
Subsystem Design
Emulating a Digital MUX

1 Description
The Emulating a Digital MUX software example demonstrates how to use GPIO interrupts to emulate a digital
MUX. Similar to a logic based MUX, the MCU uses select signals (S0 and S1) to determine which input channel
(C0, C1, C2, and C3) is output at a given time. Doing this through the MCU not only eliminates the need for
an external MUX, but also allows flexible pin assignments that can help aid PCB routing. This specific example
emulates a 4-input channel, 2-select-signal digital MUX.

Figure 1-1 displays the functional block diagram for this subsystem.

MSPM0Gx/
MSPM0Lx

S1

0

0

1

1

S0

0

1

0

1

Output

C0

C1

C2

C3

Output

C0

C1

C2

C3

S1 S0

I/O

I/O

I/O

I/O

I/O I/O

I/O

Figure 1-1. Subsystem Functional Block Diagram

2 Required Peripherals
This application requires seven GPIO pins and GPIO interrupts.

Table 2-1. Required Peripherals
Subblock Functionality Notes

GPIO Pin groups are referred to as INPUT,
OUTPUT, and SELECT in code

3 Compatible Devices
Based on the requirements in Table 2-1, the compatible devices are listed in Table 3-1. The corresponding EVM
can be used for quick evaluation.

Table 3-1. Compatible Devices
Compatible Devices EVM

MSPM0C LP-MSPM0C1104

MSPM0Lx LP-MSPM0L1306

MSPM0Gx LP-MSPM0G3507

www.ti.com Description

SLAAEC8 – SEPTEMBER 2024
Submit Document Feedback

Emulating a Digital MUX 1

Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/global?id=mspm0_sdk_lp_mspm0l1306_msp%20subsystems_digital_mux
https://www.ti.com/tool/LP-MSPM0C1104
https://www.ti.com/tool/LP-MSPM0L1306
https://www.ti.com/tool/LP-MSPM0G3507
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC8&partnum=MSPM0G3507SRGE

4 Design Steps
1. Determine the amount of GPIOs needed by the application. In this case, there are 4 input channel pins, two

select pins, and one output pin.
2. Configure the GPIO output pin in SysConfig as an output.
3. Configure the GPIO input channel pins and select pins in SysConfig as inputs with interrupts.
4. Write application code for the interrupts to change the output based on the Channel and SELECT digital

signals.

5 Design Considerations
1. Number of input channel and select pins: A 4-input MUX requires two select pins. However, an 8-input MUX

requires three select pins.
2. The logic table: What select pin configuration determines which input channel is selected as the output.
3. Interrupts: Interrupts must be placed on all input channel and select pins as the output signal is generated by

setting or clearing the output signal based on the selected input channel.
4. Propagation delay: There is a possibility for a propagation delay due to interrupts. The propagation delay is

based on the clock speed.

6 Software Flow Chart
Figure 6-1 shows the software flow chart for this subsystem example and explains the GPIO interrupt routine
used to emulate a digital MUX.

Check
Channel

0

Check
Channel

1

Check
Channel

2

Check
Channel

3

GPIO ISR

Check S0 & S1 values

Set OUTPUT to match
Channel [n]

Break and Return

Initialize Device

Initialize GPIO Interrupt

Wait for Interrupt

S1 = 0
S0 = 0

S1 = 0
S0 = 1

S1 = 1
S0 = 0

S1 = 1
S0 = 1

Figure 6-1. Application Software Flow Chart

Design Steps www.ti.com

2 Emulating a Digital MUX SLAAEC8 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC8&partnum=MSPM0G3507SRGE

7 Application Code
This application uses the TI System Configuration tool (SysConfig) graphical interface to generate the
configuration code for the device peripherals. Using a graphical interface to configure the device peripherals
streamlines the application prototyping process.

In addition, this application uses GPIO interrupts on all input pins configured and enabled in the GPIO peripheral
in SysConfig. Based on the GPIO pins configured in SysConfig, the respective GPIO interrupts must also be
manually enabled in the main() portion of the code using the NVIC_EnableIRQ(); function. After enabling
the interrupts, the main() code waits for an interrupt. This means that any time one of the input signals changes
state, the GPIO interrupt service routine starts. The main() portion of this code is as follows:

int main(void)
{
 SYSCFG_DL_init();
 /* Enable GPIO Port A Interrupts */
 NVIC_EnableIRQ(GPIO_MULTIPLE_GPIOA_INT_IRQN);

 while (1) {
 __WFI();
 }
}

The following code snippet showcases the GPIO interrupt service routine. There are two switch cases: one for
the interrupt types, and one to determine which input channel is selected to be output. The second switch case
first checks the select pins to determine the respective states. Depending on those states, the input channel is
selected based on the logic truth table (see Figure 1-1). For each individual case, the selected input channel pin
is checked, and the output pin is set to match. The code then breaks out of the interrupt service routine, and then
returns to wait for another interrupt. In addition, this example code uses pin PA0 on the LP-MSPM0L1306 as the
output pin, which turns a red LED on and off based on the output signal.

void GROUP1_IRQHandler(void){
 switch (DL_Interrupt_getPendingGroup(DL_INTERRUPT_GROUP_1)){
 case GPIO_MULTIPLE_GPIOA_INT_IIDX:
 switch (DL_GPIO_readPins(SELECT_PORT, SELECT_S1_PIN | SELECT_S0_PIN)){
 case 0: /* S1 = 0, S0 = 0 */
 /* Check Channel 0 and set output to match */
 if (DL_GPIO_readPins(INPUT_PORT, INPUT_CHANNEL_0_PIN)){
 DL_GPIO_setPins(OUTPUT_PORT, OUTPUT_LED_PIN);
 } else {
 DL_GPIO_clearPins(OUTPUT_PORT, OUTPUT_LED_PIN);
 }
 break;
 case SELECT_S0_PIN: /* S1 = 0, S0 = 1 */
 /* Check Channel 1 and set output to match */
 if (DL_GPIO_readPins(INPUT_PORT, INPUT_CHANNEL_1_PIN)){
 DL_GPIO_setPins(OUTPUT_PORT, OUTPUT_LED_PIN);
 } else {
 DL_GPIO_clearPins(OUTPUT_PORT, OUTPUT_LED_PIN);
 }
 break;
 case SELECT_S1_PIN: /* S1 = 1, S0 = 0 */
 /* Check Channel 2 and set output to match */
 if (DL_GPIO_readPins(INPUT_PORT, INPUT_CHANNEL_2_PIN)){
 DL_GPIO_setPins(OUTPUT_PORT, OUTPUT_LED_PIN);
 } else {
 DL_GPIO_clearPins(OUTPUT_PORT, OUTPUT_LED_PIN);
 }
 break;
 case SELECT_S1_PIN | SELECT_S0_PIN: /* S1 = 1, S0 = 1 */
 /* Check Channel 3 and set output to match */
 if (DL_GPIO_readPins(INPUT_PORT, INPUT_CHANNEL_3_PIN)){
 DL_GPIO_setPins(OUTPUT_PORT, OUTPUT_LED_PIN);
 } else {
 DL_GPIO_clearPins(OUTPUT_PORT, OUTPUT_LED_PIN);
 }
 break;
 }
 break;

www.ti.com Application Code

SLAAEC8 – SEPTEMBER 2024
Submit Document Feedback

Emulating a Digital MUX 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/SYSCONFIG
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC8&partnum=MSPM0G3507SRGE

 }
}

8 Results
Figure 8-1 shows a logic capture of the different input-to-output signals. The input channels C0 through C3 are
colored white, brown, red, and orange, respectively. S0 is yellow and S1 is green. Finally, the output signal is
blue. The capture is marked to showcase how the different inputs change the output signal.

Figure 8-1. Results

9 Additional Resources
• Texas Instruments, Download the MSPM0 SDK
• Texas Instruments, Learn more about SysConfig
• Texas Instruments, MSPM0L LaunchPad™

• Texas Instruments, MSPM0G LaunchPad™

• Texas Instruments, MSPM0C LaunchPad™

• Texas Instruments, MSPM0 Academy

10 E2E
See TI's E2E™ support forums to view discussions and post new threads to get technical support for utilizing
MSPM0 devices in designs.

11 Trademarks
LaunchPad™ and E2E™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

Results www.ti.com

4 Emulating a Digital MUX SLAAEC8 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AMztb67RYAJCCVC9dL423Q__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com/tool/LP-MSPM0L1306
https://www.ti.com/tool/LP-MSPM0G3507
https://www.ti.com/tool/LP-MSPM0C1104
https://dev.ti.com/tirex/global?id=MSPM0-ACADEMY
https://e2e.ti.com/
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC8&partnum=MSPM0G3507SRGE

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	1 Description
	2 Required Peripherals
	3 Compatible Devices
	4 Design Steps
	5 Design Considerations
	6 Software Flow Chart
	7 Application Code
	8 Results
	9 Additional Resources
	10 E2E
	11 Trademarks

