

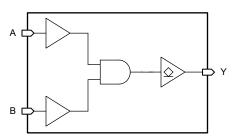
SN74LVC1G09B-Q1 Automotive Single 2-Input Positive-AND Gate with Open-Drain **Output**

1 Features

- AEC-Q100 qualified for automotive applications:
 - Device temperature grade 1: -40°C to +125°C
- Operating range from 1.1V to 5.5V
- 5.5V tolerant input pins
- Supports standard pinouts
- Latch-up performance exceeds 100mA per JESD 78

2 Applications

- Combining power good signals
- Enable digital signals


3 Description

The SN74LVC1G09B-Q1 device is a single 2-input positive-AND gate with open-drain output.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾	BODY SIZE(3)						
SN74LVC1G09B- Q1	DTX (XSON, 5)	1.1mm × 0.85mm	1.1mm × 0.85mm						
SN74LVC1G09B- Q1	DBV (SOT-23, 5)	2.9mm × 2.8mm	2.9mm × 1.6mm						
SN74LVC1G09B- Q1	DCK (SOI-SC70_5)		2mm × 1.25mm						

- For more information, see Section 11.
- The package size (length × width) is a nominal value and includes pins, where applicable.
- The body size (length × width) is a nominal value and does not include pins.

Logic Diagram

Table of Contents

1 Features	1	8.3 Power Supply Recommendations	15
2 Applications	1	8.4 Layout	15
3 Description	1	9 Device and Documentation Support	17
4 Pin Configuration and Functions	3	9.1 Documentation Support	17
5 Specifications	4	9.2 Receiving Notification of Documentation Updates	17
5.1 Specifications	4	9.3 Support Resources	17
6 Parameter Measurement Information	7	9.4 Trademarks	17
7 Detailed Description	8	9.5 Electrostatic Discharge Caution	
7.1 Overview		9.6 Glossary	
7.2 Functional Block Diagram	8	10 Revision History	17
7.3 Feature Description		11 Mechanical, Packaging, and Orderable	
7.4 Device Functional Modes	11	Information	18
8 Application and Implementation	12	11.1 Tape and Reel Information	18
8.1 Application Information	12	11.2 Mechanical Data	. 20
8.2 Typical Application	12		

4 Pin Configuration and Functions

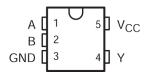


Figure 4-1. DBV or DCK Package, 5-Pin SOT-23 or SOT-SC70 (Top View)

Figure 4-2. DTX Package, 5-Pin X2SON (Top View)

Table 4-1. Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.	ITPE\/	DESCRIPTION
A	1	I	Input A
В	2	I	Input B
GND	3	G	Ground Pin
Υ	4	0	Output Y
V _{CC}	5	Р	Power Pin

(1) Signal Types: I = Input, O = Output, G = Ground, P = Power

5 Specifications

51 Specifications

5.1.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

				MIN	MAX	UNIT
V _{CC}	Supply voltage range			-0.5	6.5	V
VI	Input voltage range ⁽²⁾			-0.5	6.5	V
Vo	Output voltage range ⁽²⁾			-0.5	V _{CC} + 0.5	V
Vo	Output voltage range (2)			-0.5	6.5	V
I _{IK}	Input clamp current	V _I < 0 V			-50	mA
I _{OK}	Output clamp current	V _O < 0 V			-50	mA
Io	Continuous output current	-			±50	mA
Io	Continuous output current through	Continuous output current through V _{CC} or GND			±100	mA
TJ	Junction temperature			-65	150	°C
T _{stg}	Storage temperature	Storage temperature			150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

5.1.2 ESD Ratings

			VALUE	UNIT
Electrostatic	Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level 2 ⁽¹⁾	±2000		
V _(ESD)	discharge	Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C4B	±1000	V

1) AEC Q100-002 indicate that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.1.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

Specifications	Description	Condition	MIN	MAX	UNIT
V _{CC}	Supply voltage		1.1	5.5	V
V _I	Input voltage		0	5.5	V
Vo	Output voltage	(High or low state)	0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	
I _{OH}	High-level output current	V 00V		-16	mA
		V _{CC} = 3.0 V		-24	
		V _{CC} = 4.5 V		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
I _{OL}	Low-level output current	V - 20V		16	mA
		V _{CC} = 3.0 V		24	
		V _{CC} = 4.5 V		32	
Δt/Δν	Input transition rise or fall rate	V _{cc} = 1.2 V to 5.0V		20	ns/V
T _A	Operating free-air temperature		-40	125	°C
V _{IH}	High-level input voltage	V _{CC} = 1.1 V	0.75		V

Submit Document Feedback

over operating free-air temperature range (unless otherwise noted)

Specifications	Description	Condition	MIN	MAX	UNIT
V _{IH}	High-level input voltage	V _{CC} = 1.32 V	0.78		V
V _{IH}	High-level input voltage	V _{CC} = 1.5 V	0.975		V
V _{IH}	High-level input voltage	V _{CC} = 1.65 V	1.075		V
V _{IH}	High-level input voltage	V _{CC} = 1.95 V	1.2675		V
V _{IH}	High-level input voltage	V _{CC} = 2.3 V	1.7		V
V _{IH}	High-level input voltage	V _{CC} = 2.7 V	1.7		V
V _{IH}	High-level input voltage	V _{CC} = 3.0 V	2		V
V _{IH}	High-level input voltage	V _{CC} = 3.6 V	2		V
V _{IH}	High-level input voltage	V _{CC} = 4.5 V	3.15		V
V _{IH}	High-level input voltage	V _{CC} = 5.5 V	3.85		V
V _{IL}	Low-Level input voltage	V _{CC} = 1.1 V		0.40	V
V _{IL}	Low-Level input voltage	V _{CC} = 1.32 V		0.42	V
V _{IL}	Low-Level input voltage	V _{CC} = 1.5 V		0.525	V
V _{IL}	Low-Level input voltage	V _{CC} = 1.65 V		0.5775	V
V _{IL}	Low-Level input voltage	V _{CC} = 1.95 V		0.6825	V
V _{IL}	Low-Level input voltage	V _{CC} = 2.3 V		0.7	V
V _{IL}	Low-Level input voltage	V _{CC} = 2.7 V		0.7	V
V _{IL}	Low-Level input voltage	V _{CC} = 3.0 V		0.8	V
V _{IL}	Low-Level input voltage	V _{CC} = 3.6 V		0.8	V
V _{IL}	Low-Level input voltage	V _{CC} = 4.5 V		1.35	V
V _{IL}	Low-Level input voltage	V _{CC} = 5.5 V		1.65	V

5.1.4 Thermal Information

PACKAGE	PINS			THERMAL	METRIC ⁽¹⁾			UNIT
PACKAGE	FINS	R _{0JA}	R _{0JC(top)}	R _{0JB}	Ψ_{JT}	Ψ_{JB}	R _{0JC(bot)}	CIALL
DTX (XSON, 5)	5	313.6	137.4	253.5	69.2	259	166.7	°C/W
DBV (SOT-23, 5)	5	357.1	263.7	264.4	195.6	262.2	N/A	°C/W
DCK (SOT-SC70, 5)	5	371.0	297.5	258.6	195.6	256.2	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.1.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V	-40°C to	-40°C to 125°C			
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MA	UNIT		
V _{OH}	I _{OH} = -100μA	1.1V to 5.5V	V _{CC} - 0.1		V		
V _{OH}	I _{OH} = -4mA	1.65V	1.2		V		
V _{OH}	I _{OH} = –8mA	2.3V	1.9		V		
V _{OH}	I _{OH} = -12mA	2.7V	2.2		V		
V _{OH}	I _{OH} = –16mA	3V	2.4		V		
V _{OH}	I _{OH} = –24mA	3V	2.3		V		
V _{OH}	I _{OH} = -32mA	4.5V	3.8		V		
V _{OL}	I _{OL} = 100μA	1.1V to 5.5V		0.	15 V		
V _{OL}	I _{OL} = 4mA	1.65V		0.4	45 V		
V _{OL}	I _{OL} = 8mA	2.3V		C	.3 V		

over operating free-air temperature range (unless otherwise noted)

PARAMETER	R TEST CONDITIONS	V	-40°C to	-40°C to 125°C			
PARAIVIETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
V _{OL}	I _{OL} = 12mA	2.7V			0.4	V	
V _{OL}	I _{OL} = 16mA	3V			0.4	V	
V _{OL}	I _{OL} = 24mA	3V			0.55	V	
V _{OL}	I _{OL} = 32mA	4.5V			0.55	V	
I _I	V _I = V _{CC} or GND	V _{CC} = 0V to 5.5 V			±5	μΑ	
I _{off}	V_{I} or $V_{O} = V_{CC}$	V _{CC} = 0V			±10	μΑ	
I _{OZ}	V _O = V _{CC} or GND	5.5V			±15	μA	
I _{CC}	V _I = V _{CC} or GND, I _O = 0	V _{CC} = 1.1V to 5.5 V			10	μA	
ΔI _{CC}	One input at V_{CC} - 0.6V, other inputs at V_{CC} or GND	3.0V to 5.5V			500	μΑ	
Cı	V _I = V _{CC} or GND	3.3V		3.5		pF	
Co	V _O = V _{CC} or GND	3.3V				pF	

5.1.6 Switching Characteristics

over operating free-air temperature range; typical values measured at $T_A = 25$ °C (unless otherwise noted). See #i#Parameter Measurement Information

DADAMETED	FROM	FROM (INPUT) TO (OUTPUT) LOAD CAPACITANCE	.,	-40°C to 125°C			LINUT	
PARAMETER	(INPUT)		LOAD CAPACITANCE	V _{cc}	MIN	TYP	MAX	UNIT
t _{pd}	A or B	Υ	C _L = 15 pF	1.2 V ± 0.1 V		23	33	ns
t _{pd}	A or B	Υ	C _L = 15 pF	1.5 V ± 0.12 V		7	8.5	ns
t _{pd}	A or B	Υ	C _L = 15 pF	1.8 V ± 0.15 V		5	5.8	ns
t _{pd}	A or B	Υ	C _L = 15 pF	2.5 V ± 0.2 V		3	3.8	ns
t _{pd}	A or B	Υ	C _L = 15 pF	3.3 V ± 0.3 V		2.5	2.9	ns
t _{pd}	A or B	Υ	C _L = 15 pF	5.0 V ± 0.5 V		2	2.4	ns
t _{pd}	A or B	Υ	C _L = 30 pF	1.8 V ± 0.15 V	2.8	6	6.9	ns
t _{pd}	A or B	Υ	C _L = 30 pF	2.5 V ± 0.2 V	1.6	3.8	4.3	ns
t _{pd}	A or B	Υ	C _L = 50 pF	3.3 V ± 0.3 V	1.4	3.2	3.9	ns
t _{pd}	A or B	Υ	C _L = 50 pF	5.0 V ± 0.5 V	1	2.5	3.2	ns
C _{pd}			f = 10 MHz	1.8V		3		pf
C _{pd}			f = 10 MHz	2.5V		3		pf
C _{pd}			f = 10 MHz	3.3V		4		pf
C _{pd}			f = 10 MHz	5V		6		pf

Submit Document Feedback

6 Parameter Measurement Information

Phase relationships between waveforms were chosen arbitrarily for the examples listed in the following table. All input pulses are supplied by generators having the following characteristics: PRR \leq 1MHz, $Z_O = 50\Omega$, $t_t \leq$ 2.5ns.

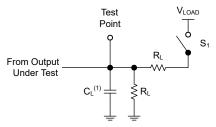
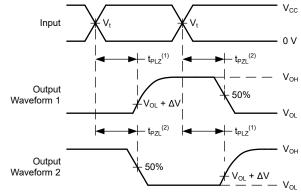

The outputs are measured individually with one input transition per measurement.

Table 6-1. Open-Drain Outputs

TEST	S1
t _{PLZ} , t _{PZL}	CLOSED


Table 6-2. 3-State or Open-Drain Outputs

V _{cc}	V _t	R_L	C _L	ΔV	V _{LOAD}						
1.2V ± 0.1V	V _{CC} /2	2kΩ	15pF	0.1V	2×V _{CC}						
1.5V ± 0.12V	V _{CC} /2	2kΩ	15pF 0.1V		2×V _{CC}						
1.8V ± 0.15V	V _{CC} /2	1kΩ	15pF/30pF	0.15V	2×V _{CC}						
2.5V ± 0.2V	V _{CC} /2	500Ω	15pF/30pF	0.15V	2×V _{CC}						
3.3V ± 0.3V	1.5V	500Ω	15pF/50pF	0.3V	6V						
5.0V ± 0.5V	1.5V	500Ω	15pF/50pF	0.3V	6V						

(1) C_L includes probe and test-fixture capacitance.

Figure 6-1. Load Circuit for Open-Drain Outputs

- (1) t_{PLZ} is the same as t_{dis}.
- (2) t_{PZL} is the same as t_{en}.

Figure 6-2. Voltage Waveforms Propagation Delays

7 Detailed Description

7.1 Overview

The SN74LVC1G09B-Q1 device is a single 2-input positive-AND gate. The device performs the Boolean function $Y = A \bullet B$ or $Y = \overline{A + B}$ in positive logic.

7.2 Functional Block Diagram

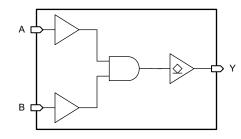


Figure 7-1. Logic Diagram (Positive Logic)

Submit Document Feedback

7.3 Feature Description

7.3.1 Open-Drain CMOS Outputs

This device includes open-drain CMOS outputs. Open-drain outputs can only drive the output low. When in the high logical state, open-drain outputs are in a high-impedance state. The drive capability of this device can create fast edges into light loads, so consider routing and load conditions to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. Limit the device output power to avoid damage due to overcurrent. Follow the electrical and thermal limits defined in the *Absolute Maximum Ratings* at all times.

When placed into the high-impedance state, the output neither sources nor sinks current, with the exception of minor leakage current as defined in the *Electrical Characteristics* table. In the high-impedance state, the output voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to the node, then this is known as a floating node and the voltage is unknown. A pull-up resistor can be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The value of the resistor depends on multiple factors, including parasitic capacitance and power consumption limitations. Typically, use a $10k\Omega$ resistor to meet these requirements.

Leave unused open-drain CMOS outputs disconnected.

7.3.2 Partial Power Down (Ioff)

This device includes circuitry to disable all outputs when the supply pin is held at 0V. When disabled, the outputs will neither source nor sink current, regardless of the input voltages applied. The amount of leakage current at each output is defined by the I_{off} specification in the *Electrical Characteristics* table.

7.3.3 Standard CMOS Inputs

This device includes standard CMOS inputs. Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics*. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings*, and the maximum input leakage current, given in the *Electrical Characteristics*, using Ohm's law (R = V ÷ I).

Standard CMOS inputs require that input signals transition between valid logic states quickly, as defined by the input transition time or rate in the *Recommended Operating Conditions* table. Failing to meet this specification will result in excessive power consumption and could cause oscillations. More details can be found in *Implications of Slow or Floating CMOS Inputs*.

Do not leave standard CMOS inputs floating at any time during operation. Unused inputs must be terminated at V_{CC} or GND. If a system will not be actively driving an input at all times, then a pull-up or pull-down resistor can be added to provide a valid input voltage during these times. The resistor value will depend on multiple factors; a $10k\Omega$ resistor, however, is recommended and will typically meet all requirements.

Submit Document Feedback

7.3.4 Clamp Diode Structure

Figure 7-2 shows the inputs and outputs to this device have negative clamping diodes only.

CAUTION

Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

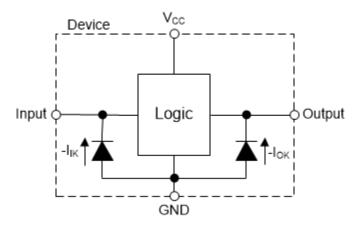


Figure 7-2. Electrical Placement of Clamping Diodes for Each Input and Output

7.4 Device Functional Modes

Table 7-1 lists the functional modes for SN74LVC1G09B-Q1.

Table 7-1. Function Table

INPU	OUTPUT			
Α	А В			
Н	Н	Z		
L	Х	L		
Х	L	L		

- (1) H = High Voltage Level, L = Low Voltage Level, X = Don't Care
- (2) H = Driving High, L = Driving Low, Z = High Impedance State

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

In this application, two 2-input AND gates, SN74LVC1G09B-Q1, combine to produce a 4-input AND gate function as shown in the Section 8.2 diagram.

The SN74LVC1G09B-Q1 directly controls the RESET pin of a motor controller. The controller requires four input signals to all be HIGH before being enabled; disable in the event that any one signal goes LOW. The 4-input AND gate function combines the four individual reset signals into a single active-low reset signal.

8.2 Typical Application

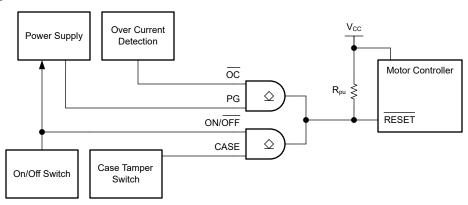


Figure 8-1. Typical Application Block Diagram

Submit Document Feedback

8.2.1 Design Requirements

The SN74LVC1G09B-Q1 device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits.

The SN74LVC1G09B-Q1 allows switching control of analog and digital signals with a digital control signal. All input signals should remain as close to either 0V or V_{CC} as possible for optimal operation.

8.2.1.1 Power Considerations

Ensure that the desired supply voltage is within the range specified in the *Electrical Characteristics*. The supply voltage sets the device electrical characteristics of the device, as described in the *Electrical Characteristics* section.

The positive voltage supply must be capable of sourcing current equal to the maximum static supply current, I_{CC}, listed in the *Electrical Characteristics*, and any transient current required for switching.

The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74LVC1G09B-Q1 plus the maximum supply current, I_{CC}, listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only sink as much current that can be sunk into its ground connection. Ensure the maximum total current through GND listed in the *Absolute Maximum Ratings* is not exceeded.

The SN74LVC1G09B-Q1 can drive a load with a total capacitance less than or equal to 50pF while still meeting all of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed 50pF.

The SN74LVC1G09B-Q1 can drive a load with total resistance described by $R_L \ge V_O / I_O$, with the output voltage and current defined in the *Electrical Characteristics* table with V_{OL} . When outputting in the HIGH state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin.

Total power consumption can be calculated using the information provided in the *CMOS Power Consumption* and *Cpd Calculation* application note.

Thermal increase can be calculated using the information provided in the *Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices* application note.

CAUTION

The maximum junction temperature, $T_{J(max)}$ listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device.

8.2.1.2 Input Considerations

Input signals must cross $V_{IL(max)}$ to be considered a logic LOW, and $V_{IH(min)}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*.

Unused inputs must be terminated to either V_{CC} or ground. The unused inputs can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The drive current of the controller, leakage current into the SN74LVC1G09B-Q1 (as specified in the *Electrical Characteristics*), and the desired input transition rate limits the resistor size. A $10k\Omega$ resistor value is often used due to these factors.

The SN74LVC1G09B-Q1 has CMOS inputs and thus requires fast input transitions to operate correctly, as defined in the Electrical Characteristics table. Slow input transitions can cause oscillations, additional power consumption, and reduction in device reliability.

Refer to the *Feature Description* for additional information regarding the inputs for this device.

8.2.1.3 Output Considerations

The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*.

Open-drain outputs can be connected together directly to produce a wired-AND configuration or for additional output drive strength.

Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground.

Refer to the Feature Description section for additional information regarding the outputs for this device.

8.2.2 Detailed Design Procedure

- 1. Recommended input conditions:
 - For rise time and fall time specifications, see Δt/Δv in the Recommended Operating Conditions table.
 - For specified high and low levels, see V_{IH} and V_{II} in the *Recommended Operating Conditions* table.
 - Inputs and outputs are overvoltage tolerant and can therefore go as high as 5.5V at any valid V_{CC}.
- 2. Recommended output conditions:
 - Load currents not exceeding ±50mA.
- 3. Frequency selection criterion:
 - The effects of frequency upon the device's power consumption should be studied in the *CMOS Power Consumption and CPD Calculation* application note.
 - Added trace resistance and capacitance can reduce maximum frequency capability; follow the layout practices listed in the *Layout* section.

8.2.3 Application Curves

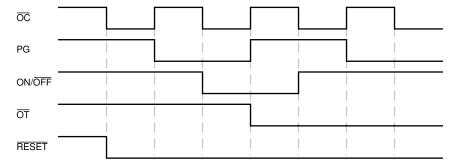


Figure 8-2. Application Timing Diagram

Submit Document Feedback

8.3 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating listed in the *Recommended Operating Conditions*.

Verify that each V_{CC} terminal has a good bypass capacitor to prevent power disturbance. For the SN74LVC1G09B-Q1, a 0.1µF bypass capacitor is recommended. To reject different frequencies of noise, use multiple bypass capacitors in parallel. Capacitors with values of 0.1µF and 1µF are commonly used in parallel.

8.4 Layout

8.4.1 Layout Guidelines

- · Bypass capacitor placement
 - Place near the positive supply terminal of the device
 - Provide an electrically short ground return path
 - Use wide traces to minimize impedance
 - Keep the device, capacitors, and traces on the same side of the board whenever possible
- Signal trace geometry
 - 8mil to 12mil trace width
 - Lengths less than 12cm to minimize transmission line effects
 - Avoid 90° corners for signal traces
 - Use an unbroken ground plane below signal traces
 - Flood fill areas around signal traces with ground
 - Parallel traces must be separated by at least 3x dielectric thickness
 - For traces longer than 12cm
 - Use impedance controlled traces
 - · Source-terminate using a series damping resistor near the output
 - Avoid branches; buffer each signal that must branch separately

8.4.2 Layout Example

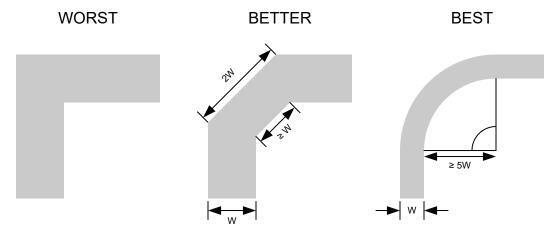


Figure 8-3. Example Trace Corners for Improved Signal Integrity

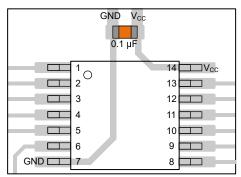


Figure 8-4. Example Bypass Capacitor Placement for TSSOP and Similar Packages

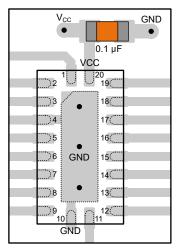


Figure 8-5. Example Bypass Capacitor Placement for WQFN and Similar Packages

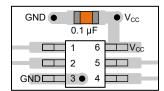


Figure 8-6. Example Bypass Capacitor Placement for SOT, SC70 and Similar Packages

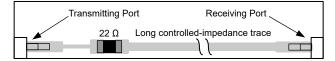


Figure 8-7. Example Damping Resistor Placement for Improved Signal Integrity

Submit Document Feedback

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, CMOS Power Consumption and Cpd Calculation application note
- Texas Instruments, Designing With Logic application note
- Texas Instruments, Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices application note

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

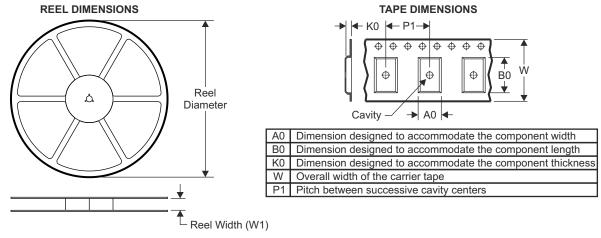
9.6 Glossary

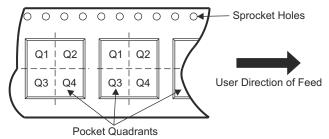
TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

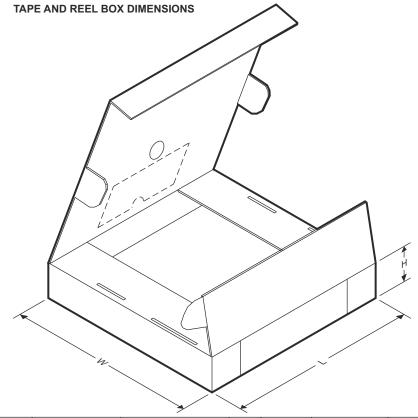
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


DATE REVISION		NOTES				
October 2025	*	Initial Release				


11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

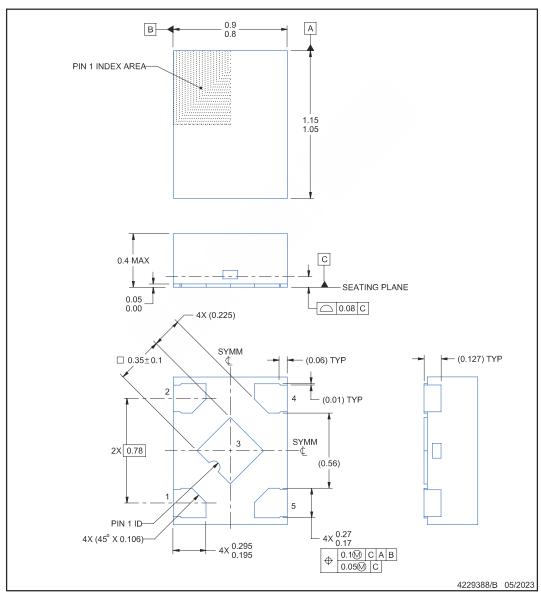
11.1 Tape and Reel Information


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PSN74LVC1G09DCKR Q1	SOT-23	DBV	5	3000	180	8.4	3.2	3.2	1.4	4	8	Q3
PSN74LVC1G09DBVR Q1	SC70	DCK	5	3000	180	8.4	2.3	2.5	1.2	4	8	Q3
SN74LVC1G09DTXRQ 1	X2SON	DTX	5	3000	180	8.4	1	1.24	0.48	2	8	Q1

Submit Document Feedback

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PSN74LVC1G09DCKRQ1	SOT-23	DBV	5	3000	210	185	35
PSN74LVC1G09DBVRQ1	SC70	DCK	5	3000	210	185	35
PSN74LVC1G09DTXRQ1	X2SON	DTX	5	3000	210	185	35


11.2 Mechanical Data

DTX0005A

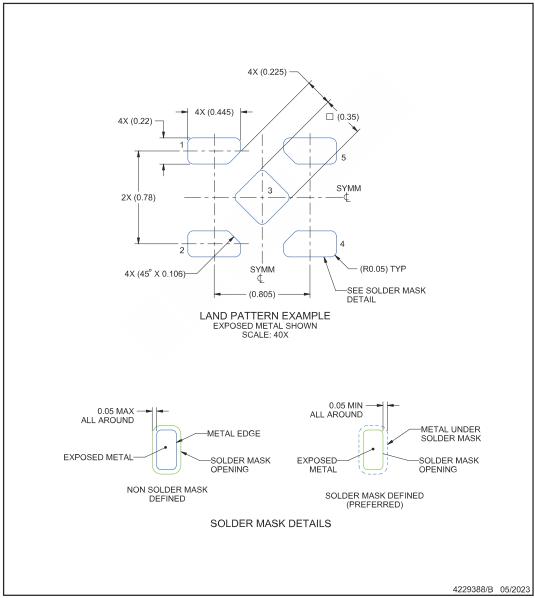
PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



EXAMPLE BOARD LAYOUT

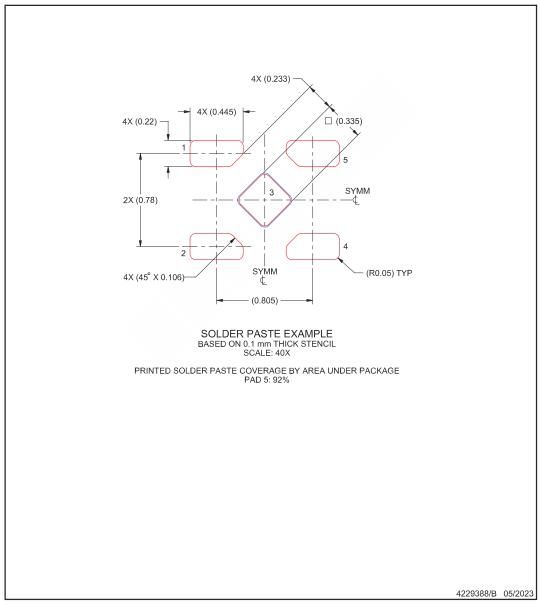
DTX0005A

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



EXAMPLE STENCIL DESIGN

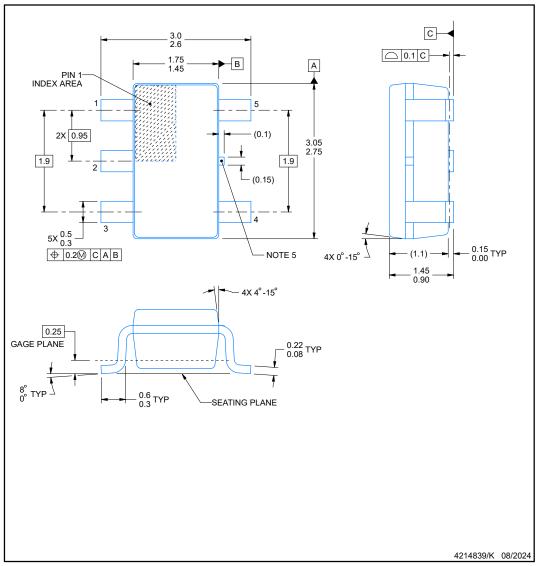
DTX0005A

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



DBV0005A

PACKAGE OUTLINE

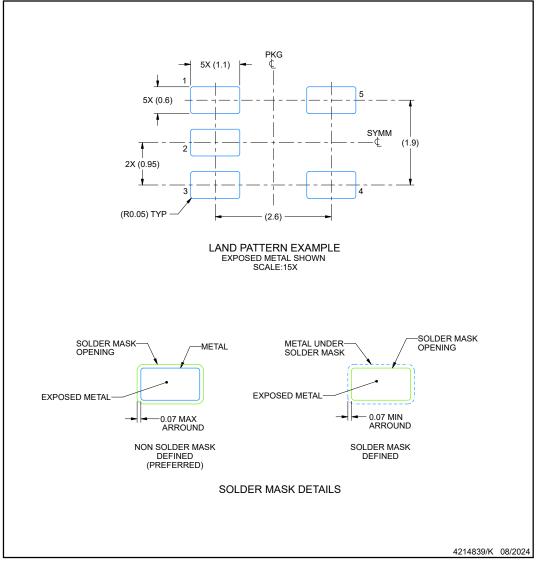
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
 5. Support pin may differ or may not be present.



EXAMPLE BOARD LAYOUT

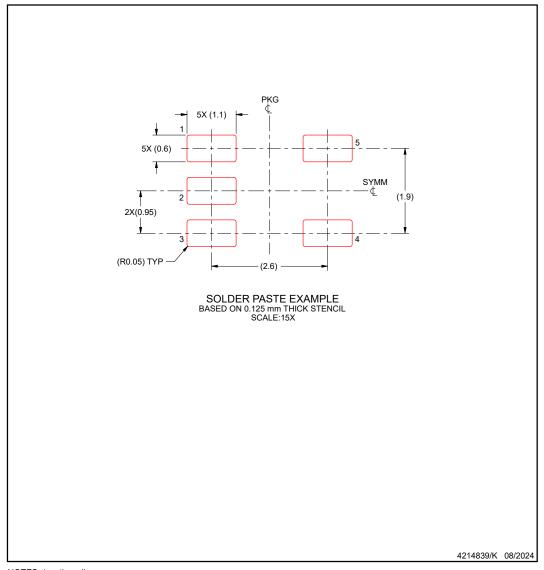
DBV0005A

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



EXAMPLE STENCIL DESIGN

DBV0005A

SOT-23 - 1.45 mm max height

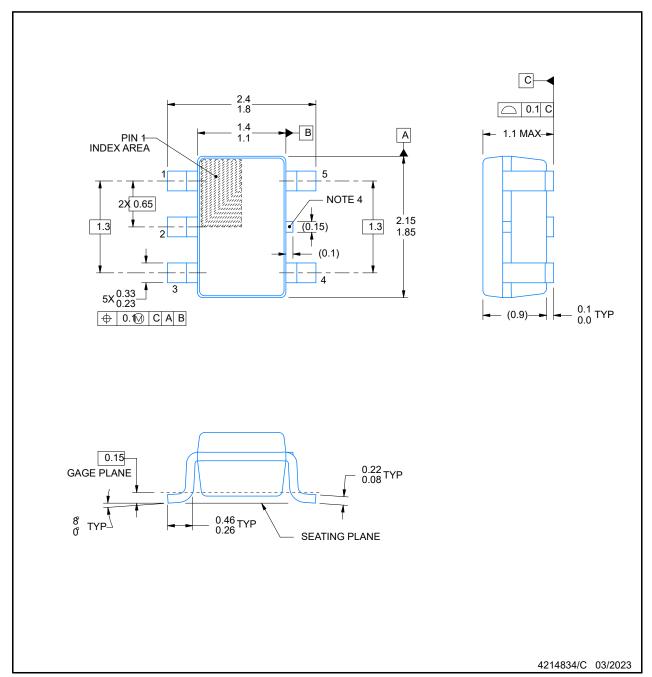
SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 9. Board assembly site may have different recommendations for stencil design.

DCK0005A



PACKAGE OUTLINE

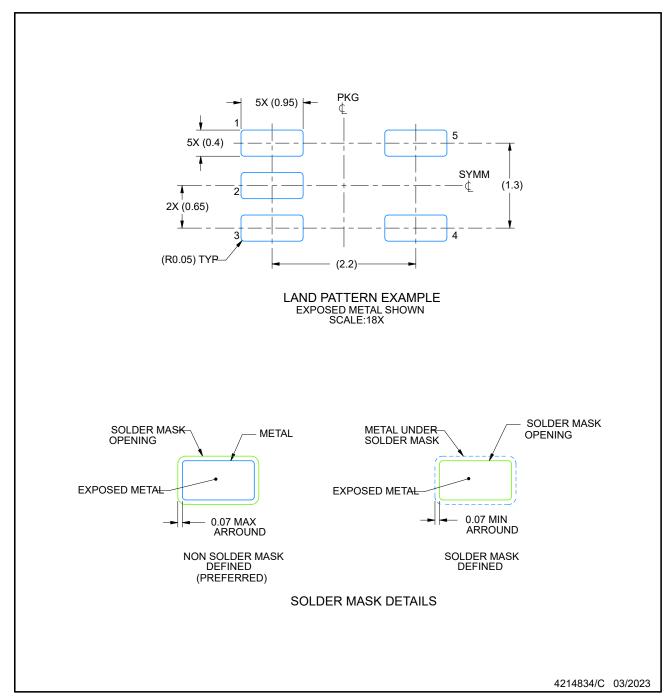
SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dim ensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. Refernce JEDEC MO-203.
- 4. Support pin may differ or may not be present.



EXAMPLE BOARD LAYOUT

DCK0005A

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DCK0005A

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

www.ti.com 2-Dec-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
PSN74LVC1G09DBVRQ1	Active	Preproduction	SOT-23 (DBV) 5	3000 LARGE T&R	-	Call TI	Call TI	-	
PSN74LVC1G09DTXRQ1	Active	Preproduction	X2SON (DTX) 5	3000 LARGE T&R	-	Call TI	Call TI	-	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC1G09B-Q1:

Catalog: SN74LVC1G09B

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

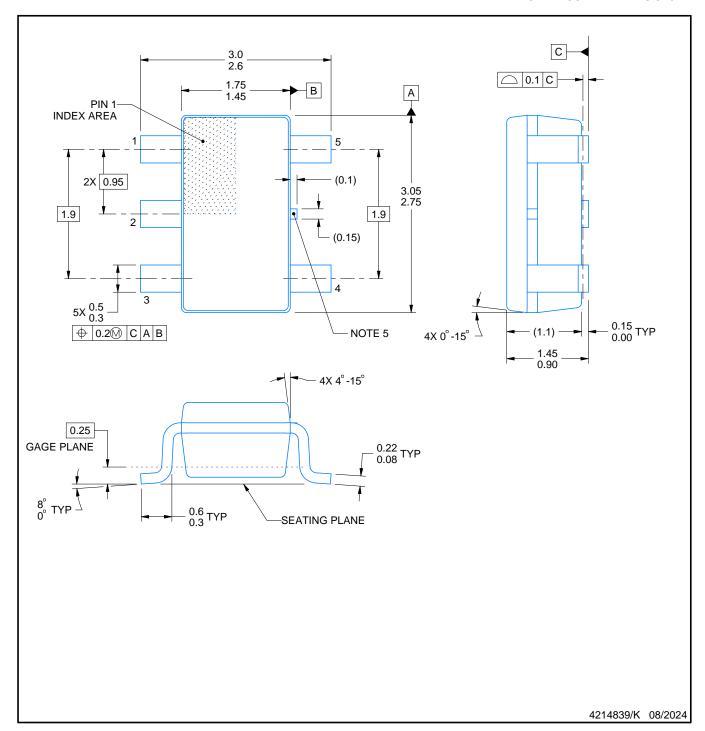
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

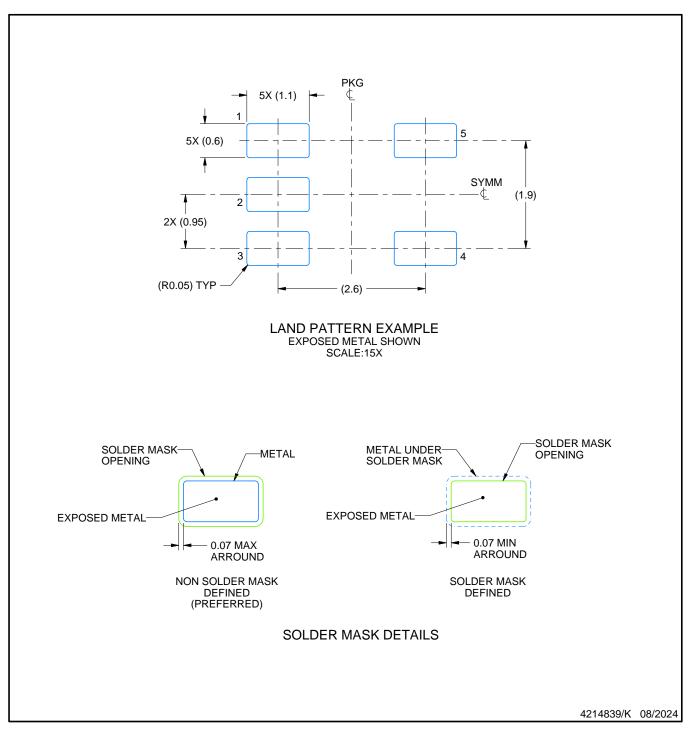
PACKAGE OPTION ADDENDUM


www.ti.com 2-Dec-2025

NOTE: Qualified Version Definitions:

 $_{\bullet}$ Catalog - TI's standard catalog product

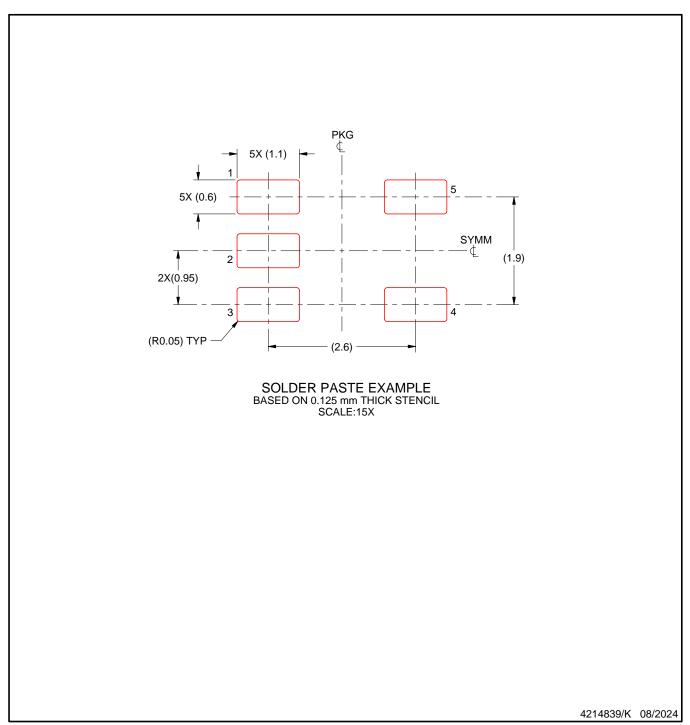
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

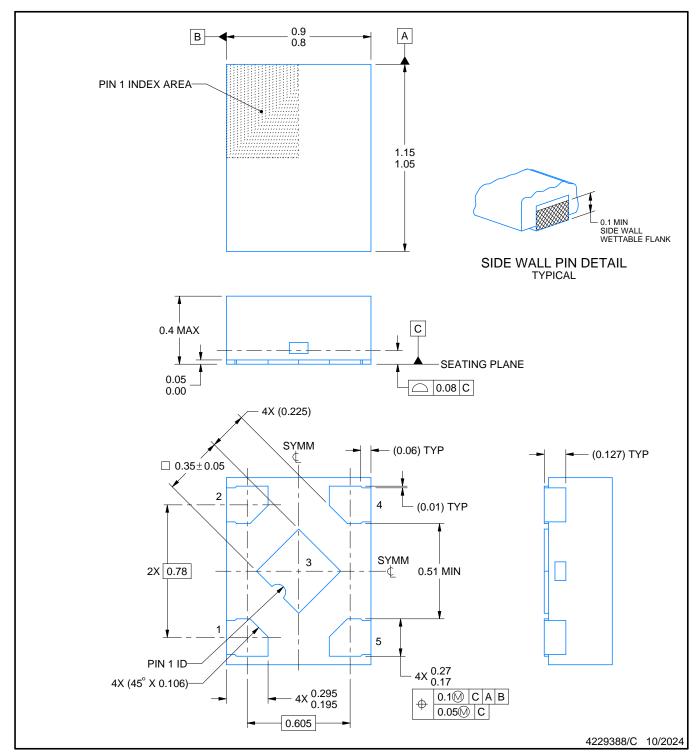
SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

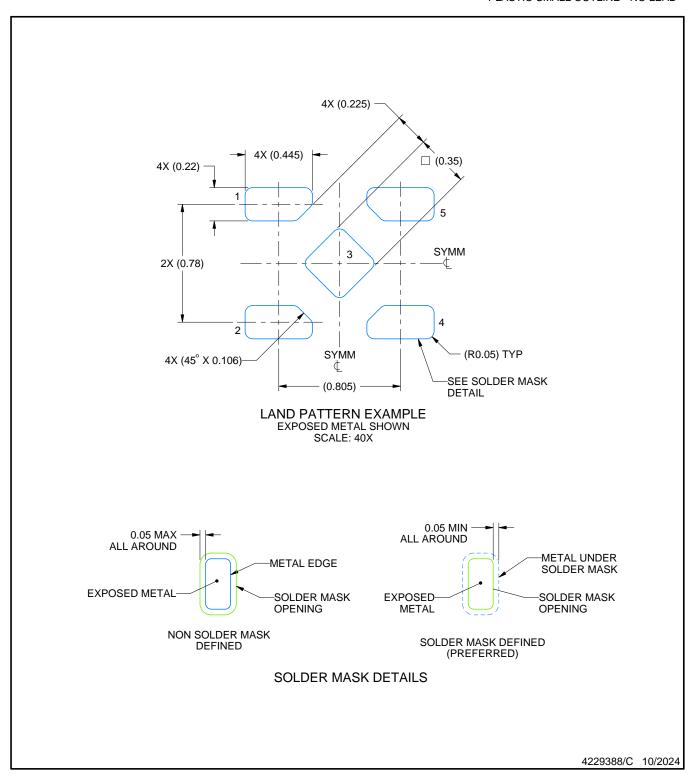
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

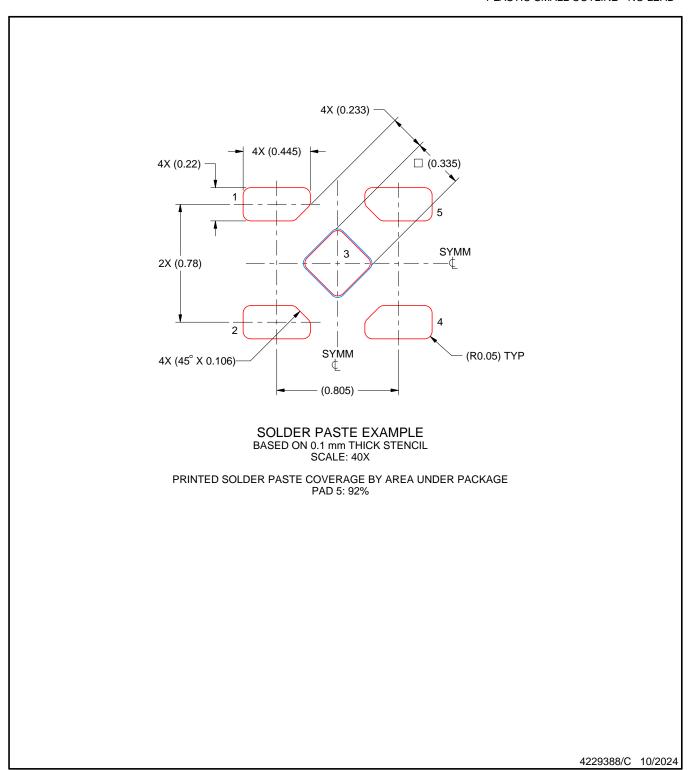
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025