 = Channel 7 (valid only for the ADS8688W)
4-3	Two bits of device address (mainly useful in daisy-chain mode).
2-0	Three LSB bits of input voltage range (see the Range Select Registers section).

8.2.2.4 Range Select Registers (addresses 05h-0Ch)

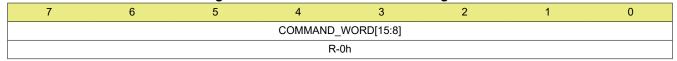
Address 05h corresponds to channel 0, address 06h corresponds to channel 1, address 07h corresponds to channel 2, address 08h corresponds to channel 3, address 09h corresponds to channel 4, address 0Ah corresponds to channel 5, address 0Bh corresponds to channel 6, and address 0Ch corresponds to channel 7.

These registers allow the selection of input ranges for all individual channels (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W).

Figure 8-16. Channel n Input Range Registers

7	6	5	4	3	2	1	0
0	0	0	0		Range_0	CH <i>n</i> [3:0]	
R-0h	R-0h	R-0h	R-0h		R/W	-0h	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset


Table 8-20. Channel n Input Range Registers Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	R	0h	Must always be set to 0
3-0	Range_CH <i>n</i> [3:0]	R/W	0h	Input range selection bits for channel n (n = 0 to 7 for the ADS8688W; n = 0 to 3 for the ADS8684W). $0000 = \text{Input range is set to } \pm 3 \times \text{V}_{\text{REF}} \\ 0001 = \text{Input range is set to } \pm 1.5 \times \text{V}_{\text{REF}} \\ 0010 = \text{Input range is set to } \pm 0.75 \times \text{V}_{\text{REF}} \\ 0101 = \text{Input range is set to } 0 \text{ to } 3 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is set to } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is } 0 \text{ to } 1.5 \times \text{V}_{\text{REF}} \\ 0110 = \text{Input range is } 0 \text{ to } 1.5 \times \text{V}$

8.2.2.5 Command Read-Back Register (address = 3Fh)

This register allows the device mode of operation to be read. On execution of this command, the device outputs the command word executed in the previous data frame. The output of the command register appears on SDO from the 16th falling edge onwards in an MSB-first format. All information regarding the command register is contained in the first eight bits and the last eight bits are 0 (see Table 8-1), thus the command read-back operation can be stopped after the 24th SCLK cycle.

Figure 8-17. Command Read-Back Register

LEGEND: R = Read only; -n = value after reset

Table 8-21, Command Read-Back Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	COMMAND_WORD[15:8]	R	0h	Command executed in previous data frame.

Product Folder Links: ADS8688W

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The ADS8688W is a fully-integrated data acquisition systems based on a 16-bit SAR ADC. The devices include an integrated analog front-end for each input channel and an integrated precision reference with a buffer. As such, this device family does not require any additional external circuits for driving the reference or analog input pins of the ADC.

9.2 Typical Applications

9.2.1 Phase-Compensated, 8-Channel, Multiplexed Data Acquisition System for Power Automation

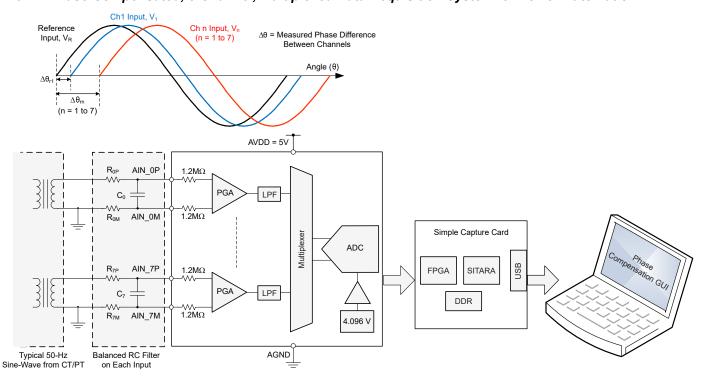


Figure 9-1. 8-Channel, Multiplexed Data Acquisition System for Power Automation

9.2.1.1 Design Requirements

In modern power grids, accurately measuring the electrical parameters of the various areas of the power grid is extremely critical. This measurement helps determine the operating status and running quality of the grid. The key electrical parameters include amplitude, frequency, and phase, which are important for calculating the power factor, power quality, and other parameters of the power system.

The primary objective for this design is to accurately measure the phase and phase difference between the analog input signals in a multichannel data acquisition system. When multiple input channels are sampled in a sequential manner as in a multiplexed ADC, an additional phase delay is introduced between the channels. Thus, the phase measurements are not accurate. However, this additional phase delay is constant and can be compensated in application software.

The key design requirements are given below:

- Single-ended sinusoidal input signal with a $\pm 10V$ amplitude and typical frequency ($f_{IN} = 50Hz$).
- Design an 8-channel multiplexed data acquisition system using a 16-bit SAR ADC.
- Design a software algorithm to compensate for the additional phase difference between the channels.

9.2.1.2 Detailed Design Procedure

The application circuit and system diagram for this design is shown in Figure 9-1. This design includes a complete hardware and software implementation of a multichannel data acquisition system for power automation applications.

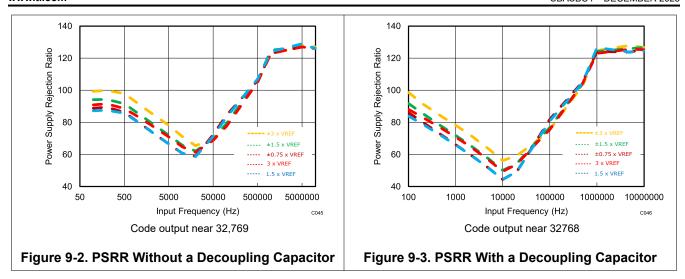
The ADS8688W supports bipolar input ranges up to ±12.288V with a single 5V supply and provides minimum latency in data output resulting from the SAR architecture. The integration offered by this device makes the ADS8688W an ideal selection for such applications, because the integrated signal conditioning helps minimize system components and avoids the need for generating high-voltage supply rails. The overall system-level dc precision (gain and offset errors) and low temperature drift offered by this device helps system designers achieve the desired system accuracy without calibration.

The software algorithm implemented in this design uses the discrete Fourier transform (DFT) method to calculate and track the input signal frequency, obtain the exact phase angle of the individual signal, calculate the phase difference, and implement phase compensation. The entire algorithm has four steps:

- Calculate the theoretical phase difference introduced by the ADC resulting from multiplexing input channels.
- Estimate the frequency of the input signal using frequency tracking and DFT techniques.
- Calculate the phase angle of all signals in the system based on the estimated frequency.
- Compensate the phase difference for all channels using the theoretical value of an additional MUX phase delay calculated in the first step.

For a step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, see *16-Bit*, *8-Channel*, *Integrated Analog Input Module for Programmable Logic Controllers (PLCs)* (TIDU365).

9.2.1.3


For a step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, see *Phase Compensated 8-Channel, Multiplexed Data Acquisition System for Power Automation Reference Design* (TIDU427).

9.3 Power Supply Recommendations

The device uses two separate power supplies: AVDD and DVDD. The internal circuits of the device operate on AVDD; DVDD is used for the digital interface. AVDD and DVDD can be independently set to any value within the permissible range.

The AVDD supply pins must be decoupled with AGND by using a minimum $10\mu F$ and $1\mu F$ capacitor on each supply. Place the $1\mu F$ capacitor as close to the supply pins as possible. Place a minimum $10\mu F$ decoupling capacitor very close to the DVDD supply to provide the high-frequency digital switching current. The effect of using the decoupling capacitor is illustrated in the difference between the power-supply rejection ratio (PSRR) performance of the device. Figure 9-2 shows the PSRR of the device without using a decoupling capacitor. The PSRR improves when the decoupling capacitors are used, as shown in Figure 9-3.

Submit Document Feedback

9.4 Layout

9.4.1 Layout Guidelines

Figure 9-4 illustrates a PCB layout example for the ADS8688W.

- Partition the PCB into analog and digital sections. Care must be taken to verify that the analog signals are
 kept away from the digital lines. This layout helps keep the analog input and reference input signals away
 from the digital noise. In this layout example, the analog input and reference signals are routed on the lower
 side of the board and the digital connections are routed on the top side of the board.
- · Using a single dedicated ground plane is strongly encouraged.
- Power sources to the ADS8688W must be clean and well-bypassed. TI recommends using a
 1μF, X7R-grade, 0603-size ceramic capacitor with at least a 10V rating in close proximity to the analog
 (AVDD) supply pins. For decoupling the digital (DVDD) supply pin, a 10μF, X7R-grade, 0805-size ceramic
 capacitor with at least a 10V rating is recommended. Placing vias between the AVDD, DVDD pins and the
 bypass capacitors must be avoided. All ground pins must be connected to the ground plane using short, low
 impedance paths.
- There are two decoupling capacitors used for the REFCAP pin. The first is a small, 1μF, X7R-grade, 0603-size ceramic capacitor placed close to the device pins for decoupling the high-frequency signals and the second is a 22μF, X7R-grade, 1210-size ceramic capacitor to provide the charge required by the reference circuit of the device. Both of these capacitors must be directly connected to the device pins without any vias between the pins and capacitors.
- The REFIO pin also must be decoupled with a 10µF ceramic capacitor, if the internal reference of the device is used. The capacitor must be placed close to the device pins.
- For the auxiliary channel, the fly-wheel RC filter components must be placed close to the device. Among
 ceramic surface-mount capacitors, COG (NPO) ceramic capacitors provide the best capacitance precision.
 The type of dielectric used in COG (NPO) ceramic capacitors provides the most stable electrical properties
 over voltage, frequency, and temperature changes.

9.4.2 Layout Example

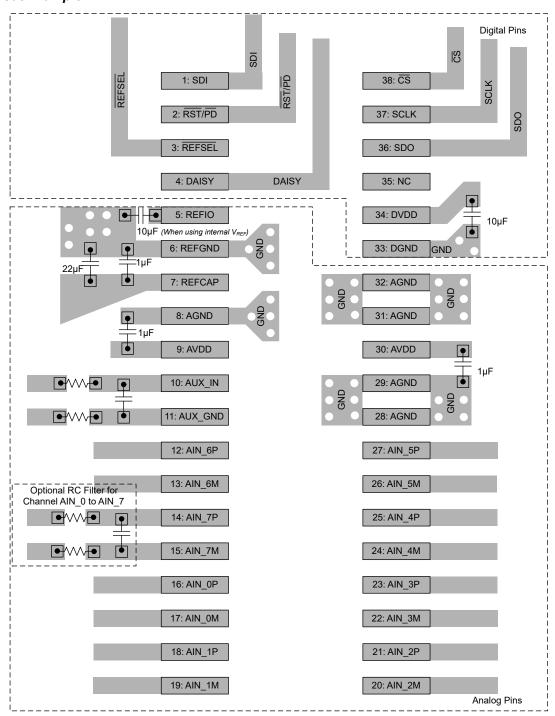


Figure 9-4. Board Layout for the ADS8688W

10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

For related documentation see the following:

- LM5017 100V, 600mA Constant On-Time Synchronous Buck Regulator Data Sheet (SNVS783)
- OPA320 Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with Shutdown Data Sheet (SBOS513)
- REF50xx Low-Noise, Very Low Drift, Precision Voltage Reference Data Sheet (SBOS410)
- AN-2029 Handling and Process Recommendations Application Report (SNOA550)
- 16-Bit, 8-Channel, Software Configurable Analog Input Module for Programmable Logic Controllers (PLCs) TI Design (TIDU365)
- Phase-Compensated, 8-Ch, Multiplexed Data Acquisition System for Power Automation Reference Design TI Design (TIDU427)

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 Trademarks

SPI[™] is a trademark of Motorola.

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES			
December 2025	*	Initial Release			

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 17-Dec-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
ADS8688WDBTR	Active	Production	null (null)	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS8688W

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025