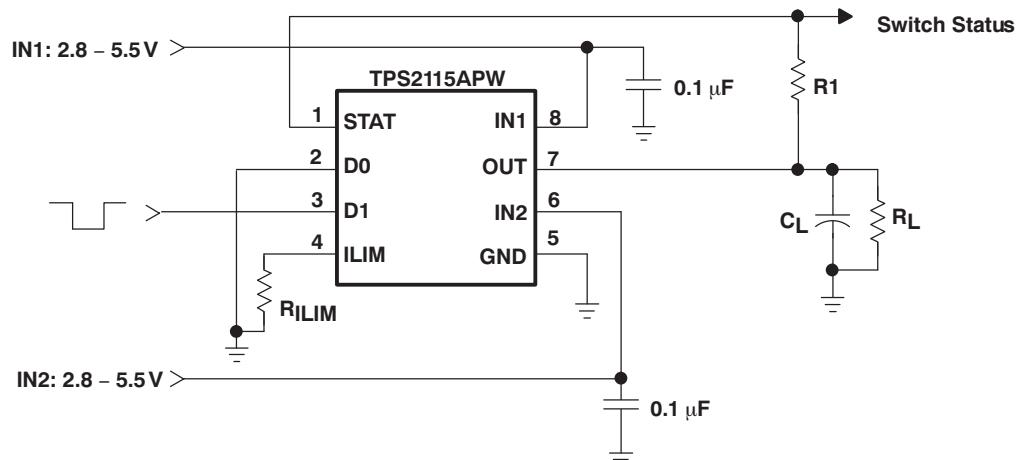


AUTOSWITCHING POWER MUX

Check for Samples: [TPS2114A](#), [TPS2115A](#)

FEATURES

- Two-Input, One-Output Power Multiplexer with Low $r_{DS(on)}$ Switches:
 - 120 mΩ Typ (TPS2114A)
 - 84 mΩ Typ (TPS2115A)
- Reverse and Cross-Conduction Blocking
- Wide Operating Voltage Range: 2.8 V to 5.5 V
- Low Standby Current: 0.5-µA Typ
- Low Operating Current: 55-µA Typ
- Adjustable Current Limit
- Controlled Output Voltage Transition Times Limit Inrush Current and Minimize Output Voltage Hold-Up Capacitance
- CMOS- and TTL-Compatible Control Inputs
- Manual and Auto-Switching Operating Modes
- Thermal Shutdown
- Available in TSSOP-8 and 3-mm × 3-mm SON-8 Packages


APPLICATIONS

- PCs
- PDAs
- Digital Cameras
- Modems
- Cell Phones
- Digital Radios
- MP3 Players

DESCRIPTION

The TPS211xA family of power multiplexers enables seamless transition between two power supplies (such as a battery and a wall adapter), each operating at 2.8 V to 5.5 V and delivering up to 2 A, depending on package. The TPS211xA family includes extensive protection circuitry, including user-programmable current limiting, thermal protection, inrush current control, seamless supply transition, cross-conduction blocking, and reverse-conduction blocking. These features greatly simplify designing power multiplexer applications.

TYPICAL APPLICATION

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DEVICE INFORMATION⁽¹⁾

T _A	PACKAGE	I _{OUT}	ORDERING NUMBER	MARKING
–40°C to 85°C	TSSOP-8 (PW)	0.75	TPS2114APW	2114A
		1.25	TPS2115APW	2115A
	SON-8 (DRB)	2	TPS2115ADRB	CGF

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over recommended junction temperature range (unless otherwise noted).

		VALUE		UNIT
		MIN	MAX	
Voltage	IN1, IN2, D0, D1, ILIM ⁽²⁾	–0.3	6	V
	V _{O(OUT)} , V _{O(STAT)} ⁽²⁾	–0.3	6	V
Current	Output sink, I _{O(STAT)}		5	mA
	Continuous output, I _O (TPS2114APW)		0.9	A
	Continuous output, I _O (TPS2115APW)		1.5	A
	Continuous output, I _O (TPS2115ADRB), T _J ≤ 105°C		2.5	A
Power dissipation	Continuous total	See Power Dissipation Ratings table		
Temperature	Operating virtual junction, T _J	–40	125	°C
ESD ratings	Human body model, HBM		2	kV
	Charge device model, CDM		500	V

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to GND.

AVAILABLE OPTIONS

FEATURE	TPS2114A	TPS2115A
Current limit adjustment range	0.31 A to 0.75 A	0.63 A to 2 A
Switching modes	Manual	Yes
	Automatic	Yes
Switch status output	Yes	Yes
Package	TSSOP-8	TSSOP-8
		SON-8

PACKAGE DISSIPATION RATINGS

PACKAGE	DERATING FACTOR ABOVE $T_A = 25^\circ\text{C}$	$T_A \leq 25^\circ\text{C}$ POWER RATING	$T_A = 70^\circ\text{C}$ POWER RATING	$T_A = 85^\circ\text{C}$ POWER RATING
TSSOP-8 (PW)	3.9 mW/°C	387 mW	213 mW	155 mW
SON-8 (DRB)	25.0 mW/°C	2.50 W	1.38 W	1.0 W

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Input voltage at IN1, $V_{I(\text{IN}1)}$	$V_{I(\text{IN}2)} \geq 2.8$ V	1.5		5.5	V
	$V_{I(\text{IN}2)} < 2.8$ V	2.8		5.5	V
Input voltage at IN2, $V_{I(\text{IN}2)}$	$V_{I(\text{IN}1)} \geq 2.8$ V	1.5		5.5	V
	$V_{I(\text{IN}1)} < 2.8$ V	2.8		5.5	V
Input voltage, $V_{I(\text{DO})}$, $V_{I(\text{D}1)}$		0		5.5	V
Nominal current limit adjustment range, $I_{O(\text{OUT})}^{(1)}$	TPS2114APW	0.31		0.75	A
	TPS2115APW	0.63		1.25	A
	TPS2115ADRB, $T_J \leq 105^\circ\text{C}$	0.63		2	A
Operating virtual junction temperature, T_J		-40		125	°C

(1) Minimum recommended current is based on accuracy considerations.

ELECTRICAL CHARACTERISTICS: POWER SWITCH

Over recommended operating junction temperature range, $V_{I(\text{IN}1)} = V_{I(\text{IN}2)} = 5.5$ V, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.

PARAMETER	TEST CONDITIONS	TPS2114A			TPS2115A			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
$r_{DS(on)}^{(1)}$ Drain-source on-state resistance (INx-OUT)	$T_J = 25^\circ\text{C}$, $I_L = 500$ mA, $V_{I(\text{IN}1)} = V_{I(\text{IN}2)} = 5.0$ V		120	140		84	110	$\text{m}\Omega$
	$T_J = 25^\circ\text{C}$, $I_L = 500$ mA, $V_{I(\text{IN}1)} = V_{I(\text{IN}2)} = 3.3$ V		120	140		84	110	$\text{m}\Omega$
	$T_J = 25^\circ\text{C}$, $I_L = 500$ mA, $V_{I(\text{IN}1)} = V_{I(\text{IN}2)} = 2.8$ V		120	140		84	110	$\text{m}\Omega$
	$T_J = 125^\circ\text{C}$, $I_L = 500$ mA, $V_{I(\text{IN}1)} = V_{I(\text{IN}2)} = 5.0$ V			220			150	$\text{m}\Omega$
	$T_J = 125^\circ\text{C}$, $I_L = 500$ mA, $V_{I(\text{IN}1)} = V_{I(\text{IN}2)} = 3.3$ V			220			150	$\text{m}\Omega$
	$T_J = 125^\circ\text{C}$, $I_L = 500$ mA, $V_{I(\text{IN}1)} = V_{I(\text{IN}2)} = 2.8$ V			220			150	$\text{m}\Omega$

(1) The TPS211xA can switch a voltage as low as 1.5 V as long as there is a minimum of 2.8 V at one of the input power pins. In this specific case, the lower supply voltage has no effect on the IN1 and IN2 switch on-resistances.

ELECTRICAL CHARACTERISTICS: GENERAL

Over recommended operating junction temperature range, $V_{I(IN1)} = V_{I(IN2)} = 5.5$ V, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.

PARAMETER	TEST CONDITIONS	TPS2114A			UNIT
		MIN	TYP	MAX	
LOGIC INPUTS (D0 AND D1)					
V_{IH}	High-level input voltage	2			V
V_{IL}	Low-level input voltage		0.7		V
Input current at D0 or D1	D0 or D1 = high, sink current		1		μ A
	D0 or D1 = low, source current	0.5	1.4	5	μ A
SUPPLY AND LEAKAGE CURRENTS					
Supply current from IN1 (operating)	D1 = high, D0 = low (IN1 active), $V_{I(IN1)} = 5.5$ V, $V_{I(IN2)} = 3.3$ V, $I_{O(OUT)} = 0$ A	55	90		μ A
	D1 = high, D0 = low (IN1 active), $V_{I(IN1)} = 3.3$ V, $V_{I(IN2)} = 5.5$ V, $I_{O(OUT)} = 0$ A	1	12		μ A
	D0 = D1 = low (IN1 active), $V_{I(IN1)} = 5.5$ V, $V_{I(IN2)} = 3.3$ V, $I_{O(OUT)} = 0$ A		75		μ A
	D0 = D1 = low (IN1 active), $V_{I(IN1)} = 3.3$ V, $V_{I(IN2)} = 5.5$ V, $I_{O(OUT)} = 0$ A		1		μ A
Supply current from IN2 (operating)	D1 = high, D0 = low (IN1 active), $V_{I(IN1)} = 5.5$ V, $V_{I(IN2)} = 3.3$ V, $I_{O(OUT)} = 0$ A		1		μ A
	D1 = high, D0 = low (IN1 active), $V_{I(IN1)} = 3.3$ V, $V_{I(IN2)} = 5.5$ V, $I_{O(OUT)} = 0$ A		75		μ A
	D0 = D1 = low (IN2 active), $V_{I(IN1)} = 5.5$ V, $V_{I(IN2)} = 3.3$ V, $I_{O(OUT)} = 0$ A	1	12		μ A
	D0 = D1 = low (IN2 active), $V_{I(IN1)} = 3.3$ V, $V_{I(IN2)} = 5.5$ V, $I_{O(OUT)} = 0$ A	55	90		μ A
Quiescent current from IN1 (STANDBY)	D0 = D1 = high (inactive), $V_{I(IN1)} = 5.5$ V, $V_{I(IN2)} = 3.3$ V, $I_{O(OUT)} = 0$ A	0.5	2		μ A
	D0 = D1 = high (inactive), $V_{I(IN1)} = 3.3$ V, $V_{I(IN2)} = 5.5$ V, $I_{O(OUT)} = 0$ A	1			μ A
Quiescent current from IN2 (STANDBY)	D0 = D1 = high (inactive), $V_{I(IN1)} = 5.5$ V, $V_{I(IN2)} = 3.3$ V, $I_{O(OUT)} = 0$ A		1		μ A
	D0 = D1 = high (inactive), $V_{I(IN1)} = 3.3$ V, $V_{I(IN2)} = 5.5$ V, $I_{O(OUT)} = 0$ A	0.5	2		μ A
Forward leakage current from IN1 (measured from OUT to GND)	D0 = D1 = high (inactive), $V_{I(IN1)} = 5.5$ V, IN2 open, $V_{O(OUT)} = 0$ V (shorted), $T_J = 25^\circ$ C	0.1	5		μ A
Forward leakage current from IN2 (measured from OUT to GND)	D0 = D1 = high (inactive), $V_{I(IN2)} = 5.5$ V, IN1 open, $V_{O(OUT)} = 0$ V (shorted), $T_J = 25^\circ$ C	0.1	5		μ A
Reverse leakage current to INx (measured from INx to GND)	D0 = D1 = high (inactive), $V_{I(INx)} = 0$ V, $V_{O(OUT)} = 5.5$ V, $T_J = 25^\circ$ C	0.3	5		μ A
CURRENT LIMIT CIRCUIT					
Current limit accuracy, TPS2114A	$R_{ILIM} = 400 \Omega$	0.51	0.63	0.80	A
	$R_{ILIM} = 700 \Omega$	0.30	0.36	0.50	A
Current limit accuracy, TPS2115A	$R_{ILIM} = 400 \Omega$	0.95	1.25	1.56	A
	$R_{ILIM} = 700 \Omega$	0.47	0.71	0.99	A
t_d	Current limit settling time	Time for short-circuit output current to settle within 10% of its steady state value.	1		ms
Input current at ILIM	$V_{I(ILIM)} = 0$ V, $I_{O(OUT)} = 0$ A	-15	0		μ A
UVLO					
IN1 and IN2 UVLO	Falling edge	1.15	1.25		V
	Rising edge		1.30	1.35	V
IN1 and IN2 UVLO hysteresis		30	57	65	mV
Internal V_{DD} UVLO (the higher of IN1 and IN2)	Falling edge	2.4	2.53		V
	Rising edge		2.58	2.8	V
Internal V_{DD} UVLO hysteresis		30	50	75	mV
UVLO deglitch for IN1, IN2	Falling edge	110			μ s

ELECTRICAL CHARACTERISTICS: GENERAL (continued)

Over recommended operating junction temperature range, $V_{I(IN1)} = V_{I(IN2)} = 5.5$ V, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.

PARAMETER	TEST CONDITIONS	TPS2114A			UNIT
		MIN	TYP	MAX	
REVERSE CONDUCTION BLOCKING					
$\Delta V_{O(I_block)}$	Minimum input-to-output voltage difference to block switching D0 = D1 = high, $V_{I(INx)} = 3.3$ V Connect OUT to a 5-V supply through a series 1-k Ω resistor. Let D0 = low. Slowly decrease the supply voltage until OUT connects to IN1.	80	100	120	mV
THERMAL SHUTDOWN					
Thermal shutdown threshold	TPS211xA is in current limit	135			°C
Recovery from thermal shutdown	TPS211xA is in current limit	125			°C
Hysteresis		10			°C
IN2-IN1 COMPARATORS					
Hysteresis of IN2-IN1 comparator		0.1	0.2		V
Deglitch of IN2-IN1 comparator (both $\uparrow\downarrow$)		10	20	50	μs
STAT OUTPUT					
Leakage current	$V_{O(STAT)} = 5.5$ V	0.01	1		μA
Saturation voltage	$I_{(STAT)} = 2$ mA, IN1 switch is on	0.13	0.4		V
Deglitch time (falling edge only)		150			μs

SWITCHING CHARACTERISTICS

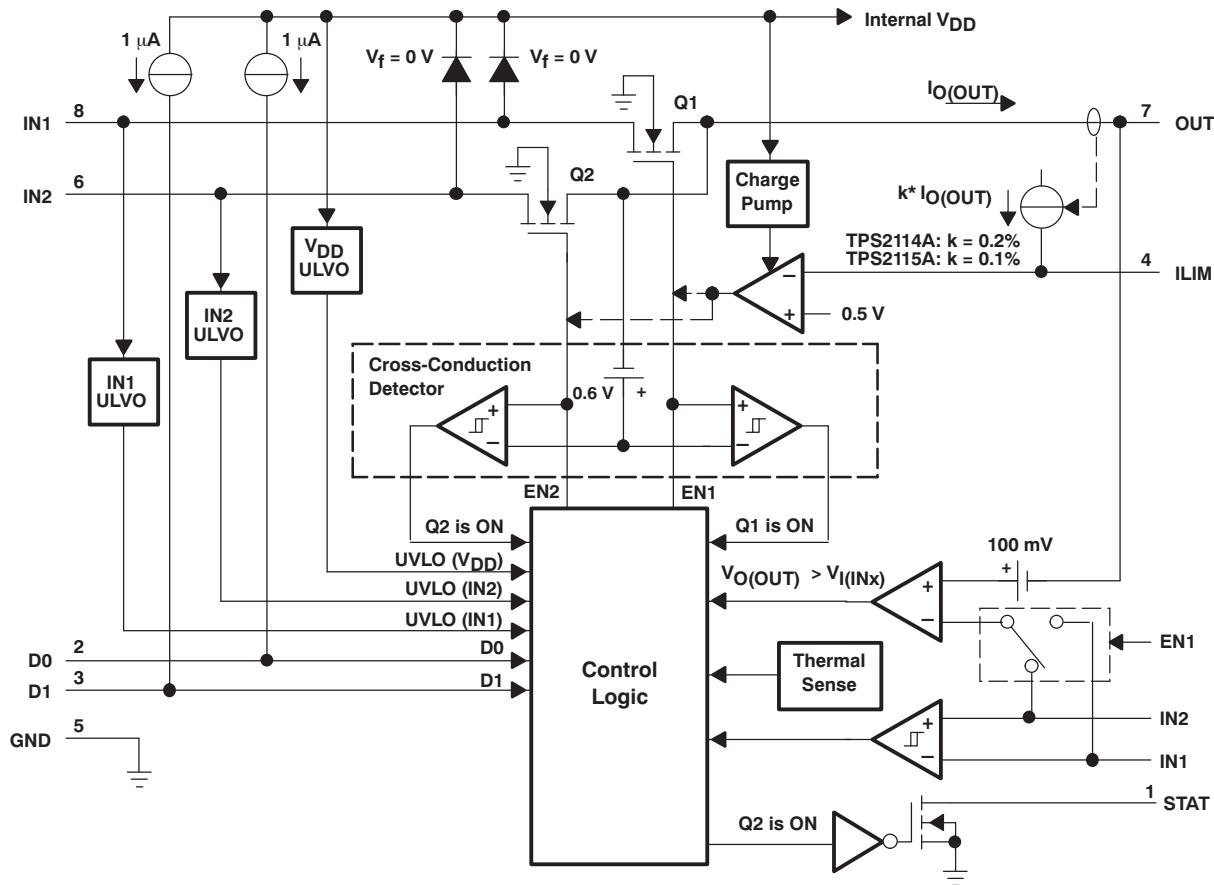
Over recommended operating junction temperature range, $V_{I(IN1)} = V_{I(IN2)} = 5.5$ V, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.

PARAMETER	TEST CONDITIONS	TPS2114A			TPS2115A			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
POWER SWITCH								
t_r	$V_{I(IN1)} = V_{I(IN2)} = 5$ V, $T_J = 25^\circ\text{C}$, $C_L = 1 \mu\text{F}$, $I_L = 500$ mA (see Figure 1a)	0.5	1.0	1.5	1	1.8	3	ms
t_f	$V_{I(IN1)} = V_{I(IN2)} = 5$ V, $T_J = 25^\circ\text{C}$, $C_L = 1 \mu\text{F}$, $I_L = 500$ mA (see Figure 1a)	0.35	0.5	0.7	0.5	1	2	ms
t_t	IN1 to IN2 transition, $V_{I(IN1)} = 3.3$ V, $V_{I(IN2)} = 5$ V, $T_J = 125^\circ\text{C}$, $C_L = 10 \mu\text{F}$, $I_L = 500$ mA Measure transition time as 10–90% rise time or from 3.4 V to 4.8 V on $V_{O(OUT)}$ (see Figure 1b).		40	60		40	60	μs
	IN2 to IN1 transition, $V_{I(IN1)} = 5$ V, $V_{I(IN2)} = 3.3$ V, $T_J = 125^\circ\text{C}$, $C_L = 10 \mu\text{F}$, $I_L = 500$ mA Measure transition time as 10–90% rise time or from 3.4 V to 4.8 V on $V_{O(OUT)}$ (see Figure 1b).		40	60		40	60	μs
t_{PLH1}	$V_{I(IN1)} = V_{I(IN2)} = 5$ V, measured from enable to 10% of $V_{O(OUT)}$, $T_J = 25^\circ\text{C}$, $C_L = 10 \mu\text{F}$, $I_L = 500$ mA (see Figure 1a)		0.5			1		ms
t_{PHL1}	$V_{I(IN1)} = V_{I(IN2)} = 5$ V, measured from disable to 90% of $V_{O(OUT)}$, $T_J = 25^\circ\text{C}$, $C_L = 10 \mu\text{F}$, $I_L = 500$ mA (see Figure 1a)		3			5		ms
t_{PLH2}	Logic 1 to Logic 0 transition on D1, $V_{I(D1)} = 1.5$ V, $V_{I(D2)} = 5$ V, $V_{I(D0)} = 0$ V, measured from D1 to 10% of $V_{O(OUT)}$, $T_J = 25^\circ\text{C}$, $C_L = 10 \mu\text{F}$, $I_L = 500$ mA (see Figure 1c)		40	100		40	100	μs
t_{PHL2}	Logic 0 to Logic 1 transition on D1, $V_{I(D1)} = 1.5$ V, $V_{I(D2)} = 5$ V, $V_{I(D0)} = 0$ V, measured from D1 to 90% of $V_{O(OUT)}$, $T_J = 25^\circ\text{C}$, $C_L = 10 \mu\text{F}$, $I_L = 500$ mA (see Figure 1c)	2	3	10	2	5	10	ms

Table 1. Truth Table

D1	D0	$V_{I(IN2)} > V_{I(IN1)}$	STAT	OUT ⁽¹⁾
0	0	X ⁽²⁾	Hi-Z	IN2
0	1	No	0	IN1
0	1	Yes	Hi-Z	IN2
1	0	X	0	IN1
1	1	X	0	Hi-Z

(1) The under-voltage lockout circuit causes the output OUT to go Hi-Z if the selected power supply does not exceed the IN1/IN2 UVLO, or if neither of the supplies exceeds the internal V_{DD} UVLO.
 (2) X = Don't care.


PIN CONFIGURATIONS

TERMINAL FUNCTIONS

TERMINAL		I/O	DESCRIPTION
NAME	NO.		
D0	2	I	TTL- and CMOS-compatible input pins. Each pin has a 1- μ A pull-up. Table 1 illustrates the functionality of D0 and D1.
D1	3	I	TTL- and CMOS-compatible input pins. Each pin has a 1- μ A pull-up. Table 1 illustrates the functionality of D0 and D1.
GND	5	I	Ground
IN1	8	I	Primary power switch input. The IN1 switch can be enabled only if the IN1 supply is above the UVLO threshold and at least one supply exceeds the internal V_{DD} UVLO.
IN2	6	I	Secondary power switch input. The IN2 switch can be enabled only if the IN2 supply is above the UVLO threshold and at least one supply exceeds the internal V_{DD} UVLO.
ILIM	4	I	A resistor R_{ILIM} from ILIM to GND sets the current limit I_L to $250/R_{ILIM}$ and $500/R_{ILIM}$ for the TPS2114A and TPS2115A, respectively.
OUT	7	O	Power switch output
STAT	1	O	STAT is an open-drain output that is Hi-Z if the IN2 switch is ON. STAT pulls low if the IN1 switch is ON or if OUT is Hi-Z (i.e., \bar{EN} is equal to logic 0).
PAD	—	I	Tie to GND. Connect to internal planes for improved heatsinking with multiple vias.

FUNCTIONAL BLOCK DIAGRAM

PARAMETER MEASUREMENT INFORMATION

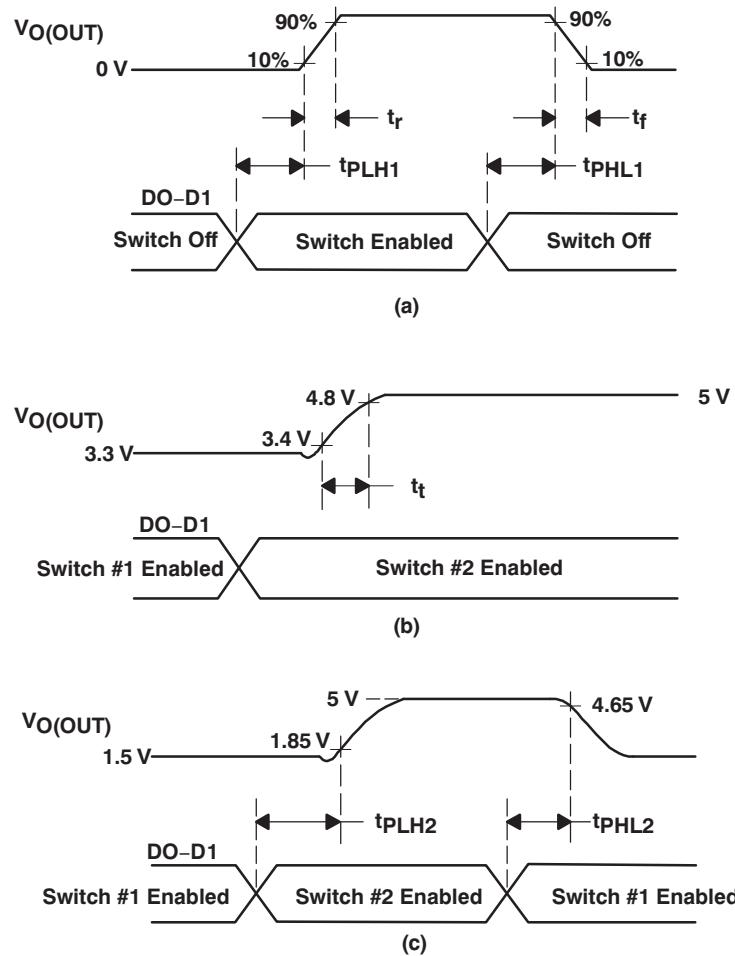
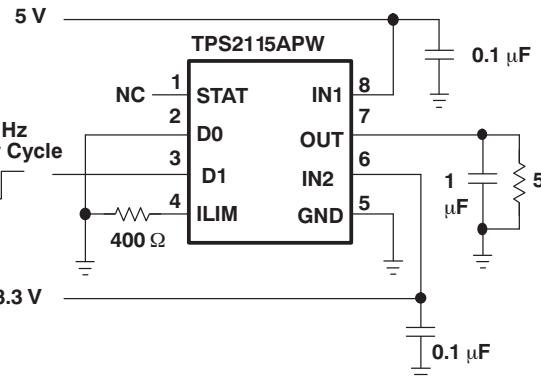
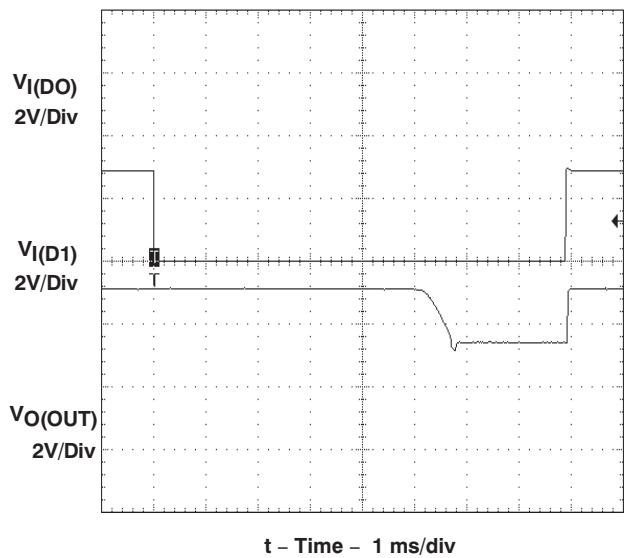
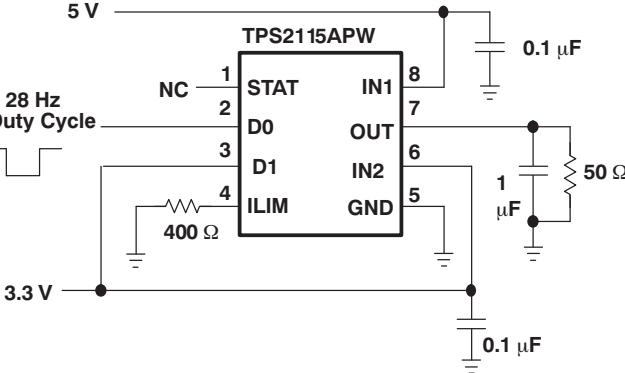
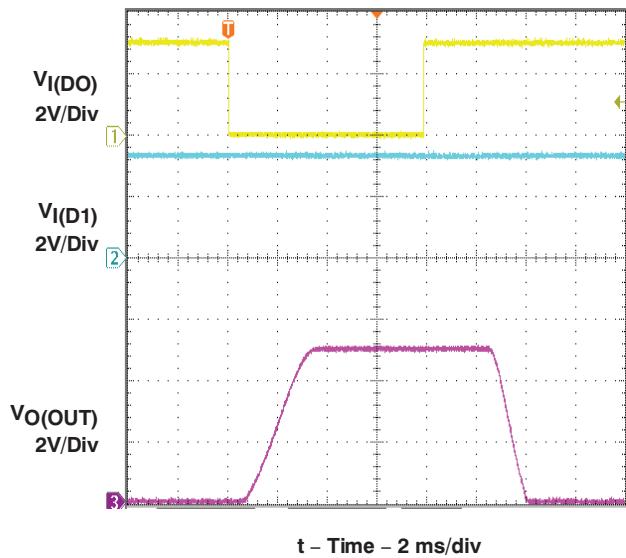




Figure 1. Propagation Delays and Transition Timing Waveforms

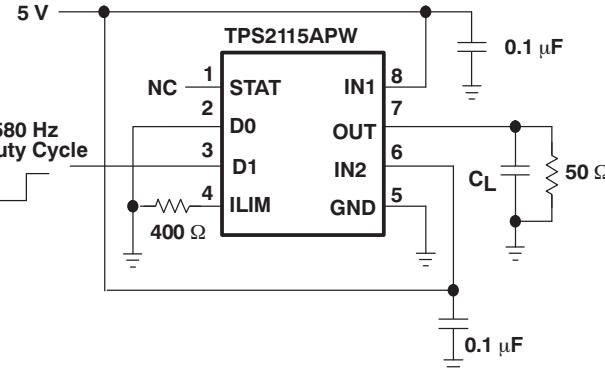
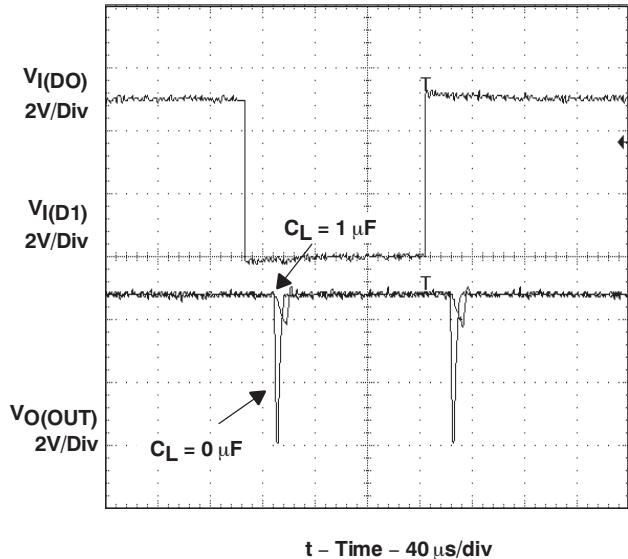
TYPICAL CHARACTERISTICS



OUTPUT SWITCHOVER RESPONSE

Output Switchover Response Test Circuit

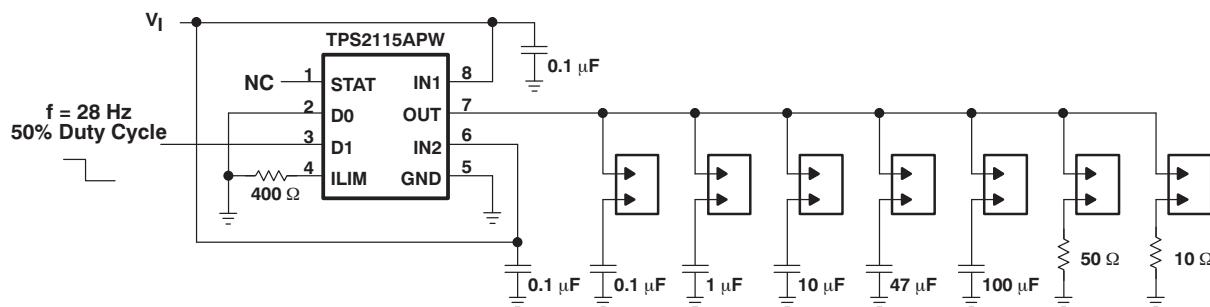
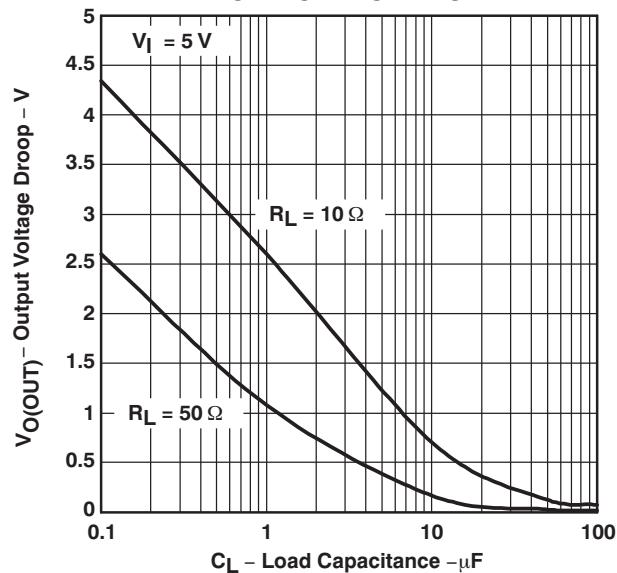
Figure 2.

OUTPUT TURN-ON RESPONSE

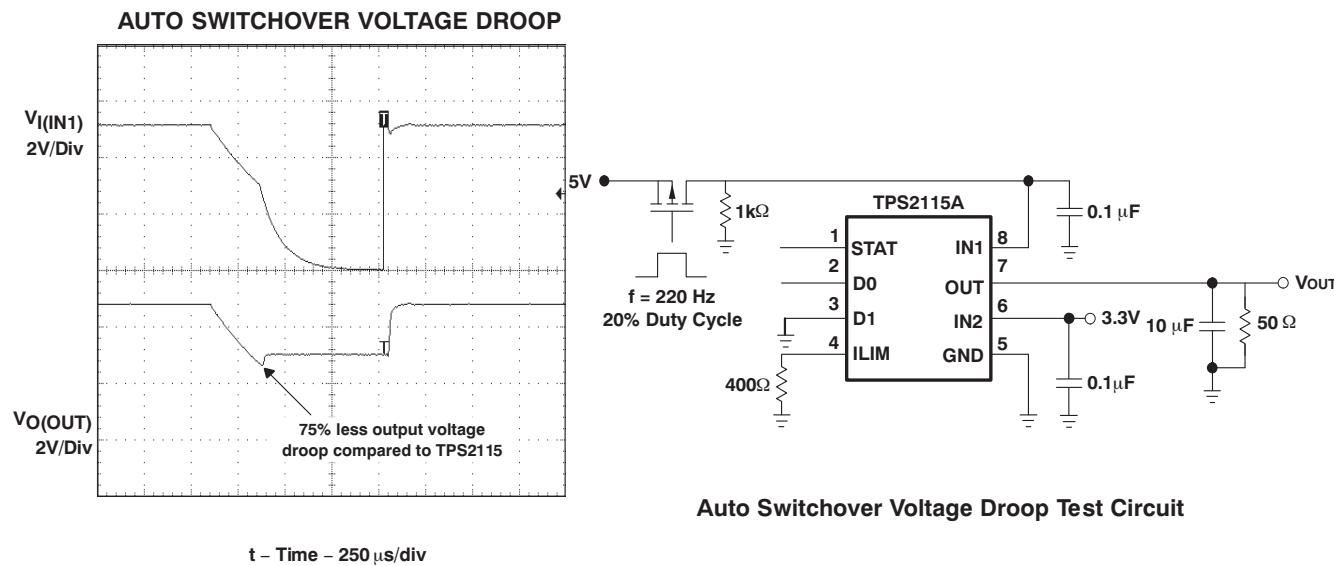



Output Turn-On Response Test Circuit

Figure 3.



TYPICAL CHARACTERISTICS (continued)

OUTPUT SWITCHOVER VOLTAGE DROOP



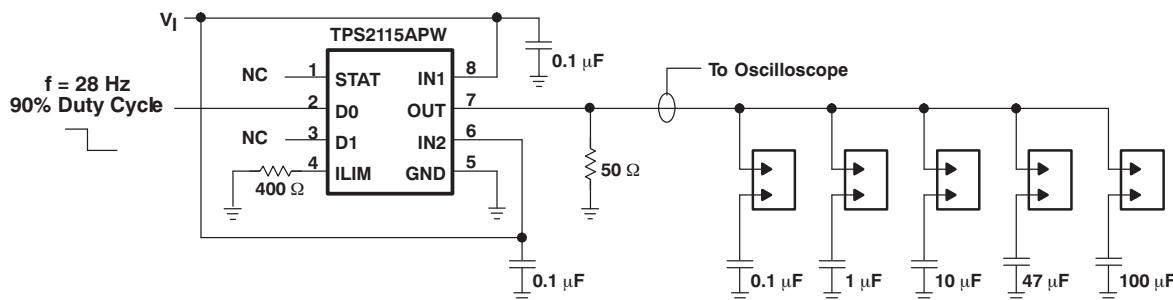
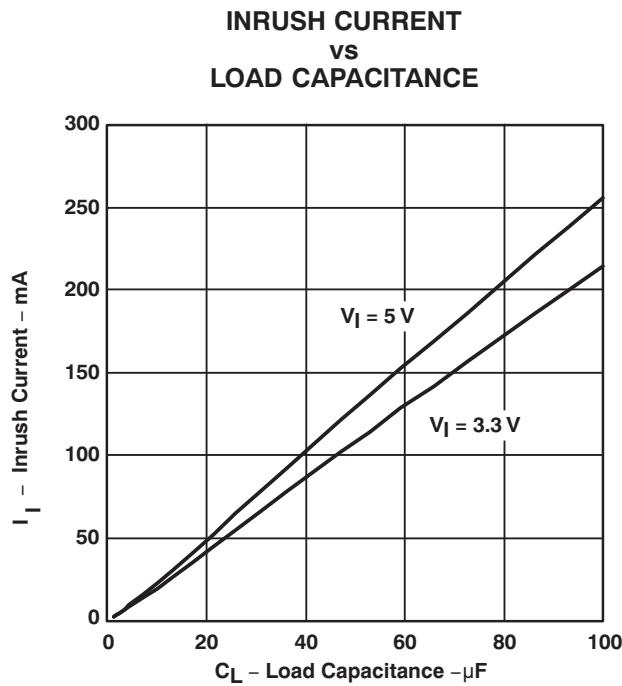


Output Switchover Voltage Droop Test Circuit

Figure 4.

TYPICAL CHARACTERISTICS (continued)
**OUTPUT SWITCHOVER VOLTAGE DROOP
VS
LOAD CAPACITANCE**

Output Switchover Voltage Droop Test Circuit
Figure 5.

TYPICAL CHARACTERISTICS (continued)

TYPICAL CHARACTERISTICS (continued)

Output Capacitor Inrush Current Test Circuit
Figure 7.

TYPICAL CHARACTERISTICS (continued)

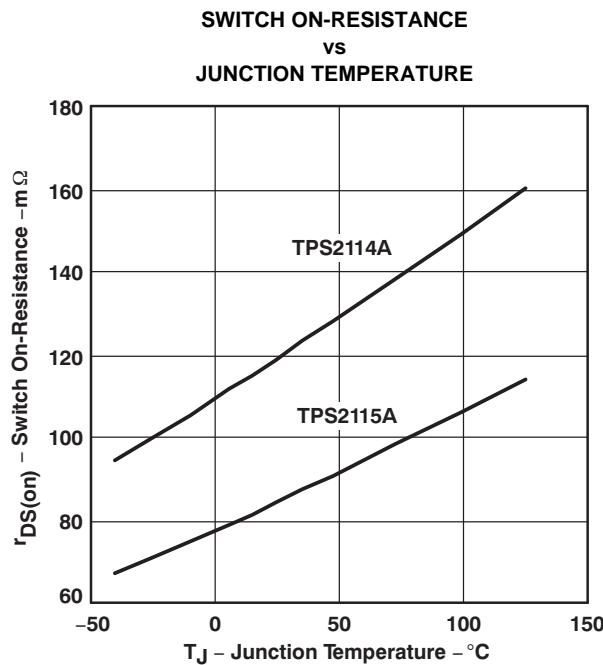


Figure 8.

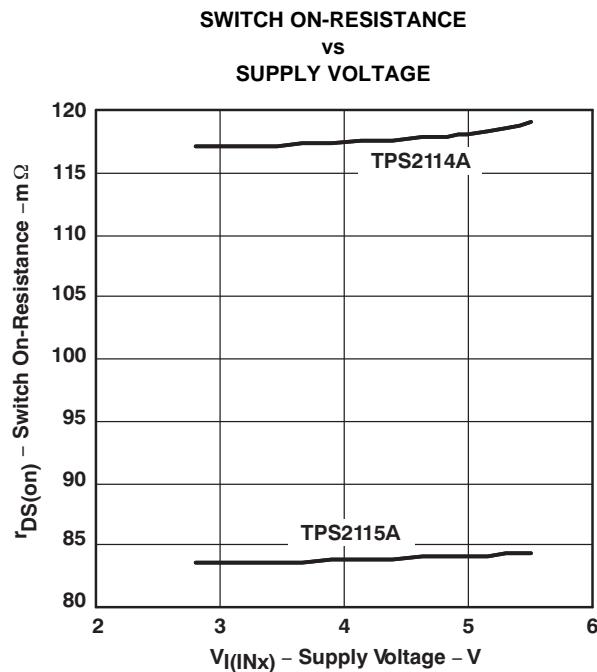


Figure 9.

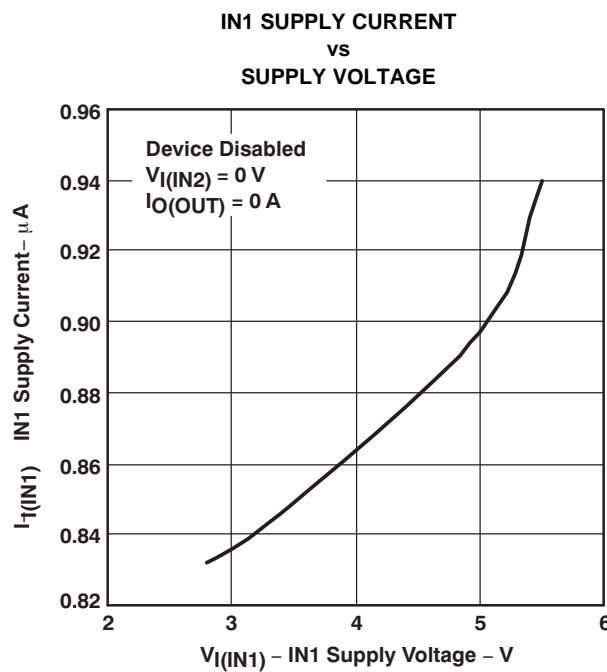


Figure 10.

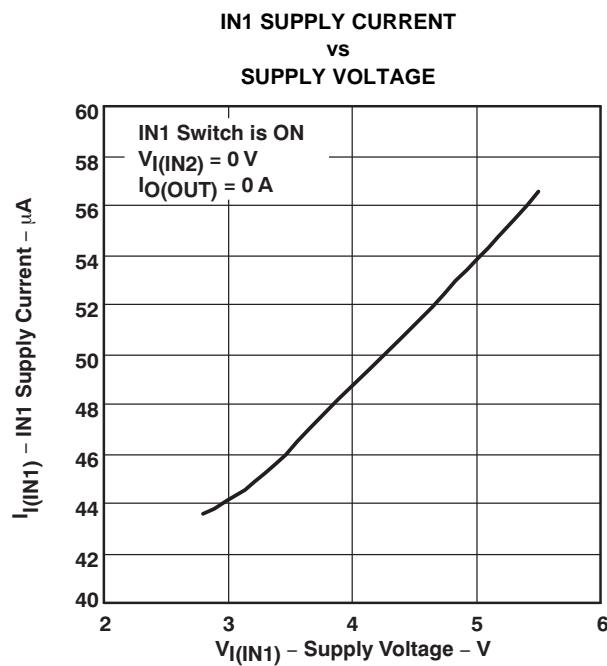


Figure 11.

TYPICAL CHARACTERISTICS (continued)

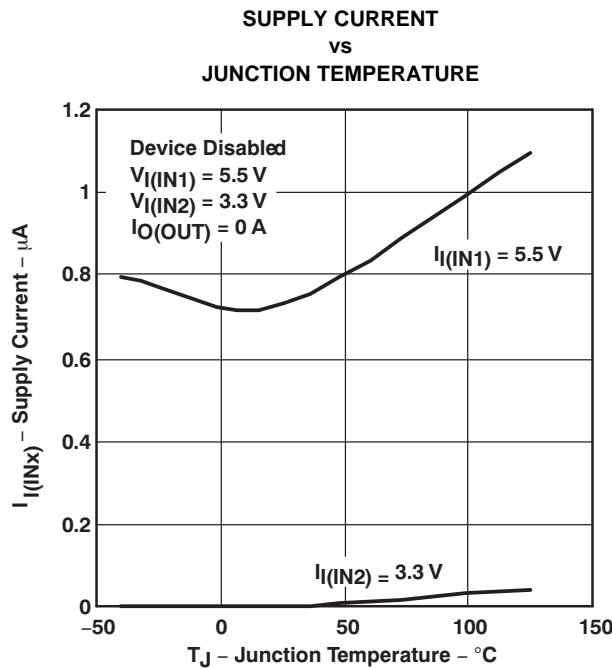


Figure 12.

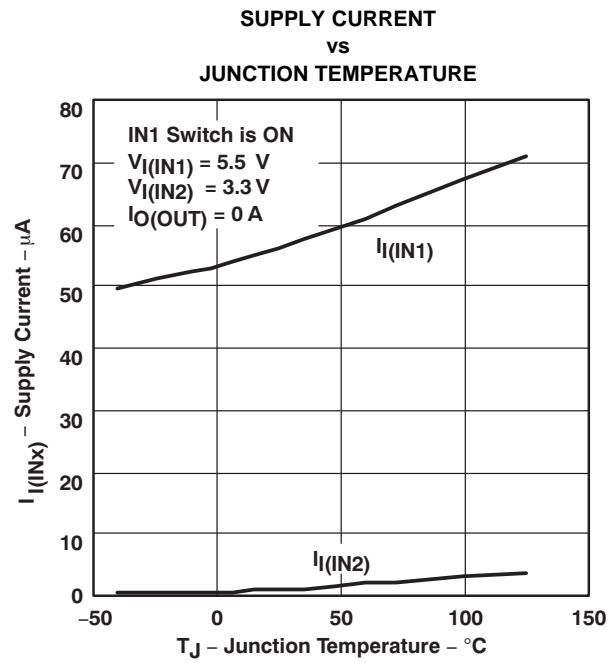
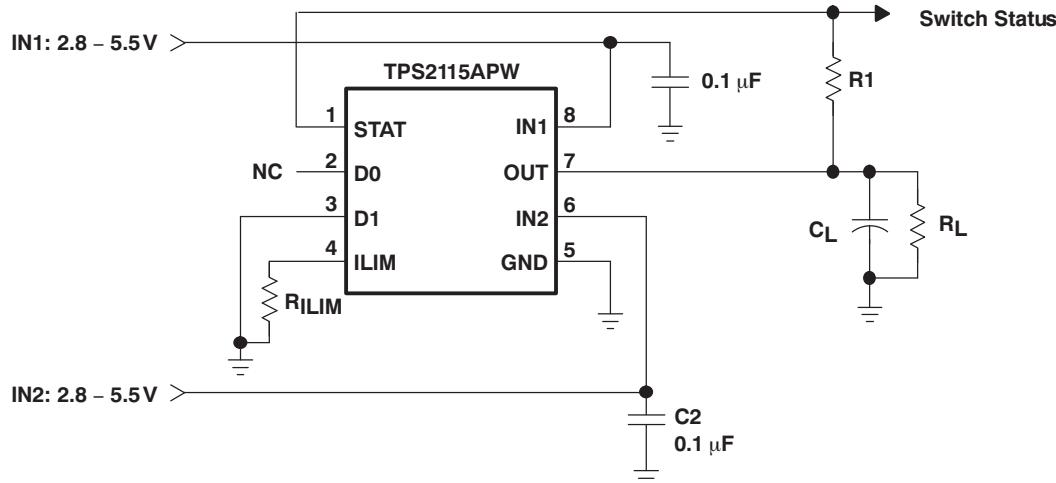
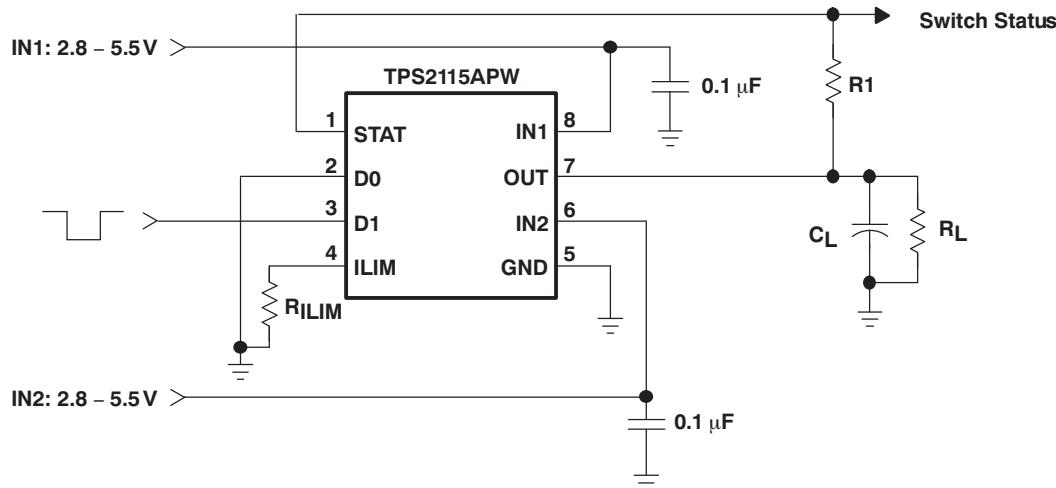



Figure 13.


APPLICATION INFORMATION

Some applications have two energy sources, one of which should be used in preference to another. [Figure 14](#) shows a circuit that will connect IN1 to OUT until the voltage at IN1 falls below a user-specified value. Once the voltage on IN1 falls below this value, the TPS2114A/5A will select the higher of the two supplies. This usually means that the TPS2114A/5A will swap to IN2.

Figure 14. Auto-Selecting for a Dual Power Supply Application

In [Figure 15](#), the multiplexer selects between two power supplies based upon the D1 logic signal. OUT connects to IN1 if D1 is logic 1; otherwise, OUT connects to IN2. The logic thresholds for the D1 terminal are compatible with both TTL and CMOS logic.

Figure 15. Manually Switching Power Sources

DETAILED DESCRIPTION

AUTO-SWITCHING MODE

D0 equal to logic 1 and D1 equal to logic 0 selects the auto-switching mode. In this mode, OUT connects to the higher of IN1 and IN2.

MANUAL SWITCHING MODE

D0 equal to logic 0 selects the manual-switching mode. In this mode, OUT connects to IN1 if D1 is equal to logic 1, otherwise OUT connects to IN2.

N-CHANNEL MOSFETs

Two internal high-side power MOSFETs implement a single-pole double-throw (SPDT) switch. Digital logic selects the IN1 switch, IN2 switch, or no switch (Hi-Z state). The MOSFETs have no parallel diodes so output-to-input current cannot flow when the FET is off. An integrated comparator prevents turn-on of a FET switch if the output voltage is greater than the input voltage.

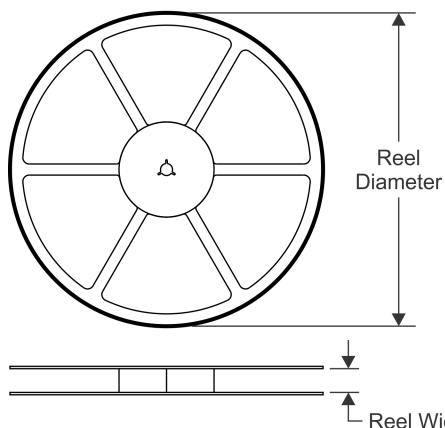
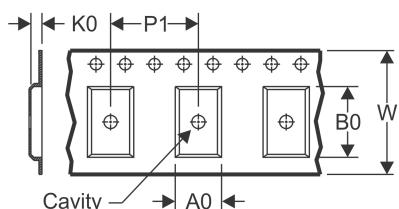
CROSS-CONDUCTION BLOCKING

The switching circuitry ensures that both power switches will never conduct at the same time. A comparator monitors the gate-to-source voltage of each power FET and allows a FET to turn on only if the gate-to-source voltage of the other FET is below the turn-on threshold voltage.

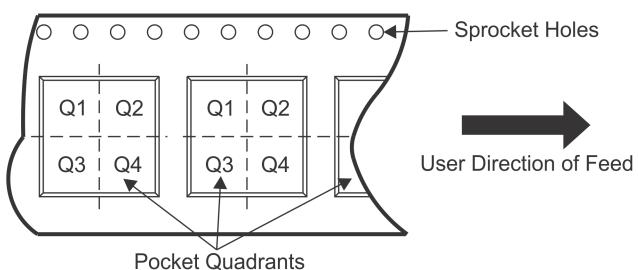
REVERSE-CONDUCTION BLOCKING

When the TPS211xA switches from a higher-voltage supply to a lower-voltage supply, current can potentially flow back from the load capacitor into the lower-voltage supply. To minimize such reverse conduction, the TPS211xA will not connect a supply to the output until the output voltage has fallen to within 100 mV of the supply voltage. Once a supply has been connected to the output, it will remain connected regardless of output voltage.

CHARGE PUMP

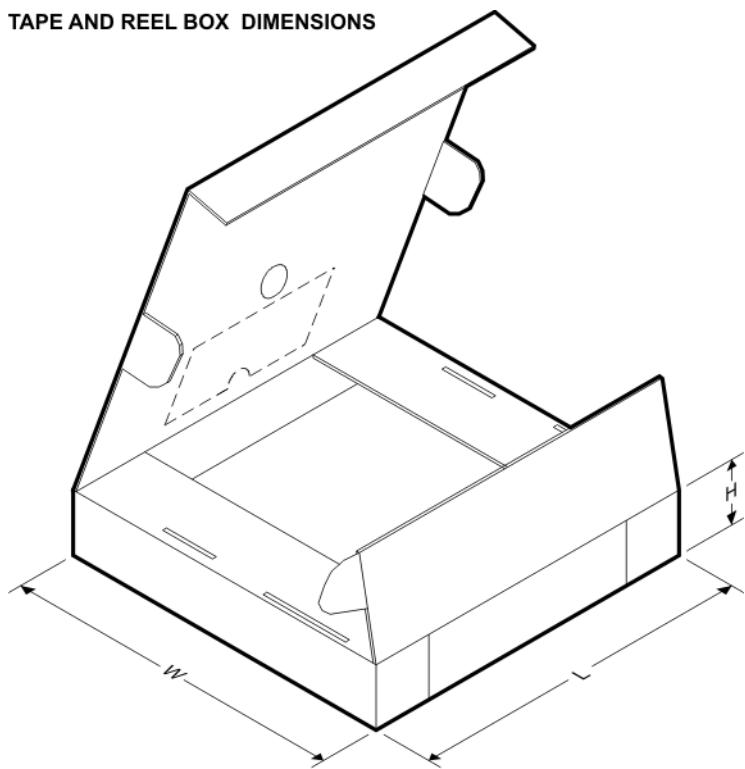


The higher of supplies IN1 and IN2 powers the internal charge pump. The charge pump provides power to the current limit amplifier and allows the output FET gate voltage to be higher than the IN1 and IN2 supply voltages. A gate voltage that is higher than the source voltage is necessary to turn on the N-channel FET.

CURRENT LIMITING


A resistor R_{ILIM} from ILIM to GND sets the current limit to $250/R_{ILIM}$ and $500/R_{ILIM}$ for the TPS2114A and TPS2115A, respectively. Setting resistor R_{ILIM} equal to zero is not recommended as that disables current limiting.

OUTPUT VOLTAGE SLEW-RATE CONTROL

The TPS2114A/5A slews the output voltage at a slow rate when OUT switches to IN1 or IN2 from the Hi-Z state (see [Table 1](#)). A slow slew rate limits the inrush current into the load capacitor. High inrush currents can glitch the voltage bus and cause a system to hang up or reset. It can also cause reliability issues—like pit the connector power contacts, when hot-plugging a load such as a PCI card. The TPS2114A/5A slews the output voltage at a much faster rate when OUT switches between IN1 and IN2. The fast rate minimizes the output voltage droop and reduces the output voltage hold-up capacitance requirement.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS2114APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TPS2115ADRBR	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2115ADRBT	SON	DRB	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2115APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS2114APWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TPS2115ADRBR	SON	DRB	8	3000	367.0	367.0	35.0
TPS2115ADRBT	SON	DRB	8	250	210.0	185.0	35.0
TPS2115APWR	TSSOP	PW	8	2000	367.0	367.0	35.0

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (April 2011) to Revision F

	Page
• Changed description of power supplies in <i>Description</i> section	1
• Added I_{OUT} column to Device Information table	2
• Changed conditions of Absolute Maximum Ratings table	2
• Added PW to end of device name in first two continuous output rows in <i>Current</i> parameter of Absolute Maximum Ratings table	2
• Added last continuous output row to <i>Current</i> parameter in Absolute Maximum Ratings table	2
• Deleted storage temperature row from Absolute Maximum Ratings table	2
• Changed <i>Current limit adjustment range</i> parameter, TPS2115A specification in Available Options table	2
• Changed Nominal current limit adjustment range parameter in Recommended Operating Conditions table	3
• Added footnote 1 to Recommended Operating Conditions table	3

Changes from Revision D (July 2006) to Revision E

	Page
• Updated document to current format	1
• Changed title, footnote, and CGF marking in Device Information table	2
• Deleted footnote 1 (not tested in production) from Electrical Characteristics: General table	4
• Deleted footnote 1 (not tested in production) from Switching Characteristics table	5
• Added PAD row to Terminal Functions table	6

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TPS2114APW	Active	Production	TSSOP (PW) 8	150 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2114A
TPS2114APW.A	Active	Production	TSSOP (PW) 8	150 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2114A
TPS2114APWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2114A
TPS2114APWR.A	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2114A
TPS2115ADRBR	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF
TPS2115ADRBR.A	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF
TPS2115ADRBR.B	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF
TPS2115ADRBRG4	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF
TPS2115ADRBRG4.A	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF
TPS2115ADRBRG4.B	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF
TPS2115ADRBT	Active	Production	SON (DRB) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF
TPS2115ADRBT.B	Active	Production	SON (DRB) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF
TPS2115ADRBTG4	Active	Production	SON (DRB) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF
TPS2115APW	Active	Production	TSSOP (PW) 8	150 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2115A
TPS2115APW.B	Active	Production	TSSOP (PW) 8	150 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2115A
TPS2115APWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2115A
TPS2115APWR.B	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2115A
TPS2115APWRG4	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2115A

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

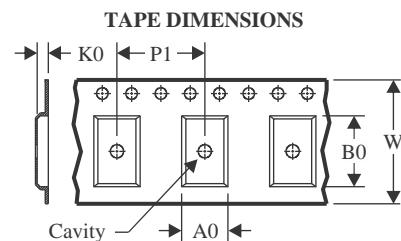
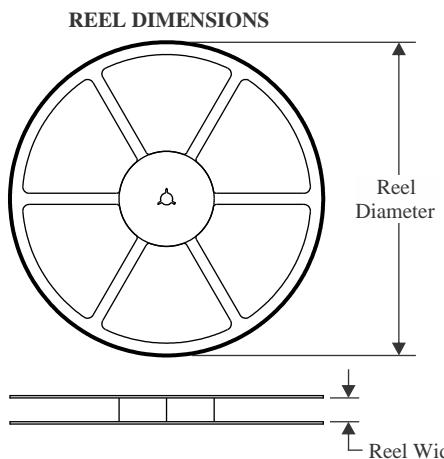
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

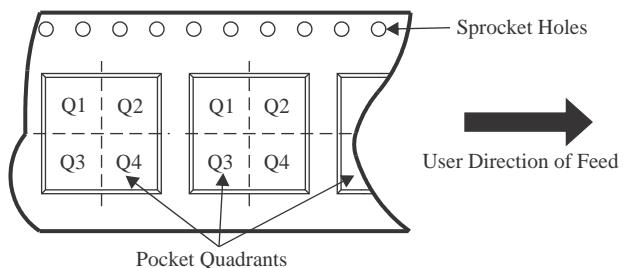
⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

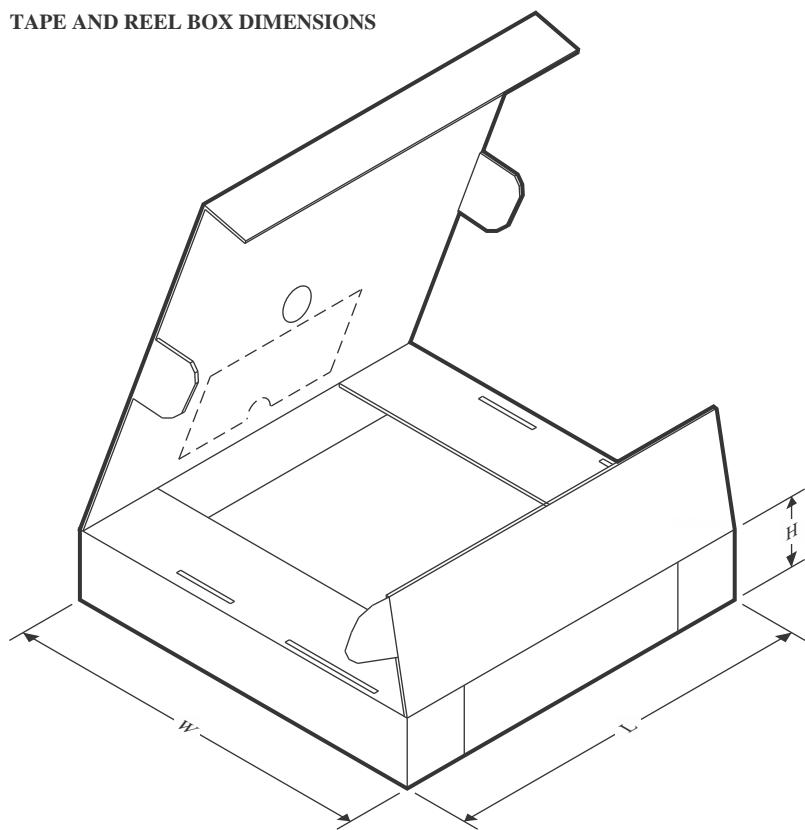


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS2115A :


- Automotive : [TPS2115A-Q1](#)

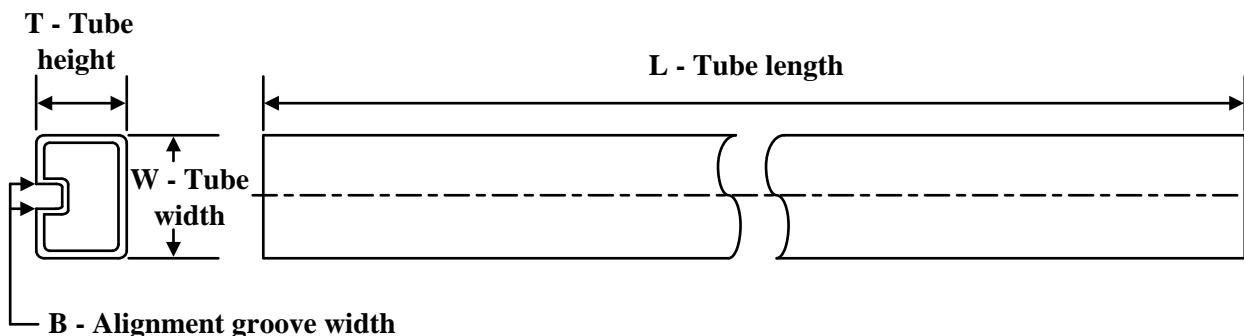
NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS2114APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TPS2115ADRBR	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2115ADRBG4	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2115ADRBRT	SON	DRB	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2115APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS2114APWR	TSSOP	PW	8	2000	353.0	353.0	32.0
TPS2115ADRBR	SON	DRB	8	3000	367.0	367.0	35.0
TPS2115ADRBRG4	SON	DRB	8	3000	367.0	367.0	35.0
TPS2115ADRBT	SON	DRB	8	250	210.0	185.0	35.0
TPS2115APWR	TSSOP	PW	8	2000	353.0	353.0	32.0

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
TPS2114APW	PW	TSSOP	8	150	530	10.2	3600	3.5
TPS2114APW.A	PW	TSSOP	8	150	530	10.2	3600	3.5
TPS2115APW	PW	TSSOP	8	150	530	10.2	3600	3.5
TPS2115APW.B	PW	TSSOP	8	150	530	10.2	3600	3.5

GENERIC PACKAGE VIEW

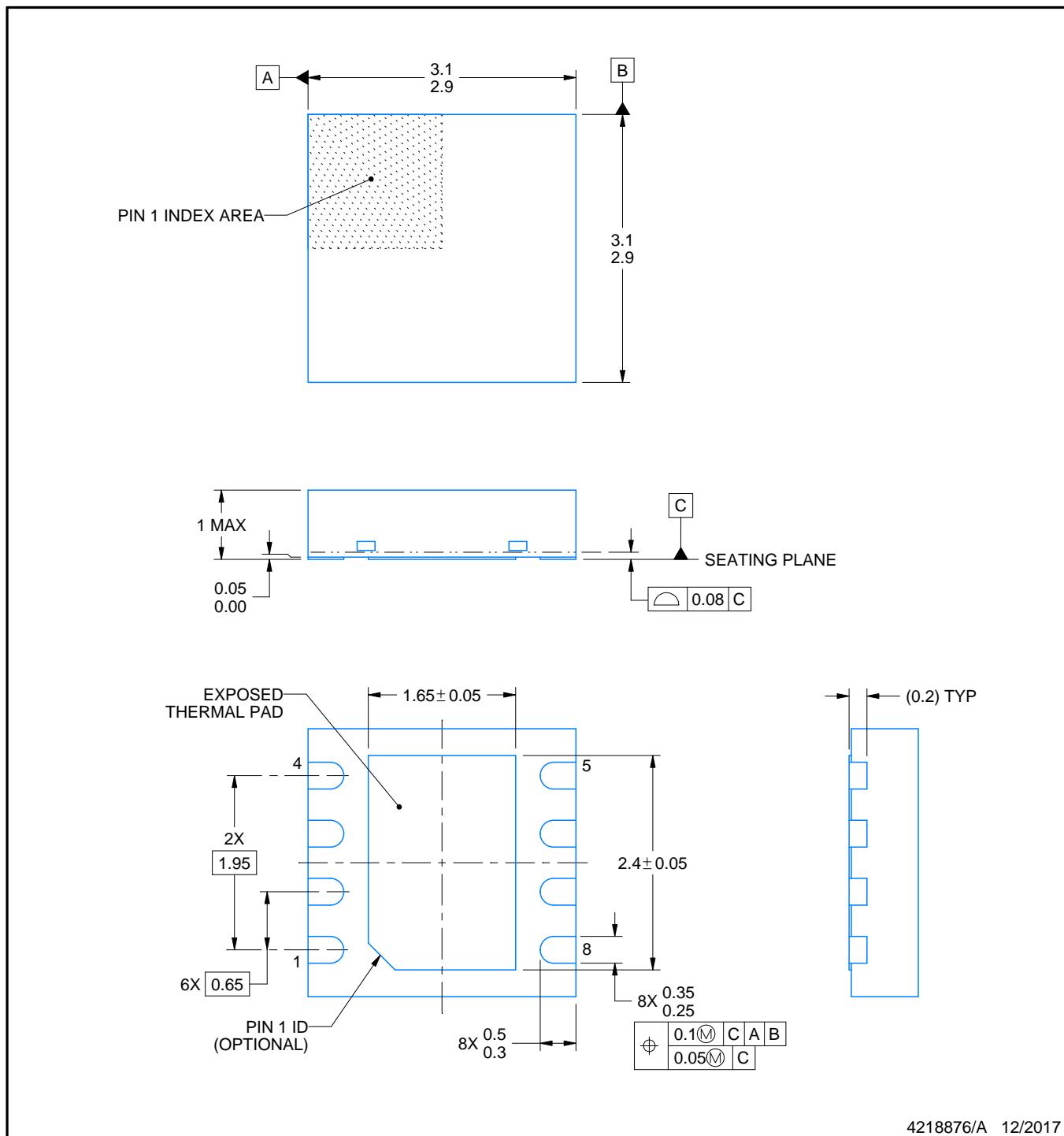
DRB 8

VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4203482/L



PACKAGE OUTLINE

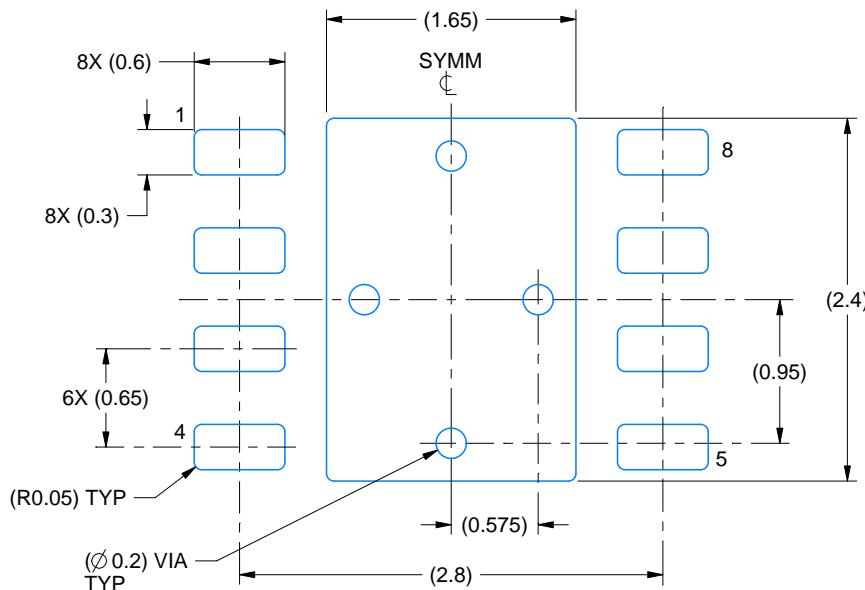
DRB0008B

VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

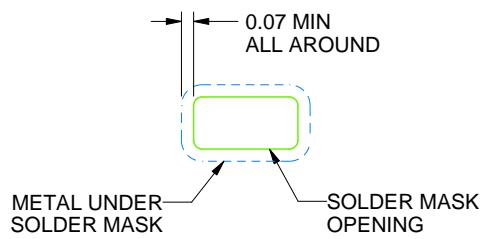
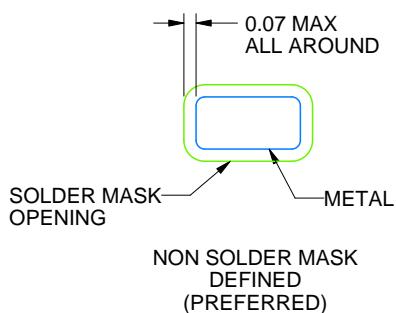
4218876/A 12/2017

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

DRB0008B



VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

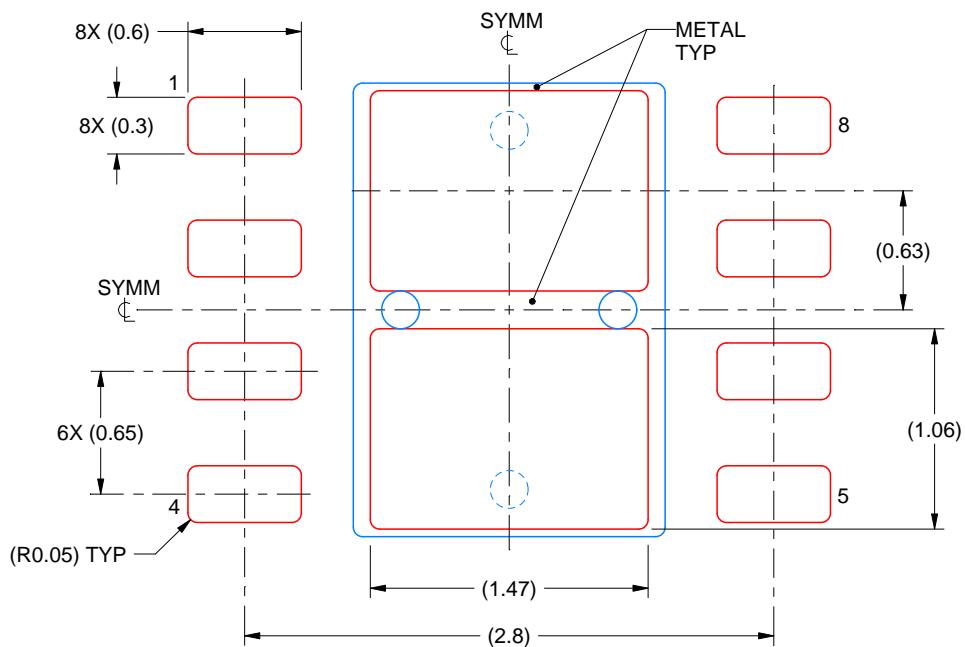
LAND PATTERN EXAMPLE

SCALE:20X

SOLDER MASK DETAILS

4218876/A 12/2017

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

DRB0008B

VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

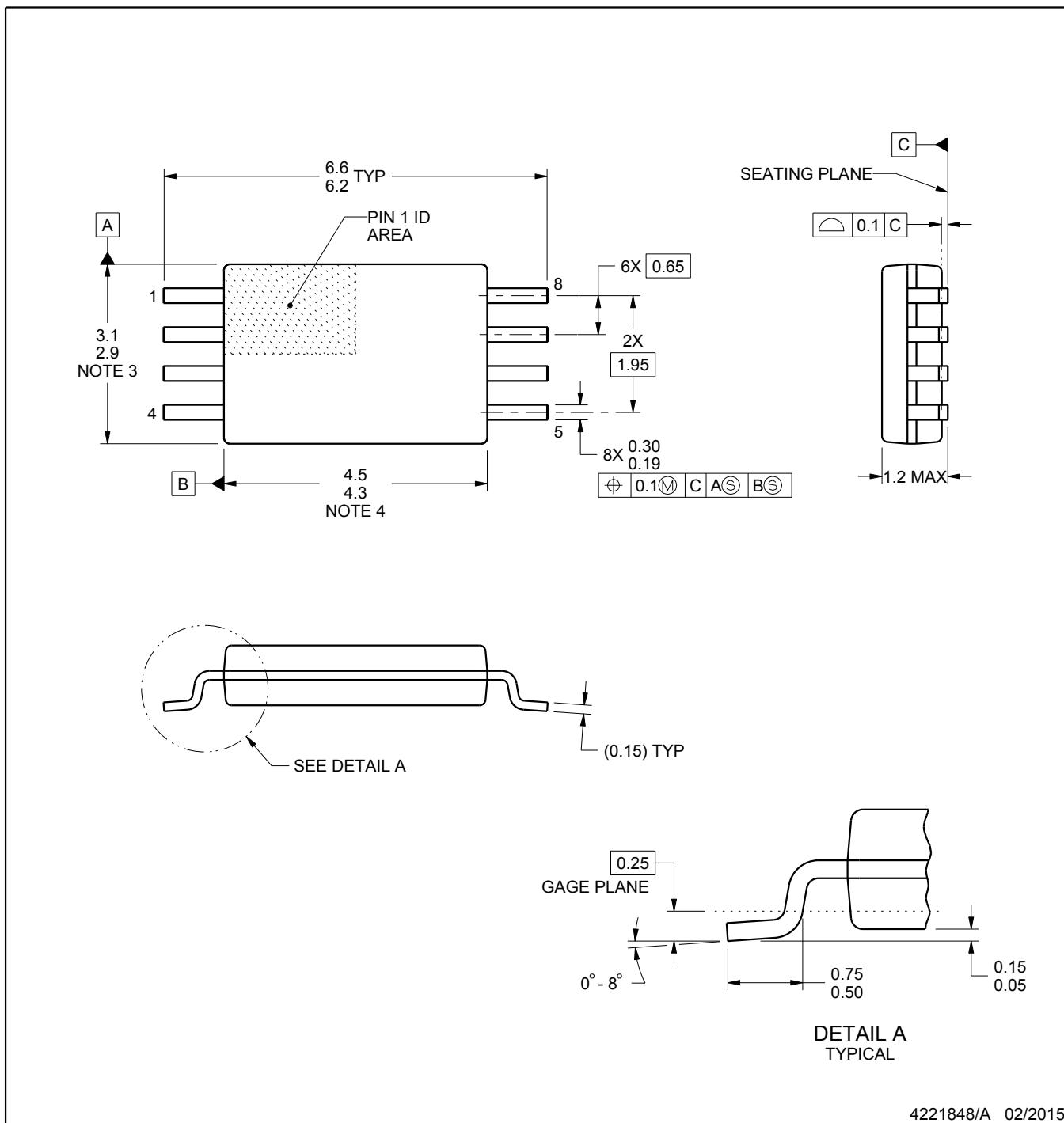
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL

EXPOSED PAD
81% PRINTED SOLDER COVERAGE BY AREA
SCALE:25X

4218876/A 12/2017

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


PACKAGE OUTLINE

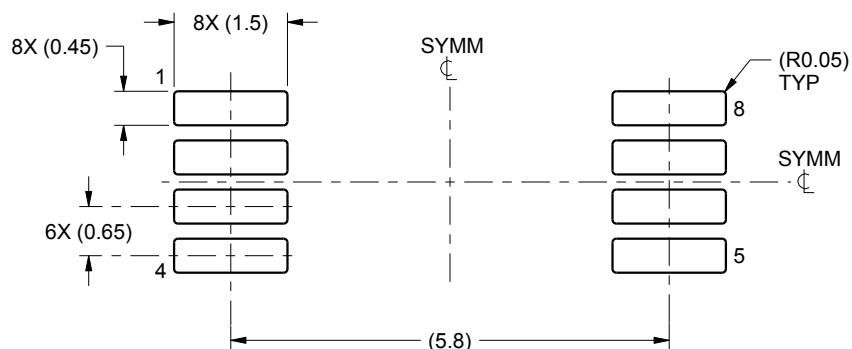
PW0008A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

4221848/A 02/2015

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153, variation AA.

EXAMPLE BOARD LAYOUT


PW0008A

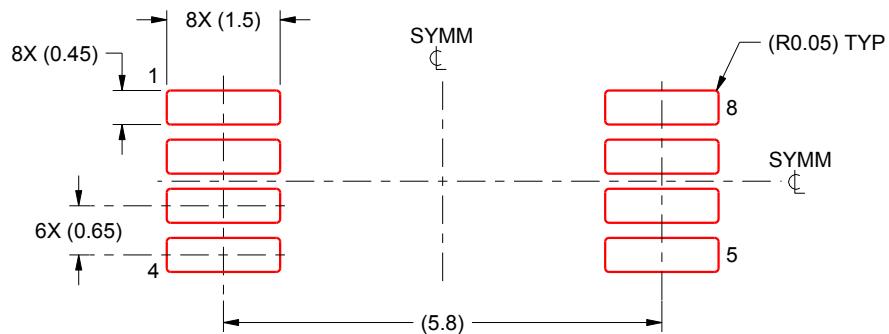
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

LAND PATTERN EXAMPLE
SCALE:10X

4221848/A 02/2015

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

PW0008A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:10X

4221848/A 02/2015

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025