
Subsystem Design
Emulating a Digital MUX

1 Description
The Emulating a Digital MUX software example demonstrates how to use GPIO interrupts to emulate a digital 
MUX. Similar to a logic based MUX, the MCU uses select signals (S0 and S1) to determine which input channel 
(C0, C1, C2, and C3) is output at a given time. Doing this through the MCU not only eliminates the need for 
an external MUX, but also allows flexible pin assignments that can help aid PCB routing. This specific example 
emulates a 4-input channel, 2-select-signal digital MUX.

Figure 1-1 displays the functional block diagram for this subsystem.
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Figure 1-1. Subsystem Functional Block Diagram

2 Required Peripherals
This application requires seven GPIO pins and GPIO interrupts.

Table 2-1. Required Peripherals
Subblock Functionality Notes

GPIO Pin groups are referred to as INPUT, 
OUTPUT, and SELECT in code

3 Compatible Devices
Based on the requirements in Table 2-1, the compatible devices are listed in Table 3-1. The corresponding EVM 
can be used for quick evaluation.

Table 3-1. Compatible Devices
Compatible Devices EVM

MSPM0C LP-MSPM0C1104

MSPM0Lx LP-MSPM0L1306

MSPM0Gx LP-MSPM0G3507
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4 Design Steps
1. Determine the amount of GPIOs needed by the application. In this case, there are 4 input channel pins, two 

select pins, and one output pin.
2. Configure the GPIO output pin in SysConfig as an output.
3. Configure the GPIO input channel pins and select pins in SysConfig as inputs with interrupts.
4. Write application code for the interrupts to change the output based on the Channel and SELECT digital 

signals.

5 Design Considerations
1. Number of input channel and select pins: A 4-input MUX requires two select pins. However, an 8-input MUX 

requires three select pins.
2. The logic table: What select pin configuration determines which input channel is selected as the output.
3. Interrupts: Interrupts must be placed on all input channel and select pins as the output signal is generated by 

setting or clearing the output signal based on the selected input channel.
4. Propagation delay: There is a possibility for a propagation delay due to interrupts. The propagation delay is 

based on the clock speed.

6 Software Flow Chart
Figure 6-1 shows the software flow chart for this subsystem example and explains the GPIO interrupt routine 
used to emulate a digital MUX.
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Figure 6-1. Application Software Flow Chart
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7 Application Code
This application uses the TI System Configuration tool (SysConfig) graphical interface to generate the 
configuration code for the device peripherals. Using a graphical interface to configure the device peripherals 
streamlines the application prototyping process.

In addition, this application uses GPIO interrupts on all input pins configured and enabled in the GPIO peripheral 
in SysConfig. Based on the GPIO pins configured in SysConfig, the respective GPIO interrupts must also be 
manually enabled in the main() portion of the code using the NVIC_EnableIRQ(); function. After enabling 
the interrupts, the main() code waits for an interrupt. This means that any time one of the input signals changes 
state, the GPIO interrupt service routine starts. The main() portion of this code is as follows:

int main(void)
{
    SYSCFG_DL_init();
    /* Enable GPIO Port A Interrupts */
    NVIC_EnableIRQ(GPIO_MULTIPLE_GPIOA_INT_IRQN);
                
    while (1) {
        __WFI();
    }
}

The following code snippet showcases the GPIO interrupt service routine. There are two switch cases: one for 
the interrupt types, and one to determine which input channel is selected to be output. The second switch case 
first checks the select pins to determine the respective states. Depending on those states, the input channel is 
selected based on the logic truth table (see Figure 1-1). For each individual case, the selected input channel pin 
is checked, and the output pin is set to match. The code then breaks out of the interrupt service routine, and then 
returns to wait for another interrupt. In addition, this example code uses pin PA0 on the LP-MSPM0L1306 as the 
output pin, which turns a red LED on and off based on the output signal.

void GROUP1_IRQHandler(void){
    switch (DL_Interrupt_getPendingGroup(DL_INTERRUPT_GROUP_1)){
        case GPIO_MULTIPLE_GPIOA_INT_IIDX:
            switch (DL_GPIO_readPins(SELECT_PORT, SELECT_S1_PIN | SELECT_S0_PIN)){
                case 0: /* S1 = 0, S0 = 0 */
                /* Check Channel 0 and set output to match */
                    if (DL_GPIO_readPins(INPUT_PORT, INPUT_CHANNEL_0_PIN)){
                        DL_GPIO_setPins(OUTPUT_PORT, OUTPUT_LED_PIN);
                    } else {
                        DL_GPIO_clearPins(OUTPUT_PORT, OUTPUT_LED_PIN);
                    }
                    break;
                case SELECT_S0_PIN: /* S1 = 0, S0 = 1 */
                /* Check Channel 1 and set output to match */
                    if (DL_GPIO_readPins(INPUT_PORT, INPUT_CHANNEL_1_PIN)){
                        DL_GPIO_setPins(OUTPUT_PORT, OUTPUT_LED_PIN);
                    } else {
                        DL_GPIO_clearPins(OUTPUT_PORT, OUTPUT_LED_PIN);
                    }
                    break;
                case SELECT_S1_PIN: /* S1 = 1, S0 = 0 */
                /* Check Channel 2 and set output to match */
                    if (DL_GPIO_readPins(INPUT_PORT, INPUT_CHANNEL_2_PIN)){
                        DL_GPIO_setPins(OUTPUT_PORT, OUTPUT_LED_PIN);
                    } else {
                        DL_GPIO_clearPins(OUTPUT_PORT, OUTPUT_LED_PIN);
                    }
                    break;
                case SELECT_S1_PIN | SELECT_S0_PIN: /* S1 = 1, S0 = 1 */
                /* Check Channel 3 and set output to match */
                    if (DL_GPIO_readPins(INPUT_PORT, INPUT_CHANNEL_3_PIN)){
                        DL_GPIO_setPins(OUTPUT_PORT, OUTPUT_LED_PIN);
                    } else {
                        DL_GPIO_clearPins(OUTPUT_PORT, OUTPUT_LED_PIN);
                    }
                    break;
        }
        break;
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    }
}

8 Results
Figure 8-1 shows a logic capture of the different input-to-output signals. The input channels C0 through C3 are 
colored white, brown, red, and orange, respectively. S0 is yellow and S1 is green. Finally, the output signal is 
blue. The capture is marked to showcase how the different inputs change the output signal.

Figure 8-1. Results

9 Additional Resources
• Texas Instruments, Download the MSPM0 SDK
• Texas Instruments, Learn more about SysConfig
• Texas Instruments, MSPM0L LaunchPad™ 

• Texas Instruments, MSPM0G LaunchPad™ 

• Texas Instruments, MSPM0C LaunchPad™ 

• Texas Instruments, MSPM0 Academy

10 E2E
See TI's E2E™ support forums to view discussions and post new threads to get technical support for utilizing 
MSPM0 devices in designs.

11 Trademarks
LaunchPad™ and E2E™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.
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