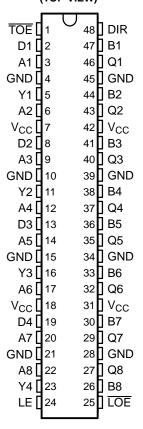
SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

FEATURES

- Member of the Texas Instruments Widebus™
 Family
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)


DESCRIPTION/ORDERING INFORMATION

This device contains four independent noninverting buffers and an 8-bit noninverting bus transceiver and D-type latch, designed for 1.65-V to 3.6-V $V_{\rm CC}$ operation.

The SN74ALVCH16973 is particularly suitable for demultiplexing an address/data bus into a dedicated address bus and dedicated data bus. The device is used where there is asynchronous bidirectional communication between the A and B data bus, and the address signals are latched and buffered on the Q bus. The control-function implementation minimizes external timing requirements.

This device can be used as one 4-bit buffer, one 8-bit transceiver, or one 8-bit latch. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The transceiver output-enable (TOE) input can be used to disable the transceivers so that the A and B buses effectively are isolated.

DGG, DGV, OR DL PACKAGE (TOP VIEW)

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	SSOP - DL	Tube	SN74ALVCH16973DL	ALVCH16973
	330P - DL	Tape and reel	SN74ALVCH16973DLR	ALVCH 10973
	TSSOP - DGG	Tape and reel	SN74ALVCH16973DGGR	ALVCH16973
	TVSOP - DGV	Tape and reel	SN74ALVCH16973DGVR	VH973

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

When the latch-enable (LE) input is high, the Q outputs follow the data (A) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the A inputs. The latch output-enable (LOE) input can be used to place the nine Q outputs in either a normal logic state (high or low logic level) or the high-impedance state. In the high-impedance state, the Q outputs neither drive nor load the bus lines significantly. LOE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the Q outputs are in the high-impedance state.

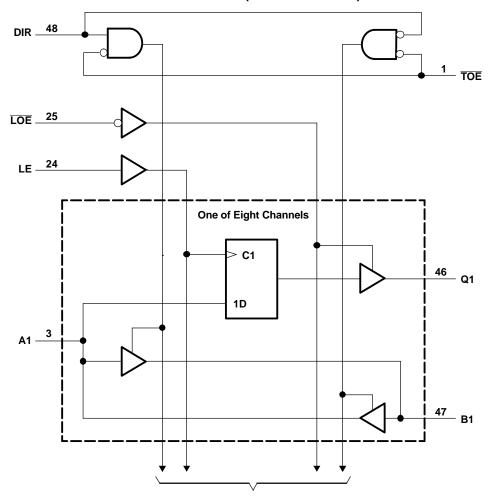
To ensure the high-impedance state during power up or power down, $\overline{\text{LOE}}$ and $\overline{\text{TOE}}$ should be tied to V_{CC} through pullup resistors; the minimum values of the resistors are determined by the current-sinking capability of the drivers.

The four independent noninverting buffers perform the Boolean function Y = D and are independent of the state of DIR, \overline{TOE} , LE, and \overline{LOE} .

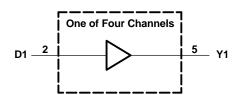
The A and B I/Os and D inputs have bus-hold circuitry. Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

FUNCTION TABLES

INP	UTS	ODEDATION			
TOE	DIR	OPERATION			
L	L	B data to A bus			
L	Н	A data to B bus			
Н	Х	A bus and B bus isolation			


	OUTPUT		
LOE	LE	Α	Q
L	Н	Н	Н
L	Н	L	L
L	L	X	Q_0
Н	X	X	Z

INPUT D	OUTPUT Y
L	L
Н	Н



SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

LOGIC DIAGRAM (POSITIVE LOGIC)

To Seven Other Channels

SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
	lanut voltage range	Except I/O and D input ports (2)	-0.5	4.6	V
V _I	Input voltage range	I/O and D input ports (2)(3)	-0.5	V _{CC} + 0.5	V
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GN	ID		±100	mA
		DGG package		70	
θ_{JA}	Package thermal impedance (4)	DGV package	58		°C/W
		DL package		63	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		1.65	3.6	V
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V
		V _{CC} = 3 V to 3.6 V	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V
		V _{CC} = 3 V to 3.6 V		0.8	
VI	Input voltage		0	V_{CC}	V
Vo	Output voltage		0	V_{CC}	V
		V _{CC} = 1.65 V		-4	
	High-level output current	V _{CC} = 2.3 V			A
I _{OH}		V _{CC} = 2.7 V		-12	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
	Laur laurel autout aumant	V _{CC} = 2.3 V		12	mA
l _{OL}	Low-level output current	V _{CC} = 2.7 V		12	
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate			10	ns/V
T _A	Operating free-air temperature		-40	85	°C

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 4.6 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	V _{cc}	MIN TYP(1) MA	X UNIT	
		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2		
		I _{OH} = -4 mA	1.65 V	1.2		
		I _{OH} = -6 mA	2.3 V	2		
V_{OH}			2.3 V	1.7	V	
		I _{OH} = -12 mA	2.7 V	2.2		
			3 V	2.4		
		I _{OH} = -24 mA	3 V	2		
		I _{OL} = 100 μA	1.65 V to 3.6 V	0.	2	
		I _{OL} = 4 mA	1.65 V	0.4	5	
.,		I _{OL} = 6 mA	2.3 V	0.	4 V	
V_{OL}		10	2.3 V	0.	7 V	
		I _{OL} = 12 mA	2.7 V	0.	4	
		I _{OL} = 24 mA	3 V	0.5	5	
I _I		$V_I = V_{CC}$ or GND	3.6 V	<u>+</u>	5 μΑ	
		V _I = 0.57 V	1.65 V	25		
$I_{BHL}^{(2)}$		V _I = 0.7 V 2.3 V 45		45	μΑ	
		V _I = 0.8 V	3 V	75		
		V _I = 1.07 V	1.65 V	-25		
I _{BHH} (3)		₁ = 1.7 V 2.3 V -45		-45	μΑ	
		V _I = 2 V	3 V	-75		
			1.95 V	200		
I _{BHLO} (4)		$V_I = 0$ to V_{CC}	2.7 V	300	μΑ	
			3.6 V	500		
			1.95 V	-200		
I _{BHHO} ⁽⁵⁾		$V_I = 0$ to V_{CC}	0 to V _{CC} 2.7 V -300		μΑ	
			3.6 V	-500		
I _{OZ} ⁽⁶⁾		$V_O = V_{CC}$ or GND	3.6 V	±1	0 μΑ	
I _{CC}		$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V	3	0 μΑ	
ΔI_{CC}		One input at V _{CC} - 0.6 V, Other inputs at V _{CC} or GND	3 V to 3.6 V	75	0 μΑ	
0	Control inputs		0.01/	3		
C _i	D	$V_I = V_{CC}$ or GND	3.3 V	4	pF	
_	A ports	V V 0ND	0.01/	4.5	<u> </u>	
C _{io}	B ports	$V_O = V_{CC}$ or GND	3.3 V	4.5	pF	
C _o	Q	$V_O = V_{CC}$ or GND	3.3 V	3	pF	

 ⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.
 (2) The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least I_{BHHO} to switch this node from high to low. For I/O ports, the parameter I_{OZ} includes the input leakage current.

SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 1.8 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT
		MIN MA	MIN MAX	MIN MAX	
t _w	Pulse duration, LE high	2	2	2	ns
t _{su}	Setup time, data before LE \downarrow	0.9	0.9	0.9	ns
t _h	Hold time, data after LE↓	0.9	0.9	0.9	ns

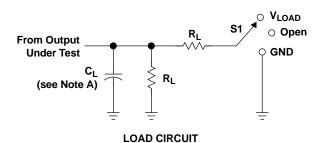
SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO	V _{CC} = 1.8 V	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(OUTPUT)	TYP	MIN	MAX	MIN	MAX	
	D	Υ	2.2	0.5	3.2	0.5	3	
	Α	0	2.2	0.5	3.2	0.5	3	ns
t _{pd}	LE	Q	2.8	0.5	3.3	0.5	3	
	A or B	B or A	2.2	0.5	3.2	0.5	3	
	LOE	Q	2.9	0.7	4.9	0.7	4.7	
t _{en}	TOE	A == D	3	0.7	4.6	0.7	4.4	ns
	DIR	A or B	3.4	0.7	4.9	0.7	4.7	
	LOE	Q	2.8	0.5	4.3	0.5	4.1	
t _{dis}	TOE	A or D	3.2	0.5	4.3	0.5	4.1	ns
	DIR	A or B	3.4	0.5	4.9	0.5	4.7	

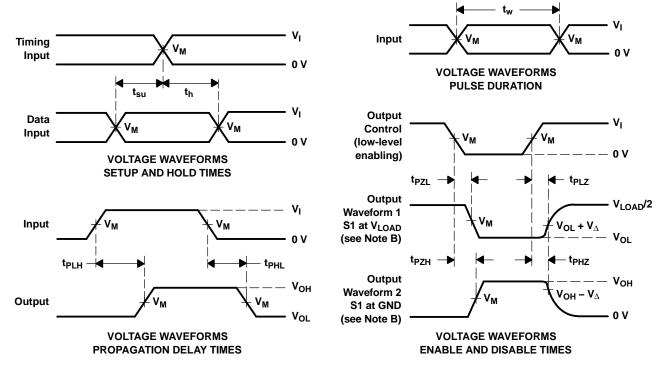
SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

OPERATING CHARACTERISTICS(1)


 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
	PARAMEI	EK	TEST CONDITIONS	TYP	TYP	TYP	UNIT
		A outputs enabled, Q outputs disabled, One A output switching	$\label{eq:control_approx} \begin{split} &\text{One } f_A = 10 \text{ MHz}, \\ &\text{One } f_B = 10 \text{ MHz}, \\ &\overline{\text{TOE}} = \text{GND}, \\ &\overline{\text{LOE}} = \text{V}_{\text{CC}}, \\ &\text{DIR} = \text{GND}, \\ &C_L = 0 \text{ pF} \end{split}$	12	14	19	
C _{pd} ⁽²⁾ (each output)	Power dissipation capacitance	B outputs enabled, Q outputs disabled, One B output switching	$\label{eq:continuous_problem} \begin{split} &\text{One } f_A = 10 \text{ MHz}, \\ &\text{One } f_B = 10 \text{ MHz}, \\ &\overline{\text{TOE}} = \text{GND}, \\ &\overline{\text{LOE}} = \text{V}_{\text{CC}}, \\ &\text{DIR} = \text{GND}, \\ &C_L = 0 \text{ pF} \end{split}$	12	14	21	pF
		Q outputs enabled, A and B I/Os isolated, One Q output switching	$\label{eq:controller} \begin{split} &\text{One } f_A = 10 \text{ MHz}, \\ &\text{One } f_{LE} = 20 \text{ MHz}, \\ &\text{One } f_Q = 10 \text{ MHz}, \\ &\overline{\text{TOE}} = V_{CC}, \\ &\overline{\text{LOE}} = \text{GND}, \\ &C_L = 0 \text{ pF} \end{split}$	11	13	19	·
		One Y output switching, A and B I/Os isolated, Q outputs disabled	$\label{eq:constraints} \begin{split} &\text{One f}_D = 10 \text{ MHz},\\ &\text{One f}_Y = 10 \text{ MHz},\\ &\overline{\text{TOE}} = V_{CC},\\ &\overline{\text{LOE}} = V_{CC},\\ &C_L = 0 \text{ pF} \end{split}$	7	8	12	
C _{pd (Z)}	Power dissipation capacitance			4	5	11	pF
C _{pd} ⁽³⁾ (each LE)	Power dissipation capacitance	A and B I/Os isolated, Q outputs disabled, One LE input switching	$\begin{aligned} &f_A \text{ not switching,} \\ &\text{One } f_{LE} = 20 \text{ MHz,} \\ &f_C \text{ not switching,} \\ &\overline{\text{TOE}} = V_{CC}, \\ &\overline{\text{LOE}} = V_{CC}, \\ &C_L = 0 \text{ pF} \end{aligned}$	6	7	9	pF

 ⁽¹⁾ Total device C_{pd} for multiple (m) outputs switching and (n) LE inputs switching = [m * C_{pd} (each output)] + [n * C_{pd} (each LE)].
 (2) C_{pd} (each output) is the C_{pd} for each data bit (input and output circuitry) when it operates at 10 MHz (Note: the LE is operating at 20 MHz in this test, but its I_{CC} component has been subtracted).
 (3) C_{pd} (each LE) is the C_{pd} for the clock circuitry only when it operates at 20 MHz.



PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	V _{LOAD} GND
t _{PHZ} /t _{PZH}	GND

INPUT V_{M} C_L R_{L} V_{Δ} V_{CC} V_{LOAD} V_{I} t_r/t_f 1.8 V ≤2 ns V_{CC}/2 $2\times V_{CC}$ 30 pF 1 $k\Omega$ 0.15 V V_{CC} $\textbf{2} \times \textbf{V}_{\textbf{CC}}$ $\textbf{2.5 V} \pm \textbf{0.2 V}$ V_{CC} ≤2 ns V_{CC}/2 30 pF **500** Ω 0.15 V 3.3 V \pm 0.3 V 2.7 V ≤2.5 ns 1.5 V 6 V 50 pF **500** Ω 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Ω} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

11-Nov-2025 www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74ALVCH16973DGGR	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16973
SN74ALVCH16973DGGR.B	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16973

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

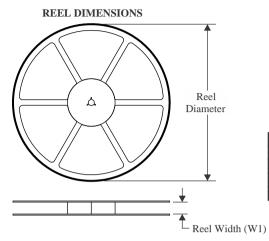
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

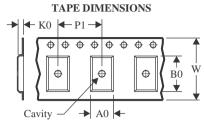
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

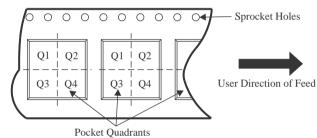
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

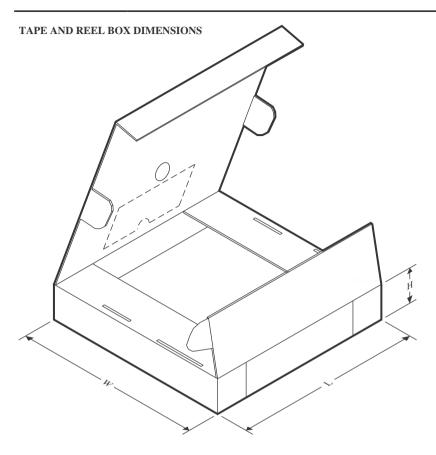
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

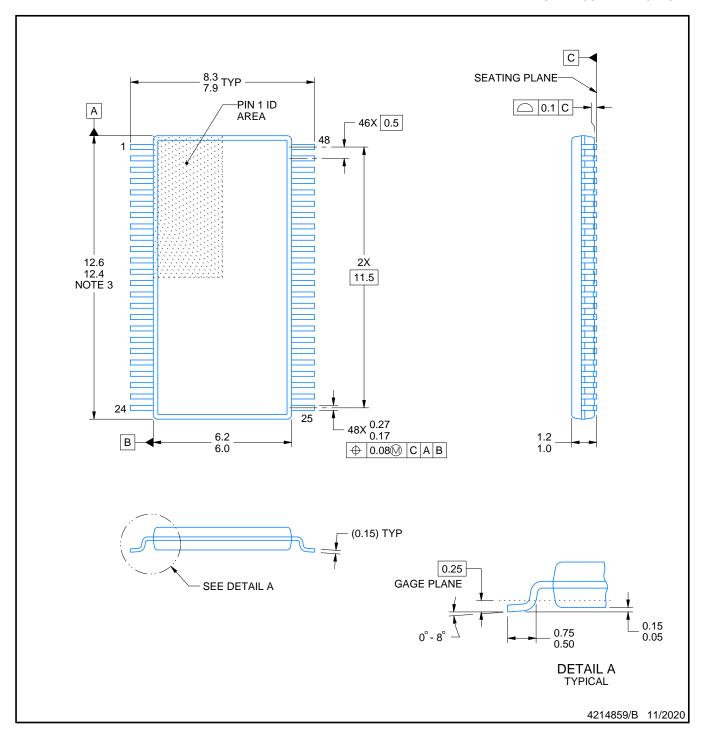


*All dimensions are nominal

Device	U	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVCH16973DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

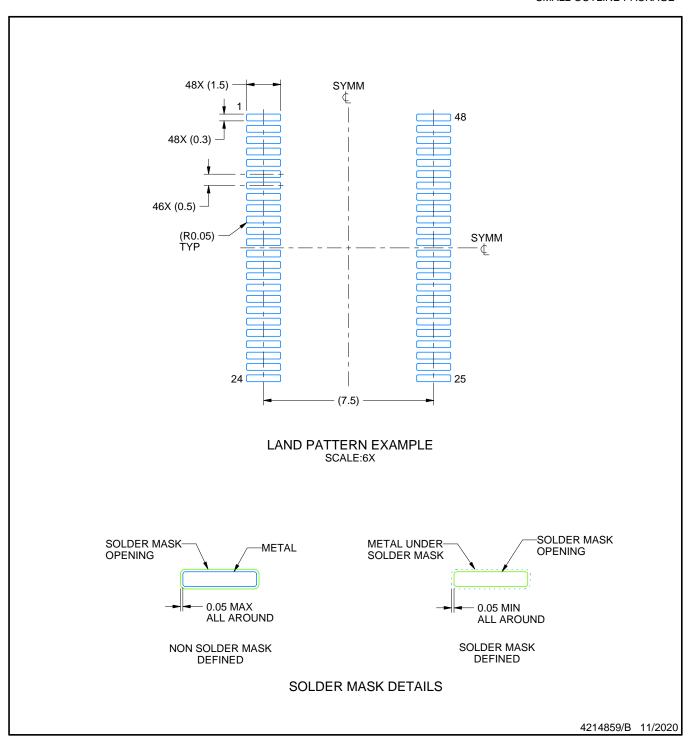


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVCH16973DGGR	TSSOP	DGG	48	2000	356.0	356.0	45.0

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

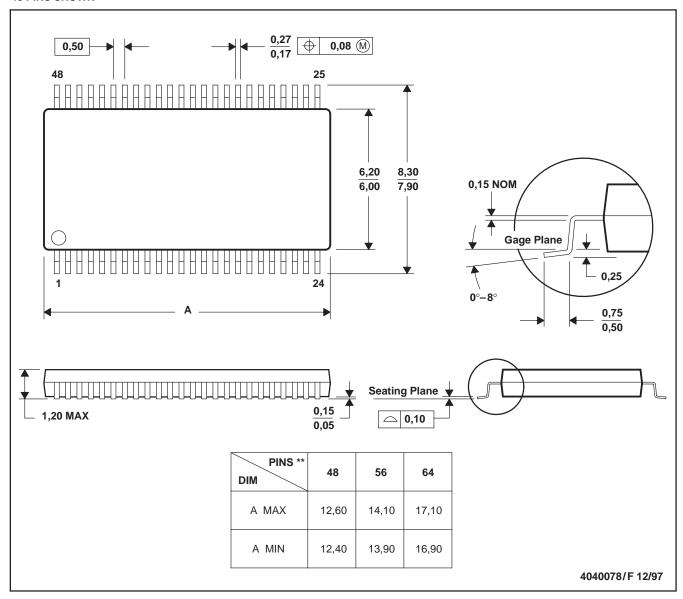


NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025