

CSD75207W15

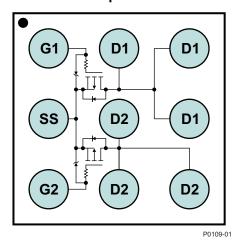
SLPS418A - JUNE 2013-REVISED JUNE 2014

CSD75207W15 Dual P-Channel NexFET™ Power MOSFET

Features

- **Dual P-Channel MOSFETs**
- Common Source Configuration
- Small Footprint 1.5-mm x 1.5-mm
- Gate-Source Voltage Clamp
- Gate ESD Protection >4 kV
 - HBM JEDEC standard JESD22-A114
- Pb and Halogen Free
- **RoHS Compliant**

Applications


- **Battery Management**
- **Battery Protection**
- Load and Input Switching

3 Description

The CSD75207W15 device is designed to deliver the lowest on-resistance and gate charge in the smallest outline possible with excellent thermal characteristics in an ultra-low profile. Low on-resistance coupled with the small footprint and low profile make the device ideal for battery-operated space-constrained applications. The device has also been awarded with U.S. patents 7952145, 7420247, 7235845, and 6600182

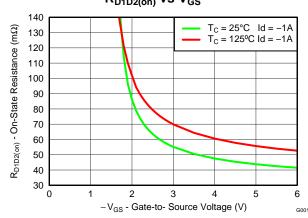
Top View

Product Summary

T _A = 25°C		TYPICAL VA	UNIT	
V_{D1D2}	Drain-to-Drain Voltage	-20		٧
Q_g	Gate Charge Total (-4.5 V)	2.9	nC	
Q_{gd}	Gate Charge Gate to Drain	0.4	nC	
		V _{GS} = -1.8 V 119		mΩ
R _{D1D2(on)}	Drain-to-Drain On Resistance	$V_{GS} = -2.5 \text{ V}$	64	mΩ
		$V_{GS} = -4.5 \text{ V}$	45	mΩ
V _{GS(th)}	Threshold Voltage	-0.8		V

Ordering Information⁽¹⁾

Device	Package	Media	Qty	Ship
CSD75207W15	1.5-mm x 1.5-mm Wafer Level Package	7-Inch Reel	3000	Tape and Reel


(1) For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

T _A = 2	5°C	VALUE	UNIT
V_{D1D2}	Drain-to-Drain Voltage	-20	V
V_{GS}	Gate-to-Source Voltage	-6.0	V
	Continuous Drain to Drain Current ⁽¹⁾ (2)	-3.9	Α
I _{D1D2}	Pulsed Drain to Drain Current, $T_C = 25^{\circ}C^{(3)}$	-24	Α
	Continuous Source Pin Current	-1.2	Α
I _S	Pulsed Source Pin Current ⁽³⁾	-15	Α
	Continuous Gate Clamp Current	-0.5	Α
IG	Pulsed Gate Clamp Current ⁽³⁾		Α
P_D	Power Dissipation ⁽¹⁾	0.7	W
T _J , T _{stg}	Operating Junction and Storage Temperature Range	-55 to 150	°C

- (1) Per device, both sides in conduction
- (2) Device operating at a temperature of 105°C
- (3) Pulse duration 10 µs, duty cycle ≤2%

Table of Contents

2 3 4	Features Applications Description Revision History Specifications 5.1 Electrical Characteristics 5.2 Thermal Information 5.3 Typical MOSFET Characteristics	1 2 3 3	7	Device and Documentation Support
	5.3 Typical MOSFET Characteristics	4		7.2 Recommended FCB Land Fattern

4 Revision History

Cł	Changes from Original (June 2013) to Revision A					
•	Increased continuous drain to drain current to 3.9 A					
•	Updated the continuous drain to drain current conditions to specify a temperature of 105°C					

Submit Documentation Feedback

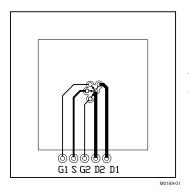
5 Specifications

5.1 Electrical Characteristics

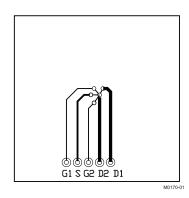
(T_A = 25°C unless otherwise stated). Specifications and graphs are Per MOSFET unless otherwise stated. Drain to Drain measurements are done with both MOSFETs in series (common source configuration.

BV _{D1D2} BV _{GSS}	CHARACTERISTICS Drain-to-Drain Voltage		·			-
	Drain-to-Drain Voltage					
BV _{GSS}		$V_{GS} = 0 \text{ V}, I_{D1D2} = -250 \mu\text{A}$	-20			V
	Gate-to-Source Voltage	V _{D1D2} = 0 V, I _G = -250 μA	-6			V
I _{DDS}	Drain-to-Drain Leakage Current	V _{GS} = 0 V, V _{D1D2} = -16 V			-1	μΑ
I _{GSS}	Gate-to-Source Leakage Current	$V_{D1D2} = 0 \text{ V}, V_{GS} = -6 \text{ V}$			-100	nA
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{D1D2} = V_{GS}, I_{DS} = -250 \mu A$	-0.6	-0.8	-1.1	V
		V _{GS} = -1.8 V, I _{D1D2} = -1 A		119	162	mΩ
R _{D1D2(on)}	Drain-to-Drain On-Resistance	$V_{GS} = -2.5 \text{ V}, I_{D1D2} = -1 \text{ A}$		64	77	mΩ
		V _{GS} = -4.5 V, I _{D1D2} = -1 A		45	54	mΩ
g _{fs}	Transconductance	$V_{D1D2} = -10 \text{ V}, I_{D1D2} = -1 \text{ A}$		6.2		S
DYNAMIC	CHARACTERISTICS		*		,	
C _{ISS}	Input Capacitance			458	595	pF
Coss	Output Capacitance	$V_{GS} = 0 \text{ V}, V_{D1D2} = -10 \text{ V},$ f = 1 MHz		225	293	pF
C _{RSS}	Reverse Transfer Capacitance			10.4	13.5	pF
R _g	Series Gate Resistance			27		Ω
Qg	Gate Charge Total (-4.5 V)			2.9	3.7	nC
Q _{gd}	Gate Charge – Gate to Drain	$V_{D1D2} = -10 \text{ V},$		0.4		nC
Q _{gs}	Gate Charge – Gate to Source	$I_{D1D2} = -1 A$		0.7		nC
Q _{g(th)}	Gate Charge at V _{th}			0.4		nC
Q _{OSS}	Output Charge	$V_{D1D2} = -9.5 \text{ V}, V_{GS} = 0 \text{ V}$		3.1		nC
t _{d(on)}	Turn On Delay Time			12.8		ns
t _r	Rise Time	$V_{D1D2} = -10 \text{ V}, V_{GS} = -4.5 \text{ V},$		8.6		ns
t _{d(off)}	Turn Off Delay Time	$I_{D1D2} = -1 \text{ A, R}_G = 30 \Omega$		32.1		ns
t _f	Fall Time			16.0		ns
DIODE CH	HARACTERISTICS				,	
V_{SD}	Diode Forward Voltage	I _{D1D2} = -1 A, V _{GS} = 0 V		-0.8	-1	V
Q _{rr}	Reverse Recovery Charge	$V_{dd} = -10 \text{ V}, I_F = -1 \text{ A}, di/dt = 200 \text{ A/}\mu\text{s}$		10.5		nC
t _{rr}	Reverse Recovery Time	$V_{dd} = -10 \text{ V}, I_F = -1 \text{ A}, di/dt = 200 \text{ A/}\mu\text{s}$		23		ns

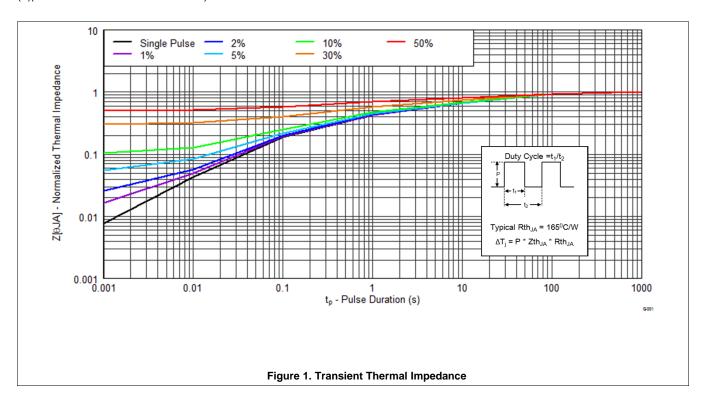
5.2 Thermal Information


 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

	THERMAL METRIC	TYPICAL VALUE	UNIT
В	Junction-to-Ambient Thermal Resistance (1) (2)	70	°C/W
R _{0JA}	Junction-to-Ambient Thermal Resistance (3) (2)	165	


- (1) Device mounted on FR4 material with Minimum Cu mounting area.
- (2) Measured with both devices biased in a parallel condition.
- (3) Device mounted on FR4 material with 1-inch2 of Cu (2 oz).

Product Folder Links: CSD75207W15


Typ $R_{\theta JA} = 70^{\circ}\text{C/W}$ when mounted on 1-inch² of 2 oz. Cu.

Typ $R_{\theta JA} = 165$ °C/W when mounted on minimum pad area of 2-oz. Cu.

5.3 Typical MOSFET Characteristics

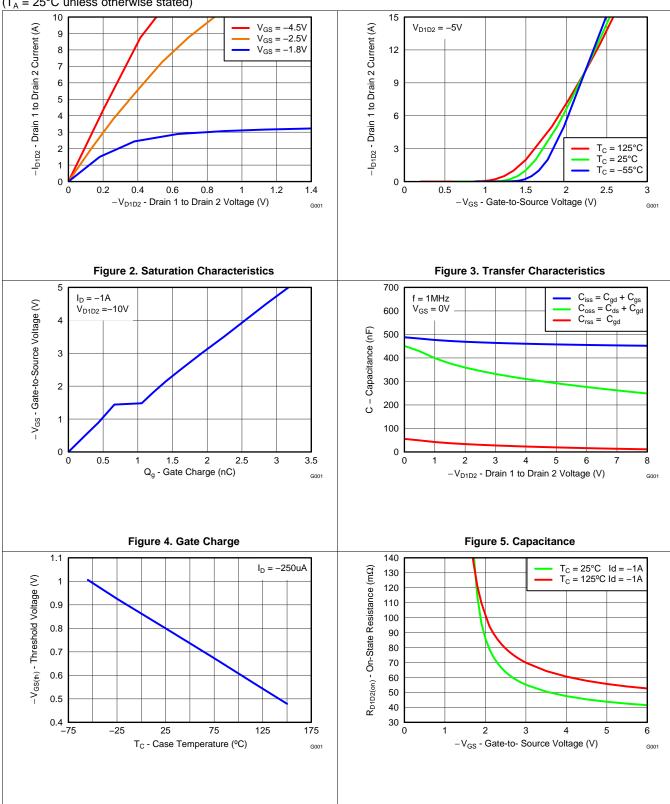
 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

Typical MOSFET Characteristics (continued)

(T_A = 25°C unless otherwise stated)



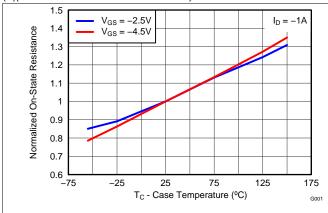

Figure 6. Threshold Voltage vs Temperature

Figure 7. On-State Resistance vs Gate-to-Source Voltage

Typical MOSFET Characteristics (continued)

(T_A = 25°C unless otherwise stated)

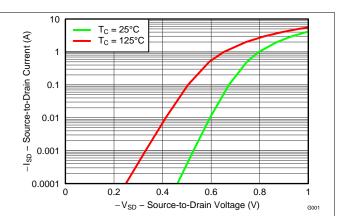
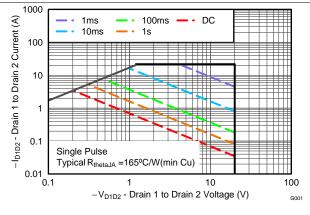



Figure 8. Normalized On-State Resistance vs Temperature

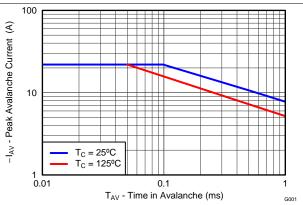


Figure 10. Maximum Safe Operating Area

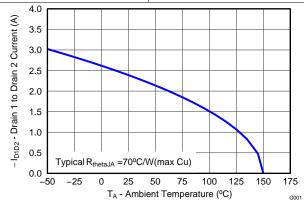


Figure 12. Maximum Drain Current vs Temperature

Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

6 Device and Documentation Support

6.1 Trademarks

NexFET is a trademark of Texas Instruments.

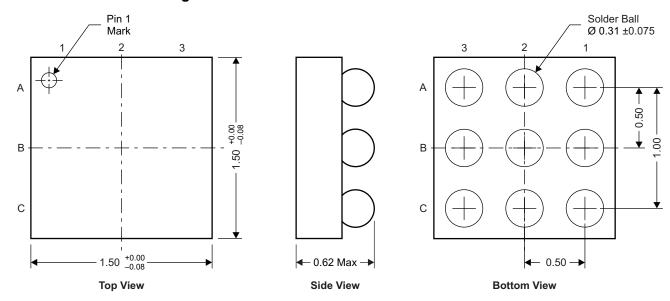
6.2 Electrostatic Discharge Caution

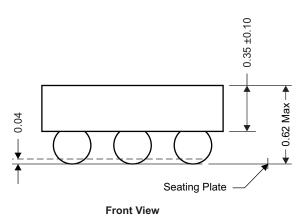
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

6.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.


Product Folder Links: CSD75207W15



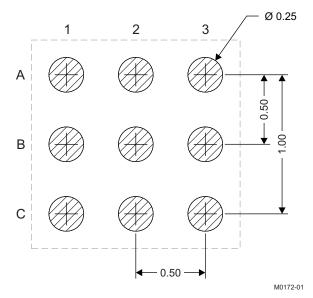
7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7.1 CSD75207W15 Package Dimensions

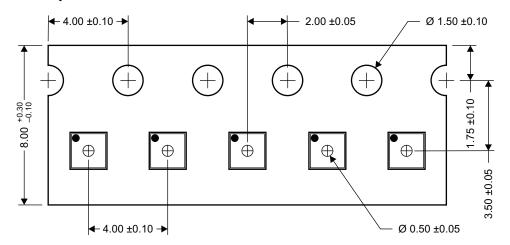
NOTE: All dimensions are in mm (unless otherwise specified)

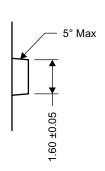
M0171-01

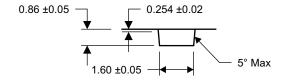

Pinout

POSITION	DESIGNATION	
A1	Gate1	
A2, A3, B3	Drain1	
C1	Gate2	
C2, C3, B2	Drain2	
B1	Source Sense	

Submit Documentation Feedback




7.2 Recommended PCB Land Pattern



NOTE: All dimensions are in mm (unless otherwise specified).

7.3 Tape and Reel Information

M0173-01

NOTE: All dimensions are in mm (unless otherwise specified).

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
CSD75207W15	Active	Production	DSBGA (YZF) 9	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-55 to 150	75207
CSD75207W15.B	Active	Production	DSBGA (YZF) 9	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-55 to 150	75207

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025