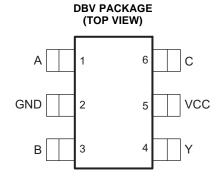


SINGLE 3-INPUT POSITIVE OR-AND GATE

Check for Samples: SN74LVC1G3208-EP

FEATURES


- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 5 ns at 3.3 V
- Low Power Consumption, 12.5-µA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- Input Hysteresis Allows Slow Input Transition and Better Switching Noise Immunity at the Input

 $(V_{hys} = 250 \text{ mV Typ at } 3.3 \text{ V})$

- Can Be Used in Three Combinations:
 - OR-AND Gate
 - OR Gate
 - AND Gate
- I_{off} Supports Partial-Power-Down Mode Operation

SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

- Controlled Baseline
- One Assembly and Test Site
- One Fabrication Site
- Available in Military (-55°C to 125°C)
 Temperature Ranges (1)
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability

(1) Custom temperature ranges available

DESCRIPTION/ORDERING INFORMATION

This device is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G3208 is a single 3-input positive OR-AND gate. It performs the Boolean function $Y = (A + B) \cdot C$ in positive logic.

By tying one input to GND or V_{CC} , the SN74LVC1G3208 offers two more functions. When C is tied to V_{CC} , this device performs as a 2-input OR gate (Y = A + B). When A is tied to GND, the device works as a 2-input AND gate (Y = B \cdot C). This device also works as a 2-input AND gate when B is tied to GND (Y = A \cdot C).

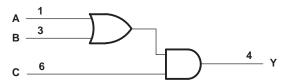
This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Table 1. ORDERING INFORMATION(1)

T _A	T _A PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING	VID NUMBER
–55°C to 125°C	SOT (SOT-23) – DBV Reel of 250		74LVC1G3208MDBVTEP	CDD5M	V62/13605-01XE

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



FUNCTION TABLE(1)

	INPUTS					
Α	В	С	Y			
Н	Х	Н	Н			
X	Н	Н	Н			
X	X	L	L			
L	L	Н	L			

(1) X = Valid H or L

LOGIC DIAGRAM (POSITIVE LOGIC)

FUNCTION SELECTION TABLE

LOGIC FUNCTION	FIGURE
2-Input AND Gate	1
2-Input OR Gate	2
$Y = (A + B) \cdot C$	3

LOGIC CONFIGURATIONS

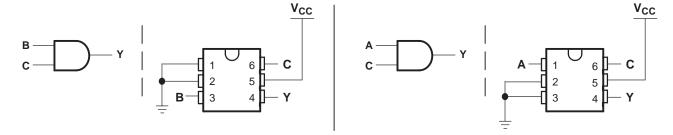


Figure 1. 2-Input AND Gate

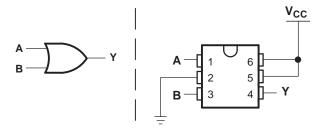


Figure 2. 2-Input OR Gate

Submit Documentation Feedback

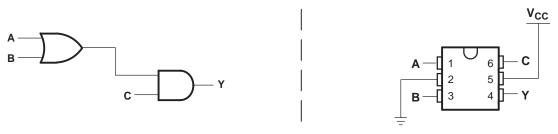


Figure 3. $Y = (A + B) \cdot C$

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-im	-0.5	6.5	V	
Vo	Voltage range applied to any output in the high or	low state ^{(2) (3)}	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		- 50	mA
I _{OK}	Output clamp current	V _O < 0		- 50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
T _{stg}	Storage temperature range	-65	150	°C	

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of VCC is provided in the recommended operating conditions table.

THERMAL INFORMATION

		SN74LVC1G3208	
	THERMAL METRIC ⁽¹⁾	DBV	UNITS
		6 PINS	
θ_{JA}	Junction-to-ambient thermal resistance (2)	207	
θ_{JCtop}	Junction-to-case (top) thermal resistance (3)	148.1	
θ_{JB}	Junction-to-board thermal resistance ⁽⁴⁾	50.6	900
ΨЈТ	Junction-to-top characterization parameter ⁽⁵⁾	41.2	°C/W
ΨЈВ	Junction-to-board characterization parameter ⁽⁶⁾	50.1	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance (7)	N/A	

- (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
- (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7. in an environment described in JESD51-2a.
- (3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- (5) The junction-to-top characterization parameter, ψ_{JT}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (6) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).
- (7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

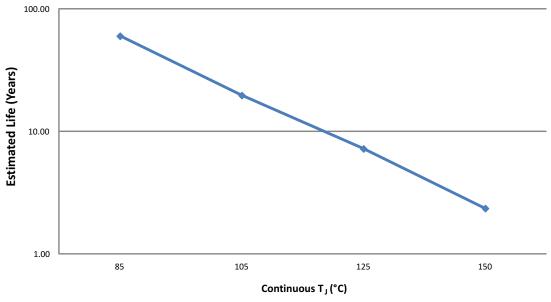
Product Folder Links: SN74LVC1G3208-EP

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT	
\ /	Cupply voltage	Operating	1.65	5.5	V	
V_{CC}	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
V	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
V_{IH}		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2		V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	0.7 × V _{CC}			
		V _{CC} = 1.65 V to 1.95 V	(0.35 × V _{CC}		
V	Lavo lavo l'annot vallano	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	\/	
V_{IL}	Low-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		0.8	V	
		V _{CC} = 4.5 V to 5.5 V		1.4		
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	V_{CC}	V	
	High-level output current	V _{CC} = 1.65 V		-4		
		V _{CC} = 2.3 V		-8		
I _{OH}		V _{CC} = 3 V	-1			
				-24		
		V _{CC} = 4.5 V		-32		
		V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		8		
l _{OL}	Low-level output current	V _{CC} = 3 V		16	mA	
				24		
		V _{CC} = 4.5 V		32		
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20		
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	10		ns/V	
	·	V _{CC} = 5 V ± 0.5 V		5		
T _A	Operating free-air temperature		-55	125	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Submit Documentation Feedback



Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETE	R TEST CONDITIONS	V _{cc}	MIN TYP(1)	MAX	UNIT	
	I _{OH} = -100 μA	1.65 V to 5.5 V	V _{CC} - 0.1			
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			
\	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9			
V_{OH}	I _{OH} = -16 mA	0.1/	2.4		V	
	$I_{OH} = -24 \text{ mA}$	3 V	2.3			
	I _{OH} = -32 mA	4.5 V	3.8			
	I _{OL} = 100 μA	1.65 V to 5.5 V		0.11		
	I _{OL} = 4 mA	1.65 V		0.52		
\	I _{OL} = 8 mA	2.3 V		0.45	V	
V_{OL}	I _{OL} = 16 mA	2.1/		0.68	68	
	I _{OL} = 24 mA	3 V		1.1		
	I _{OL} = 32 mA	4.5 V		1.1		
I _I A, B, o C input		0 to 5.5 V	-12.05	8.6	μΑ	
I _{off}	V_I or $V_O = 5.5 \text{ V}$	0	-22	41.5	μΑ	
I _{cc}	$V_I = 5.5 \text{ V or GND}$ $I_O = 0$	1.65 V to 5.5 V		12.5	μΑ	
Δl _{CC}	One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND	3 V to 5.5 V		500	μΑ	
C _i	V _I = V _{CC} or GND	3.3 V	3.5		pF	

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

- (1) See datasheet for absolute maximum and minimum recommended operating conditions.
- (2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).
- (3) Enhanced plastic product disclaimer applies.

Figure 4. 74LVC1G3208-EP Operating Life Derating Chart

Product Folder Links: SN74LVC1G3208-EP

Switching Characteristics

only valid for -40°C to 85°C, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V	
	(INPUT)	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A, B, or C	Υ	3.7	14	2.5	7	1.7	5	1.3	3.4	ns

Switching Characteristics

only valid for -40°C to 85°C, $C_L = 30 pF$ or 50 pF (unless otherwise noted) (see Figure 6)

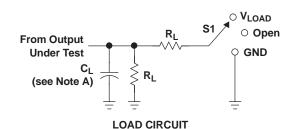
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1 ± 0.15		V _{CC} = 2 ± 0.2		V _{CC} = ± 0.3		V _{CC} = ± 0.5		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A, B, or C	Y	2.5	17.5	1.8	7.6	1.8	5.9	1.3	4.0	ns

Switching Characteristics

over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 6)

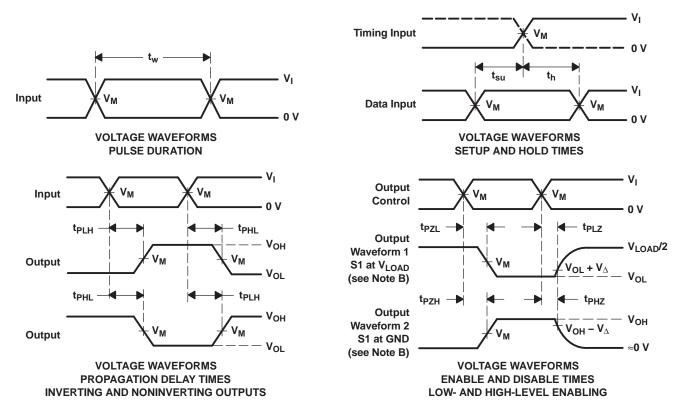
PARAMETER	FROM	TO (OUTPUT)	V _{CC} = 1 ± 0.15		V _{CC} = 2 ± 0.2		V _{CC} = ± 0.3		V _{CC} = ± 0.5		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A, B, or C	Υ		17.5		7.6		5.9		4.5	ns

Operating Characteristics


 $T_A = 25^{\circ}C$

	PARAMETER	TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	UNIT pF
FARAMETER		CONDITIONS	TYP	TYP	TYP	TYP	O.u.
C_{pd}	Power dissipation capacitance	f = 10 MHz	15	15	16	17	pF

Product Folder Links: SN74LVC1G3208-EP



PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

.,	INF	PUTS	.,	· ·			.,	
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R _L	V_{Δ}	
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	15 pF	1 M Ω	0.15 V	
2.5 V \pm 0.2 V	V_{CC}	≤2 ns	V _{CC} /2	2 × V _{CC}	15 pF	1 M Ω	0.15 V	
3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 M Ω	0.3 V	
5 V \pm 0.5 V	V_{CC}	≤2.5 ns	V _{CC} /2	2 × V _{CC}	15 pF	1 M Ω	0.3 V	

NOTES: A. C_L includes probe and jig capacitance.

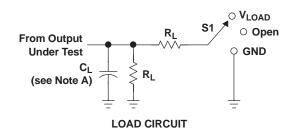
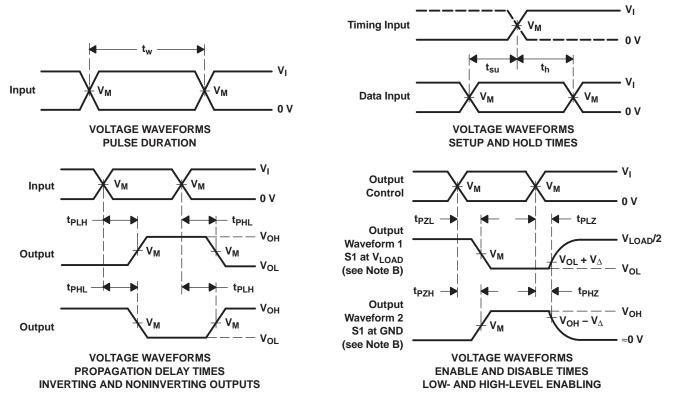

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50~\Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 5. Load Circuit and Voltage Waveforms

Submit Documentation Feedback



PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

.,	INPUTS V _I t _r /t _f		.,	v	0	_	.,
V _{CC}			V _M	V _{LOAD}	CL	R _L	V_Δ
1.8 V ± 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V_{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V ± 0.5 V	V _{CC}	≤2.5 ns	V _{CC} /2	2×V _{CC}	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \ \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 6. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

www.ti.com

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
74LVC1G3208MDBVTEP	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CDD5M
V62/13605-01XE	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CDD5M

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC1G3208-EP:

Catalog: SN74LVC1G3208

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

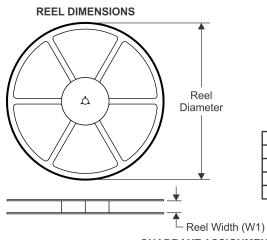
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

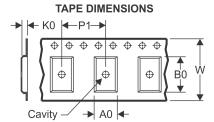
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

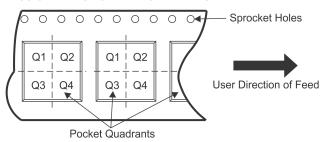
Automotive: SN74LVC1G3208-Q1


NOTE: Qualified Version Definitions:

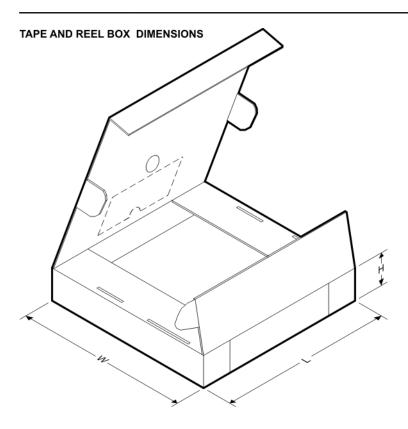

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2019


TAPE AND REEL INFORMATION

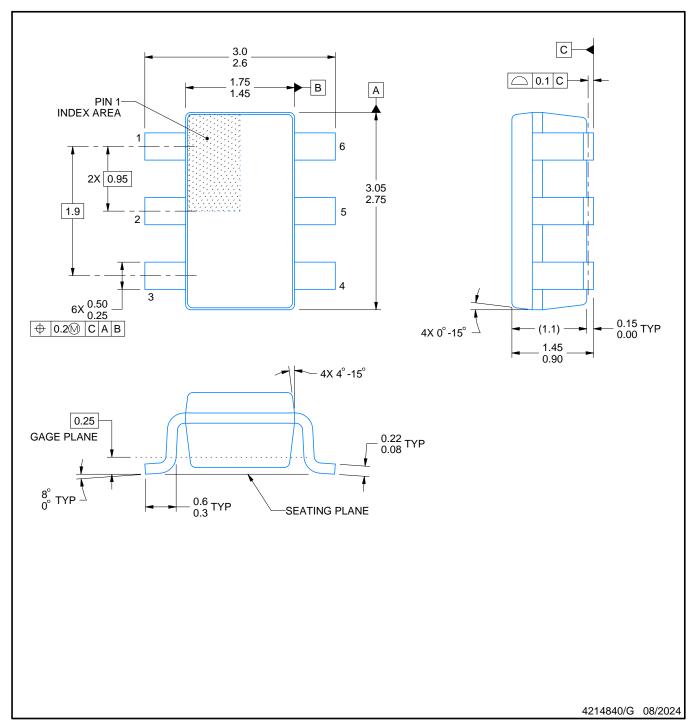
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74LVC1G3208MDBVTEP	SOT-23	DBV	6	250	178.0	9.2	3.3	3.2	1.55	4.0	8.0	Q3

www.ti.com 25-Sep-2019



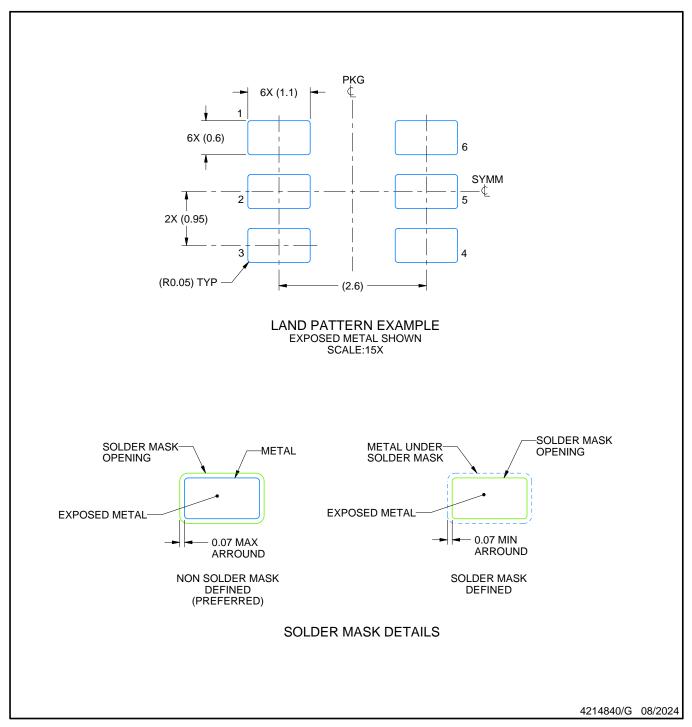
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74LVC1G3208MDBVTEP	SOT-23	DBV	6	250	180.0	180.0	18.0

SMALL OUTLINE TRANSISTOR

NOTES:

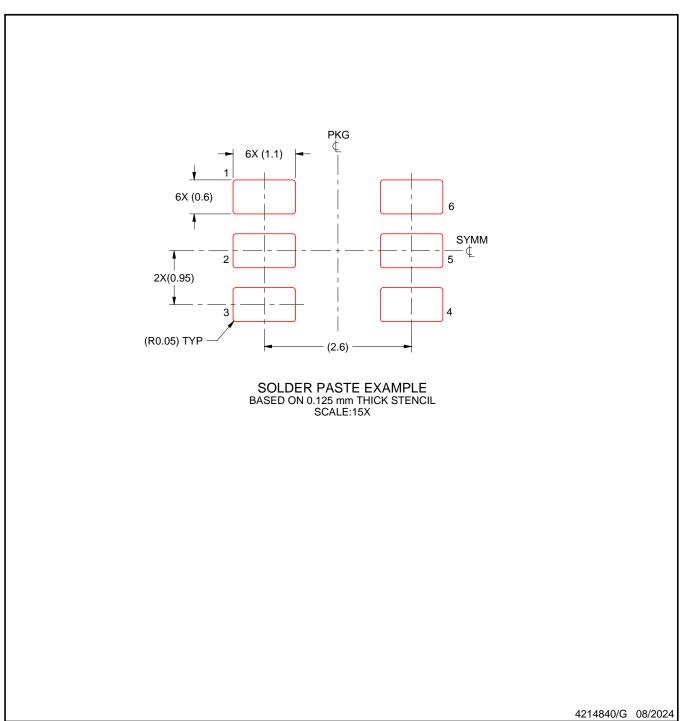
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- 5. Refernce JEDEC MO-178.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025