TPS732-Q1 Functional Safety FIT Rate, FMD and Pin FMA

Table of Contents

1 Overview	<mark>2</mark>
2 Functional Safety Failure In Time (FIT) Rates	
2.1 SOT-223 (DCQ) Package	
2.2 VSON (DRB) Package	
2.3 SOT-23 (DBV) Package	
3 Failure Mode Distribution (FMD)	6
4 Pin Failure Mode Analysis (Pin FMA)	7
4.1 SOT-223 (DCQ) Package	
4.2 VSON (DRB) Package	9
4.3 SOT-23 (DBV) Package	
5 Revision History	

Trademarks

All trademarks are the property of their respective owners.

Overview www.ti.com

1 Overview

This document contains information for the TPS732-Q1 (SOT-223 (DCQ), VSON (DRB), and SOT-23 (DBV) packages) to aid in a functional safety system design. Information provided are:

- Functional safety failure in time (FIT) rates of the semiconductor component estimated by the application of industry reliability standards
- Component failure modes and their distribution (FMD) based on the primary function of the device
- Pin failure mode analysis (pin FMA)

Figure 1-1 shows the device functional block diagram for reference.

Figure 1-1. Functional Block Diagram

The TPS732-Q1 was developed using a quality-managed development process, but was not developed in accordance with the IEC 61508 or ISO 26262 standards.

2 Functional Safety Failure In Time (FIT) Rates

2.1 SOT-223 (DCQ) Package

This section provides functional safety failure in time (FIT) rates for the SOT-223 (DCQ) package of the TPS732-Q1 based on two different industry-wide used reliability standards:

- Table 2-1 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-2 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-1. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total component FIT rate	8
Die FIT rate	3
Package FIT rate	5

The failure rate and mission profile information in Table 2-1 comes from the reliability data handbook IEC TR 62380 / ISO 26262 part 11:

Mission profile: Motor control from table 11

· Power dissipation: 100mW

Climate type: World-wide table 8Package factor (lambda 3): Table 17b

Substrate material: FR4

· EOS FIT rate assumed: 0 FIT

Table 2-2. Component Failure Rates per Siemens Norm SN 29500-2

Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS, BICMOS Digital, analog, or mixed = <50V supply	25 FIT	55°C

The reference FIT rate and reference virtual T_J (junction temperature) in Table 2-2 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

2.2 VSON (DRB) Package

This section provides functional safety failure in time (FIT) rates for the VSON (DRB) package of the TPS732-Q1 based on two different industry-wide used reliability standards:

- Table 2-3 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-4 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-3. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total component FIT rate	6
Die FIT rate	2
Package FIT rate	4

The failure rate and mission profile information in Table 2-3 comes from the reliability data handbook IEC TR 62380 / ISO 26262 part 11:

Mission profile: motor control from table 11

Power dissipation: 100mWClimate type: world-wide table 8

Package factor (lambda 3): table 17b

Substrate material: FR4EOS FIT rate assumed: 0 FIT

Table 2-4. Component Failure Rates per Siemens Norm SN 29500-2

Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS, BICMOS Digital, analog, or mixed = <50V supply	25 FIT	55°C

The reference FIT rate and reference virtual T_J (junction temperature) in Table 2-4 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

2.3 SOT-23 (DBV) Package

This section provides functional safety failure in time (FIT) rates for the SOT-23 (DBV) package of the TPS732-Q1 based on two different industry-wide used reliability standards:

- Table 2-5 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-6 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-5. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total component FIT rate	5
Die FIT rate	3
Package FIT rate	2

The failure rate and mission profile information in Table 2-5 comes from the reliability data handbook IEC TR 62380 / ISO 26262 part 11:

Mission profile: Motor control from table 11

Power dissipation: 100mW
Climate type: World-wide table 8
Package factor (lambda 3): Table 17b

Substrate material: FR4EOS FIT rate assumed: 0 FIT

Table 2-6. Component Failure Rates per Siemens Norm SN 29500-2

Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS, BICMOS Digital, analog, or mixed = <50V supply	25 FIT	55°C

The reference FIT rate and reference virtual T_J (junction temperature) in Table 2-6 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

3 Failure Mode Distribution (FMD)

The failure mode distribution estimation for the TPS732-Q1 in Table 3-1 comes from the combination of common failure modes listed in standards such as IEC 61508 and ISO 26262, the ratio of sub-circuit function size and complexity, and from best engineering judgment.

The failure modes listed in this section reflect random failure events and do not include failures resulting from misuse or overstress.

Table 3-1. Die Failure Modes and Distribution

Die Failure Modes	Failure Mode Distribution (%)
V _{OUT} high (following V _{IN})	10
V _{OUT} low (no output)	50
V _{OUT} not in specification (Voltage or timing)	35
Short circuit any two pins	5

4 Pin Failure Mode Analysis (Pin FMA)

This section provides a failure mode analysis (FMA) for the pins of the TPS732-Q1 (SOT-223 (DCQ), VSON (DRB), and SOT-23 (DBV) packages). The failure modes covered in this document include the typical pin-by-pin failure scenarios:

- Pin short-circuited to ground (see Table 4-2, Table 4-6, and Table 4-10)
- Pin open-circuited (see Table 4-3, Table 4-7, and Table 4-11)
- Pin short-circuited to an adjacent pin (see Table 4-4, Table 4-8, and Table 4-12)
- Pin short-circuited to supply (see Table 4-5, Table 4-9, and Table 4-13)

Table 4-5 through Table 4-13 also indicate how these pin conditions can affect the device as per the failure effects classification in Table 4-1.

Table 4-1. IT Oldssincation of Fandre Enects				
Class	Failure Effects			
A	Potential device damage that affects functionality.			
В	No device damage, but loss of functionality.			
С	No device damage, but performance degradation.			
D	No device damage, no impact to functionality or performance.			

Table 4-1. TI Classification of Failure Effects

Following are the assumptions of use and the device configuration assumed for the pin FMA in this section:

- Device operates at free-air temperatures between -40°C and 150°C
- Device operates at an input voltage of at least 1.7V and no more than 5.5V
- Device operates according to all recommended operating conditions and does not exceed the absolute maximum ratings

4.1 SOT-223 (DCQ) Package

Figure 4-1 shows the TPS732-Q1 pin diagram for the SOT-223 (DCQ) package. For a detailed description of the device pins, see the *Pin Configuration and Functions* section in the TPS732-Q1 data sheet.

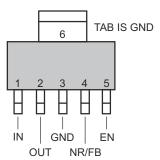


Figure 4-1. Pin Diagram (SOT-223 (DCQ)) Package

Table 4-2. Pin FMA for Device Pins Short-Circuited to Ground

Pin Name Pin No. Description of Potential Failure Effects		Failure Effect Class	
IN	1	Power is not supplied to the device. System performance depends on upstream current limiting.	В
OUT	2	Current limit is triggered, and the device can repeatedly enter and exit thermal shutdown depending on power dissipation.	В
GND	3	No effect. Normal operation.	D
NR/FB	4	[Fixed Output] The internal reference cannot start. The device cannot turn on.	В
EN	5	The device is disabled, resulting in no output voltage.	В

Table 4-3. Pin FMA for Device Pins Open-Circuited

Pin Name	Pin No.	Description of Potential Failure Effects	
IN	1	No output voltage.	В
OUT	2	utput voltage is disconnected from load.	
GND	3	evice biasing has no current path. The device is not operational and does not regulate.	
NR/FB	4	Fixed Output] Any noise-reduction benefits are lost.	
EN	5	Device potentially disables.	В

Table 4-4. Pin FMA for Device Pins Short-Circuited to Adjacent Pin

Pin Name	Pin No.	Shorted to	Pin No.	Description of Potential Failure Effects	Failur e Effect Class
IN	1	OUT	2	Regulation is not possible. $V_{OUT} = V_{IN}$. If V_{IN} exceeds 5.5V, damage is possible.	В
OUT	2	GND	3	Regulation is not possible. The device operates at current limit. The device can cycle in and out of thermal shutdown.	В
GND	3	NR/FB	4	Any noise-reduction benefits are lost.	С
NR/FB	4	EN	5	The output voltage is incorrect.	В

Table 4-5. Pin FMA for Device Pins Short-Circuited to Supply

Pin Name	Pin No.	Description of Potential Failure Effects					
IN	1	No effect. Normal operation.	D				
OUT	2	Regulation is not possible. $V_{OUT} = V_{IN}$. If V_{IN} exceeds 5.5V, damage is possible.	В				
GND	3	No output voltage. System performance depends on the upstream current limit.	В				
NR/FB	4	[Fixed Output] NR pin is damaged if V _{IN} is higher than 6V.	Α				
EN	5	Device is always enabled. Regulation is possible.	В				

4.2 VSON (DRB) Package

Figure 4-2 shows the TPS732-Q1 pin diagram for the VSON (DRB) package. For a detailed description of the device pins, see the *Pin Configuration and Functions* section in the TPS732-Q1 data sheet.

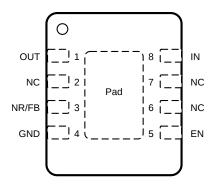


Figure 4-2. Pin Diagram (VSON (DRB) Package)

Table 4-6. Pin FMA for Device Pins Short-Circuited to Ground

Pin Name	Pin No.	Description of Potential Failure Effects	Failure Effect Class
OUT	1	Current limit is triggered, and the device can repeatedly enter and exit thermal shutdown depending on power dissipation.	В
NC	2	No effect. Normal operation.	D
NR/FB	3	[Adjustable Output] Device stops regulating. V_{OUT} becomes equal to V_{IN} minus dropout because the pass FET is driven as hard as possible.	В
GND	4	No effect. Normal operation.	D
EN	5	The device is disabled, resulting in no output voltage.	В
NC	6	No effect. Normal operation.	D
NC	7	No effect. Normal operation.	D
IN	8	Power is not supplied to the device. System performance depends on upstream current limiting.	В

Table 4-7. Pin FMA for Device Pins Open-Circuited

Pin Name	Pin No.	Description of Potential Failure Effects			
OUT	1	Output voltage is disconnected from load.	В		
NC	2	No effect.	D		
NR/FB	3	justable Output] Error amplifier input is left floating, output voltage is not equal to set voltage.			
GND	4	Device biasing has no current path. The device is not operational and does not regulate.	В		
EN	5	evice potentially disables.			
NC	6	No effect.	D		
NC	7	No effect.	D		
IN	8	No output voltage.	В		

Table 4-8. Pin FMA for Device Pins Short-Circuited to Adjacent Pin

Pin Name	Pin No.	Shorted to	Pin No.	Description of Potential Failure Effects	Failur e Effect Class
OUT	1	NC	2	No effect. Normal operation.	D
NC	2	NR/FB	3	effect.	
NR/FB	3	GND	4	[Adjustable Output] Device stops regulating. V_{OUT} becomes equal to V_{IN} minus dropout because the pass FET is always on.	В
GND	4	EN	5	Output is forced OFF, V _{OUT} is 0.0V	В
EN	5	NC	6	No effect. Normal operation.	D
NC	6	NC	7	No effect. Normal operation.	D
NC	7	IN	8	No effect. Normal operation.	

Table 4-9. Pin FMA for Device Pins Short-Circuited to Supply

Pin Name	Pin No.	Description of Potential Failure Effects	Failure Effect Class
OUT	1	Regulation is not possible. $V_{OUT} = V_{IN}$. If V_{IN} exceeds 5.5V, damage is possible.	В
NC	2	No effect. Normal operation.	D
NR/FB	3	[Adjustable Output] FB pin is damaged if V _{IN} is higher than 6V. The device having no output voltage is possible.	В
GND	4	No output voltage. System performance depends on the upstream current limit.	В
EN	5	Device is always enabled. Regulation is possible.	В
NC	6	No effect. Normal operation.	D
NC	7	No effect. Normal operation.	D
IN	8	No effect. Normal operation.	D

4.3 SOT-23 (DBV) Package

Figure 4-3 shows the TPS732-Q1 pin diagram for the SOT-23 (DBV) package. For a detailed description of the device pins, see the *Pin Configuration and Functions* section in the TPS732-Q1 data sheet.

Figure 4-3. Pin Diagram (SOT-23 (DBV) Package)

Table 4-10. Pin FMA for Device Pins Short-Circuited to Ground

Pin Name	Pin No.	Description of Potential Failure Effects	Failure Effect Class
IN	1	Power is not supplied to the device. System performance depends on upstream current limiting.	В
GND	2	No effect. Normal operation.	D
EN	3	The device is disabled, resulting in no output voltage.	В
NR/FB	4	[Adjustable Output] Device stops regulating. V_{OUT} becomes equal to V_{IN} minus dropout because the pass FET is driven as hard as possible.	В
OUT	5	Current limit is triggered, and the device can repeatedly enter and exit thermal shutdown depending on power dissipation.	В

Table 4-11. Pin FMA for Device Pins Open-Circuited

Pin Name	Pin No.	Description of Potential Failure Effects	Failure Effect Class
IN	1	No output voltage.	В
GND	2	Device biasing has no current path. The device is not operational and does not regulate.	В
EN	3	Device potentially disables.	В
NR/FB	4	[Adjustable Output] Error amplifier input is left floating, output voltage is not equal to set voltage.	В
OUT	5	Output voltage is disconnected from load.	В

Table 4-12. Pin FMA for Device Pins Short-Circuited to Adjacent Pin

Pin Name	Pin No.	Shorted to	Pin No.	Description of Potential Failure Effects				
IN	1	GND	2	Power is not supplied to the device. System performance depends on upstream urrent limiting.				
GND	2	EN	3	Output is forced OFF, V _{OUT} is 0.0V.	В			
NR/FB	4	OUT	5	Adjustable Output] V _{OUT} is set to V _{FB} .				

Table 4-13. Pin FMA for Device Pins Short-Circuited to Supply

Pin Name	Pin No.	Description of Potential Failure Effects	Failure Effect Class
IN	1	No effect. Normal operation.	D
GND	2	No output voltage. System performance depends on the upstream current limit.	В
EN	3	Device is always enabled. Regulation is possible.	В
NR/FB	4	[Adjustable Output] FB pin is damaged if V_{IN} is higher than 6V. The device having no output voltage is possible.	В
OUT	5	Regulation is not possible. $V_{OUT} = V_{IN}$. If V_{IN} exceeds 5.5V, damage is possible.	В

Instruments Revision History www.ti.com

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
December 2019	*	Initial Release

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated