
TMUX7348F-EP ±60V Tolerant, Latch-up Immune, Fault Protected, Enhanced Product, 8:1 Multiplexer with Adjustable Fault Threshold

1 Features

- VID V62/24625
- Supports defense, aerospace, and medical applications
 - Controlled baseline
 - One fabrication, assembly, and test site
 - Military temperature range: -55°C to 125°C T_A
 - Extended product life cycle
- Wide supply range:
 - Dual supply: ±5V to ±22V
 - Single supply: 8V to 44V
- Integrated fault protection:
 - Overvoltage protection, source to supplies or source to drain: ±85V
 - Overvoltage protection: ±60V
 - Power-off protection: ±60V
 - Adjustable overvoltage triggering thresholds
 - V_{FP}: 3V toV_{DD}, V_{FN}: 0V to V_{SS}
 - Interrupt flags to indicate overall and specific fault channel information
 - Non-fault channels continue to operate with low leakage currents
- Latch-up immunity by device construction
- 1.8V Logic capable
- Fail-safe logic: up to 44V independent of supply
- Break-before-make switching
- Industry-standard TSSOP package

2 Applications

- Aircraft cockpit display
- Flight control unit
- Radar
- Sonar
- Electronic warfare
- Seeker front end

Functional Block Diagram

3 Description

The TMUX7348F-EP is a modern complementary metal-oxide semiconductor (CMOS) multiplexer in an 8:1 (single ended) configuration. This device works well with dual supplies (±5V to ±22V), a single supply (8V to 44V), or asymmetric supplies (such as V_{DD} = 12V, V_{SS} = -5V). The overvoltage protection is available in powered and powered-off conditions, making the TMUX7348F-EP suitable for applications where power supply sequencing cannot be precisely controlled.

This device blocks fault voltages up to +60V and -60V relative to ground in both powered and powered-off conditions. When no power supplies are present, the switch channels remain in the OFF state regardless of switch input conditions and logic control status. Under normal operation conditions, if the analog input signal level on any Sx pin exceeds positive fault supply (V_{FP}) or negative fault supply (V_{FN}) by a threshold voltage (V_T), the channel turns OFF and the Sx pin becomes high impedance. When the fault channel is selected, the drain pin (D or Dx) is pulled to the fault supply voltage (V_{FP} or V_{FN}) that was exceeded. The devices provide two active-low interrupt flags (FF and SF) to provide details of the fault. The FF flag indicates if any of the source inputs are experiencing a fault condition, while the SF flag is used to decode which specific inputs are experiencing a fault condition.

The low capacitance, low charge injection, and integrated fault protection enables the TMUX7348F-EP to be used in front end data acquisition applications where high performance and high robustness are both critical.

Package Information

PART NUMBER (1)	PACKAGE (2)	PACKAGE SIZE ⁽⁴⁾
TMUX7348F-EP	PW (TSSOP, 20)(3)	6.5mm × 4.4mm

- See Section 4.
- (2) For more information, see Section 12.
- Preview package. (3)
- The package size (length × width) is a nominal value and includes pins, where applicable.

Table of Contents

1 Features1	7.10 Fault Flag Response Time3	2
2 Applications1	7.11 Fault Flag Recovery Time3	2
3 Description1	7.12 Charge Injection3	
4 Device Comparison Table3	7.13 Off Isolation3	
5 Pin Configuration and Functions3	7.14 Crosstalk3	4
6 Specifications5	7.15 Bandwidth3	5
6.1 Absolute Maximum Ratings5	7.16 THD + Noise3	5
6.2 ESD Ratings5	8 Detailed Description3	6
6.3 Thermal Information6	8.1 Overview3	6
6.4 Recommended Operating Conditions6	8.2 Functional Block Diagram3	6
6.5 Electrical Characteristics (Global)7	8.3 Feature Description3	7
6.6 ±15V Dual Supply: Electrical Characteristics8	8.4 Device Functional Modes4	0
6.7 ±20 V Dual Supply: Electrical Characteristics 11	9 Application and Implementation4	2
6.8 12 V Single Supply: Electrical Characteristics14	9.1 Application Information4	2
6.9 36 V Single Supply: Electrical Characteristics 17	9.2 Typical Application4	2
6.10 Typical Characteristics20	9.3 Power Supply Recommendations4	4
7 Parameter Measurement Information27	9.4 Layout4	4
7.1 On-Resistance27	10 Device and Documentation Support4	
7.2 Off-Leakage Current27	10.1 Documentation Support4	5
7.3 On-Leakage Current28	10.2 Receiving Notification of Documentation Updates4	5
7.4 Input and Output Leakage Current Under	10.3 Support Resources4	5
Overvoltage Fault28	10.4 Trademarks4	5
7.5 Break-Before-Make Delay29	10.5 Electrostatic Discharge Caution4	5
7.6 Enable Delay Time30	10.6 Glossary4	5
7.7 Transition Time30	11 Revision History4	5
7.8 Fault Response Time31	12 Mechanical, Packaging, and Orderable	
7.9 Fault Recovery Time31	Information4	6

4 Device Comparison Table

PRODUCT	DESCRIPTION
TMUX7348F-EP	+60V/ –60V Tolerant, Fault-protected, Latch-up Immune, Enhanced Product, 8:1 Multiplexers with Adjustable Fault Threshold

5 Pin Configuration and Functions

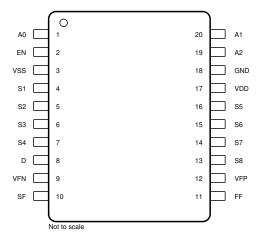


Figure 5-1. PW Package, 20-Pin TSSOP (Top View)

Table 5-1. Pin Functions: TMUX7348F-EP

	PIN		DESCRIPTION
NAME	NO. ⁽²⁾	TYPE ⁽¹⁾	DESCRIPTION
A0	1	I	Logic control input address 0 (A0). The pin has a 4 M Ω internal pull-down resistor. This pin can also be used together with the specific fault pin (SF) to indicate which input is under fault. See Section 8.4.3 for more details.
A1	20	I	Logic control input address 1 (A1). The pin has a 4 M Ω internal pull-down resistor. This pin can also be used together with the specific fault pin (SF) to indicate which input is under fault. See Section 8.4.3 for more details.
A2	19	ı	Logic control input address 2 (A2). The pin has a 4 M Ω internal pull-down resistor. This pin can also be used together with the specific fault pin (SF) to indicate which input is under fault. See Section 8.4.3 for more details.
D	8	I/O	Drain pin. Can be an input or output. The drain pin is not overvoltage protected and shall remain within the recommended operating range.
EN	2	ı	Active high logic enable (EN) pin. The pin has a 4 M Ω internal pull-down resistor. The device is disabled and all switches become high impedance when the pin is low. When the pin is high, the Ax logic inputs determine individual switch states. See Section 8.4.3 for more details.
FF	11	0	General fault flag. This pin is an open drain output and is asserted low when overvoltage condition is detected on any of the source (Sx) input pins. Connect this pin to an external supply (1.8 V to 5.5 V) through a 1 k Ω pull-up resistor.
GND	18	Р	Ground (0 V) reference
S1	4	I/O	Overvoltage protected source pin 1. Can be an input or output.
S2	5	I/O	Overvoltage protected source pin 2. Can be an input or output.
S3	6	I/O	Overvoltage protected source pin 3. Can be an input or output.
S4	7	I/O	Overvoltage protected source pin 4. Can be an input or output.
S5	16	I/O	Overvoltage protected source pin 5. Can be an input or output.
S6	15	I/O	Overvoltage protected source pin 6. Can be an input or output.
S7	14	I/O	Overvoltage protected source pin 7. Can be an input or output.
S8	13	I/O	Overvoltage protected source pin 8. Can be an input or output.
SF	10	0	Specific fault flag. This pin is an open drain output and is asserted low when overvoltage condition is detected on a specific pin, depending on the state of A0, A1, and A2, as shown in Table 8-1. Connect this pin to an external supply $(1.8 \text{ V to } 5.5 \text{ V})$ through a 1 k Ω pull-up resistor.
V _{DD}	17	Р	Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V_{DD} and GND.
V _{FN}	9	Р	Negative fault voltage supply that determines the overvoltage protection triggering threshold on the negative side. Connect to V_{SS} if the triggering threshold is to be the same as the device's negative supply. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V_{FN} and GND.
V _{FP}	12	Р	Positive fault voltage supply that determines the overvoltage protection triggering threshold on the positive side. Connect to V_{DD} if the triggering threshold is to be the same as the device's positive supply. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V_{FP} and GND.
V _{SS}	3	Р	Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between V _{SS} and GND.

- (1) I = input, O = output, I/O = input and output, P = power
- (2) Preview package

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{DD} to V _{SS}			48	V
V _{DD} to GND	Supply voltage	-0.3	48	V
V _{SS} to GND		-48	0.3	V
V _{FP} to GND	Positive fault clamping voltage	-0.3	V _{DD} + 0.3	V
V _{FN} to GND	Negative fault clamping voltage	V _{SS} – 0.3	0.3	V
V _S to GND	Source input pin (Sx) voltage to GND	-65	65	V
V _S to V _{DD}	Source input pin (Sx) voltage to V _{DD}	-90		V
V _S to V _{SS}	Source input pin (Sx) voltage to V _{SS}		90	V
V _D	Drain pin (D or Dx) voltage	V _{FN} -0.7	V _{FP} +0.7	V
V _{EN} or V _{Ax}	Logic control input pin voltage (EN, A0, A1, A2) ⁽²⁾	GND -0.7	48	V
V_{xF}	Logic output pin (SF, FF) voltage ⁽²⁾	GND -0.7	6	V
I _{EN} or I _{Ax}	Logic control input pin current (EN, A0, A1, A2) ⁽²⁾	-30	30	mA
I _{xF}	Logic output pin (SF, FF) current ⁽²⁾	-10	10	mA
I _S or I _{D (CONT)}	Source or drain continuous current (Sx or D)	I _{DC} ± 10 % ⁽³⁾	I _{DC} ± 10 % ⁽³⁾	mA
T _{stg}	Storage temperature	-65	150	°C
T _A	Ambient temperature	-55	150	°C
T _J	Junction temperature		150	°C
P _{tot} (4)	Total power dissipation		800	mW

- (1) Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If briefly operating outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) Stresses have to be kept at or below both voltage and current ratings at all time.
- (3) Refer to Recommended Operating Conditions for I_{DC} ratings.
- (4) For TSSOP package: P_{tot} derates linearly above T_A = 70°C by 12.0 mW/°C

6.2 ESD Ratings

				VALUE	UNIT
		Floatroctatio	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±3500	
V _{(ES}	3D)	Electrostatic discharge Charged device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±750	V	

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

Copyright © 2025 Texas Instruments Incorporated

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

6.3 Thermal Information

		TMUX7348F-EP	
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	UNIT
		20 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	84.3	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	22.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	37.3	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	1.0	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	36.7	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{DD} – V _{SS} (1)	Power supply voltage differential		8		44	V
V _{DD}	Positive power supply voltage		5		44	V
V _{FP}	Positive fault clamping voltage		3		V_{DD}	V
V _{FN}	Negative fault clamping voltage		V _{SS}		0	V
Vs	Source pin (Sx) voltage (non-fault condition)		V_{FN}		V_{FP}	V
V _S to GND	Source pin (Sx) voltage (fault condition)		-60		60	V
V _S to V _{DD} ⁽²⁾	Source pin (Sx) voltage to V _{DD} or V _D (fault condition)	Source pin (Sx) voltage to V _{DD} or V _D (fault condition)	-85			V
V _S to V _{SS} ⁽²⁾	Source pin (Sx) voltage to V _{SS} or V _D (fault condition)	Source pin (Sx) voltage to V _{SS} or V _D (fault condition)			85	V
V _D	Drain pin (D, Dx) voltage	·	V _{FN}		V_{FP}	V
V _{EN} or V _{Ax}	Logic control input pin voltage (EN, A0, A1, A2)		0		44	V
V_{xF}	Logic output pin (SF, FF) voltage		0		5.5	V
T _A	Ambient temperature		-55		125	°C
		T _A = 25°C			9	
I _{DC} (3)	Continuous current through switch	T _A = 85°C			6.5	mA
		T _A = 125°C			5	

⁽¹⁾

 V_{DD} and V_{SS} can be any value as long as $8V \le (V_{DD} - V_{SS}) \le 44V$. Under a fault condition, the potential difference between source pin (Sx) and supply pins (V_{DD} and V_{SS} .) or source pin (Sx) and drain (2) pins (D, Dx) may not exceed 85V.

Fault supplies are tied to the primary supplies ($V_{FP} = V_{DD}$, $V_{FN} = V_{SS}$)

6.5 Electrical Characteristics (Global)

at T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG SW	ITCH	·					
V _T	Threshold voltage for fault detector		-55°C to +125°C		0.7		V
LOGIC INPUT	C/ OUTPUT						
V _{IH}	High-level input voltage	EN, Ax pins	–55°C to +125°C	1.3		44	V
V _{IL}	Low-level input voltage	EN, Ax pins	–55°C to +125°C	0		0.8	V
V _{OL(FLAG)}	Low-level output voltage	FF and SF pins, I _O = 5mA	–55°C to +125°C			0.35	V
POWER SUP	PLY						
V	Undervoltage lockout (UVLO)	Rising edge, single supply	–55°C to +125°C	5.1	6	6.4	V
V_{UVLO}	threshold voltage (V _{DD} – V _{SS})	Falling edge, single supply	–55°C to +125°C	1.3 0 5.1 5 5	5.8	6.3	V
V _{HYS}	V _{DD} Undervoltage lockout (UVLO) hysteresis	Single supply	–55°C to +125°C		0.2		٧
R _{D(OVP)}	Drain resistance to supply rail du	ring overvoltage event on selected source pin	25°C		40		kΩ

6.6 ±15V Dual Supply: Electrical Characteristics

 $V_{DD} = +15 V \pm 10\%, \ V_{SS} = -15 V \pm 10\%, \ GND = 0V \ (unless otherwise noted)$ Typical at $V_{DD} = +15 V, \ V_{SS} = -15 V, \ T_A = 25 ^{\circ}C \ (unless otherwise noted)$

$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	250 330 390 8 12 13 3.5 4 4 1 1 1 4 1.5 5 22	Ω Ω Ω/°C nA
$ \begin{array}{c} R_{ON} & On-resistance & V_S = -10V \ l_S = -1mA & -40^{\circ}C \ to +85^{\circ}C & -55^{\circ}C \ to +125^{\circ}C & -2.5 & -2.$	330 390 8 12 13 3.5 4 4 1 1 4 1 3 14 1.5 5	Ω Ω/°C nA
$I_{S} = -1 \text{mA} \qquad \qquad \begin{array}{c} -40 \text{ C to *85 °C} \\ -55 \text{ C to *125 °C} \\ \end{array} \\ \Delta R_{ON} \qquad \begin{array}{c} \text{On-resistance mismatch between channels} \\ \text{On-resistance flatness} \\ \text{P}_{S} = -10 \text{ V to *10 V,} \\ I_{S} = -1 \text{ mA} \\ \end{array} \\ \begin{array}{c} -25 \text{ °C} \\ -40 \text{ °C to *85 °C} \\ -55 \text{ °C to *125 °C} \\ \end{array} \\ \begin{array}{c} -40 \text{ °C to *85 °C} \\ -55 \text{ °C to *125 °C} \\ \end{array} \\ \text{On-resistance flatness} \\ \text{P}_{S} = -10 \text{ V to *10 V,} \\ I_{S} = -1 \text{ mA} \\ \end{array} \\ \begin{array}{c} -25 \text{ °C} \\ -55 \text{ °C to *125 °C} \\ \end{array} \\ \begin{array}{c} -25 \text{ °C} \\ -25 \text{ °C} \\ \end{array} \\ \text{On-resistance drift} \\ \text{On-resistance drift} \\ \text{V}_{S} = -10 \text{ V to *10 V,} \\ I_{S} = -1 \text{ mA} \\ \end{array} \\ \begin{array}{c} -25 \text{ °C to *125 °C} \\ -55 \text{ °C to *125 °C} \\ \end{array} \\ \begin{array}{c} -25 °C $	390 8 12 13 3.5 4 4 1 1 4 1 3 14 1.5 5	Ω Ω/°C nA
$\Delta R_{ON} \qquad \begin{array}{c} -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ -25^{\circ}C \\ \\ -40^{\circ}C \ \ \text{to} \ +85^{\circ}C \\ \\ -25^{\circ}C \\ \\ -25^{\circ}C \\ \\ -25^{\circ}C \\ \\ -25^{\circ}C \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ \\ \\ -55^{\circ}C \ \ \text{to} \ +125^{\circ}C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	8 12 13 3.5 4 4 1 1 1 4 1 3 14 1.5	Ω Ω/°C nA
$ \begin{array}{c} \Delta R_{ON} & \begin{array}{c} \text{On-resistance mismatch between channels} \end{array} & \begin{array}{c} V_S = -10V \ \text{to} + 10V, \\ I_S = -1mA \end{array} & \begin{array}{c} -40^{\circ}\text{C to} + 85^{\circ}\text{C} \\ -55^{\circ}\text{C to} + 125^{\circ}\text{C} \end{array} \\ \end{array} & \begin{array}{c} -40^{\circ}\text{C to} + 85^{\circ}\text{C} \\ -55^{\circ}\text{C to} + 125^{\circ}\text{C} \end{array} \\ \end{array} & \begin{array}{c} -40^{\circ}\text{C to} + 85^{\circ}\text{C} \\ -55^{\circ}\text{C to} + 125^{\circ}\text{C} \end{array} \\ \end{array} & \begin{array}{c} -40^{\circ}\text{C to} + 85^{\circ}\text{C} \\ -55^{\circ}\text{C to} + 125^{\circ}\text{C} \end{array} \\ \end{array} & \begin{array}{c} -40^{\circ}\text{C to} + 85^{\circ}\text{C} \\ -55^{\circ}\text{C to} + 125^{\circ}\text{C} \end{array} \\ \end{array} & \begin{array}{c} -10V \ \text{to} + 10V, \\ I_S = -1mA \end{array} \\ \end{array} & \begin{array}{c} -40^{\circ}\text{C to} + 85^{\circ}\text{C} \\ -55^{\circ}\text{C to} + 125^{\circ}\text{C} \end{array} \\ \end{array} & \begin{array}{c} -10V \ \text{co} + 10V, \\ I_S = -10V \ \text{to} + 10V, \\ I_S = -10V \ \text{to} + 105V \\ \end{array} \\ \begin{array}{c} -55^{\circ}\text{C to} + 125^{\circ}\text{C} \end{array} \\ \end{array} & \begin{array}{c} -10.1 \ \text{co} + 10.1 \ $	12 13 3.5 4 4 1 1 1 4 1.5 5	Ω Ω/°C nA
$ \begin{array}{c} LAPC_{ON} \\ LAPC_{ON} $	13 3.5 4 4 1 1 1 4 1 3 14 1.5 5	Ω Ω/°C nA
$ \begin{array}{c} -55^{\circ}\text{C to } + 125^{\circ}\text{C} \\ -55^{\circ}\text{C to } + 125^{\circ}\text{C} \\ \hline \\ -40^{\circ}\text{C to } + 85^{\circ}\text{C} \\ \hline \\ -55^{\circ}\text{C to } + 125^{\circ}\text{C} \\ \hline \\ -40^{\circ}\text{C to } + 85^{\circ}\text{C} \\ \hline \\ -55^{\circ}\text{C to } + 125^{\circ}\text{C} \\ \hline \\ -10^{\circ}\text{C to } + 125^{\circ}C$	3.5 4 4 1 1 1 4 1 3 14 1.5 5	Ω/°C nA
$ \begin{array}{c} R_{\text{FLAT}} & \text{On-resistance flatness} & V_{\text{S}} = -10 \text{V to} + 10 \text{V,} \\ I_{\text{S}} = -1 \text{mA} \end{array} \\ \begin{array}{c} -40^{\circ} \text{C to} + 85^{\circ} \text{C} \\ -55^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -40^{\circ} \text{C to} + 85^{\circ} \text{C} \\ -55^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -40^{\circ} \text{C to} + 85^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -25^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C to} + 125^{\circ} \text{C} \\ \end{array} \\ \begin{array}{c} -102^{\circ} \text{C} \text{C}$	1 1 1 4 1 3 14 1.5	Ω/°C nA
$ I_{S} = -1 \text{mA} \\ I_{S$	1 1 4 1 3 14 1.5	Ω/°C nA
$ -55^{\circ}C \ \text{to} + 125^{\circ}C \ -125^{\circ}C \ $	1 1 4 1 3 14 1.5 5	nA nA
Source off leakage current(1)	1 1 4 1 3 14 1.5 5	nA nA
	1 4 1 3 14 1.5 5	nA
Source off leakage current V _S = +10V / -10V V _D = -10V +10V -55°C to +125°C -4 -4 -55°C to +125°C -4 -4 -1 -1 -1 -1 -1	4 1 3 14 1.5 5	nA
$V_{DD} = -10V / + 10V $	1 3 14 1.5 5	
$\begin{array}{c} V_{DD} = 16.5 \text{V}, V_{SS} = -16.5 \text{V} \\ \text{Switch state is off} \\ V_S = +10 \text{V} / -10 \text{V} \\ V_D = -10 \text{V} / + 10 \text{V} \\ \end{array} \\ \begin{array}{c} 25^\circ \text{C} \\ \end{array} \\ -40^\circ \text{C to} +85^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -3 \\ -55^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ -15^\circ \text{C to} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -15^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ \text{C} \\ \end{array} \\ \begin{array}{c} -110^\circ \text{C to} +125^\circ $	3 14 1.5 5	
$\begin{array}{c} D_{\text{DOFF}} \\ D_{DoFF$	14 1.5 5	
$\begin{array}{c} V_S = \pm 10V / - 10V \\ V_D = -10V / \pm 10V \\ V_D = -16.5V \\ Switch state is on \\ V_S = V_D = \pm 10V \\ V_D = -10V \\ V_D = -$	14 1.5 5	
Output on leakage current(2)	14 0.3 1.5 5 22	nA
Output on leakage current(2)	5	nA
FAULT CONDITION $ V_S = V_D = \pm 10V $ $-55^{\circ}C \text{ to } \pm 125^{\circ}C$ -22 FAULT CONDITION $ I_{S(FA)} $ $ I_{S($		
FAULT CONDITION $I_{S(FA)} \qquad I_{Input leakage current durring overvoltage} \qquad V_S = \pm 60V, GND = 0V, \\ V_{DD} = V_{FP} = 16.5V, V_{SS} = V_{FN} = -16.5V \qquad -55^{\circ}C \text{to} + 125^{\circ}C \qquad \pm 110$ $I_{S(FA) Grounded} \qquad I_{Input leakage current during overvoltage with grounded supply voltages} \qquad V_{S} = \pm 60V, GND = 0V, \\ V_{DD} = V_{SS} = V_{FP} = V_{FN} = 0V \qquad -55^{\circ}C \text{to} + 125^{\circ}C \qquad \pm 135$ $I_{S(FA) Floating} \qquad I_{Input leakage current during overvoltage with floating supply voltages} \qquad V_{S} = \pm 60V, GND = 0V, \\ V_{DD} = V_{SS} = V_{FP} = V_{FN} = floating} \qquad -55^{\circ}C \text{to} + 125^{\circ}C \qquad \pm 135$ $I_{Input leakage current during overvoltage with floating supply voltages} \qquad V_{S} = \pm 60V, GND = 0V, \\ V_{DD} = V_{FP} = V_{FN} = floating} \qquad -55^{\circ}C \text{to} + 125^{\circ}C \qquad \pm 135$ $V_{S} = \pm 60V, GND = 0V, \\ V_{DD} = V_{FP} = 16.5V, V_{SS} = V_{FN} = -16.5V, \\ V_{DD} = V_{FP} = 16.5V, V_{SS} = V_{FN} = -16.5V, \\ -15.5V \leq V_{D} \leq 16.5V \qquad -70$ $-55^{\circ}C \text{to} + 125^{\circ}C \qquad -50 \pm 10$ $-55^{\circ}C \text{to} + 125^{\circ}C \qquad -70$ $-55^{\circ}C \text{to} + 125^{\circ}C \qquad -90$		
Input leakage current during overvoltage $ \begin{vmatrix} V_S = \pm 60V, \text{GND} = 0V, \\ V_{DD} = V_{FP} = 16.5V, V_{SS} = V_{FN} = -16.5V \end{vmatrix} = -55^{\circ}\text{C to } +125^{\circ}\text{C} $ $ \pm 110 $ $ \begin{vmatrix} I_{S(FA) \text{Grounded}} \\ I_{S(FA) \text{Grounded}} \\ I_{S(FA) \text{Grounded}} \end{vmatrix} = \begin{vmatrix} I_{DU} I_{DD} I_{DD} \\ I_{DD} I_{DD} I_{DD} \\ I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} \\ I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} \\ I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} \\ I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} \\ I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} \\ I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} \\ I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} \\ I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} I_{DD} \\ I_{DD} I_{DD$		
during overvoltage $V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$ -55°C to $+125^{\circ}\text{C}$ $\pm 110^{\circ}$ $V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$ -55°C to $+125^{\circ}\text{C}$ $\pm 135^{\circ}$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = 0V$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = 0V$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = 10V$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = 10V$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = 10V$ $V_{DD} = V_{SS} = V_{FN} = 10V$ $V_{DD} = V_{FN} = 16.5V$, $V_{DD} = V_{FN} = V_{FN} = 16.5V$, $V_{DD} = V_{FN} = V_{FN} = V_{FN} = 16.5V$, $V_{DD} = V_{FN} = V_{FN} = V_{FN} = V_{FN} = V_{F$		
$\begin{aligned} & \text{during overvoltage with grounded supply voltages} & \text{V}_{\text{S}} = \pm 60\text{V}, \text{ GND} = 0\text{V}, \\ & \text{V}_{\text{DD}} = \text{V}_{\text{SS}} = \text{V}_{\text{FP}} = \text{V}_{\text{FN}} = 0\text{V} \end{aligned} \qquad \begin{aligned} & -55^{\circ}\text{C to } +125^{\circ}\text{C} & \pm 135 \end{aligned}$ $\begin{aligned} & \text{Input leakage current during overvoltage with floating supply voltages} & \text{V}_{\text{S}} = \pm 60\text{V}, \text{ GND} = 0\text{V}, \\ & \text{V}_{\text{DD}} = \text{V}_{\text{SS}} = \text{V}_{\text{FP}} = \text{V}_{\text{FN}} = \text{floating} \end{aligned} \qquad \begin{aligned} & -55^{\circ}\text{C to } +125^{\circ}\text{C} & \pm 135 \end{aligned}$ $\begin{aligned} & \text{V}_{\text{S}} = \pm 60\text{V}, \text{ GND} = 0\text{V}, \\ & \text{V}_{\text{DD}} = \text{V}_{\text{FP}} = \text{V}_{\text{FN}} = \text{floating} \end{aligned} \qquad \begin{aligned} & -55^{\circ}\text{C to } +125^{\circ}\text{C} & \pm 135 \end{aligned}$ $\begin{aligned} & \text{Uniting overvoltage} & \text{V}_{\text{S}} = \pm 60\text{V}, \text{ GND} = 0\text{V}, \\ & \text{V}_{\text{DD}} = \text{V}_{\text{FP}} = 16.5\text{V}, \text{V}_{\text{SS}} = \text{V}_{\text{FN}} = -16.5\text{V}, \\ & -15.5\text{V} \leq \text{V}_{\text{D}} \leq 16.5\text{V} & -70 \end{aligned}$ $\begin{aligned} & -55^{\circ}\text{C to } +125^{\circ}\text{C} & -50 & \pm 10 \\ & -40^{\circ}\text{C to } +85^{\circ}\text{C} & -70 \\ & -55^{\circ}\text{C to } +125^{\circ}\text{C} & -90 \end{aligned}$		μA
$I_{S(FA) Floating} \begin{tabular}{l} during overvoltage with floating supply voltages \end{tabular} \begin{tabular}{l} V_S = \pm 60V, GND = 0V, \\ V_{DD} = V_{SS} = V_{FP} = V_{FN} = floating \end{tabular} \begin{tabular}{l} -55^{\circ}C to +125^{\circ}C \end{tabular} \begin{tabular}{l} \pm 135 \end{tabular} \begin{tabular}{l} V_S = \pm 60V, GND = 0V, \\ V_{DD} = V_{FP} = 16.5V, V_{SS} = V_{FN} = -16.5V, \\ -15.5V \le V_D \le 16.5V \end{tabular} \begin{tabular}{l} 25^{\circ}C \end{tabular} \begin{tabular}{l} -55^{\circ}C to +125^{\circ}C \end{tabular} \begin{tabular}{l} -50^{\circ}C to +1$		μA
Output leakage current during overvoltage $V_S = \pm 60V$, $S_S = V_{FN} = -16.5V$, $V_{DD} = V_{FP} = 16.5V$, $V_{DD} = V_{FN} = -16.5V$, $V_{DD} = V_{DD} = V$		μA
$\begin{array}{c} \text{Output feakage current} \\ \text{during overvoltage} \end{array} \qquad \begin{array}{c} \text{V}_{\text{DD}} = \text{V}_{\text{FP}} = 16.5\text{V}, \text{ V}_{\text{SS}} = \text{V}_{\text{FN}} = -16.5\text{V}, \\ -15.5\text{V} \leq \text{V}_{\text{D}} \leq 16.5\text{V} \end{array} \qquad \begin{array}{c} -40^{\circ}\text{C to } +85^{\circ}\text{C} \\ -55^{\circ}\text{C to } +125^{\circ}\text{C} \end{array} \qquad \begin{array}{c} -70 \\ -90 \end{array}$	50	
$-15.5V \le V_D \le 16.5V$ $-55^{\circ}C \text{ to } +125^{\circ}C$ -90	70	nA
	90	1
25°C	50	
Output leakage current during overvoltage with $V_S = \pm 60V$, GND = 0V, $V_S = 40V$, $V_S = \pm 60V$, GND = 0V, $V_S = \pm 60V$, GND = 0V, $V_S = 40V$, $V_S = \pm 60V$, GND = 0V, $V_S = 40V$, V_S	100	nA
grounded supply voltages $V_{DD} = V_{SS} = V_{FP} = V_{FN} = 0V$ $-55^{\circ}\text{C to } +125^{\circ}\text{C} \qquad -500$	500	1
25°C ±3		
Output leakage current $V_S = \pm 60V$, $GND = 0V$,		μA
floating supply voltages $V_{DD} = V_{SS} = V_{FP} = V_{FN} = \text{floating}$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = \text{floating}$ $-55^{\circ}\text{C to } +125^{\circ}\text{C}$ ± 8		'
LOGIC INPUT/ OUTPUT		
25°C -2 ± 0.6	2	
I_{IH} High-level input current $V_{EN} = V_{Ax} = V_{DD}$ $-55^{\circ}\text{C to } +125^{\circ}\text{C}$ -2	u/	μA
25°C -1.1 ± 0.6		
Low-level input current $V_{EN} = V_{Ax} = 0V$ $V_{EN} = V_{Ax} = 0V$ $-55^{\circ}C \text{ to } +125^{\circ}C$ -1.2		μA
SWITCHING CHARACTERISTICS	1.2	<u> </u>
25°C 165	265	
$V_{S} = 10V_{S}$		
$R_L = 4k\Omega$, $C_L = 12pF$		ns
-55°C to +125°C	1.1	

6.6 ±15V Dual Supply: Electrical Characteristics (continued)

 V_{DD} = +15V ± 10%, V_{SS} = -15V ±10%, GND = 0V (unless otherwise noted) Typical at V_{DD} = +15V, V_{SS} = -15V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
			25°C		350	400	
t _{OFF (EN)}	Enable turn-off time	$V_S = 10V$, $R_I = 4k\Omega$, $C_I = 12pF$	-40°C to +85°C			400	ns
		11, 5 <u>1</u> 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,	–55°C to +125°C			440	
			25°C		170	225	
t _{TRAN}	Transition time	$V_S = 10V,$ $R_L = 4k\Omega, C_L = 12pF$	-40°C to +85°C			245	ns
		1.E 1.E., 5E 1.E.	–55°C to +125°C			285	
t _{RESPONSE}	Fault response time	$V_{FP} = 15V, V_{FN} = -15V,$ $R_L = 4k\Omega, C_L = 12pF$	25°C		300		ns
t _{RECOVERY}	Fault recovery time	$V_{FP} = 15V, V_{FN} = -15V,$ $R_L = 4k\Omega, C_L = 12pF$	25°C		1.4		μs
t _{RESPONSE(FLAG)}	Fault flag response time	$V_{FP} = 15V, V_{FN} = -15V,$ $V_{PU} = 5V, R_{PU} = 1k\Omega, C_L = 12pF$	25°C		110		ns
t _{RECOVERY(FLAG)}	Fault flag recovery time	$V_{FP} = 15V, V_{FN} = -15V,$ $V_{PU} = 5V, R_{PU} = 1k\Omega, C_L = 12pF$	25°C		0.9		μs
t _{BBM}	Break-before-make time delay	$V_{S} = 10V, R_{L} = 4k\Omega, C_{L} = 12pF$	–55°C to +125°C	50	120		ns
Q _{INJ}	Charge injection	V _S = 0 V, C _L = 1nF	25°C		-15		рC
O _{ISO}	Off-isolation	$R_S = 50\Omega$, $R_L = 50\Omega$, $C_L = 5pF$, $V_S = 200 \text{mV}_{RMS}$, $V_{BIAS} = 0V$, $f = 1 \text{MHz}$	25°C		-82		dB
X _{TALK}	Intra-channel crosstalk	$R_S = 50\Omega$, $R_L = 50\Omega$, $C_L = 5pF$, $V_S = 200m$ V_{RMS} , $V_{BIAS} = 0V$, $f = 1MHz$	25°C		-95		dB
BW	-3dB bandwidth	$R_S = 50\Omega$, $R_L = 50\Omega$, $C_L = 5pF$, $V_S = 200 \text{mV}_{RMS}$, $V_{BIAS} = 0 \text{V}$	25°C		150		MHz
I _{LOSS}	Insertion loss	$R_S = 50\Omega$, $R_L = 50\Omega$, $C_L = 5pF$, $V_S = 200 \text{mV}_{RMS}$, $V_{BIAS} = 0V$, $f = 1 \text{MHz}$	25°C		-9		dB
THD+N	Total harmonic distortion plus noise	R_S = 40 Ω , R_L = 10k Ω , V_S = 15 V_{PP} , V_{BIAS} = 0V, f = 20Hz to 20kHz	25°C	(0.0014		%
C _{S(OFF)}	Input off-capacitance	f = 1MHz, V _S = 0V	25°C		3.5		pF
C _{D(OFF)}	Output off-capacitance	f = 1MHz, V _S = 0V	25°C		28		pF
C _{S(ON)} C _{D(ON)}	Input/Output on-capacitance	f = 1MHz, V _S = 0V	25°C		30		pF

6.6 ±15V Dual Supply: Electrical Characteristics (continued)

 $V_{DD} = +15 V \pm 10\%, \ V_{SS} = -15 V \pm 10\%, \ GND = 0V \ (unless otherwise noted)$ Typical at $V_{DD} = +15 V, \ V_{SS} = -15 V, \ T_A = 25 ^{\circ}C \ (unless otherwise noted)$

	PARAMETER	TEST CONDITIONS	TA	MIN TYP	MAX	UNIT
POWER SUPP	PLY					
			25°C	0.24	0.5	
I _{DD}	V _{DD} supply current	$V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$, $V_{Ax} = 0V$, 5V, or V_{DD} , $V_{EN} = 5V$ or V_{DD}	-40°C to +85°C		0.5	mA
		VAX GV, GV, GI VDD, VEN GV GI VDD	–55°C to +125°C		0.5	
			25°C	0.14	0.4	
I _{SS}	V _{SS} supply current	$V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$, $V_{Ax} = 0V$, 5V, or V_{DD} , $V_{EN} = 5V$ or V_{DD}	-40°C to +85°C		0.4	mA
		VAX GV, GV, GI VDD, VEN GV GI VDD	–55°C to +125°C		0.4	
I _{GND}	GND current	$V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$, $V_{AX} = 0V$, 5V, or V_{DD} , $V_{EN} = 5V$ or V_{DD}	25°C	0.075		mA
I _{FP}	V _{FP} supply current	$V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$, $V_{Ax} = 0V$, 5V, or V_{DD} , $V_{EN} = 5V$ or V_{DD}	25°C	10		μA
I _{FN}	V _{FN} supply current	$V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$, $V_{AX} = 0V$, 5V, or V_{DD} , $V_{EN} = 5V$ or V_{DD}	25°C	10		μA
	V _{DD} supply current under fault	$V_S = \pm 60V$, $V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$, $V_{Ax} = 0V$, 5V, or V_{DD} , $V_{EN} = 5V$ or V_{DD}	25°C	0.25	1	
$I_{DD(FA)}$			-40°C to +85°C		1	mA
			–55°C to +125°C		1	
	V _{SS} supply current under fault	$V_S = \pm 60V$, $V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$, $V_{Ax} = 0V$, 5V, or V_{DD} , $V_{EN} = 5V$ or V_{DD}	25°C	0.15	0.5	
I _{SS(FA)}			-40°C to +85°C		0.5	mA
			–55°C to +125°C		0.5	ı
I _{GND(FA)}	GND current under fault	$\begin{aligned} &V_{S}=\pm60V,\\ &V_{DD}=V_{FP}=16.5V,V_{SS}=V_{FN}=-16.5V,\\ &V_{Ax}=0V,5V,\text{or}V_{DD},V_{EN}=5V\text{or}V_{DD} \end{aligned}$	25°C	0.15		mA
I _{FP(FA)}	V _{FP} supply current under fault	$\begin{aligned} &V_{S}=\pm60V,\\ &V_{DD}=V_{FP}=16.5V,V_{SS}=V_{FN}=-16.5V,\\ &V_{Ax}=0V,5V,\text{or}V_{DD},V_{EN}=5V\text{or}V_{DD} \end{aligned}$	25°C	9		μA
I _{FN(FA)}	V _{FN} supply current under fault	$V_S = \pm 60V,$ $V_{DD} = V_{FP} = 16.5V, V_{SS} = V_{FN} = -16.5V,$ $V_{Ax} = 0V, 5V, \text{ or } V_{DD}, V_{EN} = 5V \text{ or } V_{DD}$	25°C	9		μA
			25°C	0.15	0.5	
I _{DD(DISABLE)}	V _{DD} supply current (disable mode)	$V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$, $V_{Ax} = 0V$, 5V, or V_{DD} , $V_{EN} = 0V$	-40°C to +85°C		0.5	mA
		AX CV, GV, GI VDD, VEN - GV	-55°C to +125°C		0.5	
			25°C	0.1	0.4	
I _{SS(DISABLE)}	V _{SS} supply current (disable mode)	$V_{DD} = V_{FP} = 16.5V$, $V_{SS} = V_{FN} = -16.5V$, $V_{Ax} = 0V$, 5V, or V_{DD} , $V_{EN} = 0V$	-40°C to +85°C		0.4	mA
		AX 01, 01, 01, VDD, VEN 01	–55°C to +125°C		0.4	

⁽¹⁾ When V_S is positive, V_D is negative. And when V_S is negative, V_D is positive.

When V_S is at a voltage potential, V_D is floating. And when V_D is at a voltage potential, V_S is floating.

6.7 ±20 V Dual Supply: Electrical Characteristics

 V_{DD} = +20 V ± 10%, V_{SS} = -20 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +20 V. V_{SS} = -20 V. T_{Δ} = 25°C (unless otherwise noted)

СН						
		25°C		180	250	
On-resistance	$V_S = -15 \text{ V to } +15 \text{ V},$ $I_D = -1 \text{ mA}$	-40°C to +85°C			330	Ω
	is i iiA	-55°C to +125°C			390	
		25°C		2.5	8	
On-resistance mismatch between	$V_S = -15 \text{ V to } +15 \text{ V},$ $I_D = -1 \text{ m} \Delta$	-40°C to +85°C			12	Ω
Giamicis		-55°C to +125°C			13	
		25°C		8	10	
On-resistance flatness		-40°C to +85°C			12	Ω
	.5	–55°C to +125°C			12	
		25°C		1.5	3.5	
On-resistance flatness	$V_S = -13.5 \text{ V to } +13.5 \text{ V},$ $I_S = -1 \text{ mA}$	-40°C to +85°C			4	Ω
		-55°C to +125°C			4	
On-resistance drift	V _S = 0 V, I _S = -1 mA	-55°C to +125°C		1.2		Ω/°C
	V _{DD} = 22 V, V _{SS} = -22 V	25°C	-1	0.1	1	
Source off leakage current ⁽¹⁾		-40°C to +85°C	-1		1	nA
	$V_D = -15 \text{ V} / + 15 \text{ V}$	-55°C to +125°C	-4		4	
	V _{DD} = 22 V, V _{SS} = -22 V	25°C	-1	0.1	1	
Drain off leakage current ⁽¹⁾		-40°C to +85°C	-3		3	nA
	$V_D = -15 \text{ V} / + 15 \text{ V}$	-55°C to +125°C	-14		14	
	Von = 22 V Von = -22 V	25°C	-1.5	0.3	1.5	
Output on leakage current ⁽²⁾	Switch state is on	-40°C to +85°C	-5		5	nA
	$V_S = V_D = \pm 15 V$	-55°C to +125°C	-22		22	
TION						
Input leakage current durring overvoltage	$V_S = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V}$	–55°C to +125°C		±95		μA
Input leakage current during overvoltage with grounded supply voltages	$V_S = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = 0 \text{ V}$	–55°C to +125°C		±135		μA
Input leakage current during overvoltage with floating supply voltages	$V_S = \pm 60 \text{ V, GND} = 0\text{V,}$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = \text{floating}$	–55°C to +125°C		±135		μA
	V + 60 V CND - 0V	25°C	-50	±10	50	
Output leakage current	$V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V}$	-40°C to +85°C	-70		70	nA
during over voltage	$-21V \le V_D \le 22V$	-55°C to +125°C	-90		90	
Output lookage current		25°C	-50	±1	50	
during overvoltage with	$V_S = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$	-40°C to +85°C	-100		100	nA
grounded supply voltages	V _{DD} - V _{SS} - V _{FP} - V _{FN} - U V	-55°C to +125°C	-500		500	
0.4411		25°C		±3		
during overvoltage with	$V_S = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$	-40°C to +85°C		±5		μA
floating supply voltages	V _{DD} - V _{SS} - V _{FP} - V _{FN} - lloating	-55°C to +125°C		±8		
OUTPUT	1	- I	1			
		25°C	-2.2	± 0.6	2.2	
I I limb leval input augrent	gh-level input current $V_{EN} = V_{Ax} = V_{DD}$					μA
High-level input current	TEN TAX TOD	-55°C to +125°C	-2.2		2.2	1
nigh-level input current	V _{EN} = V _{Ax} = 0 V	-55°C to +125°C	-2.2 -1.1	± 0.6	1.1	
	On-resistance mismatch between channels On-resistance flatness On-resistance flatness On-resistance drift Source off leakage current(1) Drain off leakage current(2) ION Input leakage current during overvoltage with grounded supply voltages Input leakage current during overvoltage with floating supply voltages Output leakage current during overvoltage Output leakage current during overvoltage Output leakage current during overvoltage Output leakage current during overvoltage with grounded supply voltages Output leakage current during overvoltage with grounded supply voltages Output leakage current during overvoltage with grounded supply voltages Output leakage current during overvoltage with floating supply voltages	On-resistance mismatch between channels $ V_S = -15 \text{ V to } + 15 \text{ V,} \\ I_S = -1 \text{ mA} $ $ V_S = -15 \text{ V to } + 15 \text{ V,} \\ I_S = -1 \text{ mA} $ $ V_S = -15 \text{ V to } + 15 \text{ V,} \\ I_S = -1 \text{ mA} $ $ V_S = -13.5 \text{ V to } + 13.5 \text{ V,} \\ I_S = -1 \text{ mA} $ $ V_D = -13.5 \text{ V to } + 13.5 \text{ V,} \\ I_S = -1 \text{ mA} $ $ V_D = -13.5 \text{ V to } + 13.5 \text{ V,} \\ I_S = -1 \text{ mA} $ $ V_D = 22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = 22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -15 \text{ V } + 15 \text{ V} $ $ V_D = -15 \text{ V } + 15 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -15 \text{ V } + 15 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -15 \text{ V } + 15 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -15 \text{ V } + 15 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -15 \text{ V } + 15 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -15 \text{ V } + 15 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -15 \text{ V } + 15 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -15 \text{ V } + 15 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -15 \text{ V } + 15 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -22 \text{ V,} V_{SS} = -22 \text{ V} $ $ V_D = -27 \text{ V,} V_D = -27 \text{ V,} V_D = -27 \text{ V} $ $ V_D = -27 \text{ V,} V_D = -27 V$	$ I_{S} = -1 \text{mA} \\ $	$ _{S} = -1 \text{ mA} \\ _{S} = -1 \text{ mA} \\ _{S} = -1 \text{ mA} \\ _{S} = -1 \text{ mA} \\ _{S} = -1 m$	On-resistance V _S = -1 S V to +15 V,	$ \begin{array}{c} \text{On-resistance} & V_{\text{S}} = -15 \text{ V to } +15 \text{ V,} \\ I_{\text{S}} = -1 \text{ mA} \\ \end{array} & \begin{array}{c} -40^{\circ}\text{C to } +85^{\circ}\text{C} \\ -55^{\circ}\text{C to } +125^{\circ}\text{C} \\ \end{array} & 390 \\ 25^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -25^{\circ}\text{C to } +125^{\circ}\text{C} \\ \end{array} & 390 \\ 25^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -25^{\circ}\text{C to } +125^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -30^{\circ}\text{C to } +35^{\circ}\text{C} \\ \end{array} & \begin{array}{c} 390 \\ 390 \\ 25^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -15 \text{ V to } +15 \text{ V,} \\ I_{\text{S}} = -1 \text{ mA} \\ \end{array} & \begin{array}{c} -56^{\circ}\text{C to } +125^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -13 \\ \end{array} & \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -13 \\ \end{array} & \begin{array}{c} -10^{\circ}\text{C to } +35^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -12 \\ \end{array} & \begin{array}{c} -10^{\circ}\text{C to } +35^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -12 \\ \end{array} & \begin{array}{c} -10^{\circ}\text{C to } +35^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -12 \\ \end{array} & \begin{array}{c} -10^{\circ}\text{C to } +35^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -12 \\ \end{array} & \begin{array}{c} -10^{\circ}\text{C to } +35^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -13 \\ \end{array} & \begin{array}{c} -10^{\circ}\text{C to } +35^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -12 \\ \end{array} & \begin{array}{c} -15^{\circ}\text{V to } +15 \text{ V,} \\ I_{\text{S}} = -11 \text{ mA} \\ \end{array} & \begin{array}{c} -25^{\circ}\text{C to } +125^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -12 \\ \end{array} & \begin{array}{c} -25^{\circ}\text{C to } +125^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -12 \\ \end{array} & \begin{array}{c} -25^{\circ}\text{C to } +125^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -12 \\ \end{array} & \begin{array}{c} -25^{\circ}\text{C to } +125^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -12 \\ \end{array} & \begin{array}{c} -25^{\circ}\text{C to } +125^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -40^{\circ}\text{C to } +35^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -10^{\circ}\text{C to } +32^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -25^{\circ}\text{C to } +125^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -10^{\circ}\text{C to } +32^{\circ}\text{C} \\ \end{array} & \begin{array}{c} -10^{\circ}$

6.7 ±20 V Dual Supply: Electrical Characteristics (continued)

 V_{DD} = +20 V ± 10%, V_{SS} = -20 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +20 V, V_{SS} = -20 V, T_A = 25°C (unless otherwise noted)

,, DL	PARAMETER	= 25°C (unless otherwise noted) TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
SWITCHING CH	ARACTERISTICS						
			25°C		175	300	
t _{ON (EN)}	Enable turn-on time	V _S = 10 V,	-40°C to +85°C			325	ns
011 (2.11)		$R_L = 4 k\Omega$, $C_L = 12 pF$	-55°C to +125°C			380	
			25°C		350	400	
t _{OFF (EN)}	Enable turn-off time	$V_S = 10 \text{ V},$ $R_I = 4 \text{ k}\Omega, C_I = 12 \text{ pF}$	-40°C to +85°C			400	ns
		R _L = 4 kΩ, G _L = 12 pr	-55°C to +125°C			445	
			25°C		170	245	
t _{TRAN}	Transition time	$V_S = 10 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	-40°C to +85°C			270	ns
		R _L = 4 κΩ, G _L = 12 pr	-55°C to +125°C			315	
t _{RESPONSE}	Fault response time	$V_{FP} = 20 \text{ V}, V_{FN} = -20 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C		300		ns
t _{RECOVERY}	Fault recovery time	$V_{FP} = 20 \text{ V}, V_{FN} = -20 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C		1.3		μs
t _{RESPONSE(FLAG)}	Fault flag response time	$V_{FP} = 20 \text{ V}, V_{FN} = -20 \text{ V},$ $V_{PU} = 5 \text{ V}, R_{PU} = 1 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C		110		ns
t _{RECOVERY(FLAG)}	Fault flag recovery time	$V_{FP} = 20 \text{ V}, V_{FN} = -20 \text{ V},$ $V_{PU} = 5 \text{ V}, R_{PU} = 1 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C		0.9		μs
t _{BBM}	Break-before-make time delay	$V_S = 10 \text{ V}, R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	–55°C to +125°C	50	120		ns
Q _{INJ}	Charge injection	V _S = 0 V, C _L = 1 nF	25°C		-17		рC
O _{ISO}	Off-isolation	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 m V_{RMS}$, $V_{BIAS} = 0 V$, $f = 1 MHz$	25°C		-85		dB
X _{TALK}	Intra-channel crosstalk	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 m V_{RMS}$, $V_{BIAS} = 0 V$, $f = 1 MHz$	25°C		-95		dB
BW	–3 dB bandwidth	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 \text{m V}_{RMS}$, $V_{BIAS} = 0 \text{ V}$	25°C		150		MHz
I _{LOSS}	Insertion loss	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 m V_{RMS}$, $V_{BIAS} = 0 V$, $f = 1 MHz$	25°C		-9		dB
THD+N	Total harmonic distortion plus noise	$R_S = 40 \Omega$, $R_L = 10k \Omega$, $V_S = 20 V_{PP}$, $V_{BIAS} = 0 V$, $f = 20 Hz$ to 20k Hz	25°C	0	.0014		%
C _{S(OFF)}	Input off-capacitance	f = 1 MHz, V _S = 0 V	25°C		3.5		pF
C _{D(OFF)}	Output off-capacitance	f = 1 MHz, V _S = 0 V	25°C		28		pF
$C_{S(ON)}$ $C_{D(ON)}$	Input/Output on-capacitance	f = 1 MHz, V _S = 0 V	25°C		30		pF
POWER SUPPL	Y						
			25°C		0.24	0.5	
I _{DD}	V _{DD} supply current	$V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V},$ $V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	-40°C to +85°C			0.5	mA
		, w · , · , · bb/ EN · bb	–55°C to +125°C			0.5	
			25°C		0.14	0.4	
I _{SS}	V _{SS} supply current	$V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V},$ $V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	-40°C to +85°C			0.4	mA
		, , , , , , , , , , , , , , , , , , ,	–55°C to +125°C			0.4	
I _{GND}	GND current	$V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V}, V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	25°C		0.075		mA
I _{FP}	V _{FP} supply current	$V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V}, V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	25°C		10		μΑ
I _{FN}	V _{FN} supply current	$V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V}, V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	25°C		10		μΑ
		V _S = ± 60 V,	25°C		0.25	1	
I _{DD(FA)}	V _{DD} supply current under fault	$V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V},$	-40°C to +85°C			1	mA
	== 11.7	$V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	-55°C to +125°C			1	

6.7 ±20 V Dual Supply: Electrical Characteristics (continued)

 V_{DD} = +20 V ± 10%, V_{SS} = -20 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +20 V, V_{SS} = -20 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = ± 60 V.	25°C		0.15	0.5	
I _{SS(FA)}	V _{SS} supply current under fault	$V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V},$	-40°C to +85°C			0.5	mA
		$V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	-55°C to +125°C			0.5	
I _{GND(FA)}	GND current under fault	$\begin{aligned} &V_{S}=\pm60\text{V},\\ &V_{DD}=V_{FP}=22\text{V},V_{SS}=V_{FN}=-22\text{V},\\ &V_{Ax}=0\text{V},5\text{V},\text{or}V_{DD},V_{EN}=5\text{V}\text{or}V_{DD} \end{aligned}$	25°C		0.15		mA
I _{FP(FA)}	V _{FP} supply current under fault	$\begin{aligned} &V_{S}=\pm60\text{V},\\ &V_{DD}=V_{FP}=22\text{V},V_{SS}=V_{FN}=-22\text{V},\\ &V_{Ax}=0\text{V},5\text{V},\text{or}V_{DD},V_{EN}=5\text{V}\text{or}V_{DD} \end{aligned}$	25°C		9		μA
I _{FN(FA)}	V _{FN} supply current under fault	$\begin{aligned} &V_S = \pm 60 \text{ V}, \\ &V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V}, \\ &V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD} \end{aligned}$	25°C		9		μA
			25°C		0.15	0.5	mA
I _{DD(DISABLE)}	V _{DD} supply current (disable mode)	$V_{DD} = V_{FP} = 22 \text{ V}, V_{SS} = V_{FN} = -22 \text{ V},$ $V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{FN} = 0 \text{ V}$	-40°C to +85°C			0.5	mA
		V _{AX} = 0 V, 0 V, 0 V _{DD} , V _{EN} = 0 V	–55°C to +125°C			0.5	mA
		V _{DD} = V _{FP} = 22 V, V _{SS} = V _{FN} = -22 V, V _{AX} = 0 V, 5 V, or V _{DD} , V _{EN} = 0 V	25°C		0.1	0.4	mA
I _{SS(DISABLE)}	V _{SS} supply current (disable mode)		-40°C to +85°C			0.4	mA
			–55°C to +125°C			0.4	mA

When V_S is positive, V_D is negative. And when V_S is negative, V_D is positive.

When V_S is at a voltage potential, V_D is floating. And when V_D is at a voltage potential, V_S is floating.

6.8 12 V Single Supply: Electrical Characteristics

 V_{DD} = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG SWIT	гсн						
			25°C		180	250	
R _{ON}	On-resistance	$V_S = 0 \text{ V to } 7.8 \text{ V},$ $I_S = -1 \text{ mA}$	-40°C to +85°C			330	Ω
		ISI IIIA	–55°C to +125°C			390	
			25°C		2.5	8	
∆R _{ON}	On-resistance mismatch between	$V_S = 0 \text{ V to } 7.8 \text{ V},$	-40°C to +85°C			12	Ω
	channels	$I_S = -1 \text{ mA}$	–55°C to +125°C			13	
			25°C		7	30	
R _{FLAT}	On-resistance flatness	$V_S = 0 \text{ V to } 7.8 \text{ V},$	-40°C to +85°C			45	Ω
		$I_S = -1 \text{ mA}$	–55°C to +125°C			75	
			25°C		1.5	7	
R _{FLAT}	On-resistance flatness	$V_S = 1 \text{ V to } 7.8 \text{ V},$	-40°C to +85°C			8	Ω
		$I_S = -1 \text{ mA}$	–55°C to +125°C			8	
R _{ON_DRIFT}	On-resistance drift	V _S = 6 V, I _S = -1 mA	-55°C to +125°C		1.2		Ω/°C
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	-1	0.1	1	
S(OFF)	Source off leakage current ⁽¹⁾	Switch state is off	-40°C to +85°C	-1		1	nA
	_	V _S = 10 V / 1 V V _D = 1 V / 10 V	–55°C to +125°C	-4		4	
I _{D(OFF)} Drain off		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	-1	0.1	1	
	Drain off leakage current ⁽¹⁾	Switch state is off	-40°C to +85°C	-3		3	nA
		V _S = 10 V / 1 V V _D = 1 V / 10 V	–55°C to +125°C	-14		14	
Output on leakage current ⁽²⁾			25°C	-1.5	0.3	1.5	
	V _{DD} = 13.2 V, V _{SS} = 0 V Switch state is on	-40°C to +85°C	-5		5	nA	
D(ON)	(ON)	$V_S = V_D = 10 \text{ V or } 1 \text{ V}$	–55°C to +125°C	-22		22	
FAULT CONDIT	TION	I					
S(FA)	Input leakage current durring overvoltage	$V_S = \pm 60 \text{ V}, \text{ GND} = 0\text{V},$ $V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}$	-55°C to +125°C		±145		μA
S(FA) Grounded	Input leakage current during overvoltage with grounded supply voltages	V _S = ± 60 V, GND = 0V, V _{DD} = V _{SS} = V _{FP} = V _{FN} = 0 V	–55°C to +125°C		±135		μA
S(FA) Floating	Input leakage current during overvoltage with floating supply voltages	$V_S = \pm 60 \text{ V}, \text{ GND} = 0\text{V},$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = \text{floating}$	–55°C to +125°C		±135		μA
		V _S = ± 60 V, GND = 0V,	25°C	-50	±10	50	
D(FA)	Output leakage current during overvoltage	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}$	-40°C to +85°C	-70		70	nA
	daming everyonage	$1V \le V_D \le 13.2V$	-55°C to +125°C	-90		90	
	Output leakage current		25°C	-50	±1	50	
D(FA) Grounded	during overvoltage with	$V_S = \pm 60 \text{ V}, \text{ GND} = 0\text{V}, \\ V_{DD} = V_{SS} = V_{FP} = V_{FN} = 0 \text{ V}$	-40°C to +85°C	-100		100	nA
	grounded supply voltages	APP - ASS - AED - AEV - O A	-55°C to +125°C	-500		500	
	Output leakage current		25°C		±3		
D(FA) Floating	during overvoltage with	$V_S = \pm 60 \text{ V}, \text{ GND} = 0\text{V},$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = \text{floating}$	-40°C to +85°C		±5		μA
, ,	floating supply voltages	V _{DD} - v _{SS} - v _{FP} - v _{FN} - meaning	–55°C to +125°C		±8		
OGIC INPUT/	OUTPUT						
			25°C	-2	± 0.6	2	μA
IH	High-level input current	$V_{EN} = V_{Ax} = V_{DD}$	-55°C to +125°C	-2		2	μA
			25°C	-1.1	± 0.6	1.1	-
I _{IL}	Low-level input current	$V_{EN} = V_{Ax} = 0 V$	-55°C to +125°C			1.2	μA

6.8 12 V Single Supply: Electrical Characteristics (continued)

 $V_{DD} = +12 \text{ V} \pm 10\%, \ V_{SS} = 0 \text{ V}, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ $\text{Typical at V}_{DD} = +12 \text{ V}, \ V_{SS} = 0 \text{ V}, \ T_{A} = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
SWITCHING CH	ARACTERISTICS			•		
			25°C	160	265	
t _{ON (EN)}	Enable turn-on time	$V_S = 8 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	-40°C to +85°C		285	ns
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	–55°C to +125°C		330	
			25°C	420	485	
t _{OFF (EN)}	Enable turn-off time	$V_S = 8 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	-40°C to +85°C		485	ns
			-55°C to +125°C		545	
			25°C	160	215	
t _{TRAN}	Transition time	$V_S = 8 \text{ V},$ $R_1 = 4 \text{ k}\Omega, C_1 = 12 \text{ pF}$	-40°C to +85°C		230	ns
		Ν – 4 κΩ, Ο – 12 βι	-55°C to +125°C		270	
t _{RESPONSE}	Fault response time	$V_{FP} = 12 \text{ V}, V_{FN} = 0 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C	220		ns
t _{RECOVERY}	Fault recovery time	$V_{FP} = 12 \text{ V}, V_{FN} = 0 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C	0.69		μs
t _{RESPONSE(FLAG)}	Fault flag response time	$V_{FP} = 12 \text{ V}, V_{FN} = 0 \text{ V},$ $V_{PU} = 5 \text{ V}, R_{PU} = 1 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C	110		ns
t _{RECOVERY(FLAG)}	Fault flag recovery time	V _{FP} = 12 V, V _{FN} = 0 V, V _{PU} = 5 V, R _{PU} = 1 kΩ, C _L = 12 pF	25°C	0.65		μs
t _{BBM}	Break-before-make time delay	$V_S = 8 \text{ V}, R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	–55°C to +125°C	30 100		ns
Q _{INJ}	Charge injection	V _S = 6 V, C _L = 1 nF	25°C	-11		рC
O _{ISO}	Off-isolation	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 6 \text{ V}$, $f = 1 \text{ MHz}$	25°C	-76		dB
X _{TALK}	Intra-channel crosstalk	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 6 \text{ V}$, $f = 1 \text{ MHz}$	25°C	-93		dB
BW	−3 dB bandwidth	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 6 \text{ V}$	25°C	130		MHz
I _{LOSS}	Insertion loss	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 6 \text{ V}$, $f = 1 \text{ MHz}$	25°C	-9		dB
THD+N	Total harmonic distortion plus noise	R_S = 40 Ω , R_L = 10k Ω , V_S = 6 V_{PP} , V_{BIAS} = 6 V , f = 20 Hz to 20k Hz	25°C	0.0022		%
C _{S(OFF)}	Input off-capacitance	f = 1 MHz, V _S = 6 V	25°C	4		pF
C _{D(OFF)}	Output off-capacitance	f = 1 MHz, V _S = 6 V	25°C	31		pF
C _{S(ON)} C _{D(ON)}	Input/Output on-capacitance	f = 1 MHz, V _S = 6 V	25°C	34		pF
POWER SUPPL	Y					
			25°C	0.24	0.5	
I _{DD}	V _{DD} supply current	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$ $V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	-40°C to +85°C		0.5	mA
		VAX - 0 V, 0 V, 0 VDD, VEN - 0 V O VDD	-55°C to +125°C		0.5	
			25°C	0.14	0.4	
I _{SS}	V _{SS} supply current	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$ $V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	-40°C to +85°C		0.4	mA
		VAX 0 V, 0 V, 0. VDD, VEN 0 V 0. VDD	-55°C to +125°C		0.4	
I _{GND}	GND current	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}, V_{AX} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	25°C	0.075		mA
I _{FP}	V _{FP} supply current	V _{DD} = V _{FP} = 13.2 V, V _{SS} = V _{FN} = 0 V, V _{Ax} = 0 V, 5 V, or V _{DD} , V _{EN} = 5 V or V _{DD}	25°C	10		μA
I _{FN}	V _{FN} supply current	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}, V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	25°C	10		μA
		V _S = ± 60 V,	25°C	0.25	1	
I _{DD(FA)}	V _{DD} supply current under fault	$V_S = \pm 60 \text{ V},$ $V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$	-40°C to +85°C		1	mA
יטט(FA)		$V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$			1	

6.8 12 V Single Supply: Electrical Characteristics (continued)

 $V_{DD} = +12~V \pm 10\%,~V_{SS} = 0~V,~GND = 0~V~(unless~otherwise~noted)$ Typical at $V_{DD} = +12~V,~V_{SS} = 0~V,~T_A = 25^{\circ}C~(unless~otherwise~noted)$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = ± 60 V.	25°C		0.15	0.5	
I _{SS(FA)}	V _{SS} supply current under fault	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$	-40°C to +85°C			0.5	mA
		$V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	–55°C to +125°C			0.5	
I _{GND(FA)}	GND current under fault	$\begin{aligned} &V_{S}=\pm60\text{V},\\ &V_{DD}=V_{FP}=13.2\text{V},V_{SS}=V_{FN}=0\text{V},\\ &V_{Ax}=0\text{V},5\text{V},\text{or}V_{DD},V_{EN}=5\text{V}\text{or}V_{DD} \end{aligned}$	25°C		0.17		mA
I _{FP(FA)}	V _{FP} supply current under fault	$\begin{aligned} &V_{S}=\pm60\text{V},\\ &V_{DD}=V_{FP}=13.2\text{V},V_{SS}=V_{FN}=0\text{V},\\ &V_{Ax}=0\text{V},5\text{V},\text{or}V_{DD},V_{EN}=5\text{V}\text{or}V_{DD} \end{aligned}$	25°C		9		μA
I _{FN(FA)}	V _{FN} supply current under fault	$\begin{aligned} &V_{S}=\pm60\text{V},\\ &V_{DD}=V_{FP}=13.2\text{V},V_{SS}=V_{FN}=0\text{V},\\ &V_{Ax}=0\text{V},5\text{V},\text{or}V_{DD},V_{EN}=5\text{V}\text{or}V_{DD} \end{aligned}$	25°C		7.5		μA
			25°C		0.15	0.5	
I _{DD(DISABLE)}	V _{DD} supply current (disable mode)	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}, V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{FN} = 0 \text{ V}$	-40°C to +85°C			0.5	mA
		YAX O V, O V, O. VDD, VEN O V	–55°C to +125°C			0.5	
		$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$ $V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 0 \text{ V}$	25°C		0.1	0.4	
I _{SS(DISABLE)}	V _{SS} supply current (disable mode)		-40°C to +85°C			0.4	mA
			–55°C to +125°C			0.4	

When V_S is 10 V, V_D is 1 V. Or when V_S is 1 V, V_D is 10 V.

When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.

6.9 36 V Single Supply: Electrical Characteristics

 V_{DD} = +36 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +36 V, V_{SS} = 0 V, T_{Δ} = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG SWIT	гсн		_			-	
			25°C		180	250	
R _{ON}	On-resistance	$V_S = 0 \text{ V to } 28 \text{ V},$ $I_S = -1 \text{ mA}$	-40°C to +85°C			330	Ω
			–55°C to +125°C			390	
			25°C		2.5	8	
ΔR _{ON}	On-resistance mismatch between	$V_S = 0 \text{ V to } 28 \text{ V},$	-40°C to +85°C			12	Ω
	channels	$I_S = -1 \text{ mA}$	–55°C to +125°C			13	
			25°C		8	65	
R _{FLAT}	On-resistance flatness	$V_S = 0 \text{ V to } 30 \text{ V},$	-40°C to +85°C			75	
		$I_S = -1 \text{ mA}$	–55°C to +125°C			90	_
			25°C		1.5	3	Ω
R _{FLAT}	On-resistance flatness	$V_S = 1 \text{ V to } 28 \text{ V},$ $I_S = -1 \text{ mA}$	-40°C to +85°C			4	
		ISI IIIA	–55°C to +125°C			4	
RON DRIFT	On-resistance drift	V _S = 18 V, I _S = -1 mA	–55°C to +125°C		1.2		Ω/°C
		V _{DD} = 39.6 V, V _{SS} = 0 V	25°C	-1	0.1	1	
S(OFF)	Source off leakage current ⁽¹⁾	Switch state is off V _S = 30 V / 1 V	-40°C to +85°C	-1		1	nA
3(611)		$V_S = 30 \text{ V} / 1 \text{ V}$ $V_D = 1 \text{ V} / 30 \text{ V}$	–55°C to +125°C	-4		4	
		V _{DD} = 39.6 V, V _{SS} = 0 V	25°C	-1	0.1	1	
D(OFF)	Drain off leakage current ⁽²⁾	Switch state is off V _S = 30 V / 1 V	-40°C to +85°C	-3		3	nA
•		V _S = 30 V / 1 V V _D = 1 V / 30 V	–55°C to +125°C	-14		14	
S(ON) Output on leakage current ⁽¹⁾		V - 20 6 V V - 0 V	25°C	-1.5	0.3	1.5	
	V _{DD} = 39.6 V, V _{SS} = 0 V Switch state is on	-40°C to +85°C	-5		5	nA	
I _{D(ON)}))	$V_S = V_D = 30 \text{ V or } 1 \text{ V}$	–55°C to +125°C	-22		22	
FAULT CONDI	TION	I					
S(FA)	Input leakage current durring overvoltage	V _S = 60 / -40 V, GND = 0V V _{DD} = V _{FP} = 39.6 V, V _{SS} = V _{FN} = 0 V	–55°C to +125°C		±110		μA
S(FA) Grounded	Input leakage current during overvoltage with grounded supply voltages	V _S = ± 60 V, GND = 0V V _{DD} = V _{SS} = V _{FP} = V _{FN} = 0 V	–55°C to +125°C		±135		μΑ
S(FA) Floating	Input leakage current during overvoltage with floating supply voltages	$V_S = \pm 60 \text{ V}, \text{ GND} = 0 \text{V}$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = \text{floating}$	–55°C to +125°C		±135		μΑ
		V _S = 60 / –40 V, GND = 0V,	25°C	-50	±10	50	
D(FA)	Output leakage current during overvoltage	$V_{DD} = V_{FP} = 39.6 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}$	-40°C to +85°C	-70		70	nA
	daming everyonage	$1V \le V_D \le 39.6V$	–55°C to +125°C	-90		90	
	Output leakage current		25°C	-50	±1	50	
D(FA) Grounded	during overvoltage with	$V_S = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V},$ $V_{DD} = V_{SS} = V_{FP} = V_{FN} = 0 \text{ V}$	-40°C to +85°C	-100		100	nA
	grounded supply voltages	APP - ASS - AED - AEV - O A	-55°C to +125°C	-500		500	
	Output leakage current		25°C		±3		
D(FA) Floating	during overvoltage with	$V_S = \pm 60 \text{ V}, \text{ GND} = 0\text{V},$ $V_{DD} = V_{SS} = V_{EP} = V_{EN} = \text{ floating}$	-40°C to +85°C		±5		μΑ
, , ,	floating supply voltages	VDD - VSS - VFP - VFN- HOALING	–55°C to +125°C		±8		
OGIC INPUT/	OUTPUT	1	1				
			25°C	-3.2	± 0.6	3.2	
IH	High-level input current	$V_{EN} = V_{Ax} = V_{DD}$	-55°C to +125°C	-3.2		3.2	μA
			25°C	-1.1	± 0.6	1.1	
I _{IL}	Low-level input current	$V_{EN} = V_{Ax} = 0 V$	-55°C to +125°C	-1.2		1.2	μA
			00 0 10 1 120 0	1.2		1.2	

6.9 36 V Single Supply: Electrical Characteristics (continued)

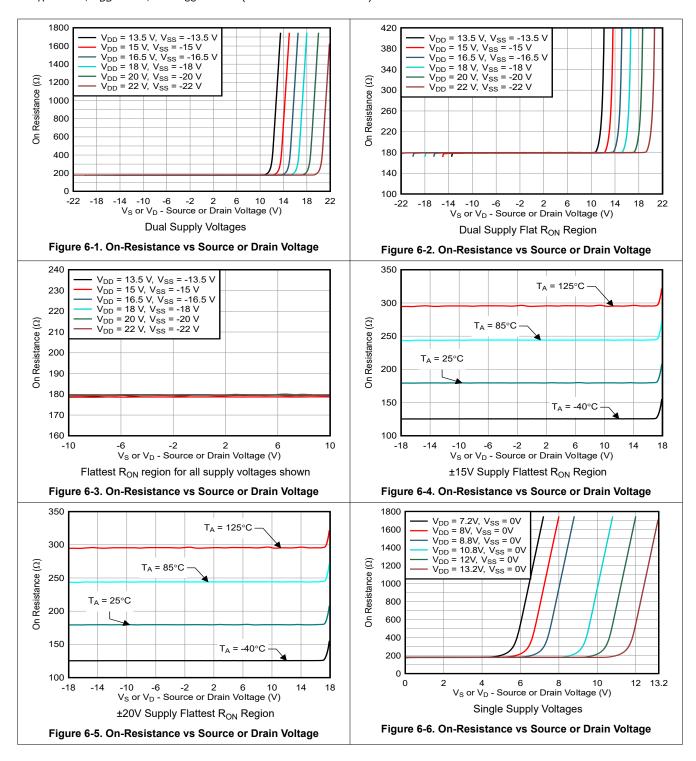
 V_{DD} = +36 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
SWITCHING CH	ARACTERISTICS					
			25°C	185	390	
t _{ON (EN)}	Enable turn-on time	$V_S = 18 \text{ V},$ $R_1 = 4 \text{ k}\Omega, C_1 = 12 \text{ pF}$	-40°C to +85°C		460	ns
		Λ(- 4 κι2, Θ(- 12 μ)	–55°C to +125°C		530	
			25°C	380	450	
t _{OFF (EN)}	Enable turn-off time	$V_S = 18 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	-40°C to +85°C		450	ns
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	–55°C to +125°C		490	
			25°C	185	230	
t _{TRAN}	Transition time	$V_S = 18 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	-40°C to +85°C		245	ns
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	–55°C to +125°C		285	
t _{RESPONSE}	Fault response time	$V_{FP} = 36 \text{ V}, V_{FN} = 0 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C	210		ns
t _{RECOVERY}	Fault recovery time	$V_{FP} = 36 \text{ V}, V_{FN} = 0 \text{ V},$ $R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C	0.67	,	μs
t _{RESPONSE(FLAG)}	Fault flag response time	$V_{FP} = 36 \text{ V}, V_{FN} = 0 \text{ V}, \\ V_{PU} = 5 \text{ V}, R_{PU} = 1 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C	110		ns
t _{RECOVERY(FLAG)}	Fault flag recovery time	$V_{FP} = 36 \text{ V}, V_{FN} = 0 \text{ V}, \\ V_{PU} = 5 \text{ V}, R_{PU} = 1 \text{ k}\Omega, C_L = 12 \text{ pF}$	25°C	0.65	i 	μs
t _{BBM}	Break-before-make time delay	$V_S = 18 \text{ V}, R_L = 4 \text{ k}\Omega, C_L = 12 \text{ pF}$	–55°C to +125°C	50 100		ns
Q _{INJ}	Charge injection	V _S = 18 V, C _L = 1 nF	25°C	-16	i	рC
O _{ISO}	Off-isolation	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 6 \text{ V}$, $f = 1 \text{ MHz}$	25°C	-78		dB
X _{TALK}	Intra-channel crosstalk	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 6 \text{ V}$, $f = 1 \text{ MHz}$	25°C	-95	i	dB
BW	–3 dB bandwidth	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 6 \text{ V}$	25°C	130	l	MHz
I _{LOSS}	Insertion loss	$R_S = 50 \Omega$, $R_L = 50 \Omega$, $C_L = 5 pF$, $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 6 \text{ V}$, $f = 1 \text{ MHz}$	25°C	-9	1	dB
THD+N	Total harmonic distortion plus noise	R_S = 40 Ω , R_L = 10k Ω , V_S = 18 V_{PP} , V_{BIAS} = 18 V, f = 20 Hz to 20k Hz	25°C	0.0014		%
C _{S(OFF)}	Input off-capacitance	f = 1 MHz, V _S = 18 V	25°C	4		pF
C _{D(OFF)}	Output off-capacitance	f = 1 MHz, V _S = 18 V	25°C	31		pF
$C_{S(ON)} \ C_{D(ON)}$	Input/Output on-capacitance	f = 1 MHz, V _S = 18 V	25°C	34		pF
POWER SUPPL	Y					
		V - V - 20 CV V - V - 0 V	25°C	0.24	0.5	
I _{DD}	V _{DD} supply current	$V_{DD} = V_{FP} = 39.6 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$ $V_{AX} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	–40°C to +85°C		0.5	mA
			–55°C to +125°C		0.5	
		V - V - 20 CV V - V - 0 V	25°C	0.14	0.4	
I _{SS}	V _{SS} supply current	$V_{DD} = V_{FP} = 39.6 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$ $V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{FN} = 5 \text{ V or } V_{DD}$	–40°C to +85°C		0.4	mA
			–55°C to +125°C		0.4	
I _{GND}	GND current	$V_{DD} = V_{FP} = 39.6 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}, V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	25°C	0.075	i	mA
I _{FP}	V _{FP} supply current	$V_{DD} = V_{FP} = 39.6 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}, V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	25°C	10	1	μA
I _{FN}	V _{FN} supply current	$V_{DD} = V_{FP} = 39.6 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}, V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	25°C	10		μА
		V _S = 60 / -40 V,	25°C	0.25	1	
I _{DD(FA)}	V _{DD} supply current under fault	$V_{DD} = V_{FP} = 39.6 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$	-40°C to +85°C		1	mA
		$V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	-55°C to +125°C		1	1

6.9 36 V Single Supply: Electrical Characteristics (continued)

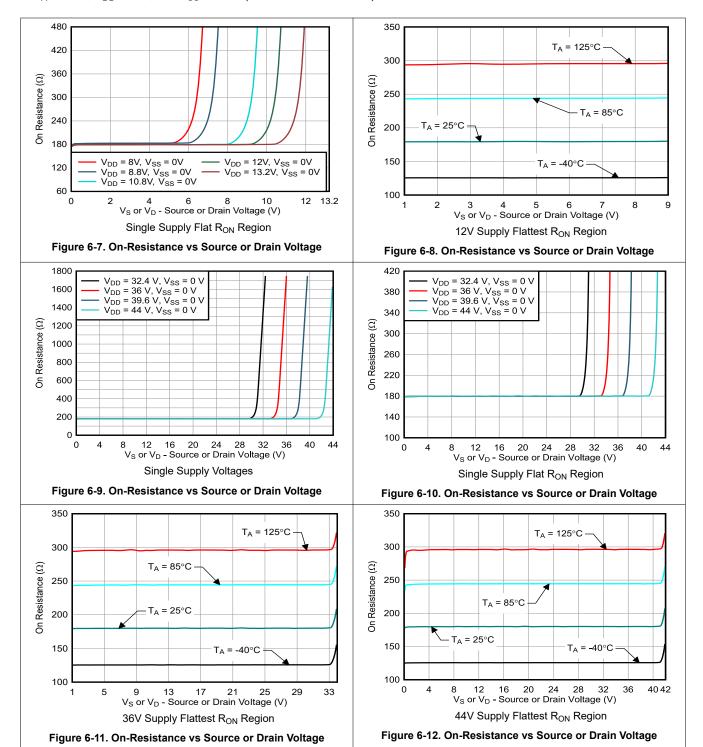
 $V_{DD} = +36 \text{ V} \pm 10\%, \ V_{SS} = 0 \text{ V}, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +36 \text{ V}, \ V_{SS} = 0 \text{ V}, \ T_A = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 60 / –40 V,	25°C		0.15	0.5	
I _{SS(FA)}	V _{SS} supply current under fault	$V_{DD} = V_{FP} = 39.6 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$	-40°C to +85°C			0.5	mA
		$V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{EN} = 5 \text{ V or } V_{DD}$	–55°C to +125°C			0.5	
I _{GND(FA)}	GND current under fault	$\begin{array}{l} V_S = 60 \: / \: -40 \: V, \\ V_{DD} = V_{FP} = 39.6 \: V, V_{SS} = V_{FN} = \: 0 \: V, \\ V_{Ax} = 0 \: V, \: 5 \: V, \: \text{or} \: V_{DD}, \: V_{EN} = 5 \: V \: \text{or} \: V_{DD} \end{array}$	25°C		0.12		mA
I _{FP(FA)}	V _{FP} supply current under fault	$ \begin{array}{l} V_S = 60 \: / \: -40 \: V, \\ V_{DD} = V_{FP} = 39.6 \: V, V_{SS} = V_{FN} = \: 0 \: V, \\ V_{Ax} = 0 \: V, \: 5 \: V, \: \text{or} \: V_{DD}, \: V_{EN} = 5 \: V \: \text{or} \: V_{DD} \end{array} $	25°C		9		μA
I _{FN(FA)}	V _{FN} supply current under fault	$\begin{aligned} &V_{S}=60\: / \: -40\: V, \\ &V_{DD}=V_{FP}=39.6\: V, V_{SS}=V_{FN}=\: 0\: V, \\ &V_{Ax}=0\: V, 5\: V, \: \text{or} \: V_{DD}, \: V_{EN}=5\: V\: \text{or} \: V_{DD} \end{aligned}$	25°C		7.5		μA
			25°C		0.15	0.5	
I _{DD(DISABLE)}	V _{DD} supply current (disable mode)	$V_{DD} = V_{FP} = 39.6 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}, V_{Ax} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_{FN} = 0 \text{ V}$	-40°C to +85°C			0.5	mA
		V _{AX} = 0 V, 5 V, SI V _{DD} , V _{EN} = 0 V	-55°C to +125°C			0.5	
I _{SS(DISABLE)} V _{SS} supply current (c		$V_{DD} = V_{FP} = 39.6 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$ $V_{Av} = 0 \text{ V}.5 \text{ V}. \text{ or } V_{DD}. V_{FN} = 0 \text{ V}$	25°C		0.1	0.4	
	V _{SS} supply current (disable mode)		-40°C to +85°C			0.4	mA
	V _{AX} = 0 V, 3 V, 01 V _{DD} , V _{EN} = 0 V	-55°C to +125°C			0.4		

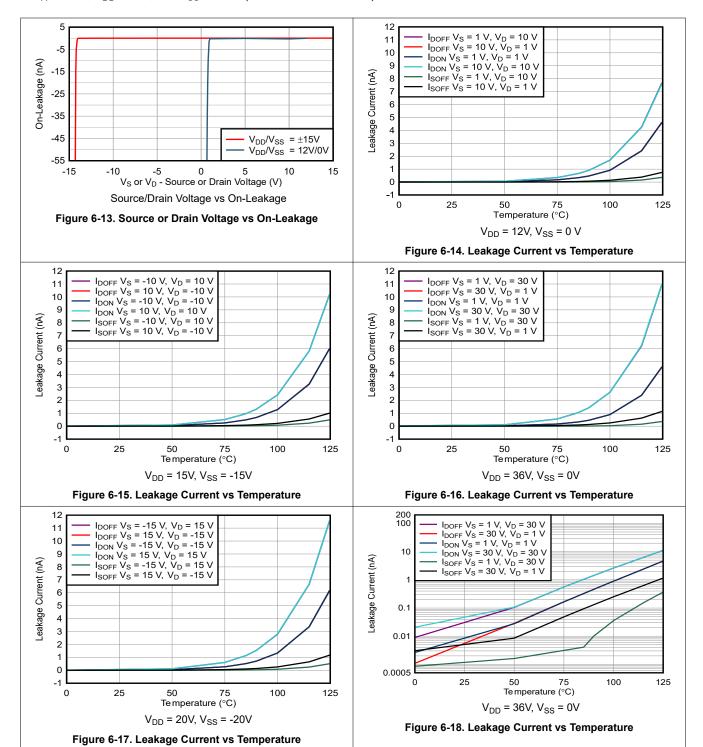

⁽¹⁾ When V_S is 30 V, V_D is 1 V. Or when V_S is 1 V, V_D is 30 V.

When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.

6.10 Typical Characteristics

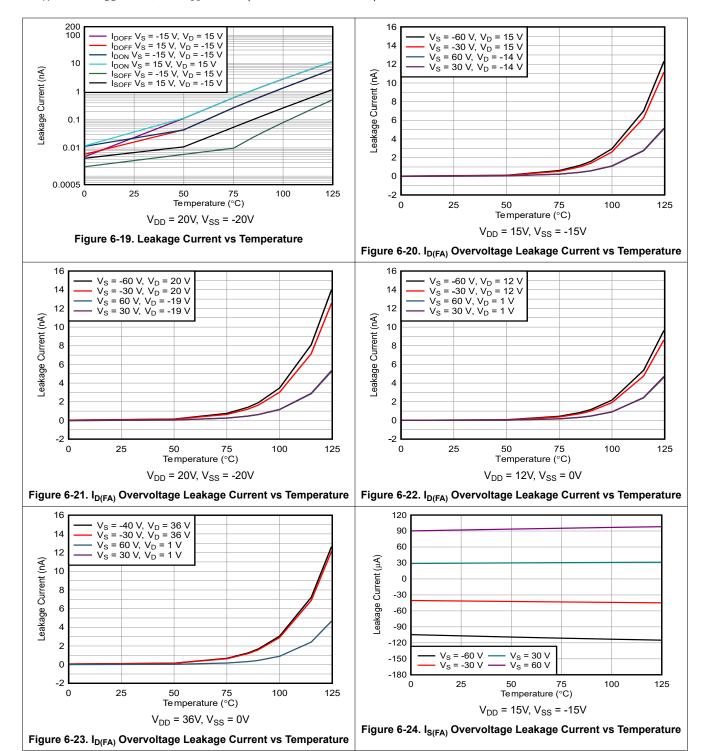

at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

Submit Document Feedback


Copyright © 2025 Texas Instruments Incorporated

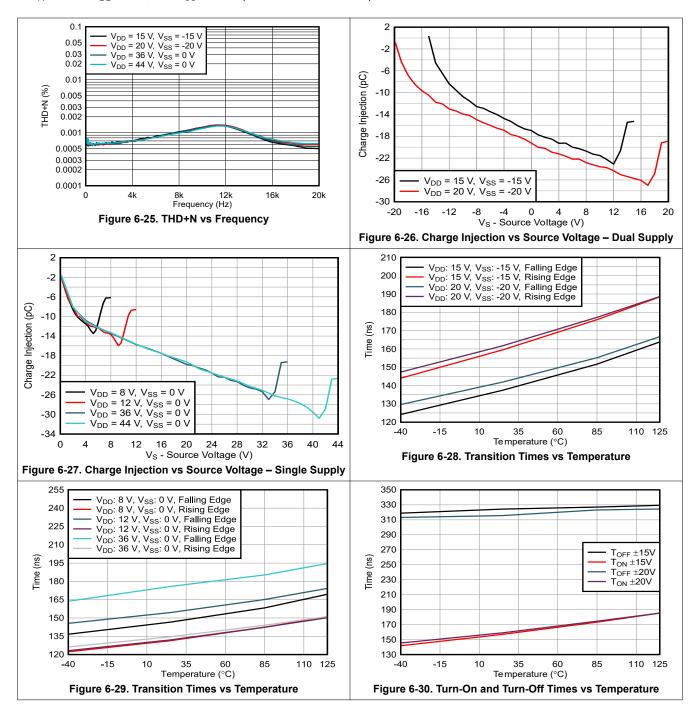
at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)



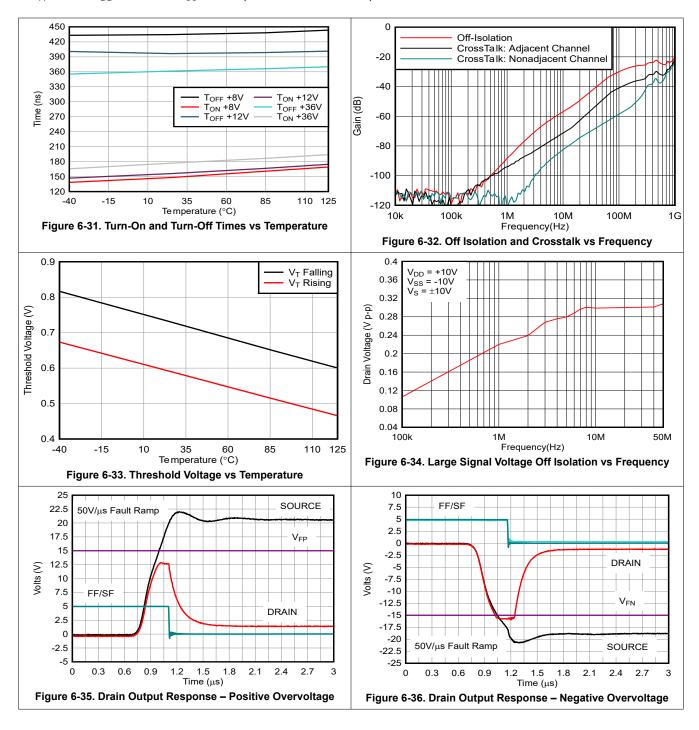
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated



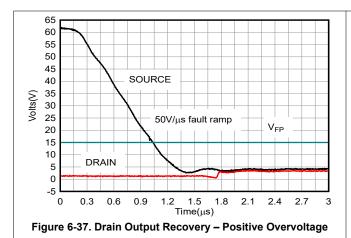
at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)



Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated



at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

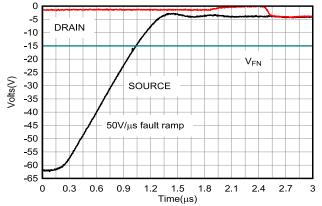


Figure 6-38. Drain Output Recovery - Negative Overvoltage

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7 Parameter Measurement Information

7.1 On-Resistance

The on-resistance of the TMUX7348F-EP is the ohmic resistance across the source (Sx) and drain (Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. The measurement setup used to measure R_{ON} is shown in Figure 7-1. ΔR_{ON} represents the difference between the R_{ON} of any two channels, while R_{ON_FLAT} denotes the flatness that is defined as the difference between the maximum and minimum value of on-resistance measured over the specified analog signal range.

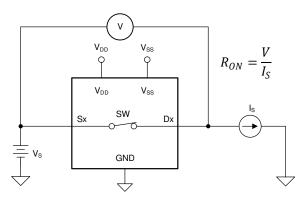


Figure 7-1. On-Resistance Measurement Setup

7.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- Source off-leakage current I_{S(OFF)}: the leakage current flowing into or out of the source pin when the switch is off.
- 2. Drain off-leakage current I_{D(OFF)}: the leakage current flowing into or out of the drain pin when the switch is off.

Figure 7-2 shows the setup used to measure both off-leakage currents.

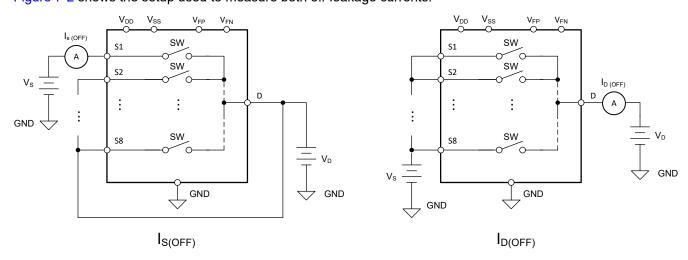


Figure 7-2. Off-Leakage Measurement Setup

7.3 On-Leakage Current

Source on-leakage current $(I_{S(ON)})$ and drain on-leakage current $(I_{D(ON)})$ denote the channel leakage currents when the switch is in the on state. $I_{S(ON)}$ is measured with the drain floating, while $I_{D(ON)}$ is measured with the source floating. Figure 7-3 shows the circuit used for measuring the on-leakage currents.

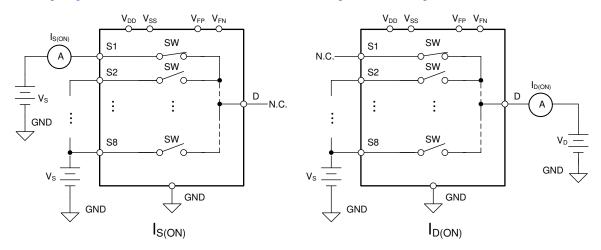


Figure 7-3. On-Leakage Measurement Setup

7.4 Input and Output Leakage Current Under Overvoltage Fault

If any of the source pin voltage goes above the fault supplies (V_{FP} or V_{FN}), the overvoltage protection feature of the TMUX7348F-EP is triggered to turn off the switch under fault, keeping the fault channel in high-impedance state. $I_{S(FA)}$ and $I_{D(FA)}$ denotes the input and output leakage current under overvoltage fault conditions, respectively. For $I_{D(FA)}$ the device is disabled to measure leakage current on the drain pin without being impacted by the 40 k Ω impedance to the fault supply. When the overvoltage fault occurs, the supply (or supplies) can either be in normal operating condition (Figure 7-4) or abnormal operating condition (Figure 7-5). During abnormal operating condition, the supply (or supplies) can either be unpowered ($V_{DD} = V_{SS} = V_{FN} = V_{FP} = 0$ V) or floating ($V_{DD} = V_{SS} = V_{FN} = V_{FP} = 0$ Connection), and remains within the leakage performance specifications.

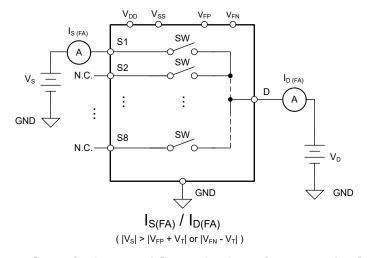


Figure 7-4. Measurement Setup for Input and Output Leakage Current under Overvoltage Fault with Normal Supplies

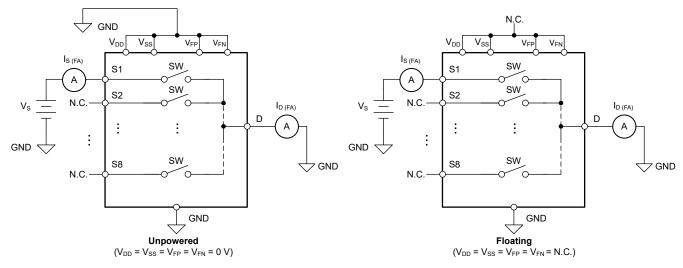


Figure 7-5. Measurement Setup for Input and Output Leakage Current Under Overvoltage Fault with Unpowered or Floating Supplies

7.5 Break-Before-Make Delay

The break-before-make delay is a safety feature of the TMUX7348F-EP. The ON switches first break the connection before the OFF switches make connection. The time delay between the break and the make is known as break-before-make delay. Figure 7-6 shows the setup used to measure break-before-make delay, denoted by the symbol $t_{\rm BBM}$.

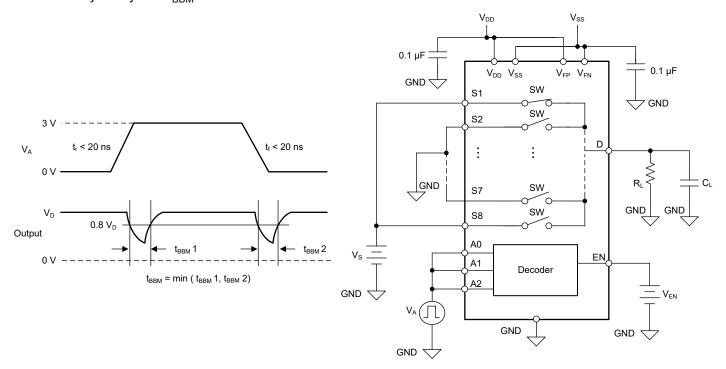


Figure 7-6. Break-Before-Make Delay Measurement Setup

7.6 Enable Delay Time

 $t_{ON(EN)}$ time is defined as the time taken by the output of the TMUX7348F-EP to rise to a 90% final value after the EN signal has risen to a 50% final value. $t_{OFF(EN)}$ is defined as the time taken by the output of the TMUX7348F-EP to fall to a 10% initial value after the EN signal has fallen to a 50% initial value. Figure 7-7 shows the setup used to measure the enable delay time.

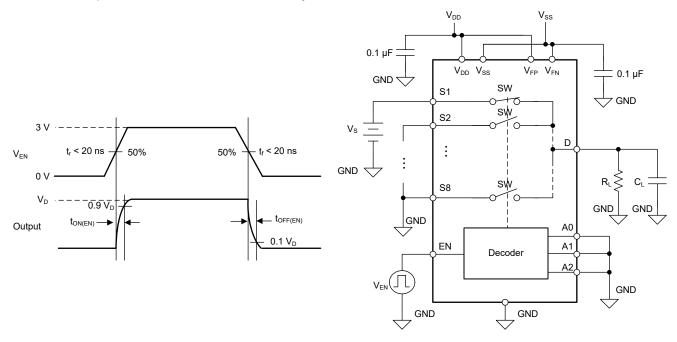


Figure 7-7. Enable Delay Measurement Setup

7.7 Transition Time

Transition time is defined as the time taken by the output of the device to rise (to 90% of the transition) or fall (to 10% of the transition) after the address signal (Ax) has fallen or risen to 50% of the transition. Figure 7-8 shows the setup used to measure transition time, denoted by the symbol t_{TRAN} .

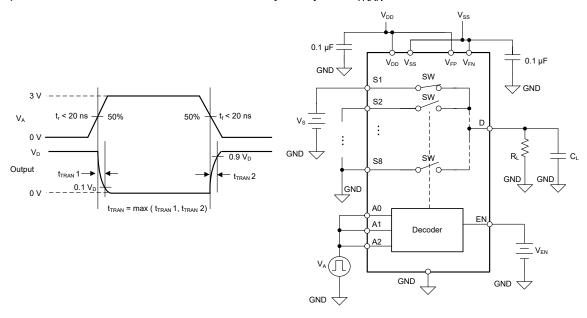


Figure 7-8. Transition Time Measurement Setup

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMUX7348F-EP*

7.8 Fault Response Time

Fault response time ($t_{RESPONSE}$) measures the delay between the source voltage exceeding the fault supply voltage (V_{FP} or V_{FN}) by 0.5 V and the drain voltage failing to 50% of the maximum output voltage. Figure 7-9 shows the setup used to measure $t_{RESPONSE}$.

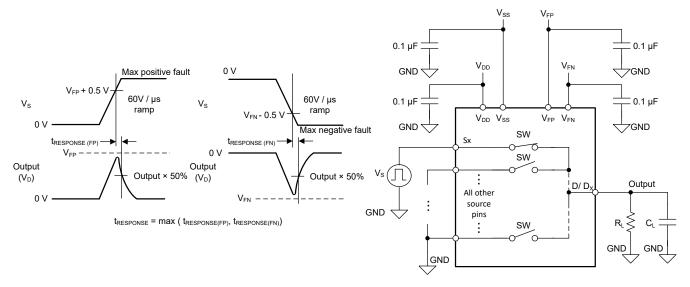


Figure 7-9. Fault Response Time Measurement Setup

7.9 Fault Recovery Time

Fault recovery time ($t_{RECOVERY}$) measures the delay between the source voltage falling from overvoltage condition to below fault supply voltage (V_{FP} or V_{FN}) plus 0.5 V and the drain voltage rising from 0 V to 50% of the final output voltage. Figure 7-10 shows the setup used to measure $t_{RECOVERY}$.

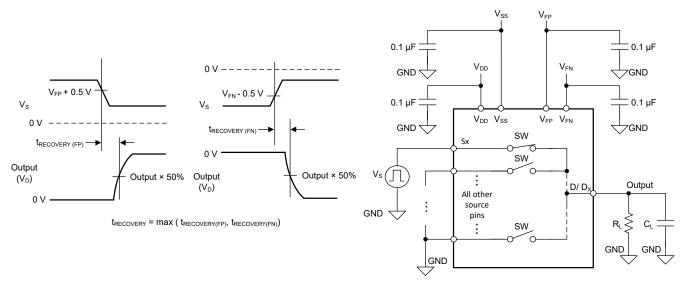


Figure 7-10. Fault Recovery Time Measurement Setup

7.10 Fault Flag Response Time

Fault flag response time (t_{RESPONSE(FLAG)}) measures the delay between the source voltage exceeding the fault supply voltage (V_{FP} or V_{FN}) by 0.5 V and the general fault flag (FF) pin or specific fault flag (SF) pin to go below 10% of its original value. Figure 7-11 shows the setup used to measure t_{RESPONSE(FLAG)}.

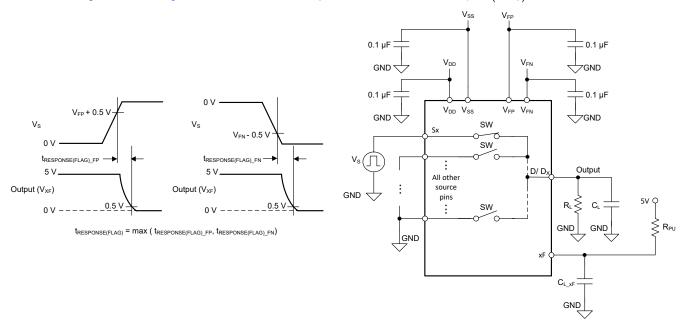


Figure 7-11. Fault Flag Response Time Measurement Setup

7.11 Fault Flag Recovery Time

Fault flag recovery time (t_{RECOVERY(FLAG)}) measures the delay between the source voltage falling from overvoltage condition to below fault supply voltage (V_{FP} or V_{FN}) plus 0.5 V and the general fault flag (FF) pin or the specific fault flag (SF) pin to rise above 3 V with 5 V external pull-up. Figure 7-12 shows the setup used to measure t_{RECOVERY(FLAG)}.

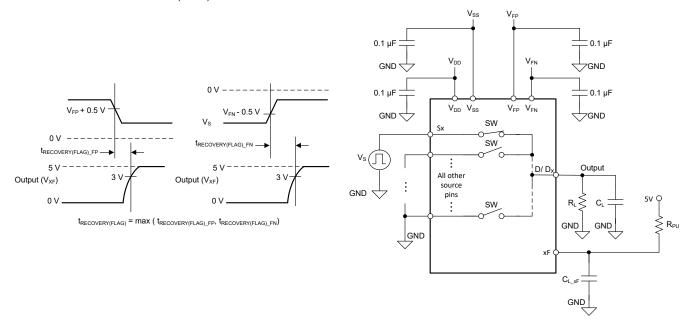


Figure 7-12. Fault Flag Recovery Time Measurement Setup

7.12 Charge Injection

Charge injection is a measure of the glitch impulse transferred from the logic input to the analog output during switching, and is denoted by the symbol Q_{INJ} . Figure 7-13 shows the setup used to measure charge injection from the source to drain.

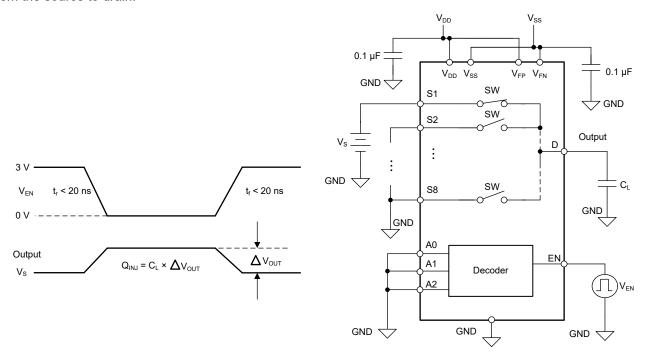


Figure 7-13. Charge-Injection Measurement Setup

7.13 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the source pin (Sx) of an off-channel. Figure 7-14 shows the setup used to measure, and the equation used to calculate off isolation.

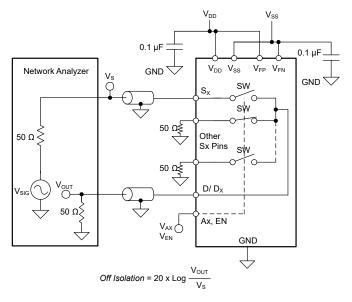


Figure 7-14. Off Isolation Measurement Setup

7.14 Crosstalk

Intra-channel crosstalk $(X_{TALK(INTRA)})$ is defined as the voltage at the source pin (Sx) of an off-switch input when a signal is applied at the source pin of an on-switch input in the same channel (as shown in Figure 7-15).

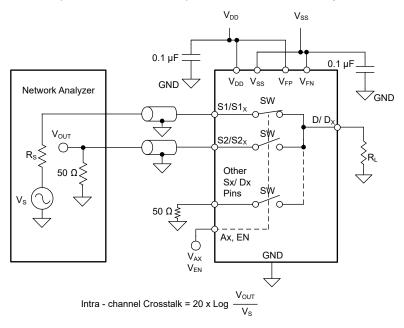


Figure 7-15. Intra-Channel Crosstalk Measurement Setup

7.15 Bandwidth

Bandwidth (BW) is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D or Dx) of the TMUX7348F-EP. Figure 7-16 shows the setup used to measure bandwidth of the switch.

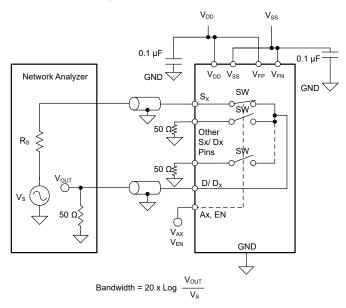


Figure 7-16. Bandwidth Measurement Setup

7.16 THD + Noise

The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the multiplexer output. The on-resistance of the TMUX7348F-EP varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD+N. Figure 7-17 shows the setup used to measure THD+N of the devices.

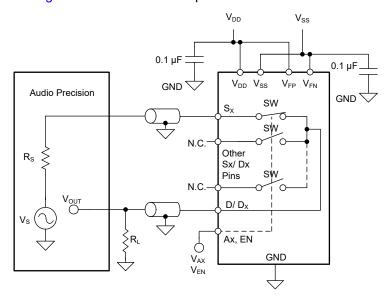
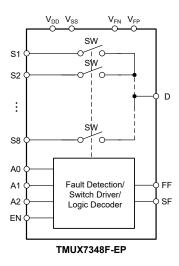


Figure 7-17. THD+N Measurement Setup



8 Detailed Description

8.1 Overview

The TMUX7348F-EP is a modern complementary metal-oxide semiconductor (CMOS) analog multiplexer in a 8:1 configuration. This device works well with dual supplies (± 5 V to ± 22 V), a single supply (8 V to 44 V), or asymmetric supplies (such as V_{DD} = 15 V, V_{SS} = -5 V). This device has an overvoltage protection feature on the source pins under powered and powered-off conditions, allowing it to be used in harsh industrial environments.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Flat ON- Resistance

The TMUX7348F-EP is designed with a special switch architecture to produce ultra-flat on-resistance (R_{ON}) across most of the switch input operation region. The flat R_{ON} response allows the device to be used in precision sensor applications since the R_{ON} is controlled regardless of the signals sampled. The architecture is implemented without a charge pump so no unwanted noise is produced from the device to affect sampling accuracy.

8.3.2 Protection Features

The TMUX7348F-EP offer a number of protection features to enable robust system implementations.

8.3.2.1 Input Voltage Tolerance

The maximum voltage that can be applied to any source input pin is +60 V or -60 V, regardless of supply voltage. This allows the device to handle typical voltage fault condition in industrial applications. Take caution: the device is rated to handle a maximum stress of 85 V across different pins, such as the following:

1. Between source pins and supply rails:

For example, if the device is powered by V_{DD} supply of 20 V, then the maximum negative signal level on any source pin is -60 V to maintain the 60 V maximum rating on any source pin. If the device is powered by V_{DD} supply of 40 V, then the maximum negative signal level on any source pin is reduced to -45 V to maintain the 85 V maximum rating across the source pin and the supply.

2. Between source pins and one or more of the drain pins:

For example, if channel S1(A) is ON and the voltage on S1(A) pin is 40 V. In this case, the drain voltage is also 40 V. The maximum negative voltage on any of the other source pins is –45 V to maintain the 85 V maximum rating across the source pin and the drain pin.

8.3.2.2 Powered-Off Protection

When the supplies of TMUX7348F-EP are removed ($V_{DD}/V_{SS} = 0 \text{ V}$ or floating), the source (Sx) pins of the device remain in the high impedance (Hi-Z) state, and the source (Sx) and drain (Dx) pins of the device remain within the leakage performance mentioned in the *Electrical Characteristics*. Powered-off protection minimizes system complexity by removing the need to control the power supply sequencing of the system. The feature prevents errant voltages on the input source pins from reaching the rest of the system and maintains isolation when the system is powering up. Without powered-off protection, the signal on the input source pins can back-power the supply rails through the internal ESD diodes and potentially cause damage to the system. For more information on powered-off protection refer to the *Eliminate Power Sequencing with Powered-Off Protection Signal Switches* application brief.

The switch remains OFF regardless of whether the V_{DD} and V_{SS} supplies are 0 V or floating. A GND reference must always be present for proper operation. Source and drain voltage levels of up to ± 60 V are blocked in the powered-off condition.

8.3.2.3 Fail-Safe Logic

Fail-safe logic circuitry allows voltages on the logic control pins to be applied before the supply pins, protecting the device from potential damage. The switch is specified to be in the OFF state, regardless of the state of the logic signals. The logic inputs are protected against positive faults of up to +44 V in the powered-off condition, but do not offer protection against the negative overvoltage condition.

Fail-safe logic also allows the TMUX7348F-EP to interface with a voltage greater than V_{DD} during normal operation to add maximum flexibility in system design. For example, with a V_{DD} of = 15 V, the logic control pins could be connected to +24 V for a logic high signal which allows different types of signals, such as analog feedback voltages, to be used when controlling the logic inputs. Regardless of the supply voltage, the logic inputs can be interfaced as high as 44 V.

8.3.2.4 Overvoltage Protection and Detection

The TMUX7348F-EP detect overvoltage inputs by comparing the voltage on a source pin (Sx) with the fault supplies (V_{FP} and V_{FN}). A signal is considered overvoltage if it exceeds the fault supply voltages by the threshold voltage (V_{T}).

When an overvoltage is detected, the switch automatically turns OFF regardless of the logic controls. The source pin becomes high impedance and only allows small leakage current to flow through the switch, and the overvoltage does not appear on the drain. When the overvoltage channel is selected by the logic control, the drain pin (D or Dx) is pulled to the supply that was exceeded. For example, if the source voltage exceeds V_{FP} , then the drain output is pulled to V_{FP} . If the source voltage exceeds V_{FN} , then the drain output is pulled to V_{FN} . The pull-up impedance is approximately 40 k Ω , and as a result, the drain current is limited to roughly 1 mA during a shorted load (to GND) condition.

Figure 8-1 shows a detailed view of how the pullup or down controls the output state of the drain pin under a fault scenario.

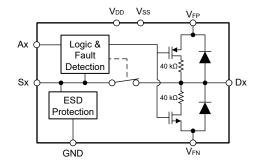


Figure 8-1. Detailed Functional Diagram

 V_{FP} and V_{FN} are required fault supplies that set the level at which the overvoltage protection is engaged. V_{FP} can be supplied from 3 V to V_{DD} , while the V_{FN} can be supplied from V_{SS} to 0 V. If the fault supplies are not available in the system, the V_{FP} pin must be connected to V_{DD} , while the V_{FN} pin must be connected to V_{SS} . In this case, overvoltage protection then engages at the primary supply voltages V_{DD} and V_{SS} .

8.3.2.5 Adjacent Channel Operation During Fault

When the logic pins are set to a channel under a fault, the overvoltage detection will trigger, the switch will open, and the drain pin will be pulled up or down as described in Section 8.3.2.4. During such an event, all other channels not under a fault can continue to operate as normal. For example, if S1 voltage exceeds V_{FP} , and the logic pins are set to S1, the drain output is pulled to V_{FP} . Then if the logic pins are changed to set S4, which is not in overvoltage or undervoltage, the drain will disconnect from the pullup to V_{FP} and the S4 switch will be enabled and connected to the drain, operating as normal. If the logic pins are switched back to S1, the S4 switch will be disabled, the drain pin will be pulled up to V_{FP} again, and the switch from S1 to drain will not be enabled until the overvoltage fault is removed.

8.3.2.6 ESD Protection

All pins on the TMUX7348F-EP support HBM ESD protection level up to ±3.5 kV, which helps the device from getting ESD damages during the manufacturing process.

The drain pins (D or Dx) have internal ESD protection diodes to the fault supplies V_{FP} and V_{FN} . Therefore, the voltage at the drain pins must not exceed the fault supply voltages to prevent excessive diode current. The source pins have specialized ESD protection that allows the signal voltage to reach ± 60 V regardless of the supply voltage level. Exceeding ± 60 V on any source input may damage the ESD protection circuitry on the device and cause the device to malfunction if the damage is excessive.

8.3.2.7 Latch-Up Immunity

Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the low impedance path.

The TMUX7348F-EP is constructed on silicon on insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX7348F-EP to be used in harsh environments. For more information on latch-up immunity refer to the *Using Latch-Up Immune Multiplexers to Help Improve System Reliability* application report.

8.3.2.8 EMC Protection

The TMUX7348F-EP is not intended for standalone electromagnetic compatibility (EMC) protection in industrial applications. There are three common high voltage transient specifications that govern industrial high voltage transient specification: IEC61000-4-2 (ESD), IEC61000-4-4 (EFT), and IEC61000-4-5 (surge immunity). A transient voltage suppressor (TVS), along with some low-value series current limiting resistors, are required to prevent source input voltages from going above the rated ±60 V limits.

When selecting a TVS protection device, it is critical to ensure that the maximum working voltage is greater than both the normal operating range of the input source pins to be protected and any known system common-mode overvoltage that may be present due to incorrect wiring, loss of power, or short circuit. Figure 8-2 shows an example of the proper design window when selecting a TVS device.

Region 1 denotes normal operation region of TMUX7348F-EP where the input source voltages stay below the fault supplies V_{FP} and V_{FN} . Region 2 represents the range of possible persistent DC (or long duration AC overvoltage fault) presented on the source input pins. Region 3 represents the margin between any known DC overvoltage level and the absolute maximum rating of the TMUX7348F-EP. The TVS breakdown voltage must be selected to be less than the absolute maximum rating of the TMUX7348F-EP, but greater than any known possible persistent DC or long duration AC overvoltage fault to avoid triggering the TVS inadvertently. Region 4 represents the margin system designers must impose when selecting the TVS protection device to prevent accidental triggering of ESD cells of the TMUX7348F-EP.

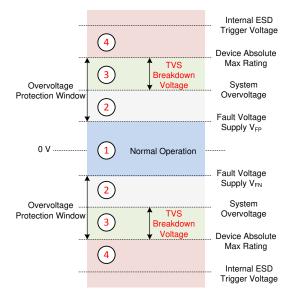


Figure 8-2. System Operation Regions and Proper Region of Selecting a TVS Protection Device

8.3.3 Overvoltage Fault Flags

The voltages on the source input pins of the TMUX7348F-EP are continuously monitored, and the status of whether an overvoltage condition occurs is indicated by an active low general fault flag (FF). The voltage on the FF pin indicates if any of the source input pins are experiencing an overvoltage condition. If any source pin voltage exceeds the fault supply voltages by a V_T , the FF output is pulled-down to below V_{Ol} .

The specific fault (SF) output pins, likewise, can be used to decode which inputs are experiencing an overvoltage condition. The SF pin is pulled-down to below Vol when an overvoltage condition is detected on a specific source input pin, depending on the state of the A0, A1, A2, and EN logic pins (Table 8-1 provides more information).

Both the FF pin and SF pin are open-drain output and external pull-up resistors of 1 k Ω are recommended. The pull-up voltage can be in the range of 1.8 V to 5.5 V, depending on the controller voltage the device interfaces with.

8.3.4 Bidirectional and Rail-to-Rail Operation

The TMUX7348F-EP conducts equally well from source (Sx) to drain (D or Dx) or from drain (D or Dx) to source (Sx). Each signal path has very similar characteristics in both directions. It is important to note, however, that the overvoltage protection is implemented only on the source (Sx) side. The voltage on the drain is only allowed to swing between V_{FP} and V_{FN} and no overvoltage protection is available on the drain side.

The primary supplies (V_{DD} and V_{SS}) define the on-resistance profile of the switch channel, whereas the fault voltage supplies (V_{FP} and V_{FN}) define the signal range that can be passed through from source to drain of the device. It is good practice to use voltages on V_{FP} and V_{FN} that are lower than V_{DD} and V_{SS} to take advantage of the flat on-resistance region of the device for better input-to-output linearity. The flattest on-resistance region extends from V_{SS} to roughly 3 V below V_{DD} . Once the signal is within 3 V of V_{DD} the on-resistance will exponentially increase and may impact desired signal transmission.

8.3.5 1.8 V Logic Compatible Inputs

The TMUX7348F-EP has 1.8 V logic compatible control for all logic control inputs. 1.8 V logic level inputs allows the TMUX7348F-EP to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and bill of material (BOM) cost. For more information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V Logic Muxes and Switches.

8.3.6 Integrated Pull-Down Resistor on Logic Pins

The TMUX7348F-EP have internal weak pull-down resistors to GND to ensure the logic pins are not left floating. The value of this pull-down resistor is approximately 4 M Ω , but is clamped to about 1 μ A at higher voltages. This feature integrates up to four external components and reduces system size and cost.

8.4 Device Functional Modes

The TMUX7348F-EP offer two modes of operation (Normal mode and Fault mode) depending on whether any of the input pins experience an overvoltage condition.

8.4.1 Normal Mode

In Normal mode operation, signals of up to V_{FP} and V_{FN} can be passed through the switch from source (Sx) to drain (D or Dx) or from drain (D or Dx) to source (Sx). The address (Ax) pins and the enable (EN) pin determine which switch path to turn on (Table 8-1 provides more information). The following conditions must be satisfied for the switch to stay in the ON condition:

- The difference between the primary supplies $(V_{DD} V_{SS})$ must be higher or equal to 8 V. With a minimum V_{DD} of 5 V.
- V_{FP} must be between 3 V and V_{DD} , and V_{FN} must be between V_{SS} and 0 V.
- The input signals on the source (Sx) or the drain (D or Dx) must be between V_{FP} + V_T and V_{FN} V_T .
- The logic control (Ax and EN) must have selected the switch.

8.4.2 Fault Mode

The TMUX7348F-EP enters into Fault mode when any of the input signals on the source (Sx) pins exceed V_{FP} or V_{FN} by a threshold voltage V_{T} . Under the overvoltage condition, the switch input experiencing the fault automatically turns OFF regardless of the logic status, and the source pin becomes high impedance with a negligible amount of leakage current flowing through the switch. When the fault channel is selected by the logic control, the drain pin (D or Dx) is pulled to the fault supply that was exceeded through a 40 k Ω internal resistor.

In the Fault mode, the general fault flag (FF) is asserted low. The specific flag (SF) is asserted low when a specific input path is selected, according to Table 8-1.

The overvoltage protection is provided only for the source (Sx) input pins. The drain (D or Dx) pin, if used as signal input, must stay in between V_{FP} and V_{FN} at all time since no overvoltage protection is implemented on the drain pin.

8.4.3 Truth Tables

Table 8-1 provides the truth tables for the TMUX7348F-EP under normal and fault conditions.

Fault Condition Normal Condition ΕN **A2** Α1 Α0 State of Specific Flag (SF) when fault occurs on S3 **S4** On Switch **S1** S₂ S5 **S6 S8** None None n U None n None None None n None None S1 S2 S3 S4 S5 **S6** S7 S8

Table 8-1. TMUX7348F-EP Truth Table

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The TMUX7348F-EP is part of the fault protected switches and multiplexers family of devices. The ability to protect downstream components from overvoltage events up to ±60 V makes these switches and multiplexers suitable for harsh environments.

9.2 Typical Application

In large applications, telemetry subsystems must take information from many sensors to monitor the overall health and performance of the system. This can result in the need for multiple ADCs and amplifiers to measure all this sensor data and send it to the processor. By using a multiplexer, the number of components in the system can drastically be reduced to save system cost, weight, and size. Additionally, the ADC and other downstream components will be protected from any overvoltage or miswiring events on the sensor inputs (up to ±60-V), because of the fault protection on the TMUX7348F-EP. These fault conditions may include, but are not limited to: human error from wiring connections incorrectly, component failure or wire shorts, electromagnetic interference (EMI) and transient disturbances.

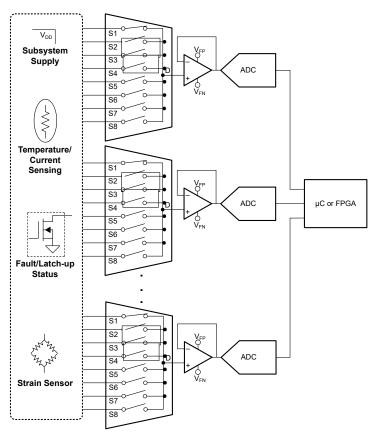


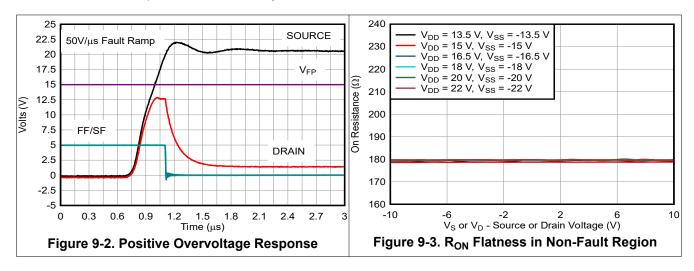
Figure 9-1. Typical Application

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: TMUX7348F-EP

9.2.1 Design Requirements

Table 9-1. Design Parameters


PARAMETER	VALUE				
Positive supply (V _{DD}) mux	+15 V				
Negative supply (V _{SS}) mux	-15 V				
Positive fault voltage supply (V _{FP}) mux and ADC	+10 V				
Negative fault voltage supply (V _{FN}) mux and ADC	-10 V				
Power board supply voltage	24 V				
Input / output signal range non-faulted	-10 V to 10 V				
Overvoltage protection levels	-60 V to 60 V				
Control logic thresholds	1.8 V compatible, up to 44 V				
Temperature range	-55°C to +125°C				

9.2.2 Detailed Design Procedure

The following image shows a high level telemetry use case, where multiple sensors need to be monitored by the system. Here, multiple TMUX7348F-EP are used to expand the sensor count, and this scheme can be scaled up or down depending on the sensor count. If the board supply voltage is higher than the fault voltage supply (V_{FP} or V_{FN}) of the multiplexer, then the TMUX7348F-EP will disconnect the source input from passing the signal to protect the downstream ADC. The drain pin of the mux will be pulled up to the fault voltage supply voltage V_{FP} through a 40 k Ω resistor to allow the ADC to determine a fault condition has occurred.

9.2.3 Application Curves

The example application utilizes the fault protection of the TMUX7348F-EP to protect downstream components from potential miswiring conditions from the power module board. Figure 9-2 shows an example of positive overvoltage fault response with a fast fault ramp rate of 58 V/µs. Figure 9-3 shows the extremely flat onresistance across source voltage while operating within a common signal range of ±10 V. These features make the TMUX7348F-EP an excellent solution for factory automation applications that may face various fault conditions but also require excellent linearity and low distortion.

9.3 Power Supply Recommendations

The TMUX7348F-EP operate across a wide supply range of ± 5 V to ± 22 V (8 V to 44 V in single-supply mode). They also perform well with asymmetrical supplies such as V_{DD} = 12 V and V_{SS} = -5 V. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μ F to 10 μ F at both the V_{DD} and V_{SS} pins to ground. Always ensure the ground (GND) connection is established before supplies are ramped.

The fault supplies (V_{FP} and V_{FN}) provide the current required to operate the fault protection, and thus, must be low impedance supplies. They can be derived from the primary supplies by using a resistor divider and buffer or be an independent supply rail. The fault supplies must not exceed the primary supplies as it might cause unexpected behavior of the switch. Use a supply decoupling capacitor ranging from 0.1 μ F to 10 μ F at both the V_{FP} and V_{FN} pins to ground for improved supply noise immunity.

The positive supply (V_{DD}) must be ramped before the positive fault rail (V_{FP}) for proper power sequencing of the TMUX7348F-EP. Similarly, the negative supply (V_{SS}) must be ramped before the negative fault voltage rail (V_{FN}) .

9.4 Layout

9.4.1 Layout Guidelines

The following images show examples of a PCB layout with the TMUX7348F-EP. Some key considerations are:

- For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V_{DD} and V_{SS} to GND. We recommend a 0.1 μ F and 1 μ F capacitor, placing the lowest value capacitor as close to the pin as possible. Ensure that the capacitor voltage rating is sufficient for the V_{DD} and V_{SS} supplies.
- Multiple decoupling capacitors can be used if their is a lot of noise in the system. For example, a 0.1-μF and 1-μF can be placed on the supply pins. If multiple capacitors are used, then it is recommended to place the lowest value capacitor closest to the supply pin.
- · Keep the input lines as short as possible.
- Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

9.4.2 Layout Example

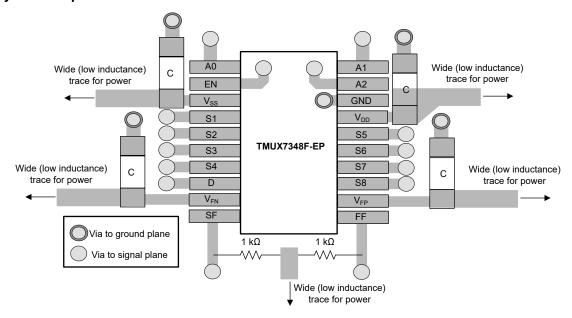


Figure 9-4. TMUX7348F-EP Layout Example

10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

- Texas Instruments, Eliminate Power Sequencing with Powered-Off Protection Signal Switches application brief
- Texas Instruments, Implications of Slow or Floating CMOS Inputs application note
- Texas Instruments, Improving Analog Input Modules Reliability Using Fault Protected Multiplexers application report
- Texas Instruments, Multiplexers and Signal Switches Glossary application report
- Texas Instruments, Protection Against Overvoltage Events, Miswiring, and Common Mode Voltages application report
- Texas Instruments, Using Latch-Up Immune Multiplexers to Help Improve System Reliability application report

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (November 2023) to Revision A (January 2025)

Page

DATE REVISION		NOTES				
November 2023	*	Initial Release				

Copyright © 2025 Texas Instruments Incorporated

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 7-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TMUX7348FPWTEP	Active	Production	TSSOP (PW) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	TM7348EP

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

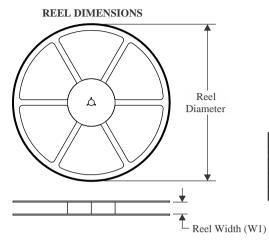
OTHER QUALIFIED VERSIONS OF TMUX7348F-EP:

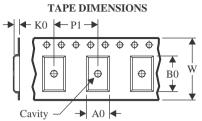
Catalog: TMUX7348F

NOTE: Qualified Version Definitions:

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

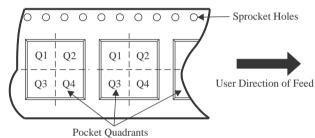
PACKAGE OPTION ADDENDUM


www.ti.com 7-Nov-2025


Catalog - TI's standard catalog product

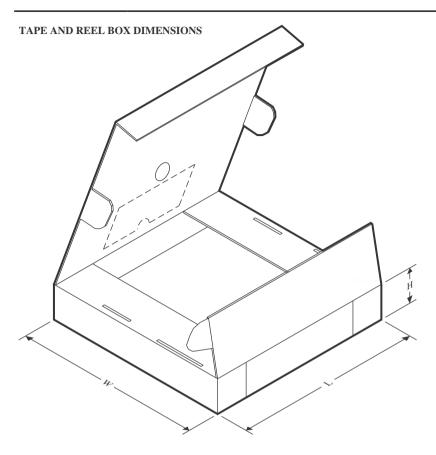
PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jul-2025


TAPE AND REEL INFORMATION

_	Tanana and a same and a same and a same and a same a s
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

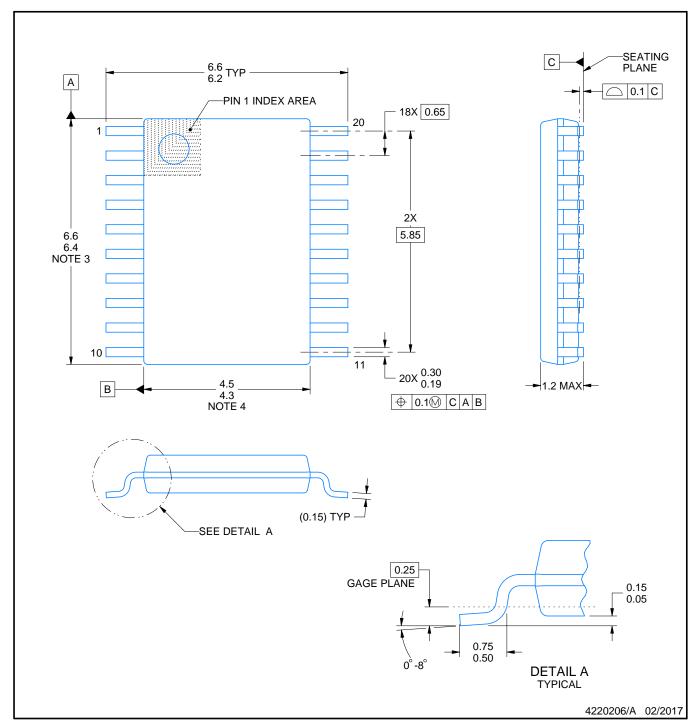


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMUX7348FPWTEP	TSSOP	PW	20	250	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jul-2025

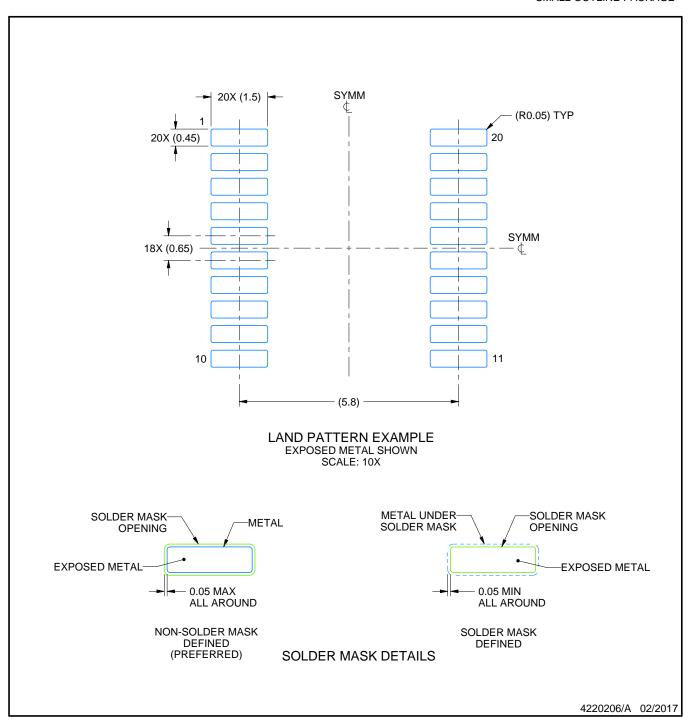


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMUX7348FPWTEP	TSSOP	PW	20	250	353.0	353.0	32.0

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025