

LMX2615-SP Space Grade 40MHz to 15GHz Wideband Synthesizer With Phase Synchronization and JESD204B Support

1 Features

- Radiation specifications:
 - Single event latch-up >120MeV-cm²/mg
 - Total ionizing dose to 100krad(Si)
 - SMD 5962R1723601VXC
- 40MHz to 15.2GHz output frequency
- -110dBc/Hz phase noise at 100kHz offset with 15GHz carrier
- 45fs RMS jitter at 8GHz (100Hz to 100MHz)
- Programmable output power
- PLL key specifications:
 - Figure of merit: –236dBc/Hz
 - Normalized 1/f noise: -129dBc/Hz
 - Up to 200MHz phase detector frequency
- Synchronization of output phase across multiple devices
- Support for SYSREF with programmable delay
- 3.3V single power supply operation
- 71 pre-selected pin modes
- 11 × 11mm² 64-lead CQFP ceramic package
- Operating temperature range: -55°C to +125°C

2 Applications

- Space communications
- Space radar systems
- Phased array antennas and beam forming
- High-speed data converter clocking (supports JESD204B)

3 Description

The LMX2615-SP is a high performance wideband phase-locked loop (PLL) with integrated voltage controlled oscillator (VCO) and voltage regulators that can output any frequency from 40MHz and 15.2GHz without a doubler, which eliminates the need for ½ harmonic filters. The VCO on this device covers an entire octave so the frequency coverage is complete down to 40MHz. The high performance PLL with a figure of merit of -236dBc/Hz and high phase detector frequency can attain very low in-band noise and integrated jitter.

The LMX2615-SP allows users to synchronize the output of multiple instances of the device. This means that deterministic phase can be obtained from a device in any use case including the one with fractional engine or output divider enabled. The device also adds support for either generating or repeating SYSREF (compliant to JESD204B standard), making the device designed low-noise clock source for high-speed data converters.

Device Information

PART NUMBER	GRADE	PACKAGE
LMX2615-MKT-MS	Mechanical Sample ⁽¹⁾	64-lead CQFP
LMX2615W-MPR	Engineering Model ⁽²⁾	64-lead CQFP
5962R1723601VXC	Flight Model	64-lead CQFP Mass = 1787mg ⁽³⁾

- These units are package only and contain no die; they are intended for mechanical evaluation only.
- These units are not suitable for production or flight use: they are intended for engineering evaluation only. See Section 10.1 for details.
- Nominal value.

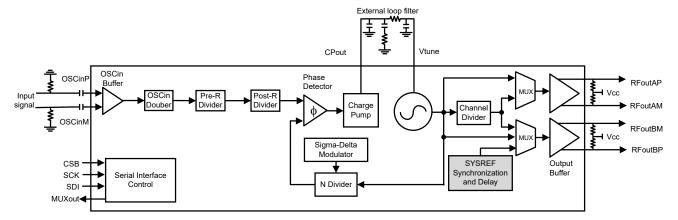


Figure 3-1. Simplified Schematic

Table of Contents

1 Features1	6.6 Register Maps	29
2 Applications 1	7 Application and Implementation	
3 Description	7.1 Application Information	
4 Pin Configuration and Functions3	7.2 External Loop Filter	
5 Specifications6	7.3 Typical Application	
5.1 Absolute Maximum Ratings6	7.4 Power Supply Recommendations	
5.2 ESD Ratings6	7.5 Layout	
5.3 Recommended Operating Conditions6	8 Device and Documentation Support	
5.4 Thermal Information6	8.1 Device Support	<mark>7</mark> 1
5.5 Electrical Characteristics7	8.2 Documentation Support	<mark>7</mark> 1
5.6 Timing Requirements9	8.3 Receiving Notification of Documentation Update	s71
5.7 Timing Diagrams9	8.4 Support Resources	<mark>7</mark> 1
5.8 Typical Characteristics11	8.5 Trademarks	
6 Detailed Description13	8.6 Electrostatic Discharge Caution	71
6.1 Overview	8.7 Glossary	71
6.2 Functional Block Diagram14	9 Revision History	<mark>71</mark>
6.3 Feature Description14	10 Mechanical, Packaging, and Orderable	
6.4 Device Functional Modes27	Information	74
6.5 Programming28	10.1 Engineering Samples	74

4 Pin Configuration and Functions

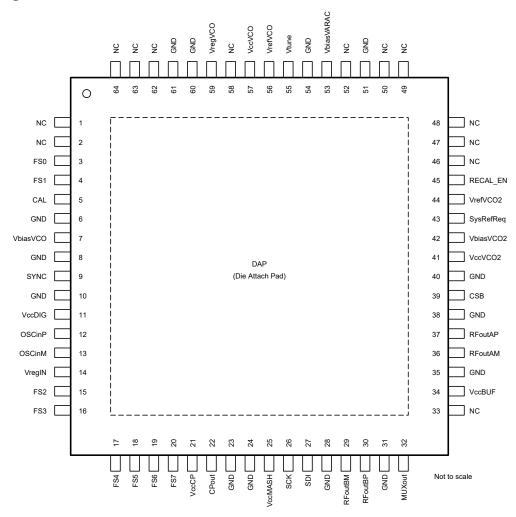


Figure 4-1. HBD Package 64-Pin CQFP Top View

Table 4-1. Pin Functions

	PIN		DESCRIPTION
NO.	NAME		DESCRIPTION
1	NC	NC	No connection. Pin can be grounded or left unconnected.
2	NC	NC	No connection. Pin can be grounded or left unconnected.
3	FS0	- 1	Pin mode parallel pin control bit 0. This is the LSB.
4	FS1	- 1	Pin mode parallel pin control bit 1.
5	CAL	I	Chip Enable pin. Active High powers on the device. In Pin mode, a Low-to-High transition to this pin activates a VCO calibration.
6	GND	G	Ground.
7	VbiasVCO	BP	VCO bias. Requires connecting 10µF capacitor to ground. Place close to pin.
8	GND	G	Ground.
9	SYNC	1	Phase synchronization SYNC signal input pin.
10	GND	G	Ground.
11	VccDIG	Р	Digital supply. Connect to 3.3V with a low ESR 1µF decoupling capacitor to ground.
12	OSCinP	ı	Reference input clock (+). High input impedance. Requires connecting series capacitor (1µF recommended).

Table 4-1. Pin Functions (continued)

	PIN	Type ⁽¹	Page 4-1. Fill Full cuons (continued)
NO.	NAME		DESCRIPTION
13	OSCinM	ı	Complementary pin to OSCinP.
14	VregIN	BP	Input reference path regulator decoupling. Requires connecting 1µF capacitor to ground. Place close to pin.
15	FS2	I	Pin mode parallel pin control bit 2.
16	FS3	I	Pin mode parallel pin control bit 3.
17	FS4	I	Pin mode parallel pin control bit 4.
18	FS5	I	Pin mode parallel pin control bit 5.
19	FS6	I	Pin mode parallel pin control bit 6.
20	FS7	ı	Pin mode parallel pin control bit 7. This is the MSB. When this pin is Low, only RFoutA is active, otherwise both outputs are active.
21	VccCP	Р	Charge pump supply. Connect to 3.3V with a low ESR 1µF decoupling capacitor to ground.
22	CPout	0	Charge pump output. Recommend connecting C1 of loop filter close to this pin.
23	GND	G	Ground.
24	GND	G	Ground.
25	VccMASH	Р	Digital supply. Connect to 3.3V with a low ESR 1µF decoupling capacitor to ground.
26	SCK	I	SPI input clock.
27	SDI	I	SPI input data.
28	GND	G	Ground.
29	RFoutBM	0	Complementary pin to RFoutBP.
30	RFoutBP	0	Differential output B (+). Requires connecting a 50Ω resistor pullup to V_{CC} as close as possible to pin. Can be used as a RF output or SYSREF output.
31	GND	G	Ground.
32	MUXout	0	Multiplexed output pin. Configurable as lock detect output, SPI read back data output or high-impedance (approximately $8k\Omega$ to ground).
33	NC	NC	No connection. Pin can be grounded or left unconnected.
34	VccBUF	Р	Output buffer supply. Connect to 3.3V with a low ESR 0.1µF decoupling capacitor to ground.
35	GND	G	Ground.
36	RFoutAM	0	Complementary pin to RFoutAP.
37	RFoutAP	0	Differential output A (+). Requires connecting a 50Ω resistor pullup to V_{CC} as close as possible to pin.
38	GND	G	Ground.
39	CSB	I	SPI chip select.
40	GND	G	Ground.
41	VccVCO2	Р	VCO supply. Connect to 3.3V with a low ESR 1µF decoupling capacitor to ground. This pin and VccVCO pin must be tied to the same supply source.
42	VbiasVCO2	BP	VCO bias. Requires connecting 1μF capacitor to ground.
43	SysRefReq	I	SYSREF request input for JESD204B support.
44	VrefVCO2	BP	VCO supply reference. Requires connecting 10μF capacitor to ground.
45	RECAL_EN	ı	Active High enables the automatic recalibration feature. Internal $200 k\Omega$ pull-up.
46	NC	NC	No connection. Pin can be grounded or left unconnected.
47	NC	NC	No connection. Pin can be grounded or left unconnected.
48	NC	NC	No connection. Pin can be grounded or left unconnected.
49	NC	NC	No connection. Pin can be grounded or left unconnected.
50	NC	NC	No connection. Pin can be grounded or left unconnected.
51	GND	G	Ground.

Table 4-1. Pin Functions (continued)

	PIN Typ		PIN Type ⁽¹		DESCRIPTION
NO.	NAME		DESCRIPTION		
52	NC	NC	No connection. Pin can be grounded or left unconnected.		
53	VbiasVARAC	BP	VCO Varactor bias. Requires connecting 10µF capacitor to ground.		
54	GND	G	Ground.		
55	Vtune	I	VCO tuning voltage input. Connect a 1.5nF or more capacitor to ground.		
56	VrefVCO	BP	VCO supply reference. Requires connecting 10μF capacitor to ground.		
57	VccVCO	Р	VCO supply. Connect to 3.3V with a low ESR 1µF decoupling capacitor to ground. This pin and VccVCO2 pin must be tied to the same supply source.		
58	NC	NC	No connection. Pin can be grounded or left unconnected.		
59	VregVCO	BP	VCO regulator node. Requires connecting 1μF capacitor to ground.		
60	GND	G	Ground.		
61	GND	G	Ground.		
62	NC	NC	No connection. Pin can be grounded or left unconnected.		
63	NC	NC	No connection. Pin can be grounded or left unconnected.		
64	NC	NC	No connection. Pin can be grounded or left unconnected.		
_	DAP	G	Die Attach Pad. The metal lid, seal ring and DAP are internally connected to GND. Connect DAP to PCB ground plane using multiple vias for good thermal performance.		

- (1) The definitions below define the I/O type for each pin.
 - I = Input
 - O = Output
 - BP = Bypass
 - G = Ground
 - NC = No connect
 - P = Power supply

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{CC}	Power supply voltage ⁽¹⁾	-0.3	3.6	V
V_{DIG}	Digital pin voltage (FS0 - FS7, SYNC, SysRefReq, RECAL_EN, CAL, SCK, SDI, CSB)	-0.3	V _{CC} +0.3	V
V _{osc}	Differential AC voltage between OSCinP and OSCinM		2.1	V_{PP}
T _J	Junction temperature	-55	150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 ESD Ratings

			VALUE	UNIT
\/	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾ (1)		V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22C101, all pins ⁽²⁾	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	Power supply voltage	3.2	3.3	3.45	V
T _C	Case temperature	-55	25	125	°C

5.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	CQFP	UNIT
	I TERWAL METRIC	64 PINS	UNII
R _{θJA}	Junction-to-ambient thermal resistance	22.7	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance (2)	7.3	°C/W
R _{0JB}	Junction-to-board thermal resistance	7.6	°C/W
Ψлт	Junction-to-top characterization parameter	2.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	7.4	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	1.0	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

(2) DAP

Submit Document Feedback

⁽²⁾ JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.5 Electrical Characteristics

 $3.2\text{V} \le \text{V}_{\text{CC}} \le 3.45\text{V}, -55^{\circ}\text{C} \le \text{T}_{\text{C}} \le +125^{\circ}\text{C}$. Typical values are at $\text{V}_{\text{CC}} = 3.3\text{V}, 25^{\circ}\text{C}$ (unless otherwise noted).

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT	
POWER	SUPPLY							
I _{cc}	Supply current	OUTA_PD = 0, OUTB_PD = 1 OUTA_MUX = OUTB_MUX = 1 OUTA_PWR = 31, CPG = 7 f _{OSC} = f _{PD} = 100MHz, f _{VCO} = f _{OUT} = 14.5GHz			360		mA	
	Power on reset current	RESET = 1			289			
	Power down current	POWERDOWN = 1			6			
OUTPUT	CHARACTERISTICS							
	Single-ended output power ⁽¹⁾ (2)	50Ω resistor pullup	f _{OUT} = 8GHz		6		dBm	
P _{OUT}	Single-ended output power(**)	OUTx_PWR = 31	f _{OUT} = 15GHz		4		UDIII	
INPUT SI	GNAL PATH							
		OSC_2X = 0		5		1000		
fosc	Reference input frequency	OSC_2X = 1		5		200	MHz	
		Category 3 phase synchronization				50		
		Single-ended AC coupled sine wave input with complementary side AC	f _{OSC} ≥ 20MHz	0.4		2 2 Vpi		
V _{osc}	Reference input voltage		10MHz ≤ f _{OSC} < 20MHz	0.8			V_{PP}	
· OSC	, tolololoo iiiput tollago	coupled to ground with 50Ω resistor	5MHz ≤ f _{OSC} < 10MHz	1.6		2	• • • •	
PHASE D	DETECTOR AND CHARGE PUMP							
	Phase detector frequency ⁽³⁾	MASH_ORDER = 0		0.125		250	MHz	
f _{PD}	Phase detector frequency	MASH_ORDER > 0		5		200	IVI⊓∠	
	Charge-pump leakage current	CPG = 0			15		nA	
		CPG = 4			3			
	Effective charge pump current. This	CPG = 1			6			
ICPout	is the sum of the up and down	CPG = 5			9		mA	
	currents	CPG = 3			12	12		
		CPG = 7			15			
PN _{PLL_1/f}	Normalized PLL 1/f noise	f _{PD} = 100MHz, f _{VCO} = 12GHz	- (4)		-129		dBc/Hz	
PN _{PLL_FOI}	M Normalized PLL noise floor	11PD - 1001VITZ, 1VCO = 12GHZ	<u>'</u> '		-236		dBc/Hz	

$3.2\text{V} \le \text{V}_{\text{CC}} \le 3.45\text{V}, -55^{\circ}\text{C} \le \text{T}_{\text{C}} \le +125^{\circ}\text{C}$. Typical values are at $\text{V}_{\text{CC}} = 3.3\text{V}, 25^{\circ}\text{C}$ (unless otherwise noted).

	PARAMETER	TES	T CONDITIONS	MIN	TYP	MAX	UNIT	
VCO CHA	ARACTERISTICS							
f _{VCO}	VCO frequency			7600		15200	MHz	
			100kHz		-105			
		VCO1	1MHz		-127			
		f _{VCO} = 8.1GHz	10MHz		-148			
			100MHz		-155			
			100kHz		-103			
		VCO2	1MHz		-125			
		f _{VCO} = 9.3GHz	10MHz		-146			
			100MHz		-153			
			100kHz		-103			
		VCO3	1MHz		-125			
		$f_{VCO} = 10.4GHz$	10MHz		-147			
			100MHz		-158			
			100kHz		-101			
DNI	V00 I	VCO4	1MHz		-124		15 // 1	
PN _{VCO}	VCO phase noise	f _{VCO} = 11.4GHz	10MHz		-146		dBc/Hz	
			100MHz		-158			
		VCO5 f _{VCO} = 12.5GHz	100kHz		-102			
			1MHz		-126			
			10MHz		-147			
			100MHz		-156			
		VCO6 f _{VCO} = 13.6GHz	100kHz		-101			
			1MHz		-124			
			10MHz		-146			
			100MHz		-160			
		VCO7 f _{VCO} = 14.7GHz	100kHz		-101			
			1MHz		-124			
			10MHz		-146			
			100MHz		-157			
t _{VCOCAL}	VCO calibration time	Switch across the entire $f_{OSC} = f_{PD} = 100 MHz; N$			650		μs	
		8.1GHz			94			
		9.3GHz			106		ı	
		10.4GHz			122			
K _{vco}	VCO Gain	11.4GHz			148		MHz/V	
•00		12.5GHz			185		1V11 12/ V	
		13.6GHz			202			
		14.7GHz			233		1	
ΔT _{CL}	Allowable temperature drift when VCO is not re-calibrated				125		°C	
H2	VCO second harmonic	f _{VCO} = 8GHz, divider di	sabled		-30			
H3	VCO third harmonic	f _{VCO} = 8GHz, divider di			-25		dBc	

www.ti.com

$3.2\text{V} \le \text{V}_{\text{CC}} \le 3.45\text{V}, -55^{\circ}\text{C} \le \text{T}_{\text{C}} \le +125^{\circ}\text{C}$. Typical values are at $\text{V}_{\text{CC}} = 3.3\text{V}, 25^{\circ}\text{C}$ (unless otherwise noted).

	PARAMETER TEST CONDITIONS		MIN	TYP MAX	UNIT	
DIGITAL	INTERFACE (Applies to SCK, SDI, CSI	B, CAL, RECAL_EN, MUXou	t, SYNC, SysRefReq, FSx)			
V _{IH}	High-level input voltage			1.6		V
V _{IL}	Low-level input voltage				0.4	V
I _{IH}	High-level input current			-100	100	μA
I _{IL}	Low-level input current			-100	100	μA
V _{OH}	High-level output voltage	MUVaut pip	Load current = -5mA	V _{CC} - 0.6		V
V _{OL}	Low-level output voltage	- MUXout pin	Load current = 5mA		0.6	V

- Single-ended output power obtained after de-embedding microstrip trace losses and matching with a manual tuner. Unused port (1) terminated to 50Ω load.
- Output power, spurs, and harmonics can vary based on board layout and components.
- For lower VCO frequencies, the N divider minimum value can limit the phase-detector frequency.
- The PLL noise contribution is measured using a clean reference and a wide loop bandwidth and is composed into flicker and flat components. PLL_flat = PLL_FOM + 20× log(f_{VCO}/f_{PD}) + 10 × log(f_{PD} / 1Hz). PLL_flicker (offset) = PLL_1/f + 20 × log(f_{VCO} / 1GHz) - 10× log(offset / 10kHz). Once these two components are found, the total PLL noise can be calculated as PLL_Noise = 10 × log(10^{PLL_Flat}/10 + 10^{PLL_flicker}/10)

5.6 Timing Requirements

 $(3.2\text{V} \le \text{V}_{CC} \le 3.45\text{V}, -55^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}, \text{ except as specified. Nominal values are at V}_{CC} = 3.3\text{V}, T_{A} = 25^{\circ}\text{C})$

			MIN	NOM M	AX	UNIT
SYNC AND	SYSREFREQ TIMING		<u> </u>			
t _{SETUP}	Setup time for pin relative to OSCIN rising edge	Soo Figure F 1	2.5			ns
t _{HOLD}	Hold time for pin relative to OSCIN rising edge	See Figure 5-1	2.5			ns
SPI TIMING						
f _{SPI}	SPI SCK speed	t _{CWL} + t _{CWH} ≥ 500ns			2	MHz
t _{CE}	Clock to enable low time		50			ns
t _{CS}	Clock to data wait time		50			ns
t _{CH}	Clock to data hold time		50			ns
t _{CWH}	Clock pulse width high	San Figure 5 2	200			ns
t _{CWL}	Clock pulse width low	See Figure 5-2	200			ns
t _{CES}	Enable to clock setup time		50			ns
t _{EWH}	Enable pulse width high		100			ns
t _{CD}	Falling clock edge to data wait time				200	ns

5.7 Timing Diagrams

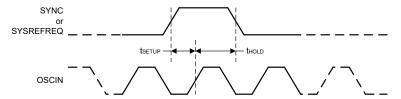


Figure 5-1. Trigger Signals Timing Diagram

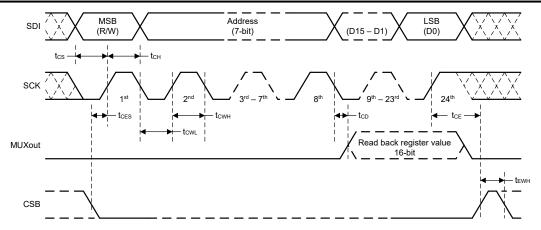
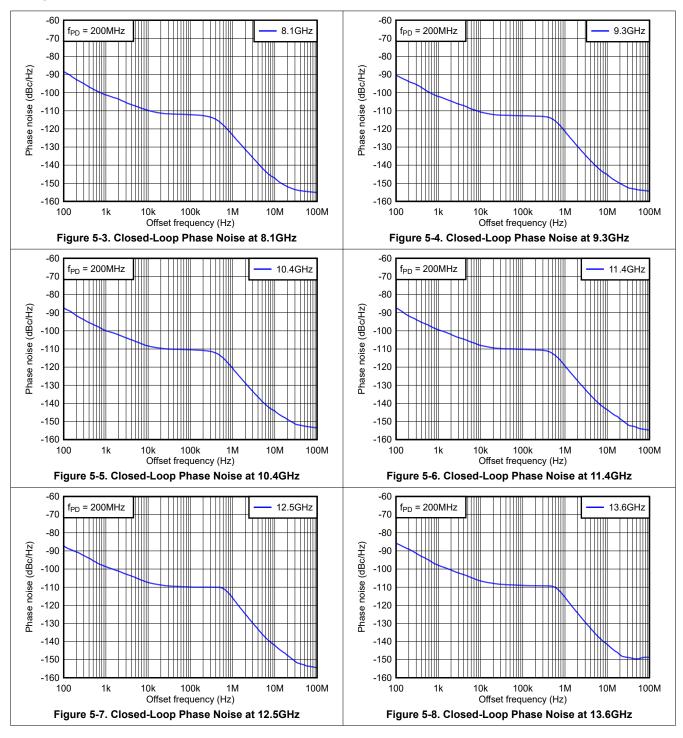


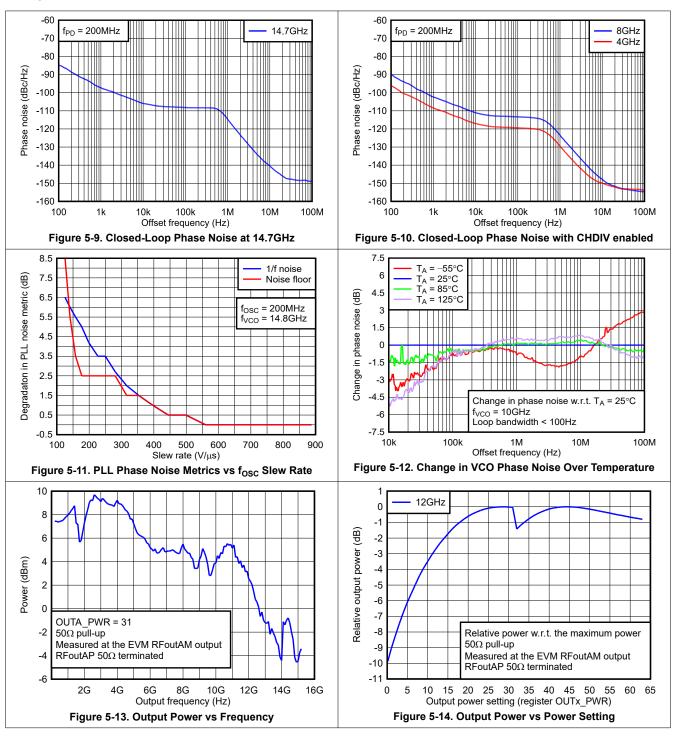
Figure 5-2. SPI Timing Diagram

LMX2615-SP supports SPI Mode 0 (CPOL=0, CPHA=0) and Mode 3 (CPOL=01 CPHA=1).


To write registers:

- The R/W bit must be set to 0.
- The data on SDI pin is clocked into the shift register upon the rising edge of the clocks on SCK pin. On the rising edge of the 24th clock cycle, the data is transferred from the data field into the selected register bank.
- The CSB pin can be held high after programming, which causes the LMX2615-SP to ignore clock pulses.
- If the SCK and SDI lines are toggled while the VCO is in lock, as is sometimes the case when these lines are shared between devices, the phase noise can be degraded during the time of this programming.

To read back registers:


- · The R/W bit must be set to 1.
- The data field contents on the SDI line are ignored.
- The read back data on MUXout pin is clocked out starting from the falling edge of the 8th clock cycle.
- MUXout pin is tri-state only if MUXOUT_CTRL = 0.

5.8 Typical Characteristics

5.8 Typical Characteristics (continued)

6 Detailed Description

6.1 Overview

The LMX2615-SP is a high-performance, wideband frequency synthesizer with integrated VCO and output divider. The VCO operates from 7600MHz to 15200MHz and this can be combined with the output divider to produce any frequency in the range of 40MHz to 15.2GHz. Within the input path there are two dividers .

The PLL is fractional-N PLL with programmable delta-sigma modulator up to 4th order. The fractional denominator is a programmable and 32-bits long, which can provide fine frequency steps easily below 1Hz resolution as well as be used to do exact fractions like 1/3, 7/1000, and many others.

For applications where deterministic or adjustable phase is desired, the SYNC pin can be used to get the phase relationship between the OSCin and RFout pins deterministic. Once this is done, the phase can be adjusted in very fine steps of the VCO period divided by the fractional denominator.

The ultra-fast VCO calibration is ideal for applications where the frequency must be swept or abruptly changed. The frequency can be manually programmed.

The JESD204B support includes using the RFoutB output to create a differential SYSREF output that can be either a single pulse or a series of pulses that occur at a programmable distance away from the rising edges of the output signal.

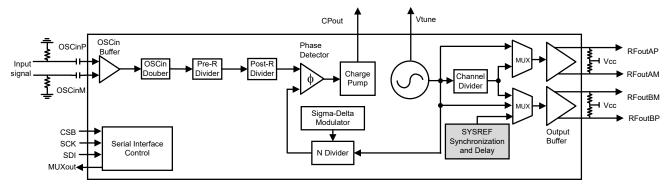

The LMX2615-SP device requires only a single 3.3V power supply. The internal power supplies are provided by integrated LDOs, eliminating the need for high performance external LDOs.

Table 6-1 shows the range of several of the doubler, dividers, and fractional settings.

Table 6-1. Range of Doubler, Divider, and Fractional Settings

PARAMETER	MIN	MAX	COMMENTS
OSCin doubler	0 (1X)	1 (2X)	The low noise doubler can be used to increase the phase detector frequency to improve phase noise and avoid spurs. This is in reference to the OSC_2X bit.
Pre-R divider	1 (bypass)	128	Only use the Pre-R divider if the input frequency is too high for the Post-R divider.
Post-R divider	1 (bypass)	255	The maximum input frequency for the Post-R divider is 250MHz. Use the Pre-R divider if necessary.
N divider	≥ 28	524287	The minimum divide depends on fractional order and VCO frequency. See Section 6.3.5 for more details.
Fractional numerator	0 (Integer channel)	2 ³² – 2 = 4294967294	The fractional numerator is programmable. This numerator is ignored when fractional order = integer mode.
Fractional denominator	1	2 ³² – 1 = 4294967295	The fractional denominator is programmable, This denominator is not a fixed denominator.
Fractional order (MASH_ORDER)	0	4	Order 0 is integer mode and the order can be programmed.
Channel divider	2	192	This is the series of several dividers. Also, be aware that above 11.5GHz, the maximum allowable channel divider value is 6.
Output frequency	Approx. 40MHz	15.2GHz	This is implied by the minimum VCO frequency divided by the maximum channel divider value.

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Reference Oscillator Input

The OSCin pins are used as a frequency reference input to the device. The input is high impedance and requires AC-coupling capacitors at the pin. The OSCin pins can be driven single-ended with a CMOS clock or XO. Differential clock input is also supported, making interfacing with high-performance system clock devices such as TI's LMK series clock devices simpler. As the OSCin signal is used as a clock for the VCO calibration, a proper reference signal must be applied at the OSCin pin at the time of programming FCAL_EN = 1. Reference clock signal can be presented at OSCin before the LMX2615-SP device is powered up.

6.3.2 Reference Path

The reference path consists of an OSCin doubler (OSC_2X), Pre-R divider, and a Post-R divider.

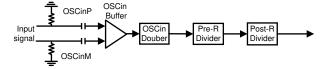


Figure 6-1. Reference Path Diagram

The OSCin doubler (OSC_2X) can double up low OSCin frequencies. Pre-R (PLL_R_PRE) and Post-R (PLL_R) dividers both divide frequency down. The phase detector frequency, f_{PD}, is calculated in Equation 1

$$f_{PD} = f_{OSC} \times OSC_{2X} / (PLL_{R}PRE \times PLL_{R})$$
(1)

For Equation 1, remember:

- If the OSCin doubler is used, the OSCin signal must have a 50% duty cycle as both the rising and falling edges are used.
- If the OSCin doubler is not used, only rising edges of the OSCin signal are used and duty cycle is not critical.

6.3.2.1 OSCin Doubler (OSC_2X)

The OSCin doubler allows one to double the input reference frequency up to 400MHz while adding minimal noise. In some situations using the doubler to go to a higher frequency than the maximum phase detector frequency can be advantageous because the Pre-R divider can be able to divide down this frequency to phase detector frequency that is advantageous for fractional spurs.

6.3.2.2 Pre-R Divider (PLL R PRE)

The Pre-R divider is useful for reducing the input frequency to help meet the maximum 250MHz input frequency limitation to the PLL-R divider. Otherwise, Pre-R divider does not have to be used.

Submit Document Feedback

6.3.2.3 Post-R Divider (PLL_R)

The Post-R divider can be used to further divide down the frequency to the phase detector frequency. When the divider is used ($PLL_R > 1$), the input frequency to this divider is limited to 250MHz.

6.3.3 State Machine Clock

The state machine clock is a divided down version of the OSCin signal that is used internally in the device. This divide value 1, 2, 4, 8, 16 or 32 is determined by CAL_CLK_DIV programming word. This state machine clock impacts various features like the VCO calibration. The state machine clock is calculated as $f_{SM} = f_{OSC} / 2^{CAL_CLK_DIV}$. Maximum state machine clock frequency is 50MHz.

6.3.4 PLL Phase Detector and Charge Pump

The phase detector compares the outputs of the Post-R divider and N divider and generates a correction current corresponding to the phase error until the two signals are aligned in phase. This charge-pump current is software programmable to many different levels, allowing modification of the closed-loop bandwidth of the PLL.

6.3.5 N Divider and Fractional Circuitry

The N divider includes fractional compensation and can achieve any fractional denominator from 1 to $(2^{32}-1)$. The integer portion of N is the whole part of the N divider value, and the fractional portion, N_{frac} = NUM / DEN, is the remaining fraction. In general, the total N divider value is determined by N + NUM / DEN. The N, NUM and DEN are software programmable. The higher the denominator, the finer the resolution step of the output. For example, even when using $f_{PD} = 200 \text{MHz}$, the output can increment in steps of 200 MHz / $(2^{32}-1) = 0.047 \text{Hz}$. Equation 2 shows the relationship between the phase detector and VCO frequencies.

$$f_{VCO} = f_{PD} \times IncludedDivide \times (N + NUM / DEN)$$
 (2)

The sigma-delta modulator that controls this fractional division is also programmable from integer mode to fourth order. To make the fractional spurs consistent, the modulator is reset any time that the R0 register is programmed.

The N divider has minimum value restrictions based on the modulator order and VCO frequency. Furthermore, the PFD_DLY_SEL bit must be programmed in accordance to the Table 6-2. PFD_DLY_SEL is used to optimize phase noise, the recommended values apply to most PLL configurations. These values can be slightly alternated to suit actual application needs.

In SYNC mode, IncludedDivide can be larger than one, otherwise IncludedDivide is just 1. See Table 6-11 for details.

MASH_ORDER	f _{VCO} / IncludedDivide (MHz)	MINIMUM N	PFD_DLY_SEL
0	≤ 12500	29	1
	> 12500	33	2
1	≤ 10000	30	1
	10000 – 12500	34	2
	> 12500	38	3
2	≤ 4000	31	1
	7500 – 10000	35	2
	> 10000	39	3
3	≤ 4000	33	1
	7500 – 10000	41	3
	> 10000	45	4
4	≤ 4000	45	3
	7500 – 10000	53	5
	> 10000	57	6

Table 6-2. Minimum N Divider Restrictions

6.3.6 MUXout Pin

The MUXout pin can be configured as lock detect indicator for the PLL or as an serial data output (SDO) for the SPI to read back registers. Field MUXOUT_LD_SEL (register R0[2]) configures this output.

Table 6-3. MUXout Pin Configurations

MUXOUT_LD_SEL	FUNCTION
0	Serial data output for readback
1	Lock detect indicator

When lock detect indicator is selected, there are two types of indicator and the indicators can be selected with the field LD_TYPE (register R59[0]). The first indicator is called "VCOCal" (LD_TYPE = 0) and the second indicator is called "Vtune and VCOCal" (LD_TYPE = 1).

6.3.6.1 Serial Data Output for Readback

In this mode, the MUXout pin becomes the serial data output of the SPI. This output can be configured to tri-state (MUXOUT_CTRL = 0) so line sharing is possible. Readback is very useful when LMX2615-SP is used in full assist mode and VCO calibration data are retrieved and saved for future use. Readback can also be used to read back the lock status using the field rb_LD_VTUNE(register R110[10:9]).

6.3.6.2 Lock Detect Indicator Set as Type "VCOCal"

In this mode the MUXout pin is asserted HIGH after a VCO calibration is completed (no matter if the calibration is successful or not) and the lock detect delay timer is time out. During a VCO calibration and before the lock delay timer is time out, MUXout pin is LOW. The programmable lock detect timer (LD_DLY) adds an additional delay after the VCO calibration finishes before the lock detect indicator is asserted high. LD_DLY is a 16 bit unsigned quantity that corresponds to 4 times the number of state machine clock cycles. For example, given $f_{OSC} = 100 \text{MHz}$, CAL_CLK_DIV = 1, then state machine clock frequency = f_{OSC} / $2^{\text{CAL}_\text{CLK}_\text{DIV}} = 50 \text{MHz}$. If LD_DLY = 1000, the delay time is equal to 80µs. MUXout pin remains in the current state no matter if the PLL is actually locked or not. In other words, if the PLL goes out of lock or the input reference goes away when the current state is high, then the current state remains high. This lock detect setting is useful for measuring VCO calibration time.

6.3.6.3 Lock Detect Indicator Set as Type "Vtune and VCOCal"

In this mode the MUXout pin is high when the VCO calibration has finished, the lock detect delay timer is finished running, and the PLL is locked. This indicator can remain in the current state (high or low) if the OSCin signal is lost. The true status of the indicator is updated and resume operation only when a valid input reference to the OSCin pin is returned. An alternative method to monitor the OSCin of the PLL is recommended. This indicator is reliable as long as the reference to OSCin is present.

Since both types of lock detect indicator requires a completion of VCO calibration, at least one VCO calibration has to be performed in full assist mode, otherwise the lock detector does not work.

6.3.7 VCO (Voltage-Controlled Oscillator)

The LMX2615-SP includes a fully integrated VCO. The VCO takes the voltage from the loop filter and converts this into a frequency. The VCO frequency is related to the other frequencies as shown in Equation 2.

6.3.7.1 VCO Calibration

To reduce the VCO tuning gain and therefore improve the VCO phase-noise performance, the VCO frequency range is divided into several different frequency bands. The entire range, 7600MHz to 15200MHz, covers an octave that allows the divider to take care of frequencies below the lower bound. This creates the need for frequency calibration to determine the correct frequency band given a desired output frequency. The frequency calibration routine is activated any time that the R0 register is programmed with the FCAL_EN = 1. A valid OSCin signal must present before VCO calibration begins.

The VCO also has an internal amplitude calibration algorithm to optimize the phase noise which is also activated any time the R0 register is programmed.

Product Folder Links: LMX2615-SP

The optimum internal settings for this are temperature dependent. If the temperature is allowed to drift too much without being re-calibrated, some minor phase noise degradation can result. The maximum allowable drift for continuous lock, ΔT_{CL} , is stated in the electrical specifications. For this device, a number of 125°C means the device never loses lock if the device is operated under recommended operating conditions.

The LMX2615-SP allows the user to assist the VCO calibration. In general, there are three kinds of assistance, as shown in Table 6-4:

ASSISTANCE LEVEL	DESCRIPTION	VCO_SEL	VCO_SEL_FORCE VCO_CAPCTRL_FORCE VCO_DACISET_FORCE	VCO_CAPCTRL VCO_DACISET
No assist	User does nothing to improve VCO calibration speed.	7	0	Don't Care
Partial assist	Upon every frequency change, before the FCAL_EN bit is checked, the user provides the initial starting VCO_SEL.	Choose by table	0	Don't Care
Full assist	The user forces the VCO core (VCO_SEL), amplitude settings (VCO_DACISET), and frequency band (VCO_CAPCTRL) and manually sets the value.	Choose by readback	1	Choose by readback

For the no assist method, just set VCO_SEL = 7 and this is done. For partial assist, the VCO calibration time can be improved by changing the VCO_SEL bit according to the target frequency. Note that the frequencies in Table 6-5 is not the exact VCO core range, but actually favors choosing the VCO. This is not only optimal for VCO calibration time, but required for reliable locking. Both method requires programming R0, with FCAL_EN = 1, to complete the VCO calibration.

Table 6-5. Minimum VCO_SEL for Partial Assist

f _{VCO} (MHz)	VCO CORE (MIN)
7600 - 8740	VCO1
8740 - 10000	VCO2
10000 - 10980	VCO3
10980 -12100	VCO4
12100 - 13080	VCO5
13080 - 14180	VCO6
14180 - 15200	VCO7

Full assist mode completely skips the VCO calibration process, this method results in the shortest VCO frequency switching time. Operation of this mode requires a one-time VCO calibration to get the VCO parameters (VCO_SEL, VCO_DACISET and VCO_CAPCTRL) for all the frequency of interests. This data is manually applied to the LMX2615-SP device. When the xxx_FORCE bits are set, the device uses this data to setup the VCO. Programming of R0 is not necessary in full assist mode. However, if R0 with FCAL_EN = 1 is programmed, a VCO calibration takes place but the VCO parameters remain as the written values.

6.3.7.2 Watchdog Feature

The watchdog feature is used to the scenario when radiation is present during VCO calibration which can cause the VCO calibration to fail. When this feature is enabled, the watchdog timer runs during VCO calibration. If this timer runs out before the VCO calibration is finished, then the VCO calibration is restarted. The WD_CNTRL word sets how many times this calibration can be restarted by the watchdog feature.

6.3.7.3 RECAL Feature

The RECAL feature is used to mitigate the scenario when the VCO is in lock, but then radiation causes the VCO to go out of lock. When the RECAL_EN pin is high, if the PLL loses lock and stays out of lock for a time specified by the WD_DLY word, then RECAL triggers a VCO re-calibration. Lock detector must be set to "Vtune and VCOCal" (LD_TYPE = 1) and the lock detect timer (LD_DLY) must be non-zero. Suggested minimum lock detector timer delay time is 200µs for 50MHz state machine clock frequency.

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

6.3.7.4 Determining the VCO Gain

The VCO gain varies between the seven cores and is the lowest at the lowest end of the band and highest at the highest end of each band. For a more accurate estimation, use Table 6-6:

Table 0-0. VCO Calli					
f1 (MHz)	f2 (MHz)	K _{VCO} 1	K _{VCO} 2		
7600	8740	78	114		
8740	10000	91	125		
10000	10980	112	136		
10980	12100	136	168		
12100	13080	171	206		
13080	14180	188	218		
14180	15200	218	248		

Table 6-6. VCO Gain

Equation 3 can estimate the VCO gain for an arbitrary VCO frequency, f_{VCO}:

$$K_{VCO} = K_{VCO}1 + (K_{VCO}2 - K_{VCO}1) \times (f_{VCO} - f_1) / (f_2 - f_1)$$
 (3)

6.3.8 Channel Divider

To go below the VCO lower bound of 7600MHz, the channel divider can be used. The channel divider consists of four segments, and the total division value is equal to the multiplication of them. Therefore, not all values are

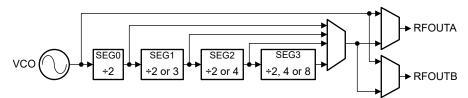


Figure 6-2. Channel Divider

When the channel divider is used, there are limitations on the values.

Table 6-7. Channel Divider Limitations

CHDIV[4:0]	EQUIVALENT DIVISION VALUE	VCO FREQUENCY LIMITATION
0	2	
1	4	None
2	6	
3	8	
4	12	
5	16	
6	24	f _{VCO} ≤ 11.5GHz
7	32	
8	48	1VC0 ≥ 11.3GHZ
9	64	
10	96	
11	128	
12	192	

The channel divider is powered up whenever an output (OUTx_MUX) is selected to the channel divider or SYSREF_EN = 1, regardless of whether the channel divider is powered down or not. When an output is not

Product Folder Links: LMX2615-SP

used, TI recommends selecting the VCO output to verify that the channel divider is not unnecessarily powered up.

Table 6-8. Channel Divider

OUTA MUX	OUTA MUX OUTB MUX		CHANNEL DIVIDER
Channel Divider X		X	
X Channel Divider		X	Powered up
X X		1	
	Powered down		

6.3.9 Output Buffer

The RF output buffer type is open collector and requires an external pullup to V_{CC} . This component can be a 50Ω resistor or an inductor. The inductor has less controlled impedance, but higher power. For the inductor case, follow this with a resistive pad. The output power can be programmed to various levels or disabled while still keeping the PLL in lock. If using a resistor, limit OUTx_PWR setting to 31; higher than this tends to actually reduce power. Note that states 32 through 47 are redundant and must be ignored. In other words, after state 31, the next higher power setting is 48.

Table 6-9. OUTx PWR Recommendations

f _{OUT} Restrictions		Comments
10MHz ≤ f _{OUT} ≤ 5GHz	None	At lower frequencies, the output buffer impedance is high, so the 50Ω pullup makes the output impedance look somewhat like 50Ω . Typically, maximum output power is near a setting of OUTx_PWR = 50.
5GHz < f _{OUT} ≤ 10GHz	OUTx_PWR ≤ 31	In this range, parasitic inductances have some impact, so the output setting is restricted.
10GHz < f _{OUT}	OUTx_PWR ≤ 20	At these higher frequency ranges, keep below 20 for highest power and optimal noise floor.

6.3.10 Powerdown Modes

The LMX2615-SP can be powered up and down using the CAL pin or the POWERDOWN bit. In Pin mode, a Low-to-High transition to the CAL pin activates a VCO calibration.

6.3.11 Treatment of Unused Pins

This device has several pins for many features and there is a preferred way to treat these pins if not needed. For the input pins, a series resistor is recommend, but the pins can be directly shorted.

Table 6-10. Recommended Treatment of Pins

Pins	SPI Mode	Pin Mode	Recommended Treatment if NOT Used
FS0, FS1, FS2, FS3, FS4, FS5, FS6, FS7	Never Used	Always Used	GND with 1kΩ
SYNC, SysRefReq	Sometimes Used	Never Used	GND with 1kΩ
OSCinP, OSCinM	Always Used	Always Used	GND with 50Ω after the AC-coupling capacitor. If one side of complementary side is used and other side is not, impedance looking out must be similar for both of these pins.
SCK, SDI	Always Used	Never Used	GND with 1kΩ
CSB	Always Used	Never Used	VCC with 1kΩ
RECAL_EN	Sometimes Used	Sometimes Used	GND with 1kΩ
CAL	Sometimes Used	Always Used	VCC with 1kΩ
RFoutA, RFoutB	Sometimes Used	Sometimes Used	VCC with 50Ω . If one side of complementary side is used and the other side is not, impedance looking out must be similar for both of these pins.
MUXout	Sometimes Used	Sometimes Used	GND with 10kΩ

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

6.3.12 Phase Synchronization

6.3.12.1 General Concept

The SYNC pin allows one to synchronize the LMX2615-SP such that the delay from the rising edge of the OSCin signal to the output signal is deterministic. Initially, the devices are locked to the input, but are not synchronized. The user sends a synchronization pulse that is reclocked to the next rising edge of the OSCin pulse. After a given time, t_1 , the phase relationship from OSCin to f_{OUT} is deterministic. This time is dominated by the sum of the VCO calibration time, the analog setting time of the PLL loop, and the MASH_RST_COUNT if used in fractional mode.

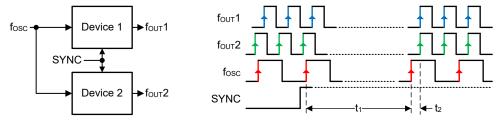


Figure 6-3. Devices Are Now Synchronized to OSCin Signal

When SYNC mode is enabled (VCO_PHASE_SYNC = 1), part of the channel divider (IncludedDivide) can be included in the feedback path. When IncludedDivide is not equal to 1:

- N divider is smaller. Care must be taken not to violate the minimum N divider restriction.
- SEG1_EN must be equal to 1.
- If IncludedDivide = 6, make use of the FCAL_HPFD_ADJ register to reduce the phase detector frequency being used during VCO calibration to less than 50MHz.

Table 6-11. Included Divide With VCO PHASE SYNC = 1

10.0.0 0 111 1110101		
OUTx_MUX	CHANNEL DIVIDER	IncludedDivide
OUTA_MUX = OUTB_MUX = 1 ("VCO")	Don't Care	1 (bypassed)
All other valid conditions	Divisible by 3	SEG0 × SEG1 = 6
All other valid conditions	All other values	SEG0 × SEG1 = 4

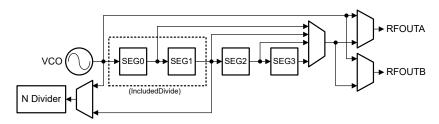


Figure 6-4. Phase SYNC Diagram

6.3.12.2 Categories of Applications for SYNC

Submit Document Feedback

The requirements for SYNC depend on certain setup conditions. Figure 6-5 gives the different categories. In Category 3 SYNC, the setup and hold times of the trigger signal at the SYNC pin with respect to the OSCin pin are critical.

Table 6-12. SYNC Pin Timing Characteristics for Category 3 SYNC

Parameter	Description	Min	Max	Unit
fosc	Input reference clock frequency		50	MHz
t _{SETUP}	Setup time between SYNC and OSCin rising edges	2.5		ns
t _{HOLD}	Hold time between SYNC and OSCin rising edges	2.5		ns

Product Folder Links: LMX2615-SP

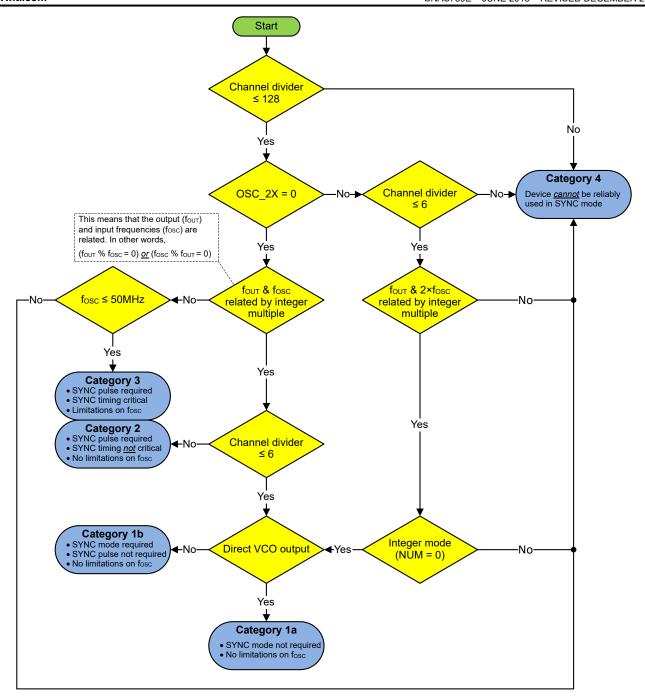


Figure 6-5. Determining the SYNC Category

6.3.12.3 Procedure for Using SYNC

This procedure must be used to put the device in SYNC mode.

- 1. Use the flowchart to determine the SYNC category.
- 2. Make determinations for OSCin and using SYNC based on the category
 - a. If Category 4, SYNC cannot be performed in this setup.
 - b. If Category 3, verify that the maximum f_{OSC} frequency for SYNC mode is not violated and there are hardware accommodations to use the SYNC pin.
- 3. If the channel divide is used, determine the IncludedDivide value from Table 6-11.

- 4. If not done already, divide the N divider and fractional values by IncludedDivide (Equation 2) to account for the included channel divide.
- 5. Program the device with the VCO PHASE SYNC = 1.
- 6. Apply the SYNC, if required
 - a. If Category 2, a rising edge can be sent to the SYNC pin and the timing of this is not critical.
 - b. If Category 3, the timing of the SYNC signal with respect to OSCin clock as shown in Table 6-12 must obey.

6.3.12.4 SYNC Input Pin

If not using the SYNC pin, then the INPIN_IGNORE bit must be set to one, otherwise the pin causes issues with lock detect. If the pin is desired for to be used and VCO PHASE SYNC = 1, then set INPIN IGNORE = 0.

6.3.13 Phase Adjust

The MASH_SEED word can use the sigma-delta modulator to shift output signal phase with respect to the input reference. If a SYNC pulse is sent or the MASH is reset with MASH_RST_N = 0, then this phase shift is from the initial phase of zero. If the MASH_SEED word is written to, then this phase is added. The phase shift is calculated as Equation 4.

Example:

MASH_SEED = 1

Denominator = 12

Channel divider = 16

Phase shift (VCO PHASE SYNC = 0) = 360 × (1/12) × (1/16) = 1.875 degrees

Phase Shift (VCO PHASE SYNC = 1) = $360 \times (1/12) \times (4/16) = 7.5$ degrees

There are several considerations when using MASH_SEED:

- Phase shift can be done with a PLL_NUM = 0, but MASH_ORDER must be greater than zero.
- For MASH ORDER = 1, the phase shifting only occurs when MASH SEED is a multiple of PLL DEN.
- For MASH ORDER = 2, PLL N ≥ 45.
- For MASH_ORDER = 3, PLL_N ≥ 49.
- For MASH ORDER = 4, PLL N ≥ 54.
- For phase adjustment, the condition PLL DEN > PLL NUM + MASH SEED must be satisfied.
- When MASH_SEED and phase SYNC are used together with IncludedDivide > 1, additional constraints can
 be necessary to produce a monotonic relationship between MASH_SEED and the phase shift, especially
 when the VCO frequency is below 10GHz. These constraints are application specific, but some general
 guidelines are to reduce modulator order and increase the N divider.
 - Use MASH ORDER ≤ 2.
 - When using the 2nd order modulator for VCO frequencies below 10GHz (when IncludedDivide = 6) or 9GHz (when IncludedDivide = 4), increase the PLL_N value much higher or change to the 1st order modulator.
- Setting MASH_SEED > 0 can impact fractional spurs. If used with a PLL_NUM = 0, this setting can create fractional spurs. If used with a non-zero numerator, this setting can either help or hurt spurs and this effect can be simulated with the TI PLLatinum Sim tool.
- The programming of the MASH_SEED word is cumulative. Cumulative means that the programmed value
 is added to the current value. Whenever the MASH_RST_N bit is toggled or the VCO is re-calibrated, the
 current value is set to MASH_SEED. Static phase adjust involves setting the MASH_SEED word to the
 desired value and toggling the MASH_RST_N bit to force this value. Dynamic phase adjust involves setting

Submit Document Feedback

MASH_SEED to a smaller value and repetitively program the MASH_SEED word to add to the cumulative value for MASH_SEED. For example, we program MASH_SEED to get 10 degrees of phase shift. If we program the same value of MASH_SEED 3 times, we get 30 degrees of phase shift.

6.3.14 Fine Adjustments for Phase Adjust and Phase SYNC

Phase SYNC refers to the process of getting the same phase relationship for every power up cycle and each time assuming that a given programming procedure is followed. However, there are some adjustments that can be made to get the most accurate results. As for the consistency of the phase SYNC, the only source of variation can be if the VCO calibration chooses a different VCO core and capacitor, which can introduce a bimodal distribution with about 10ps of variation. If this 10ps is not desirable, then the variation can be eliminated by reading back the VCO parameters and forcing these values to verify the same calibration settings every time. The delay through the device varies from part to part and can be on the order of 60ps. This part to part variation can be calibrated out with the MASH_SEED. The variation in delay through the device also changes on the order of +2.5ps/°C, but devices on the same board likely have similar temperatures. In summary, the device can be made to have consistent delay through the part and there are means to adjust out any remaining errors with the MASH_SEED. This tends only to be an issue at higher output frequencies when the period is shorter.

6.3.15 SYSREF

The LMX2615-SP can generate a SYSREF output signal that is synchronized to f_{OUT} with a programmable delay. This output can be a single pulse, series of pulses, or a continuous stream of pulses. To use the SYSREF capability, the PLL must first be placed in SYNC mode with VCO_PHASE_SYNC = 1.

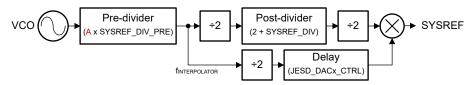


Figure 6-6. SYSREF Block Diagram

f_{SYSREF} = f_{VCO} / [(A × SYSREF_DIV_PRE) × 2 × (2 + SYSREF_DIV) × 2], where A is the IncludedDivide value. (5)

As Figure 6-6 shows, the SYSREF feature uses IncludedDivide and SYSREF_DIV_PRE to generate $f_{\text{INTERPOLATOR}}$. This frequency is used for re-clocking of the rising and falling edges at the SysRefReq pin. In master mode, the $f_{\text{INTERPOLATOR}}$ is further divided down to generate finite series or continuous stream of pulses.

	<u> </u>			
PARAMETER	MIN	TYP	MAX	UNIT
f _{VCO}	7600		15200	MHz
f _{INTERPOLATOR}	0.8		1.5	GHz
SYSREF_DIV_PRE		1, 2, or 4		
SYSREF_DIV	0	, 1, 2,, 2047		
Pulses for pulsed mode (SYSREF_PULSE_CNT)	1		15	

Table 6-13, SYSREF Specification

The delay can be programmed using the JESD_DAC1_CTRL, JESD_DAC2_CTRL, JESD_DAC3_CTRL, and JESD_DAC4_CTRL words. By concatenating these words into a larger word called "SYSREFPHASESHIFT", the relative delay can be found. The sum of these words must always be 63. Altogether, there are 252 useful programmable steps. The delay time of each step is equal to:

SYSREF delay time = $[(A \times SYSREF_DIV_PRE) \times 2] / 252 / f_{VCO}$, where A is the IncludedDivide value. (6)

Table 6-14. SYSREF Delay

SYSREFPHASESHIFT	JESD_DAC1_CTRL	JESD_DAC2_CTRL	JESD_DAC3_CTRL	JESD_DAC4_CTRL
0	36	27	0	0
1	35	28	0	0

SYSREFPHASESHIFT	JESD_DAC1_CTRL	JESD_DAC2_CTRL	JESD_DAC3_CTRL	JESD_DAC4_CTRL
			0	0
36	0	63	0	0
37	0	62	1	0
	0			0
99	0	0	63	0
100	0	0	62	1
	0	0		
162	0	0	0	63
163	1	0	0	62
		0	0	
225	63	0	0	0
226	62	1	0	0
			0	0
251	37	26	0	0

In master mode, the SysRefReq pin is pulled HIGH and stay HIGH to allow continuous SYSREF clock output. To generate SYSREF pulses, a Low-to-High transition is required at the SysRefReq pin.

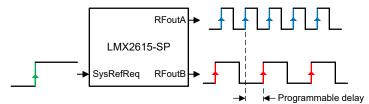


Figure 6-7. SYSREF Pulsed/Continuous Mode

The SYSREF can be used in a repeater mode, which just echos the signal at SysRefReq pin, after being re-clocked to the $f_{\text{INTERPOLATOR}}$ frequency and then output to RFoutB. In repeater mode, the mode can repeat 1, 2, 4, 8, or infinite (continuous) pulses.

Figure 6-8. SYSREF Repeater Mode

To use SYSREF, do these steps:

- 1. Put the device in SYNC mode using the procedure already outlined.
- 2. Figure out IncludedDivide the same way as SYNC mode.
- 3. Calculate the SYSREF_DIV_PRE value such that the interpolator frequency (f_{INTERPOLATOR}) is in the range of 800MHz to 1500MHz.
- 4. If using master mode (SYSREF_REPEAT = 0), verify SysRefReq pin is HIGH and stays HIGH for continuous SYSREF clock generation. To generate SYSREF pulses, set SYSREF_PULSE = 1, set up the pulse count as desired. Pulses are generated with a LOW-to-HIGH transition at SysRefReq pin.
- 5. If using repeater mode, set SYSREF_REPEAT = 1, apply the SYSREF signal to the SysRefReq pin.
- 6. Adjust the delay between the RFoutA and RFoutB signal using the JESD DACx CTL fields.

Submit Document Feedback

6.3.16 Pin Modes

The LMX2615-SP has 8 pins that can be used to program pre-selected modes. A few rules of operation for these pin modes are as follows:

- Set the pin mode as desired. Pin Mode 0 is SPI mode.
- The rise time for the supply needs to be < 50ms.
- Fractional denominator for all pin modes is 4250000000.
- When changing between pin modes, after the pins are changed, the CAL pin must be toggled to calibrate the VCO.
- If the FS7 pin is low, then only the RFoutA output is active. If the FS7 pin is high, then both the RFoutA and RFoutB outputs are active.

Table 6-15 shows all the pin mode configurations.

Table 6-15. Pin Modes

MODE	f _{OSC} (MHz)	f _{PD} (MHz)	CPG (mA)	f _{OUT} (MHz)	CHDIV	f _{VCO} (MHz)	N	FRACTION				
0	SPI Mode 10 20 15 160 48 7680 384 0 / 4250000000											
1	10	20	15	160	48	7680	384	0 / 4250000000				
2	10	10	15	395	24	9480	948	0 / 4250000000				
3	10	20	15	720	12	8640	432	0 / 4250000000				
4	10	20	15	1280			0 / 4250000000					
5	100	200	15	300			0 / 4250000000					
6	100	200	15	1000	8	8000	40	0 / 4250000000				
7	100	200	15	1200	8 9600 48		0 / 4250000000					
8	20	40	15	6199.855	2	12399.71	309	4219187500 / 4250000000				
9	100	200	15	2000	4	8000	40	0 / 4250000000				
10	50	100	15	250	32	8000	80	0 / 4250000000				
11	50	100	15	500	16	8000	80	0 / 4250000000				
12	50	100	15	850	12	10200	102	0 / 4250000000				
13	20	40	15	5654.912	2	11309.824	282	3168800000 / 4250000000				
14	10	20	15	1517.867839	6	9107.207034	455	1531494725 / 4250000000				
15	10	20	15	1708.670653	6	10252.02392	512	2555082575 / 4250000000				
16	50	100	15	2500	4	10000	100	0 / 4250000000				
17		I			Reserved.	Do not use this p	oin mode.					
18	10	20	15	3035.735678	4	12142.94271	607	625326300 / 4250000000				
19	50	100	15	3200	4	12800	128	0 / 4250000000				
20	10	20	15	3417.341306	4	13669.36522	683	1990110100 / 4250000000				
21	50	100	15	4500	2	9000	90	0 / 4250000000				
22	50	100	15	4800	2	9600	96	0 / 4250000000				
23	50	100	15	5350	2	10700	107	0 / 4250000000				
24	50	100	15	6800	2	13600	136	0 / 4250000000				
25	10	20	15	6834	2	13668	683	1700000000 / 4250000000				
26	10	20	15	6834.682611	2	13669.36522	683	1990109675 / 4250000000				
27	10	20	15	6834.6875	2	13669.375	683	1992187500 / 4250000000				
28	10	20	15	6834.75	2	13669.5	683	2018750000 / 4250000000				
29	50	100	15	9600	1	9600	96	0 / 4250000000				
30	50	100	15	9650	1	9650	9650 96 2125000000 / 425000					
31	50	100	15	13500	1	1 13500 135 0 / 425000000		0 / 4250000000				
32	100	100	15	70	128	8960	89	2550000000 / 4250000000				

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

Table 6-15. Pin Modes (continued)

face from CPG four five													
MODE	MODE f _{OSC} f _{PD} CPG (MHz) (mA)		f _{OUT} (MHz)	CHDIV	f _{VCO} (MHz)	N	FRACTION						
33	18.75	37.5	15	393.75	24 9450		252	0 / 4250000000					
34	18.75	37.5	15	422.4990441	24			1697399952 / 4250000000					
35	37.5	75	15	422.4990441	24	10139.97706	135	848699976 / 4250000000					
36	20	40	15	6785.552	2	13571.104	1179800000 / 4250000000						
37	20	40	15	2088.38	4			3561500000 / 4250000000					
38	100	100	15	2210	4	8840	88	1700000000 / 4250000000					
39	100	100	15	2238	4	8952	89	2210000000 / 4250000000					
40	20	40	15	2254.35	4	9017.4	225	1848750000 / 4250000000					
41	20	40	15	2270	4	9080	227	0 / 4250000000					
42	20	40	15	2280	4	9120	228	0 / 425000000					
43	18.75	37.5	15	6759.984705	2	13519.96941	360	2263199800 / 4250000000					
44	37.5	75	15	6759.984705	2	13519.96941	180	1131599900 / 4250000000					
45	20	40	15	8125	1	8125	203	531250000 / 4250000000					
46	20	40	15	8175	1	8175	204	1593750000 / 4250000000					
47	20	40	15	8200	1	8200	205	0 / 425000000					
48	20	40	15	8210	1	8210	205	1062500000 / 4250000000					
49	20	40	15	8212.5	1	8212.5	205	1328125000 / 4250000000					
50	20	40	15	8275	1	8275	206	3718750000 / 4250000000					
51	20	40	15	8300	1	8300	207	2125000000 / 4250000000					
52	20	40	15	8400	1	8400	210	0 / 425000000					
53	20	40	15	8450	1	8450	211	1062500000 / 4250000000					
54	20	40	15	8460	1	8460	211	2125000000 / 4250000000					
55	20	40	15	8484	1	8484	212	425000000 / 4250000000					
56	20	40	15	8496	1	8496	212	1700000000 / 4250000000					
57	20	40	15	8212	1	8212	205	1275000000 / 4250000000					
58	10	20	15	12860	1	12860	643	0 / 425000000					
59	10	20	15	13000	1	13000	650	0 / 425000000					
60	10	20	15	13022.5	1	13022.5	651	531250000 / 4250000000					
61	10	20	15	13125	1	13125	656	1062500000 / 4250000000					
62	10	20	15	13222.5	1	13222.5	661	531250000 / 4250000000					
63	20	40	15	12209.697	1	12209.697	305	1030306250 / 4250000000					
64	10	20	15	13390	1	13390	669	2125000000 / 4250000000					
65	10	20	15	13417.5	1	13417.5	670	3718750000 / 4250000000					
66	20	40	15	12689.697	1	12689.697	317	1030412500 / 4250000000					
67	20	40	15	13906.667	1	13906.667	347	2833368750 / 4250000000					
68	20	40	15	14192.727	1	14192.727	354	3477243750 / 4250000000					
69	10	20	15	8212.5	1	1 8212.5 410 2656250000 / 4		2656250000 / 4250000000					
70	100	50	15	1250	8	8 10000 200 0 / 4250000		0 / 4250000000					
71	50	100	15	1250	8	10000	100	0 / 425000000					
72	18.75	37.5	15	1875	6	11250	300	0 / 425000000					
		L		I .		1	1	1					

6.4 Device Functional Modes

Table 6-16. Device Functional Modes

MODE	DESCRIPTION	SOFTWARE SETTINGS
RESET	Registers are held in the reset state. This device does have a power on reset, but good practice is to also do a software reset if there is any possibility of noise on the programming lines, especially if there is sharing with other devices. Also realize that there are registers not disclosed in the data sheet that are reset as well.	RESET = 1 POWERDOWN = 0
POWERDOWN	Device is powered down.	POWERDOWN = 1 or CAL Pin = Low
Pin Mode	Device settings are determined by pin states.	One of FS0, FS1, FS7 pins is NOT low
Normal operating mode	This is used with at least one output on as a frequency synthesizer and the device can be controlled through the SPI	ALL of FS0, FS1, FS7 pins are low
SYNC mode	This is used where part of the channel divider is in the feedback path to provide deterministic phase.	VCO_PHASE_SYNC = 1
SYSREF mode	In this mode, RFoutB is used to generate pulses for SYSREF.	VCO_PHASE_SYNC =1, SYSREF_EN = 1

6.5 Programming

When not in pin mode, the LMX2615-SP is programmed using 24-bit shift registers. The shift register consists of a R/W bit (MSB), followed by a 7-bit address field and a 16-bit data field. For the R/W bit, 0 is for write, and 1 is for read. The address field ADDRESS[6:0] is used to decode the internal register address. The remaining 16 bits form the data field DATA[15:0]. While CSB is low, serial data is clocked into the shift register upon the rising edge of clock (data is programmed MSB first). See Figure 5-2 for timing details.

6.5.1 Recommended Initial Power-Up Sequence

For the most reliable programming, TI recommends this procedure:

- 1. Apply power to device.
- 2. Program RESET = 1 to reset registers.
- 3. Program registers as shown in the register map in REVERSE order from highest to lowest.
 - Programming of register R114 is only needed one wants to change the default states for WD CNTRL or WD DLY.
 - · Programming of registers R113 down to R76 is not required, but if the registers are programmed, the registers must be done so as the register map shows.
 - Programming of registers R75 down to R0 (with FCAL EN = 1) is required, unless otherwise specified.
 - Make sure R0 with FCAL EN = 1 is the last programmed register in this step, otherwise the VCO does not get calibrated.

Product Folder Links: LMX2615-SP

- 4. Wait 10ms to verify the internal LDOs have settled down.
- 5. Program register R0 one additional time with FCAL EN = 1 to verify that the VCO calibration runs from a stable state.

6.5.2 Recommended Sequence for Changing Frequencies

The recommended sequence for changing frequencies is as follows:

- 1. Change frequency related registers such as PLL N and PLL NUM.
- 2. Program any necessary registers such as PFD DLY SEL.
- 3. Program FCAL EN = 1 to calibrate the VCO.

Submit Document Feedback

6.6 Register Maps

6.6.1 Register Map

Table 6-17. Complete Register Map Table

	Table 6-17. Complete Register Map Table D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 F																
REG	D15		D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3		D1	D0	POR
R0	0	VCO_ PHASE _SYNC	1	0	0	0	OUT_ MUTE	FC HPFE	AL_ D_ADJ	0	0	1	FCAL_ EN	MUXOUT _LD_ SEL	RESET	POWER DOWN	0x241C
R1	0	0	0	0	1	0	0	0	0	0	0	0	MUXOUT _CTRL	CA	L_CLK_DI	V	0x80C
R2	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0x500
R3	0	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0x642
R4	0	0	0	0	1	1	1	0	0	1	0	0	0	0	1	1	0xE43
R5	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0	0x3E8
R6	0	1	1	1	1	0	0	0	0	0	0	0	0	0	1	0	0x7802
R7	0	0	0	0	0	0	0	0	1	0	1	1	0	0	1	0	0xB2
R8	0	VCO_ DACISET _FORCE	1	0	VCO_ CAPCTRL _FORCE	0	0	0	0	0	0	0	0	0	0	0	0x2000
R9	0	0	0	OSC _2X	0	1	1	0	0	0	0	0	0	1	0	0	0x1604
R10	0	0	0	1	0	0	0	0	1	1	0	1	1	0	0	0	0x10D8
R11	0	0	0	0				PLL	_R	•			1	0	0	0	0x18
R12	0	1	0	1	0	0	0	0				PLI	_R_PRE				0x5001
R13	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x4000
R14	0	0	0	1	1	1	1	0	0		CPG		0	0	0	0	0x1E70
R15	0	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	0x64F
R16	0	0	0	0	0	0	0			•		VCO_DA	CISET				0x80
R17	0	0	0	0	0	0	0	1	0	0	1	0	1	1	0	0	0x12C
R18	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0x64
R19	0	0	1	0	0	1	1	1	VCO_CAPCTRL						0x27B7		
R20	1	1		VCO_	SEL	VCO_ SEL_ FORCE	0	0	0	1	0	0	0 1 0 0 0				0xF848
R21	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0x401
R22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0x1
R23	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0x7C
R24	0	0	0	0	0	1	1	1	0	0	0	1	1	0	1	0	0x71A
R25	0	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0x624
R26	0	0	0	0	1	1	0	1	1	0	1	1	0	0	0	0	0xDB0
R27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0x2
R28	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0x488
R29	0	0	1	1	0	0	0	1	1	0	0	0	1	1	0	0	0x318C
R30	0	0	1	1	0	0	0	1	1	0	0	0	1	1	0	0	0x318C
R31	0	SEG1_ EN	0	0	0	0	1	1	1	1	1	0	1	1	0	0	0x43EC
R32	0	0	0	0	0	0	1	1	1	0	0	1	0	0	1	1	0x393
R33	0	0	0	1	1	1	1	0	0	0	1	0	0	0	0	1	0x1E21
R34	0	0	0	0	0	0	0	0	0	0	0	0	0	PL	L_N[18:16	5]	0x0
R35	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0x4
R36		PLL_N[15:0]										0x46					
R37	1	0			PFD_C	LY_SEL			0	0	0	0	0	1	0	0	0x404
R38			•					PLL_	DEN[31:1	6]			•				0xFD51
R39	PLL_DEN[15:0]														0xDA80		
R40	MASH_SEED[31:16]												0x0				
R41	MASH_SEED[15:0]												0x0				
R42	_ · · ·												0x0				
R43									NUM[15:0								0x0
R44	0	0			OUTA	A_PWR			OUTB _PD	OUTA _PD	MASH_ RESET_ N	0	0	MA	SH_ORDE	:R	0x1FA3

Table 6-17. Complete Register Map Table (continued)

					I able 6				<u> </u>				,				
REG	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	POR
R45	1	1	0	OU	TA_MUX	0	0	0	1	1		•	OUTB	_PWR			0xC8DF
R46	0	0	0	0	0	1	1	1	1	1	1	1	1	1	OUTE	3_MUX	0x7FD
R47	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0x300
R48	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0x300
R49	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0x4180
R50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R51	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0x80
R52	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0x420
R53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R54	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R55	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R57	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0x20
R58	INPIN_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0x8001
1130	IGNORE	0	0		0	0	0	U U		0	0	U	0	0	, ·	'	0.00001
R59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LD_ TYPE	0x1
																TYPE	
R60					1				D_DLY								0x9C4
R61	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0xA8
R62	0	0	0	0	0	0	1	1	0	0	1	0	0	0	1	0	0x322
R63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R64	0	0	0	1	0	0	1	1	1	0	0	0	1	0	0	0	0x1388
R65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R66	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0x1F4
R67	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R68	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0	0x3E8
R69	-								T_COUNT			_					0x0
R70									T_COUN								0xC350
1770												SYSREF	SYSREF	SYSREF			0.0000
R71	0	0	0	0	0	0	0	0	SYS	REF_DIV	_PRE	PULSE	_EN	REPEAT	0	0	0x80
R72	0	0	0	0	0						SYSREI	F DIV					0x1
R73	0	0	0	0		JE	ESD_DAC	2 CTRL				JESD_DAC1_CTRL					
R74	-	SREF_PULS					SD_DAC				JESD_DAC3_CTRL						0x3F 0x0
R75	0	0	0	0	1			CHDIV			JESD_DAC3_CTRL 0 0 0 0 0 0 0						0x800
R76	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0xC
R77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R78	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0x64
R79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R81	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R82	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R83	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R84	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R85	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R86	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R87	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R88	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R89	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
	0	0	0		0		0	0	0	0	0	0	0	0	0	0	_
R90				0		0											0x0
R91	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R92	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R93	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R94	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R95	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R97	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
			1	1	1		Ī	1	1		1	1		1	1	1	1

www.ti.com

Table 6-17. Complete Register Map Table (continued)

	Table 6 17. Complete Register Map Table (Continued)																
REG	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	POR
R98	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R101	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R102	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R103	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R104	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0
R105	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0x4440
R106	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0x7
R107	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Read
R108	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Read
R109	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Read
R110	0	0	0	0	0	rb_LD_	VTUNE	-	rt	VCO_SI	EL	-	-	-	-	-	Read
R111	0	0	0	0	0	0	0	0 rb_VCO_CAPCTRL								Read	
R112	0	0	0	0	0	0	0	rb_VCO_DACISET									Read
R113		•						rb_IC	_STATUS	3							Read
R114	0	0	0	0	0	0	WD_DLY WD_CNTRL								0x26F		

Table 6-18 lists the memory-mapped registers for the Device registers.

Table 6-18. Device Registers

Offset	Acronym Register Name	Section
0x0	R0	Go
0x1	R1	Go
0x2	R2	Go
0x3	R3	Go
0x4	R4	Go
0x5	R5	Go
0x6	R6	Go
0x7	R7	Go
0x8	R8	Go
0x9	R9	Go
0xA	R10	Go
0xB	R11	Go
0xC	R12	Go
0xD	R13	Go
0xE	R14	Go
0xF	R15	Go
0x10	R16	Go
0x11	R17	Go
0x12	R18	Go
0x13	R19	Go
0x14	R20	Go
0x15	R21	Go
0x16	R22	Go

Table 6-18. Device Registers (continued)

Offset	Acronym Register Name	Section
0x17	R23	Go
0x18	R24	Go
0x19	R25	Go
0x1A	R26	Go
0x1B	R27	Go
0x1C	R28	Go
0x1D	R29	Go
0x1E	R30	Go
0x1F	R31	Go
0x20	R32	Go
0x21	R33	Go
0x22	R34	Go
0x23	R35	Go
0x24	R36	Go
0x25	R37	Go
0x26	R38	Go
0x27	R39	Go
0x28	R40	Go
0x29	R41	Go
0x2A	R42	Go
0x2B	R43	Go
0x2C	R44	Go
0x2D	R45	Go
0x2E	R46	Go
0x2F	R47	Go
0x30	R48	Go
0x31	R49	Go
0x32	R50	Go
0x33	R51	Go
0x34	R52	Go
0x35	R53	Go
0x36	R54	Go
0x37	R55	Go
0x38	R56	Go
0x39	R57	Go
0x3A	R58	Go
0x3B	R59	Go
0x3C	R60	Go

Table 6-18. Device Registers (continued)

Offset	Acronym Reg	ister Name Se	ction
0x3D	R61		Go
0x3E	R62		Go
0x3F	R63		Go
0x40	R64		Go
0x41	R65		Go
0x42	R66		Go
0x43	R67	(Go
0x44	R68	(Go
0x45	R69	(Go
0x46	R70	(Go
0x47	R71	(Go
0x48	R72	(Go
0x49	R73	(Go
0x4A	R74	(Go
0x4B	R75	(Go
0x4C	R76	(Go
0x4D	R77	(Go
0x4E	R78	(Go
0x4F - 0x68	R79 - R104	(Go
0x69	R105	(Go
0x6A	R106	(Go
0x6B - 0x6D	R107 - R109	(Go
0x6E	R110	(Go
0x6F	R111	(Go
0x70	R112	(Go
0x71	R113	(Go
0x72	R114	(Go

Complex bit access types are encoded to fit into small table cells. Table 6-19 shows the codes that are used for access types in this section.

Table 6-19. Device Access Type Codes

Access Type	Code	Description								
Read Type										
R	R	Read								
Write Type										
W	W	Write								
Reset or Default Value										
-n		Value after reset								

6.6.1.1 R0 Register (Offset = 0x0) [reset = 0x241C]

R0 is shown in Figure 6-9 and described in Table 6-20.

Return to Summary Table.

Figure 6-9. R0 Register

1	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RES			RESI	ERVED		OUT_MU TE	FCAL_HPFI	D_ADJ		RESERVED		FCAL_E N	MUXOUT _LD_SEL	RESET	POWER DOWN
R/W	-0x0 R/W-0x	0	R/W-0x9				R/W-0>	(Ο		R/W-0x1		R/W-0x1	R/W-0x1	R/W-0x0	R/W-0x0

Table 6-20. R0 Register Field Descriptions

Bit	Field	Туре	Reset	. R0 Register Field Descriptions Description
15	RESERVED	R/W	0x0	Program 0x0 to this field.
14	VCO_PHASE_SYNC	R/W	0x0	Phase Sync Mode Enable. In this state, part of the channel divider is put in the feedback path to provide deterministic phase. The action of toggling this bit from 0 to 1 also sends an asynchronous SYNC pulse. 0: Normal operation 1: Phase SYNC enabled
13 - 10	RESERVED	R/W	0x9	Program 0x8 to this field.
9	OUT_MUTE	R/W	0x0	Mute output (RFOUTA/B) during VCO calibration. 0: No mute 1: Mute enabled
8 - 7	FCAL_HPFD_ADJ	R/W	0x0	Adjustment to decrease the f_{PD} frequency for use in VCO calibration. $f_{PD_CAL} = f_{PD} / 2^{FCAL_HPFD_ADJ}$ 0: $f_{PD} \le 50 \text{MHz}$ 1: $50 \text{MHz} < f_{PD} \le 100 \text{MHz}$ 2: $100 \text{MHz} < f_{PD} \le 200 \text{MHz}$ 3: $f_{PD} > 200 \text{MHz}$
6 - 4	RESERVED	R/W	0x1	Program 0x1 to this field.
3	FCAL_EN	R/W	0x1	Writing register R0 with this bit set to a '1' enables and triggers the VCO calibration. 0: No calibration 1: Calibration enabled
2	MUXOUT_LD_SEL	R/W	0x1	Selects the functionality of the MUXout pin. 0: Register read back 1: Lock detect
1	RESET	R/W	0x0	Register reset. This resets all registers and state machines. Program RESET = 1 after Vcc power up to provide consistent performance. 0: Normal operation 1: Reset
0	POWERDOWN	R/W	0x0	Powers down device. 0: Normal operation 1: Powered down

6.6.1.2 R1 Register (Offset = 0x1) [reset = 0x80C]

R1 is shown in Figure 6-10 and described in Table 6-21.

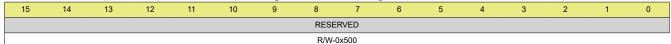
Return to Summary Table.

Figure 6-10. R1 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					RESE	RVED						MUXOUT _CTRL	C	CAL_CLK_DI	V
					R/W-	0x80						R/W-0x1		R/W-0x4	

Product Folder Links: LMX2615-SP

Table 6-21. R1 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 4	RESERVED	R/W	0x80	Program 0x80 to this field.
3	MUXOUT_CTRL	R/W	0x1	Sets the MUXOUT pin status. 0: Tri-state 1: Normal operation
2 - 0	CAL_CLK_DIV	R/W	0x4	Divides down the f_{OSC} frequency to the state machine clock frequency (f_{SM}). $f_{SM} = f_{OSC} / 2^{CAL_CLK_DIV}$. Verify that the state machine clock frequency is 50MHz or less. 0: $f_{OSC} \le 50$ MHz 1: 50 MHz $< f_{OSC} \le 100$ MHz 2: 100 MHz $< f_{OSC} \le 200$ MHz 3: 200 MHz $< f_{OSC} \le 400$ MHz 4: 400 MHz $< f_{OSC} \le 800$ MHz 5: $f_{OSC} \le 800$ MHz 5: $f_{OSC} \ge 800$ MHz

6.6.1.3 R2 Register (Offset = 0x2) [reset = 0x500]

R2 is shown in Figure 6-11 and described in Table 6-22.

Return to Summary Table.

Figure 6-11. R2 Register

Table 6-22. R2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x500	Program 0x500 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.4 R3 Register (Offset = 0x3) [reset = 0x642]

R3 is shown in Figure 6-12 and described in Table 6-23.

Return to Summary Table.

Figure 6-12. R3 Register

Table 6-23. R3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x642	Program 0x642 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.5 R4 Register (Offset = 0x4) [reset = 0xE43]

R4 is shown in Figure 6-13 and described in Table 6-24.

Return to Summary Table.

Figure 6-13. R4 Register

Table 6-24. R4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0xE43	Program 0xE43 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.6 R5 Register (Offset = 0x5) [reset = 0x3E8]

R5 is shown in Figure 6-14 and described in Table 6-25.

Return to Summary Table.

Figure 6-14. R5 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED															
R/W-0x3E8															

Table 6-25. R5 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x3E8	Program 0x3E8 to this field.
				After programming R0 with RESET = 1, no need to program this register.

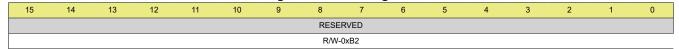
6.6.1.7 R6 Register (Offset = 0x6) [reset = 0x7802]

R6 is shown in Figure 6-15 and described in Table 6-26.

Return to Summary Table.

Figure 6-15. R6 Register

Table 6-26. R6 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x7802	Program 0x7802 to this field.
				After programming R0 with RESET = 1, no need to program this register.

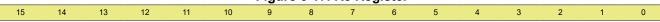
6.6.1.8 R7 Register (Offset = 0x7) [reset = 0xB2]

R7 is shown in Figure 6-16 and described in Table 6-27.

Return to Summary Table.

Figure 6-16. R7 Register

Table 6-27. R7 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0xB2	Program 0xB2 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.9 R8 Register (Offset = 0x8) [reset = 0x2000]

R8 is shown in Figure 6-17 and described in Table 6-28.

Return to Summary Table.

Figure 6-17. R8 Register

Product Folder Links: LMX2615-SP

Figure 6-17. R8 Register (continued)

RESERV ED	VCO_DA CISET_F ORCE	RESERVED	VCO_CA PCTRL_F ORCE	RESERVED
R/W-0x0	R/W-0x0	R/W-0x2	R/W-0x0	R/W-0x0

Table 6-28. R8 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R/W	0x0	Program 0x0 to this field.
14	VCO_DACISET_FORCE	R/W	0x0	Forces VCO_DACISET Value. Useful for fully assisted VCO calibration and debugging purposes. 0: Normal operation 1: Use VCO_DACISET value instead of the value obtained from VCO calibration.
13 - 12	RESERVED	R/W	0x2	Program 0x2 to this field.
11	VCO_CAPCTRL_FORCE	R/W	0x0	Forces VCO_CAPCTRL value. Useful for fully assisted VCO calibration and debugging purposes. 0: Normal operation 1: Use VCO_CAPCTRL value instead of the value obtained from VCO calibration.
10 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.

6.6.1.10 R9 Register (Offset = 0x9) [reset = 0x1604]

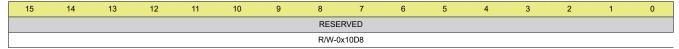
R9 is shown in Figure 6-18 and described in Table 6-29.

Return to Summary Table.

Figure 6-18. R9 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	RESERVED		OSC_2X						RESE	RVED					
	R/W-0x0		R/W-0x1						R/W-0	0x604					

Table 6-29, R9 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 13	RESERVED	R/W	0x0	Program 0x0 to this field.
12	OSC_2X	R/W		Reference path Doubler 0: Disabled 1: Enabled
11 - 0	RESERVED	R/W	0x604	Program 0x604 to this field.

6.6.1.11 R10 Register (Offset = 0xA) [reset = 0x10D8]

R10 is shown in Figure 6-19 and described in Table 6-30.

Return to Summary Table.

Figure 6-19. R10 Register

Table 6-30. R10 Register Field Descriptions

	Table C Co. Itto Itoglotti I Iola 2 Co. Pacino							
Bit	Field	Туре	Reset	Description				
15 - 0	RESERVED	R/W	0x10D8	Program 0x10D8 to this field.				
				After programming R0 with RESET = 1, no need to program this register.				

6.6.1.12 R11 Register (Offset = 0xB) [reset = 0x18]

R11 is shown in Figure 6-20 and described in Table 6-31.

Return to Summary Table.

Figure 6-20. R11 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	RESE	RVED					PLI	R					RESE	RVED		
	R/W	-0x0			R/W-0x1									R/W-0x8		

Table 6-31. R11 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 12	RESERVED	R/W	0x0	Program 0x0 to this field.
11 - 4	PLL_R	R/W	0x1	Reference path Post-R divider. This is the divider after the Pre-R divider.
3 - 0	RESERVED	R/W	0x8	Program 0x8 to this field.

6.6.1.13 R12 Register (Offset = 0xC) [reset = 0x5001]

R12 is shown in Figure 6-21 and described in Table 6-32.

Return to Summary Table.

Figure 6-21. R12 Register

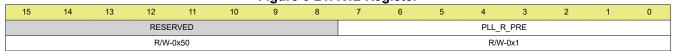


Table 6-32. R12 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 8	RESERVED	R/W	0x50	Program 0x50 to this field.
7 - 0	PLL_R_PRE	R/W	0x1	PLL Pre-R divider value.

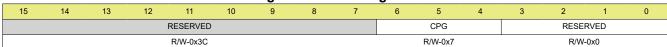
6.6.1.14 R13 Register (Offset = 0xD) [reset = 0x4000]

R13 is shown in Figure 6-22 and described in Table 6-33.

Return to Summary Table.

Figure 6-22. R13 Register

Table 6-33. R13 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x4000	Program 0x4000 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.15 R14 Register (Offset = 0xE) [reset = 0x1E70]

R14 is shown in Figure 6-23 and described in Table 6-34.

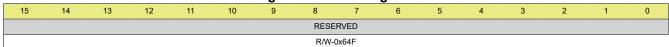
Return to Summary Table.

Figure 6-23. R14 Register

Table 6-34. R14 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 7	RESERVED	R/W	0x3C	Program 0x3C to this field.

Table 6-34. R14 Register Field Descriptions (continued)


Bit	Field	Туре	Reset	Description
6 - 4	CPG	R/W	0x7	Effective charge pump gain . This is the sum of the up and down currents.
				0: 0mA
				1: 6mA
				2: Reserved
				3: 12mA
				4: 3mA
				5: 9mA
				6: Reserved
				7: 15mA
3 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.

6.6.1.16 R15 Register (Offset = 0xF) [reset = 0x64F]

R15 is shown in Figure 6-24 and described in Table 6-35.

Return to Summary Table.

Figure 6-24. R15 Register

Table 6-35. R15 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x64F	Program 0x64F to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.17 R16 Register (Offset = 0x10) [reset = 0x80]

R16 is shown in Figure 6-25 and described in Table 6-36.

Return to Summary Table.

Figure 6-25. R16 Register

Table 6-36. R16 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 9	RESERVED	R/W	0x0	Program 0x0 to this field.
8 - 0	VCO_DACISET	R/W	0x80	Programmable current setting for the VCO that is applied when VCO_DACISET_FORCE = 1.

6.6.1.18 R17 Register (Offset = 0x11) [reset = 0x12C]

R17 is shown in Figure 6-26 and described in Table 6-37.

Return to Summary Table.

Figure 6-26. R17 Register

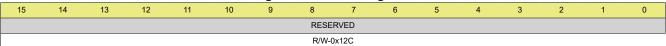


Table 6-37. R17 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x12C	Program 0x12C to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.19 R18 Register (Offset = 0x12) [reset = 0x64]

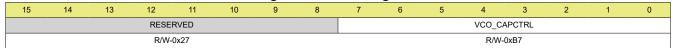
R18 is shown in Figure 6-27 and described in Table 6-38.

Return to Summary Table.

Figure 6-27. R18 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RESE	RVED							
							R/W-	0x64							

Table 6-38. R18 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x64	Program 0x64 to this field.
				After programming R0 with RESET = 1, no need to program this register.

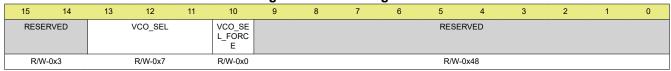
6.6.1.20 R19 Register (Offset = 0x13) [reset = 0x27B7]

R19 is shown in Figure 6-28 and described in Table 6-39.

Return to Summary Table.

Figure 6-28. R19 Register

Table 6-39. R19 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 8	RESERVED	R/W	0x27	Program 0x27 to this field.
7 - 0	VCO_CAPCTRL	R/W		Programmable band within VCO core that applies when VCO_CAPCTRL_FORCE = 1. Valid values are 183 to 0, where the higher number is a lower frequency.

6.6.1.21 R20 Register (Offset = 0x14) [reset = 0xF848]

R20 is shown in Figure 6-29 and described in Table 6-40.

Return to Summary Table.

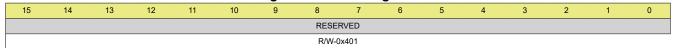
Figure 6-29. R20 Register

Table 6-40. R20 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 14	RESERVED	R/W	0x3	Program 0x3 to this field.

Product Folder Links: LMX2615-SP

Table 6-40. R20 Register Field Descriptions (continued)


Bit	Field	Туре	Reset	Description
13 - 11	VCO_SEL	R/W	0x7	User specified start VCO for calibration. Also is the VCO core that is forced by VCO_SEL_FORCE = 1. 0: Reserved 1: VCO1 2: VCO2 7: VCO7
10	VCO_SEL_FORCE	R/W	0x0	Forces the VCO to use the core specified by VCO_SEL value. 0: Disabled 1: Enabled
9 - 0	RESERVED	R/W	0x48	Program 0x48 to this field.

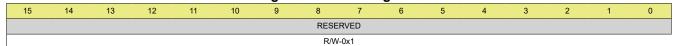
6.6.1.22 R21 Register (Offset = 0x15) [reset = 0x401]

R21 is shown in Figure 6-30 and described in Table 6-41.

Return to Summary Table.

Figure 6-30. R21 Register

Table 6-41. R21 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x401	Program 0x401 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.23 R22 Register (Offset = 0x16) [reset = 0x1]

R22 is shown in Figure 6-31 and described in Table 6-42.

Return to Summary Table.

Figure 6-31. R22 Register

Table 6-42. R22 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x1	Program 0x1 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.24 R23 Register (Offset = 0x17) [reset = 0x7C]

R23 is shown in Figure 6-32 and described in Table 6-43.

Return to Summary Table.

Figure 6-32. R23 Register

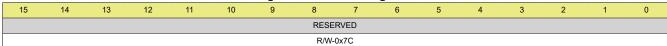


Table 6-43. R23 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x7C	Program 0x7C to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.25 R24 Register (Offset = 0x18) [reset = 0x71A]

R24 is shown in Figure 6-33 and described in Table 6-44.

Return to Summary Table.

Figure 6-33. R24 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RESE	RVED							
							R/W-0	0x71A							

Table 6-44. R24 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x71A	Program 0x71A to this field.
				After programming R0 with RESET = 1, no need to program this register.

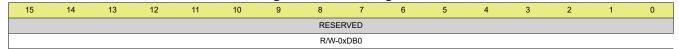
6.6.1.26 R25 Register (Offset = 0x19) [reset = 0x624]

R25 is shown in Figure 6-34 and described in Table 6-45.

Return to Summary Table.

Figure 6-34. R25 Register

Table 6-45. R25 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x624	Program 0x624 to this field.
				After programming R0 with RESET = 1, no need to program this register.

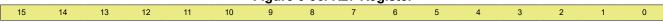
6.6.1.27 R26 Register (Offset = 0x1A) [reset = 0xDB0]

R26 is shown in Figure 6-35 and described in Table 6-46.

Return to Summary Table.

Figure 6-35. R26 Register

Table 6-46. R26 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0xDB0	Program 0xDB0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.28 R27 Register (Offset = 0x1B) [reset = 0x2]

R27 is shown in Figure 6-36 and described in Table 6-47.

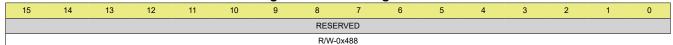
Return to Summary Table.

Figure 6-36. R27 Register

Product Folder Links: LMX2615-SP

Figure 6-36. R27 Register (continued)

Table 6-47. R27 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x2	Program 0x2 to this field.
				After programming R0 with RESET = 1, no need to program this register.

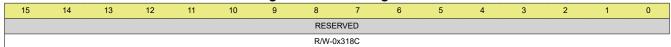
6.6.1.29 R28 Register (Offset = 0x1C) [reset = 0x488]

R28 is shown in Figure 6-37 and described in Table 6-48.

Return to Summary Table.

Figure 6-37. R28 Register

Table 6-48. R28 Register Field Descriptions


E	3it	Field	Туре	Reset	Description
15	5 - 0	RESERVED	R/W	0x488	Program 0x488 to this field.
					After programming R0 with RESET = 1, no need to program this register.

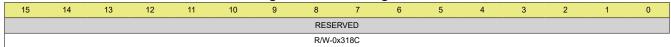
6.6.1.30 R29 Register (Offset = 0x1D) [reset = 0x318C]

R29 is shown in Figure 6-38 and described in Table 6-49.

Return to Summary Table.

Figure 6-38. R29 Register

Table 6-49. R29 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x318C	Program 0x318C to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.31 R30 Register (Offset = 0x1E) [reset = 0x318C]

R30 is shown in Figure 6-39 and described in Table 6-50.

Return to Summary Table.

Figure 6-39. R30 Register

Table 6-50. R30 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x318C	Program 0x318C to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.32 R31 Register (Offset = 0x1F) [reset = 0x43EC]

R31 is shown in Figure 6-40 and described in Table 6-51.

Return to Summary Table.

Figure 6-40. R31 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERV ED	SEG1_E N							RESE	RVED						
R/W-0x0	R/W-0x1							R/W-0	x3EC						

Table 6-51. R31 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R/W	0x0	Program 0x0 to this field.
14	SEG1_EN	R/W	0x1	Enables SEG1 when channel divider is engaged. 0: Disabled (only valid when CHDIV = 0x0 (Divide by 2) and not in SYNC mode) 1: Enabled (use for other CHDIV values)
13 - 0	RESERVED	R/W	0x3EC	Program 0x3EC to this field.

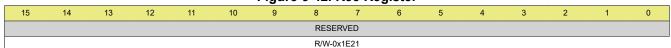
6.6.1.33 R32 Register (Offset = 0x20) [reset = 0x393]

R32 is shown in Figure 6-41 and described in Table 6-52.

Return to Summary Table.

Figure 6-41. R32 Register

Table 6-52. R32 Register Field Descriptions


E	Bit	Field	Туре	Reset	Description
15	- 0	RESERVED	R/W	0x393	Program 0x393 to this field.
					After programming R0 with RESET = 1, no need to program this register.

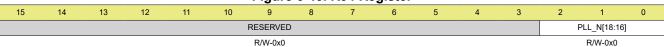
6.6.1.34 R33 Register (Offset = 0x21) [reset = 0x1E21]

R33 is shown in Figure 6-42 and described in Table 6-53.

Return to Summary Table.

Figure 6-42. R33 Register

Table 6-53. R33 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x1E21	Program 0x1E21 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.35 R34 Register (Offset = 0x22) [reset = 0x0]

R34 is shown in Figure 6-43 and described in Table 6-54.

Return to Summary Table.

Figure 6-43. R34 Register

Submit Document Feedback

Table 6-54. R34 Register Field Descriptions

В	Bit	Field	Туре	Reset	Description
15	- 3	RESERVED	R/W	0x0	Program 0x0 to this field.
2 -	- 0	PLL_N[18:16]	R/W	0x0	Upper 3 bits of N-divider, total 19 bits, split as 16 + 3.

6.6.1.36 R35 Register (Offset = 0x23) [reset = 0x4]

R35 is shown in Figure 6-44 and described in Table 6-55.

Return to Summary Table.

Figure 6-44. R35 Register

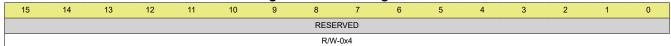


Table 6-55. R35 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x4	Program 0x4 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.37 R36 Register (Offset = 0x24) [reset = 0x46]

R36 is shown in Figure 6-45 and described in Table 6-56.

Return to Summary Table.

Figure 6-45. R36 Register

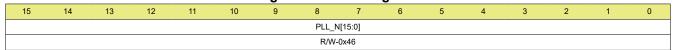


Table 6-56. R36 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	PLL_N[15:0]	R/W	0x46	PLL N divider value.

6.6.1.38 R37 Register (Offset = 0x25) [reset = 0x404]

R37 is shown in Figure 6-46 and described in Table 6-57.

Return to Summary Table.

Figure 6-46. R37 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESE	RESERVED PFD_DLY_SEL							RESERVED							
R/W-	R/W-0x0 R/W-0x4										R/W	-0x4			

Table 6-57. R37 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 14	RESERVED	R/W	0x0	Program 0x2 to this field.
13 - 8	PFD_DLY_SEL	R/W		PFD_DLY_SEL must be adjusted in accordance to the N-divider value. See Table 6-2 for details.
7 - 0	RESERVED	R/W	0x4	Program 0x4 to this field.

6.6.1.39 R38 Register (Offset = 0x26) [reset = 0xFD51]

R38 is shown in Figure 6-47 and described in Table 6-58.

Return to Summary Table.

Figure 6-47, R38 Register

						_			-						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PLL_DE	EN[31:16]				,			
							R/W-0	xFD51							

Table 6-58. R38 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	PLL_DEN[31:16]	R/W	0xFD51	Fractional denominator(MSB).

6.6.1.40 R39 Register (Offset = 0x27) [reset = 0xDA80]

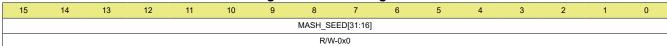
R39 is shown in Figure 6-48 and described in Table 6-59.

Return to Summary Table.

Figure 6-48. R39 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PLL_DI	EN[15:0]							
							R/W-0	xDA80							

Table 6-59. R39 Register Field Descriptions


				•
Bit	Field	Туре	Reset	Description
15 - 0	PLL_DEN[15:0]	R/W	0xDA80	Fractional denominator.

6.6.1.41 R40 Register (Offset = 0x28) [reset = 0x0]

R40 is shown in Figure 6-49 and described in Table 6-60.

Return to Summary Table.

Figure 6-49. R40 Register

Table 6-60. R40 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	MASH_SEED[31:16]	R/W	0x0	MASH_SEED(MSB).

6.6.1.42 R41 Register (Offset = 0x29) [reset = 0x0]

R41 is shown in Figure 6-50 and described in Table 6-61.

Return to Summary Table.

Figure 6-50. R41 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MASH_S	EED[15:0]		•		•			
							R/W	/-0x0							

Table 6-61. R41 Register Field Descriptions

ı	3it	Field	Туре	Reset	Description
15	5 - 0	MASH_SEED[15:0]	R/W		Sets the initial state of the fractional engine. Useful for producing a phase shift and fractional spur optimization.

6.6.1.43 R42 Register (Offset = 0x2A) [reset = 0x0]

R42 is shown in Figure 6-51 and described in Table 6-62.

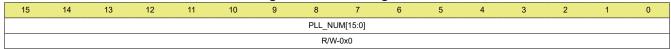
Return to Summary Table.

INSTRUMENTS www.ti.com

Figure 6-51. R42 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PLL_NU	M[31:16]							
	R/W-0x0														

Table 6-62. R42 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	PLL_NUM[31:16]	R/W	0x0	Fractional numerator (MSB).

6.6.1.44 R43 Register (Offset = 0x2B) [reset = 0x0]

R43 is shown in Figure 6-52 and described in Table 6-63.

Return to Summary Table.

Figure 6-52. R43 Register

Table 6-63. R43 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	PLL_NUM[15:0]	R/W	0x0	Fractional numerator.

6.6.1.45 R44 Register (Offset = 0x2C) [reset = 0x1FA3]

R44 is shown in Figure 6-53 and described in Table 6-64.

Return to Summary Table.

Figure 6-53. R44 Register

						J -			J						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RES	ERVED			OUTA	_PWR			OUTB_P D	OUTA_P D	MASH_R ESET_N	RESE	RVED	М	ASH_ORDEI	₹
R/\	N-0x0			R/W-	-0x1F			R/W-0x1	R/W-0x0	R/W-0x1	R/W-	-0x0		R/W-0x3	

Table 6-64. R44 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 14	RESERVED	R/W	0x0	Program 0x0 to this field.
13 - 8	OUTA_PWR	R/W	0x1F	Sets current that controls output power for output A. 0 is minimum current.
7	OUTB_PD	R/W	0x1	Powers down output B. 0: Normal operation 1: Power down
6	OUTA_PD	R/W	0x0	Powers down output A. 0: Normal operation 1: Power down
5	MASH_RESET_N	R/W	0x1	Active low reset for MASH. 0: Reset 1: Normal operation
4 - 3	RESERVED	R/W	0x0	Program 0x0 to this field.
2 - 0	MASH_ORDER	R/W	0x3	Sets the MASH order. 0: Integer mode 1: First order modulator 2: Second order modulator 3: Third order modulator 4: Fourth order modulator 5 - 7: Reserved

6.6.1.46 R45 Register (Offset = 0x2D) [reset = 0xC8DF]

R45 is shown in Figure 6-54 and described in Table 6-65.

Return to Summary Table.

Figure 6-54. R45 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RESERVED		OUTA	_MUX			RESERVED)				OUTB	_PWR		
	R/W-0x6		R/W-	-0x1			R/W-0x3					R/W-	0x1F		

Table 6-65. R45 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 13	RESERVED	R/W	0x6	Program 0x6 to this field.
12 - 11	OUTA_MUX	R/W	0x1	Selects input to OUTA output.
				0: Channel divider
				1: VCO
				2: Reserved
				3: Reserved
10 - 6	RESERVED	R/W	0x3	Program 0x3 to this field.
5 - 0	OUTB_PWR	R/W	0x1F	Sets current that controls output power for output B. 0 is minimum current.

6.6.1.47 R46 Register (Offset = 0x2E) [reset = 0x7FD]

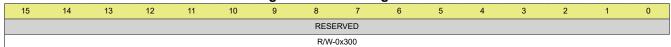
R46 is shown in Figure 6-55 and described in Table 6-66.

Return to Summary Table.

Figure 6-55. R46 Register

									_						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						RESE	RVED							OUTB	_MUX
						R/W-0	0x1FF							R/W	'-0x1

Table 6-66. R46 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 2	RESERVED	R/W	0x1FF	Program 0x1FF to this field.
1 - 0	OUTB_MUX	R/W		Selects input to the OUTB output. 0: Channel divider 1: VCO 2: SYSREF 3: Reserved

6.6.1.48 R47 Register (Offset = 0x2F) [reset = 0x300]

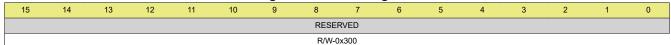
R47 is shown in Figure 6-56 and described in Table 6-67.

Return to Summary Table.

Figure 6-56. R47 Register

Table 6-67. R47 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x300	Program 0x300 to this field.
				After programming R0 with RESET = 1, no need to program this register.


Product Folder Links: LMX2615-SP

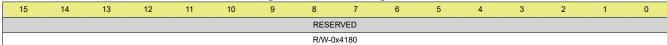
6.6.1.49 R48 Register (Offset = 0x30) [reset = 0x300]

R48 is shown in Figure 6-57 and described in Table 6-68.

Return to Summary Table.

Figure 6-57. R48 Register

Table 6-68. R48 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x300	Program 0x300 to this field.
				After programming R0 with RESET = 1, no need to program this register.

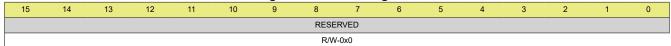
6.6.1.50 R49 Register (Offset = 0x31) [reset = 0x4180]

R49 is shown in Figure 6-58 and described in Table 6-69.

Return to Summary Table.

Figure 6-58. R49 Register

Table 6-69. R49 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x4180	Program 0x4180 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.51 R50 Register (Offset = 0x32) [reset = 0x0]

R50 is shown in Figure 6-59 and described in Table 6-70.

Return to Summary Table.

Figure 6-59. R50 Register

Table 6-70. R50 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.52 R51 Register (Offset = 0x33) [reset = 0x80]

R51 is shown in Figure 6-60 and described in Table 6-71.

Return to Summary Table.

Figure 6-60. R51 Register

Table 6-71. R51 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x80	Program 0x80 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.53 R52 Register (Offset = 0x34) [reset = 0x420]

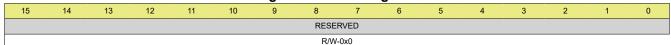
R52 is shown in Figure 6-61 and described in Table 6-72.

Return to Summary Table.

Figure 6-61. R52 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RESE	RVED							
							R/W-0	0x420							

Table 6-72. R52 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x420	Program 0x420 to this field.
				After programming R0 with RESET = 1, no need to program this register.

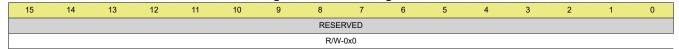
6.6.1.54 R53 Register (Offset = 0x35) [reset = 0x0]

R53 is shown in Figure 6-62 and described in Table 6-73.

Return to Summary Table.

Figure 6-62. R53 Register

Table 6-73. R53 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

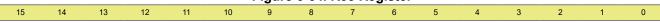
6.6.1.55 R54 Register (Offset = 0x36) [reset = 0x0]

R54 is shown in Figure 6-63 and described in Table 6-74.

Return to Summary Table.

Figure 6-63. R54 Register

Table 6-74. R54 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.56 R55 Register (Offset = 0x37) [reset = 0x0]

R55 is shown in Figure 6-64 and described in Table 6-75.

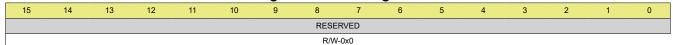
Return to Summary Table.

Figure 6-64. R55 Register

Figure 6-64. R55 Register (continued)

RESERVED
R/W-0x0

Table 6-75. R55 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.57 R56 Register (Offset = 0x38) [reset = 0x0]

R56 is shown in Figure 6-65 and described in Table 6-76.

Return to Summary Table.

Figure 6-65. R56 Register

Table 6-76. R56 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.58 R57 Register (Offset = 0x39) [reset = 0x20]

R57 is shown in Figure 6-66 and described in Table 6-77.

Return to Summary Table.

Figure 6-66. R57 Register

Table 6-77. R57 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x20	Program 0x20 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.59 R58 Register (Offset = 0x3A) [reset = 0x8001]

R58 is shown in Figure 6-67 and described in Table 6-78.

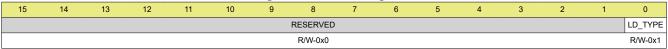
Return to Summary Table.

Figure 6-67. R58 Register

Table 6-78. R58 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	INPIN_IGNORE	R/W	0x1	Ignores SYNC and SYSREF pins. This bit must be set to 1 unless VCO_PHASE_SYNC = 1. 0: SYNC and SYSREF pins are activated 1: SYNC and SYSREF pins are deactivated

Table 6-78. R58 Register Field Descriptions (continued)


	Bit	Field	Туре	Reset	Description
1.	4 - 0	RESERVED	R/W	0x1	Program 0x1 to this field.

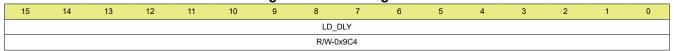
6.6.1.60 R59 Register (Offset = 0x3B) [reset = 0x1]

R59 is shown in Figure 6-68 and described in Table 6-79.

Return to Summary Table.

Figure 6-68. R59 Register

Table 6-79. R59 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 1	RESERVED	R/W	0x0	Program 0x0 to this field.
0	LD_TYPE	R/W	0x1	Defines Lock Detect Type.
				VCOCal Lock Detect asserts a high output after the VCO has finished calibration
				and the LD_DLY timeout counter is finished.
				Vtune and VCOCal Lock Detect asserts a high output when VCOCal lock detect
				asserts a signal and the tuning voltage to the VCO is within acceptable limits.
				RECAL feature requires using this lock detect type.
				0: VCOCal Lock Detect
				1: Vtune and VCOCal Lock Detect

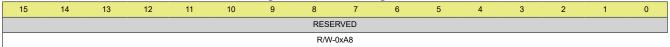
6.6.1.61 R60 Register (Offset = 0x3C) [reset = 0x9C4]

R60 is shown in Figure 6-69 and described in Table 6-80.

Return to Summary Table.

Figure 6-69. R60 Register

Table 6-80. R60 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	LD_DLY	R/W		For the VCOCal Lock Detect, this is the delay in state machine clock cycles that is added after the calibration is finished before the VCOCal Lock Detect is asserted high. Delay time = LD_DLY × 4 / f _{SM} .

6.6.1.62 R61 Register (Offset = 0x3D) [reset = 0xA8]

R61 is shown in Figure 6-70 and described in Table 6-81.

Return to Summary Table.

Figure 6-70. R61 Register

Product Folder Links: LMX2615-SP

Table 6-81. R61 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0xA8	Program 0xA8 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.63 R62 Register (Offset = 0x3E) [reset = 0x322]

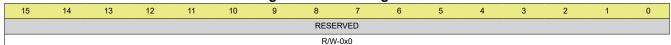
R62 is shown in Figure 6-71 and described in Table 6-82.

Return to Summary Table.

Figure 6-71. R62 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED															
							R/W-0								

Table 6-82. R62 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x322	Program 0x322 to this field.
				After programming R0 with RESET = 1, no need to program this register.

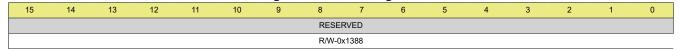
6.6.1.64 R63 Register (Offset = 0x3F) [reset = 0x0]

R63 is shown in Figure 6-72 and described in Table 6-83.

Return to Summary Table.

Figure 6-72. R63 Register

Table 6-83. R63 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

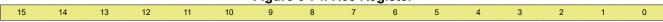
6.6.1.65 R64 Register (Offset = 0x40) [reset = 0x1388]

R64 is shown in Figure 6-73 and described in Table 6-84.

Return to Summary Table.

Figure 6-73. R64 Register

Table 6-84. R64 Register Field Descriptions


	Bit	Field	Туре	Reset	Description
ſ	15 - 0	RESERVED	R/W	0x1388	Program 0x1388 to this field.
					After programming R0 with RESET = 1, no need to program this register.

6.6.1.66 R65 Register (Offset = 0x41) [reset = 0x0]

R65 is shown in Figure 6-74 and described in Table 6-85.

Return to Summary Table.

Figure 6-74. R65 Register

Figure 6-74. R65 Register (continued)

RESERVED
R/W-0x0

Table 6-85. R65 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.67 R66 Register (Offset = 0x42) [reset = 0x1F4]

R66 is shown in Figure 6-75 and described in Table 6-86.

Return to Summary Table.

Figure 6-75. R66 Register

Table 6-86. R66 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x1F4	Program 0x1F4 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.68 R67 Register (Offset = 0x43) [reset = 0x0]

R67 is shown in Figure 6-76 and described in Table 6-87.

Return to Summary Table.

Figure 6-76. R67 Register

Table 6-87. R67 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.69 R68 Register (Offset = 0x44) [reset = 0x3E8]

R68 is shown in Figure 6-77 and described in Table 6-88.

Return to Summary Table.

Figure 6-77. R68 Register

Table 6-88. R68 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x3E8	Program 0x3E8 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.70 R69 Register (Offset = 0x45) [reset = 0x0]

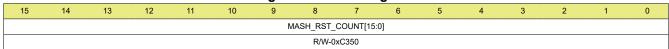
R69 is shown in Figure 6-78 and described in Table 6-89.

Return to Summary Table.

Figure 6-78. R69 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MASH_RST_COUNT[31:16]															
R/W-0x0															

Table 6-89. R69 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	MASH_RST_COUNT	R/W	0x0	Upper 16 bits of MASH_RST_COUNT.
	[31:16]			This register is used to add a delay when using phase SYNC. The delay must be
				set at least four times the PLL lock time. This delay is expressed in state machine
				clock periods. One of these periods is equal to
				2 ^{CAL_CLK_DIV} / f _{OSC} .

6.6.1.71 R70 Register (Offset = 0x46) [reset = 0xC350]

R70 is shown in Figure 6-79 and described in Table 6-90.

Return to Summary Table.

Figure 6-79. R70 Register

Table 6-90. R70 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	MASH_RST_COUNT	R/W	0xC350	Lower 16 bits of MASH_RST_COUNT.
	[15:0]			

6.6.1.72 R71 Register (Offset = 0x47) [reset = 0x80]

R71 is shown in Figure 6-80 and described in Table 6-91.

Return to Summary Table.

Figure 6-80. R71 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			RESE	RVED				SYS	REF_DIV_	PRE	SYSREF _PULSE	SYSREF _EN	SYSREF_R EPEAT	RESE	RVED
			R/W	-0x0					R/W-0x4		R/W-0x0	R/W-0x0	R/W-0x0	R/W-	0x0

Table 6-91. R71 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 8	RESERVED	R/W	0x0	Program 0x0 to this field.
7 - 5	SYSREF_DIV_PRE	R/W	0x4	This divider is used to get the frequency input to the SYSREF interpolator within acceptable limits. 1: Bypassed 2: Divide by 2 4: Divide by 4 All other values are reserved.
4	SYSREF_PULSE	R/W	0x0	When in master mode (SYSREF_REPEAT = 0), this allows multiple pulses (as determined by SYSREF_PULSE_CNT) to be sent out whenever the SysRefReq pin goes high. 0: Continuous SYSREF clock 1: SYSREF pulses

Table 6-91. R71 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3	SYSREF_EN	R/W	0x0	Enables SYSREF mode. SYSREF requires VCO_PHASE_SYNC = 1. 0: Disabled 1: Enabled
2	SYSREF_REPEAT	R/W	0x0	Defines the SYSREF mode. 0: Master mode. Pulses are generated at the output. 1: Repeater Mode. Pulses are generated in response to the SysRefReq pin.
1 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.

6.6.1.73 R72 Register (Offset = 0x48) [reset = 0x1]

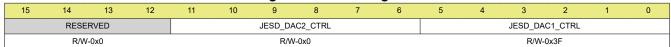
R72 is shown in Figure 6-81 and described in Table 6-92.

Return to Summary Table.

Figure 6-81. R72 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RESERVED	,						S	SYSREF_DI	/				
		R/W-0x0				R/W-0x1									

Table 6-92. R72 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 11	RESERVED	R/W	0x0	Program 0x0 to this field.
10 - 0	SYSREF_DIV	R/W	0x1	This divider further divides the output frequency for the SYSREF.

6.6.1.74 R73 Register (Offset = 0x49) [reset = 0x3F]

R73 is shown in Figure 6-82 and described in Table 6-93.

Return to Summary Table.

Figure 6-82. R73 Register

Table 6-93. R73 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 12	RESERVED	R/W	0x0	Program 0x0 to this field.
11 - 6	JESD_DAC2_CTRL	R/W	0x0	Programmable delay adjustment for SysRef mode.
5 - 0	JESD_DAC1_CTRL	R/W	0x3F	Programmable delay adjustment for SysRef mode.

6.6.1.75 R74 Register (Offset = 0x4A) [reset = 0x0]

R74 is shown in Figure 6-83 and described in Table 6-94.

Return to Summary Table.

Figure 6-83. R74 Register

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		SYSREF_P	ULSE_CNT		JESD_DAC4_CTRL JESD_DAC3_CTRL											
R/W-0x0 R/W-0x0 R/W-0x0																

Table 6-94. R74 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 12	SYSREF_PULSE_CNT	R/W	0x0	Used in SYSREF_REPEAT mode to define how many pulses are sent.
11 - 6	JESD_DAC4_CTRL	R/W	0x0	Programmable delay adjustment for SysRef mode.

Product Folder Links: LMX2615-SP

Table 6-94. R74 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
5 - 0	JESD_DAC3_CTRL	R/W	0x0	Programmable delay adjustment for SysRef mode.

6.6.1.76 R75 Register (Offset = 0x4B) [reset = 0x800]

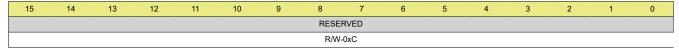
R75 is shown in Figure 6-84 and described in Table 6-95.

Return to Summary Table.

Figure 6-84. R75 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RESERVED)				CHDIV					RESE			
		R/W-0x1					R/W-0x0					R/W	-0x0		

Table 6-95. R75 Register Field Descriptions


Bit	Field		Reset	Description
		Туре		•
15 - 11	RESERVED	R/W	0x1	Program 0x1 to this field.
10 - 6	CHDIV	R/W	0x0	Channel divider (equivalent division) controls divider value of each segment of the channel divider. 0: Divide by 2 1: Divide by 4 2: Divide by 6 3: Divide by 8 4: Divide by 12 5: Divide by 16 6: Divide by 24 7: Divide by 32 8: Divide by 48 9: Divide by 48 9: Divide by 96 11: Divide by 128 12: Divide by 192
	DECEDI/ED	DAY	00	All other values are reserved.
5 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.

6.6.1.77 R76 Register (Offset = 0x4C) [reset = 0xC]

R76 is shown in Figure 6-85 and described in Table 6-96.

Return to Summary Table.

Figure 6-85. R76 Register

Table 6-96. R76 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0xC	Program 0xC to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.78 R77 Register (Offset = 0x4D) [reset = 0x0]

R77 is shown in Figure 6-86 and described in Table 6-97.

Return to Summary Table.

Figure 6-86. R77 Register

						_			_						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RESE	RVED							
							R/W	/-0x0							

Table 6-97. R77 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.79 R78 Register (Offset = 0x4E) [reset = 0x64]

R78 is shown in Figure 6-87 and described in Table 6-98.

Return to Summary Table.

Figure 6-87. R78 Register

Table 6-98. R78 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x64	Program 0x64 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.80 R79 - R104 Register (Offset = 0x4F - 0x68) [reset = 0x0]

R79 - R104 is shown in Figure 6-88 and described in Table 6-99.

Return to Summary Table.

Figure 6-88. R79 - R104 Register

Table 6-99. R79 - R104 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x0	Program 0x0 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.81 R105 Register (Offset = 0x69) [reset = 0x4440]

R105 is shown in Figure 6-89 and described in Table 6-100.

Return to Summary Table.

Figure 6-89. R105 Register

Table 6-100. R105 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x4440	Program 0x4440 to this field.
				After programming R0 with RESET = 1, no need to program this register.


Submit Document Feedback

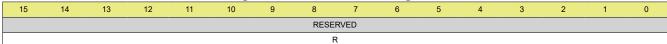
6.6.1.82 R106 Register (Offset = 0x6A) [reset = 0x7]

R106 is shown in Figure 6-90 and described in Table 6-101.

Return to Summary Table.

Figure 6-90. R106 Register

Table 6-101. R106 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R/W	0x7	Program 0x7 to this field.
				After programming R0 with RESET = 1, no need to program this register.

6.6.1.83 R107 - R109 Register (Offset = 0x6B - 0x6D) [Read only]

R107 - R109 is shown in Figure 6-91 and described in Table 6-102.

Return to Summary Table.

Figure 6-91. R107 - R109 Register

Table 6-102. R107 - R109 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	RESERVED	R	-	Not used. Read back only.

6.6.1.84 R110 Register (Offset = 0x6E) [Read only]

R110 is shown in Figure 6-92 and described in Table 6-103.

Return to Summary Table.

Figure 6-92. R110 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RESERVED			rb_LD_'	VTUNE	RESERV ED		rb_VCO_SEI	_			RESERVED		
		R-0x0			F	₹	R-0x0		R				R-0x0		

Table 6-103. R110 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 11	RESERVED	R	0x0	Not used. Read back only.
10 - 9	rb_LD_VTUNE	R	-	Read back field for the lock detect. Applicable only when R0 is programmed at least one time with LD_TYPE = 1. 0: Unlocked (Fvco Low) 1: Invalid 2: Locked 3: Unlocked (Fvco High)
8	RESERVED	R	0x0	Not used. Read back only.
7 - 5	rb_VCO_SEL	R	-	Read back the actual VCO that the calibration has selected.
4 - 0	RESERVED	R	0x0	Not used. Read back only.

6.6.1.85 R111 Register (Offset = 0x6F) [Read only]

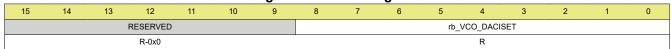
R111 is shown in Figure 6-93 and described in Table 6-104.

Return to Summary Table.

Figure 6-93. R111 Register

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RESE	DVED.				· ·			rb VCO (CAPCTRL			
ŀ												10_000_0	AFOINL			
				R-0	0x0							F	₹			

Table 6-104. R111 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 8	RESERVED	R	0x0	Not used. Read back only.
7 - 0	rb_VCO_CAPCTRL	R	-	Read back field for the actual VCO_CAPCTRL value that is chosen by the VCO calibration.

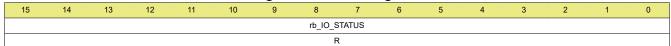
6.6.1.86 R112 Register (Offset = 0x70) [Read only]

R112 is shown in Figure 6-94 and described in Table 6-105.

Return to Summary Table.

Figure 6-94. R112 Register

Table 6-105. R112 Register Field Descriptions


Bit	Field	Туре	Reset	Description
15 - 9	RESERVED	R	0x0	Not used. Read back only.
8 - 0	rb_VCO_DACISET	R		Read back field for the actual VCO_DACISET value that is chosen by the VCO calibration.

6.6.1.87 R113 Register (Offset = 0x71) [Read only]

R113 is shown in Figure 6-95 and described in Table 6-106.

Return to Summary Table.

Figure 6-95. R113 Register

Table 6-106. R113 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 0	rb_IO_STATUS	R	-	Reads back status of mode pins.
				Bit 0: RECAL_EN pin
				Bit 1: FS0 pin
				Bit 8: FS7 pin

6.6.1.88 R114 Register (Offset = 0x72) [reset = 0x26F]

R114 is shown in Figure 6-96 and described in Table 6-107.

Return to Summary Table.

Figure 6-96. R114 Register

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED			WD_DLY				WD_CNTRL									
ľ	R-0x0						R/W-0x4D					R/W-0x7				

Submit Document Feedback

Product Folder Links: LMX2615-SP

Table 6-107, R114 Register Field Descriptions

Bit	Field	Туре	Reset	Description	
15 - 10	RESERVED	R	0x0	Program 0x0 to this field.	
9 - 3	WD_DLY	R/W	0x4D	Delay for the internal watchdog timer. Delay time = WD_DLY × 2 ¹⁴ / state machine clock frequency.	
2 - 0	WD_CNTRL	R/W	0x7	Watchdog Control	
				0: Digital Watchdog disabled.	
				1: Watchdog triggers 1 time	
				2: Watchdog triggers up to 2 times	
				3: Watchdog triggers up to 3 times	
				4: Watchdog triggers up to 4 times	
				5: Watchdog triggers up to 5 times	
				6: Watchdog triggers up to 6 times	
				7: Watchdog retriggers as many times as necessary with no limit.	

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

7.1.1 OSCin Configuration

OSCin supports single-ended or differential clock. There must be a AC-coupling capacitor in series before the device pin. The OSCin inputs are high impedance CMOS with internal bias voltage. TI recommends putting termination shunt resistors to terminate the differential traces (if there are 50Ω characteristic traces, place 50Ω resistors). The OSCin and OSCin* side must be matched in layout. A series AC-coupling capacitor must immediately follow OSCin pins in the board layout, then the shunt termination resistors to ground must be placed after.

Input clock definitions are shown in Figure 7-1:

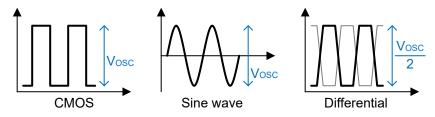


Figure 7-1. Input Clock Definitions

7.1.2 OSCin Slew Rate

The slew rate of the OSCin signal can have an impact on the spurs and phase noise of the LMX2615-SP if the rate is too low. In general, the best performance is for a high slew rate, but lower amplitude signal, such as LVDS.

7.1.3 RF Output Buffer Power Control

The OUTA_PWR and OUTB_PWR registers control the amount of drive current for the output. This current creates a voltage across the pullup component and load. Keep the OUTx_PWR setting at 31 or less as higher settings consume more current consumption and can also lead to higher output power. Optimal noise floor is typically obtained by setting OUTx_PWR in the range of 15 to 25.

7.1.4 RF Output Buffer Pullup

The choice of output buffer components is very important and can have a profound impact on the output power. The pullup component can be a resistor or inductor or combination thereof. The signal swing is created by a current flowing this pullup, so a higher impedance implies a higher signal swing. However, as this pullup component can be treated as if the component is in parallel with the load impedance, there are diminishing returns as the impedance gets much larger than the load impedance. The output impedance of the device varies as a function of frequency and is a complex number, but typically has a magnitude on the order of 100Ω , but this decreases with frequency.

The output can be used differentially or single-ended. If using single-ended, the pullup is still needed, and user needs to terminate the unused complimentary side such that the impedance as seen from the pin looking out is similar to the pin that is being used. Following are some typical components that can be useful.

Product Folder Links: LMX2615-SP

TEXAS INSTRUMENTS
www.ti.com

Table 7-1.	Output	Pullup	Configuration

COMPONENT	VALUE	PART NUMBER
	1nH, 13.6GHz SRF	Toko LL1005-FH1N0S
Inductor	3.3nH, 6.8GHz SRF	Toko LL1005-FH3N3S
	10nH, 3.8GHz SRF	Toko LL1005-FH10NU
Resistor	50Ω	Vishay FC0402E50R0BST1
Capacitor	Varies with frequency	ATC 520L103KT16T ATC 504L50R0FTNCFT

7.1.4.1 Resistor Pullup

One strategy for the choice of the pullup component is to use a resistor (R). This is typically chosen to be 50Ω and under the assumption that the part output impedance is high, then the output impedance is theoretically 50Ω , regardless of output frequency. As the output impedance of the device is not infinite, the output impedance when the pullup resistor is used is less than 50Ω , but reasonably close. There is some drop across the resistor, but this does not seem to have a large impact on signal swing for a 50Ω resistor provided that OUTx PWR \leq 31.

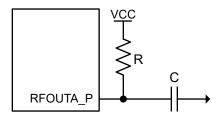


Figure 7-2. Resistor Pullup

7.1.4.2 Inductor Pullup

Another strategy is to select an inductor (L) pullup. This allows a higher impedance without any concern of creating any DC drop across the component. Ideally, the inductor must be chosen large enough so that the impedance is high relative to the load impedance and also be operating away from the self-resonant frequency. For instance, consider a 3.3nH pullup inductor with a self-resonant frequency of 7GHz driving a 50Ω spectrum analyzer input. This inductor theoretically has j 50Ω input impedance around 2.4GHz. At this frequency, this in parallel with load is about 35Ω , which is a 3dB power reduction. At 1.4GHz, this inductor has impedance of about $i29\Omega$. This in parallel with the 50 Ω load has a magnitude of 25 Ω , which is the same as with a 50 Ω pullup. The main issue with the inductor pullup is the impedance does not look nicely matched to the load.

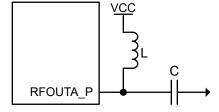


Figure 7-3. Inductor Pullup

As the output impedance is not so nicely matched, but there is higher output power, using a resistive pad is desired to get the best impedance control. A 6dB pad (R1 = 18Ω , R2 = 68Ω) is likely more attenuation than necessary. A 3dB or even 1dB pad can suffice. Two AC-coupling capacitor is required before the pad. In the configuration shown in Figure 7-4, one of them is placed to ground to minimize the number of components in the high frequency path for lower loss.

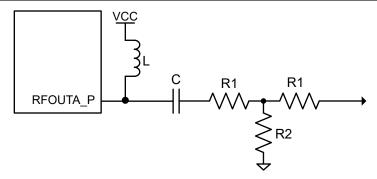


Figure 7-4. Inductor Pullup With Pad

For the resistive pad, Table 7-2 shows some common values:

Table 7-2. Resistive T-Pad Values

ATTENUATION (dB)	R1 (Ω)	R2 (Ω)
1	2.7	420
2	5.6	220
3	6.8	150
4	12	100
5	15	82
6	18	68

7.1.4.3 Combination Pullup

The resistor gives a good low frequency response, while the inductor gives a good high frequency response with worse matching. Having the impedance of the pullup to be high is desired, but if a resistor is used, then there can be too much DC drop. If an inductor is used, finding one that is good at low frequencies and around the self-resonant frequency of the inductor is difficult. One approach to address this is to use a series resistor and inductor followed by a resistive pad.

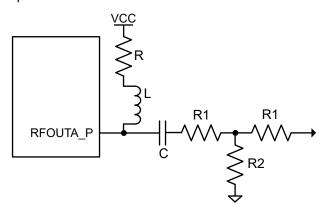


Figure 7-5. Inductor and Resistor Pullup

7.1.5 RF Output Treatment for the Complimentary Side

Regardless of whether both sides of the differential outputs are used, both sides must see a similar load.

7.1.5.1 Single-Ended Termination of Unused Output

The unused output must see a roughly the same impedance as looking out of the pin to minimize harmonics and get the best output power. As placement of the pullup components is critical for the best output power, the routing does not need to be perfectly symmetrical. Give highest priority routing to the used output (RFoutA P in this case).

Product Folder Links: LMX2615-SP

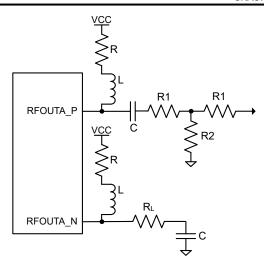


Figure 7-6. Termination of Unused Output: Single-Ended

7.1.5.2 Differential Termination

For differential termination this can be done by doing the same termination to both sides, or connecting the grounds together is also possible. This approach can also be accompanied by a differential to single-ended balun for the highest possible output power.

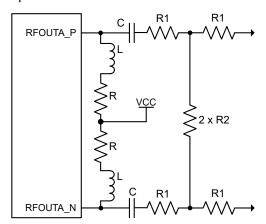


Figure 7-7. Termination of Unused Output: Differential

7.2 External Loop Filter

The LMX2615-SP requires an external loop filter that is application-specific and can be designed by the PLLatinum simulation tool. For the LMX2615-SP, it matters what impedance is seen from the Vtune pin looking outwards. This impedance is dominated by the component C3 for a third order filter or C1 for a second order filter. If there is at least 1.5nF for the capacitance that is shunt with this pin, the VCO phase noise is close to the best possible value. If there is less, the VCO phase noise in the 100kHz to 1MHz region degrades. This capacitor must be placed close to the Vtune pin.

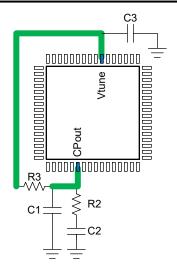


Figure 7-8. External Loop Filter

7.3 Typical Application

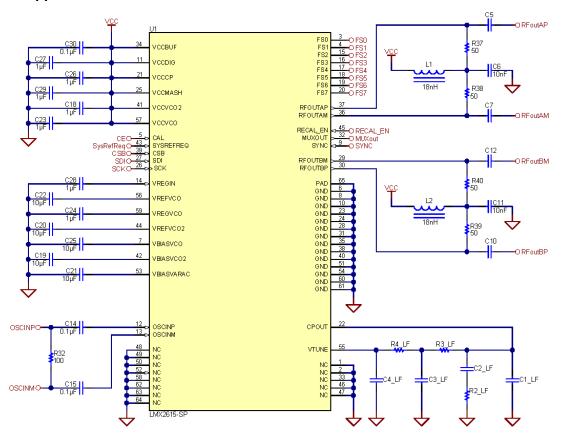


Figure 7-9. Typical Application Schematic

7.3.1 Design Requirements

The design of the loop filter is complex and is typically done with software. The PLLatinum Sim software is an excellent resource for doing this and the design is shown in Figure 7-10.

Submit Document Feedback

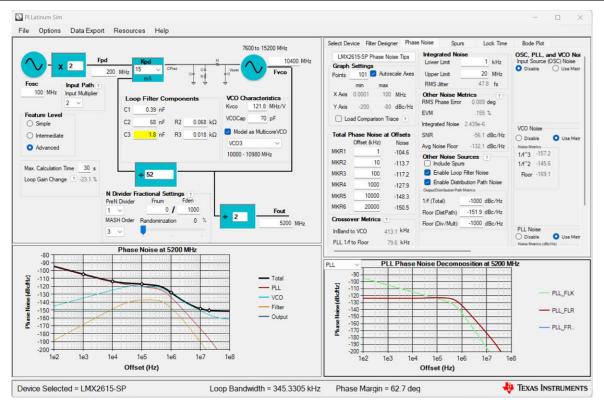


Figure 7-10. PLLatinum Sim Tool

7.3.2 Detailed Design Procedure

The integration of phase noise over a certain bandwidth (jitter) is an performance specification that translates to signal-to-noise ratio. Phase noise inside the loop bandwidth is dominated by the PLL, while the phase noise outside the loop bandwidth is dominated by the VCO. Generally, jitter is lowest if loop bandwidth is designed to the point where the two intersect. A higher phase margin loop filter design has less peaking at the loop bandwidth and thus lower jitter. The tradeoff with this is that longer lock times and spurs must be considered in design as well.

7.3.3 Application Curve

Using the settings described, the performance measured using a clean 100MHz input reference is shown. Note the loop bandwidth is about 350kHz, as simulations predict.

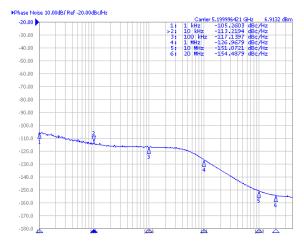


Figure 7-11. Results for Loop Filter Design

7.4 Power Supply Recommendations

TI recommends placement of bypass capacitors close to the pins. Consult the EVM instructions for layout examples. If fractional spurs are a large concern, using a ferrite bead to each of these power supply pins can reduce spurs to a small degree. This device has integrated LDOs, which improves the resistance to power supply noise. However, the pullup components on the RFoutA and RFoutB pins on the outputs have a direct connection to the power supply, so extra care must be made to verify that the voltage is clean for these pins.

Current consumption of the LMX2615-SP depends on the configuration. With LMX2615EVM-CVAL default configuration, Table 7-3 shown the typical current drawn from each voltage supply pin. All voltage supply pins can be tied together to share the same supply source or the pins can be separated with individual supply source. However, VccVCO and VccVCO2 must be tied to the same supply source.

Table 7-3. Individual Voltage Supply Pin Curren	ıt
---	----

Pin Number	Pin Name	Current (mA)	
11	VccDIG	25	
21	VccCP	18	
34	VccBUF	137 (One output active)	
		258 (Two outputs active)	
25	VccMASH	59	
57, 41	VccVCO + VccVCO2	118 (One output active)	
		130 (Two outputs active)	
	Total	357 (One output active)	
		490 (Two outputs active)	

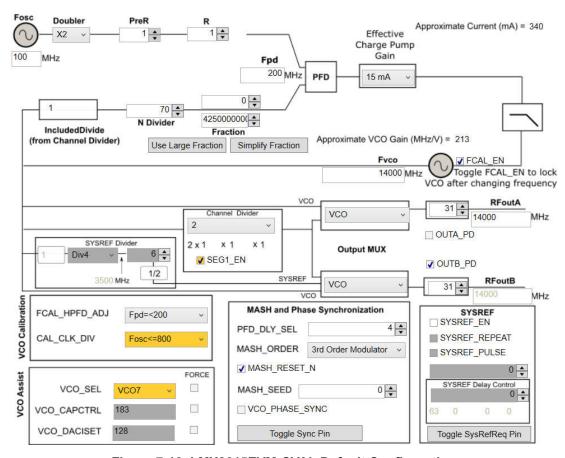


Figure 7-12. LMX2615EVM-CVAL Default Configuration

Product Folder Links: LMX2615-SP

7.5 Layout

7.5.1 Layout Guidelines

In general, the layout guidelines are similar to most other PLL devices. Here are some specific guidelines.

- GND pins can be routed on the package back to the DAP.
- For the outputs, keep the pullup component as close as possible to the pin and use the same component on each side of the differential pair.
- If a single-ended output is needed, the other side must have the same loading and pullup. However, the routing for the used side can be optimized by routing the complementary side through a via to the other side of the board. On this side, use the same pullup and make the load look equivalent to the side that is used.
- Verify DAP on device is well-grounded with many vias, preferably copper filled.
- Have a thermal pad that is as large as the LMX2615-SP exposed pad. Add vias to the thermal pad to maximize thermal performance.
- Use a low loss dielectric material, for the best output power.
- · Place voltage supply bypass capacitor close to the pin.

7.5.2 Layout Example

In addition to the layout guidelines already given, here are some additional comments for this specific layout example

- The most critical part of the layout that the placement of the pullup components (R37, R38, R39, and R40) is close to the pin for optimal output power.
- For this layout, most of the loop filter (C1_LF, C2_LF, C3_LF, R2_LF, R3_LF, and R4_LF) are on the back side of the board. However note that C4_LF is on the top side right next to the Vtune pin. In the event that this C4_LF capacitor is open. Move one of loop capacitors in this spot. For instance, if a 3rd order loop filter is used, technically C3_LF is non-zero and C4_LF is open. However, for this layout example that is designed for a 4th order loop filter, make R3_LF = 0Ω, C3_LF = open, and C4_LF to be whatever C3_LF would have been.

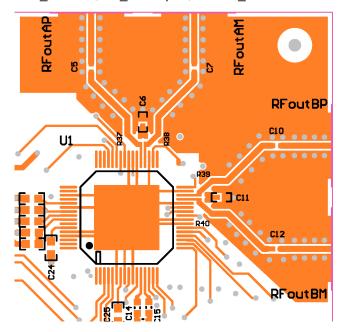


Figure 7-13. LMX2615-SP Layout Example

7.5.3 Footprint Example on PCB Layout

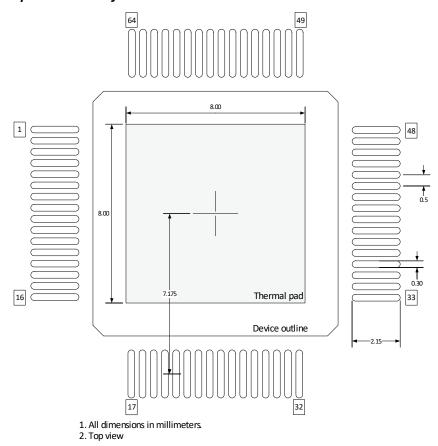


Figure 7-14. LMX2615-SP PCB Land Pattern Example

7.5.4 Radiation Environments

Careful consideration must be given to environmental conditions when using a product in a radiation environment.

7.5.4.1 Total Ionizing Dose

Radiation Hardness assured (RHA) products are those part numbers with a total ionizing dose (TID) level specified in the ordering information. Testing and qualification of these product is done on a wafer level according to MIL-STD-883, test method 1019. Wafer level TID data are available with lot shipments.

7.5.4.2 Single Event Effect

One time single event effect (SEE), including single event latch-up (SEL), single event functional interrupt (SEFI) and single event upset (SEU), testing is performed according to EIA/JEDEC Standard, EIA/JEDEC57. A test report is available upon request.

Submit Document Feedback

8 Device and Documentation Support

8.1 Device Support

8.1.1 Development Support

Texas Instruments has several software tools to aid in the development at www.ti.com. Among these tools are:

- EVM software to understand how to program the device and for programming the EVM board.
- EVM board instructions for seeing typical measured data with detailed measurement conditions and a complete design.
- PLLatinum Sim program for designing loop filters, simulating phase noise, and simulating spurs.

8.2 Documentation Support

8.2.1 Related Documentation

For related documentation see the following:

- Texas instruments, AN-1879 Fractional N Frequency Synthesis application note
- · Texas instruments, PLL Performance, Simulation, and Design Handbook design guide

8.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.7 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision D (May 2020) to Revision E (December 2025)	Page
•	Added package mass and links in the Device Information table	1
•	Updated the content for various pins	3
	Added DAP pin	
	Added SCK, SDI and CSB in digital pin voltage	
	Added CDM rating	
	Changed t _{CD} specification to the maximum column	

•	Added timing requirements for SYNC and SYSREFREQ	
•	Added trigger signals timing diagram; modified SPI timing diagram	9
•	Updated the typical plots	
•	Added a row for fractional numerator in Table 6-1	
•	Added the last sentence	
•	Added maximum state machine clock frequency	15
•	Updated the content and the values in Table 6-2	15
•	Changed line sharing is possible	
•	Changed phase detector cycles to state machine clock cycles	16
•	Content is updated	16
•	Removed equation 3	16
•	Removed Table 6	
•	Changed WD_DLY to WD_CNTRL	17
•	Changed LD_DLY to WD_DLY	17
•	Removed equivalent division value of 72	18
•	Updated Figure 6-2 and Table 6-7	
•	Removed SPI mode statement. Added Pin mode statement	19
•	Fixed typo error	
•	Updated Figure 6-3, Figure 6-4 and Table 6-11	20
•	Changed the setup time, hold time and the flow chart for SYNC	20
•	Updated the procedure for using SYNC	21
•	Deleted the first sentence	
•	Added phase adjustment content	22
•	Updated SYSREF block diagram and equations; updated the value in Table 6-14	
•	Changed "R75 down to R0 is required" to "R75 down to R0 (with FCAL_EN = 1) is required"	28
•	Updated the content	
•	Changed register R1 bit 3 name from 1 to MUXOUT_CTRL in Table 6-17	
•	Changed register R11 bit 4 name from 1 to PLL_R in Table 6-17	
•	Added POR column in Table 6-17	
•	Changed the description of RESET in Table 6-20	
•	Added MUXOUT_CTRL in Figure 6-10 and Table 6-21	
•	Updated Figure 7-1	
•	Changed the impedance values	
•	Added External Loop Filter section.	
	Updated Figure 7-10	
	Updated Figure 7-11	
	Changed the title of Figure 7-14	
	Added link to the engineering sample technical document	
CI	nanges from Revision C (November 2018) to Revision D (May 2020)	Page
•	Added SMD number and orderable part	1
•	Deleted LMX2615W-MLS from the Device Information table	
•	Deleted sentence "See application section on phase noise due to the charge pump." from PLL Phase	
	Detector and Charge Pump section	15
•	Changed Typical Application Schematic graphic	
•	Changed Layout Example graphic	
_		
CI	nanges from Revision B (June 2018) to Revision C (November 2018)	Page
•	Changed device status from Advanced Information to Production Data	1
	Changed output power VCO Calibration time, and harmonics	7

www.ti.com

Added Typical Performance Characteristics	
Changed Updated Max Frequencies for higher divides to be based on 11.5GHz, not 15.2GHz	18
Added FS7 Pin description	25
Added more details including capacitor requirements for Vtune pin	<mark>69</mark>
hanges from Revision A (June 2018) to Revision B (August 2018)	Page
	1
· · ·	
·	
hanges from Revision * (May 2017) to Revision A (June 2018)	Page
	onditions//
Changed the power on reset current typical value for the RESET=1 test condition from: 270mA to:	289mA 7
Changed the power on reset current typical value for the POWERDOWN=1 test condition from: 5m	A to:
Changed VCO phase noise test conditions and typical values	/
ADDED TVDICAL SUPPRIOR TIMES FOR TAGE = TAGE = TUDN/H7 NOSAR ON VET 1 NH TONIA	16
Added Typical Calibration times for $f_{OSC} = f_{PD} = 100MHz$ based on VCO_SEL table	
	Changed Updated Max Frequencies for higher divides to be based on 11.5GHz, not 15.2GHz Added FS7 Pin description

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10.1 Engineering Samples

Engineering samples (LMX2615W-MPR) have the same package, pinout, programming, and typical performance as the flight devices (5962R1723601VXC). Samples are tested at room temperature to meet the electrical specifications, but have not received or passed the full space production flow or testing. Engineering samples can be QCI rejects that failed full space production tests, such as radiation or reliability.

For more information about engineering samples, see the Texas Instruments Engineering Evaluation Units versus MIL-PRF-38535 QML Class V Processing brochure.

Submit Document Feedback

www.ti.com 20-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier		Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
5962R1723601VXC	Active	Production	CFP (HBD) 64	14 TUBE	ROHS Exempt	NIAU	Level-1-NA-UNLIM	-55 to 125	5962R1723601VXC LMX2615WRQMLV
LMX2615-MKT-MS	Active	Production	CFP (HBD) 64	1 TUBE	-	Call TI	Call TI	25 to 25	LMX2615-MKT-MS MECHANICAL
LMX2615W-MPR	Active	Production	CFP (HBD) 64	14 TUBE	ROHS Exempt	NIAU	Level-1-NA-UNLIM	25 to 25	LMX2615W-MPR ENG SAMPLE

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

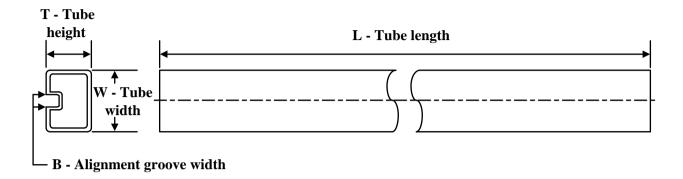
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

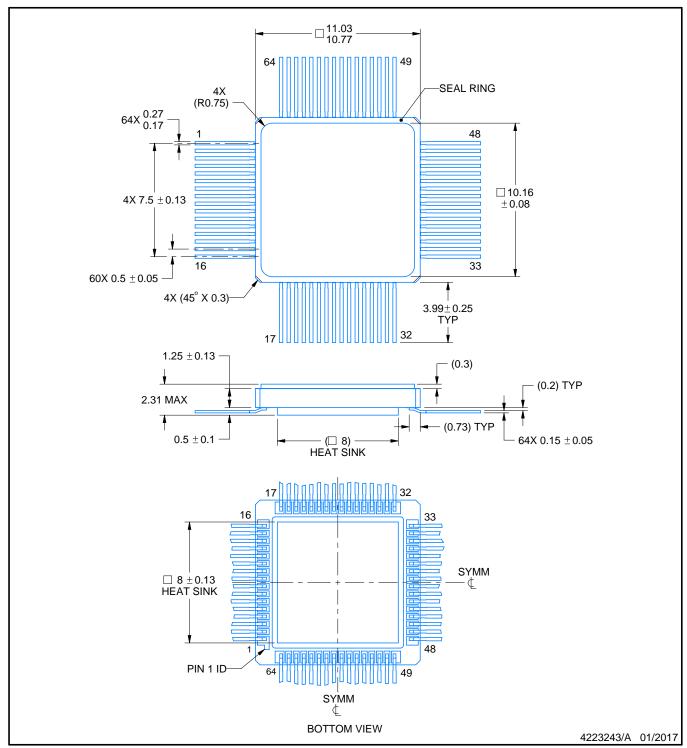

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 21-May-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962R1723601VXC	HBD	CFP (HSL)	64	14	495	33	11176	16.51
LMX2615W-MPR	HBD	CFP (HSL)	64	14	495	33	11176	16.51

CERAMIC FLATPACK

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This package is hermetically sealed with a metal lid.

- 4. Ground pad to be electronic connected to heat sink and seal ring.
- 5. The leads are gold plated and can be solder dipped.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025