
Subsystem Design
I2C Expander Through UART Bridge

1 Description
Figure 1-1 shows how to transfer data or commands from a universal asynchronous receiver-transmitter (UART)
interface to several target I2C controllers using the MSPM0 as an I2C expander. Incoming UART packets are
specifically formatted to facilitate the transition to I2C communication. Figure 1-1 also illustrates how errors can
be communicated back to the host device. Code for this example is found in the MSPM0 SDK.

Host Device

UART

MSPM0

UART

I2C

(Controller)

I2C

(Controller)

VCC
I2C Peripheral 1

I2C Peripheral 2

VCC

I2C Peripheral 3

I2C Peripheral 4

Figure 1-1. Subsystem Functional Block Diagram

2 Required Peripherals
This application requires a UART and I2C peripherals.

Table 2-1. Required Peripherals
Sub-block Functionality Peripheral Use Notes

UART TX-RX Interface (1 ×) UART Called UART_BRIDGE_INST in code

I2C Controllers (2 ×) I2C Called I2C_BRIDGE_INST and I2C_BRIDGE2_INST in
code

www.ti.com Description

SLAAEN9 – SEPTEMBER 2024
Submit Document Feedback

I2C Expander Through UART Bridge 1

Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/global?id=mspm0_sdk_lp_mspm0l1306_msp%20subsystems_i2c_expander_uart_to_i2c_bridge
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN9&partnum=MSPM0L,

3 Compatible Devices
Table 3-1 lists the compatible devices with the corresponding EVMs based on the requirements in Table 2-1.
Using other MSPM0 devices and corresponding EVMs is possible if the requirements in Table 2-1 are met.

Table 3-1. Compatible Devices
Compatible Devices EVM

MSPM0Lxxxx LP-MSPM0L1306

MSPM0Gxxxx LP-MSPM0G3507

4 Design Steps
1. Set UART peripheral instance, I2C peripheral instance, and pin out to desired device pins in SysConfig.
2. Set UART baud rate in SysConfig. Default is 9600baud.
3. Set I2C clock speed in SysConfig. Default is 100kHz.
4. Define the maximum I2C packet size the bridge handles.
5. Define key UART header values (optional).
6. Customize error handling (optional).

5 Design Considerations
• Communication Speeds: Increasing speeds increases data throughput and decreases chances of collision.

Adjusting the external pullup resistors according to I2C specifications is necessary to allow for communication
if I2C speeds are increased. Optimizations include higher device operating speeds, multiple transfer buffers,
header size reduction, or state machine simplification.

• UART Header: The UART packer header and start byte are customizable for the application. Texas
Instruments recommends assigning values that are less likely to occur during the start of typical data
transfers.

• Error Handling: Correspond the error values to ASCII numerical values if monitoring UART bus with a
computer terminal. Make sure the host UART device can read error values and know the associated
meanings so appropriate action can be taken by the host. Add additional error types by modifying the
ErrorFlags structure type and add additional error detection code within the Uart_Bridge(). The current
implementation detects limited errors and reports back the corresponding code on the UART interface. The
application code then breaks from the current communication state machine. Users can add additional error
handling code to change the behavior of the bridge when an error occurs. For example, re-sending an I2C
packet after a NACK occurs.

Compatible Devices www.ti.com

2 I2C Expander Through UART Bridge SLAAEN9 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LP-MSPM0L1306
https://www.ti.com/tool/LP-MSPM0G3507
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN9&partnum=MSPM0L,

6 Software Flow Charts
Figure 6-1, Figure 6-2, and Figure 6-3 show the code flow diagrams for Main UART Bridge functionality, Main()
plus UART ISR, and I2C ISR, respectively, for Figure 1-1.

Break

True

False

True

False

False

False

True

True

True

True

True

True

False False

False

False

Uart_Bridge()
Switch:

 UART Bridge Status

Wai�ng

RX more bytes than

UART Header?

Break

Set I2C Address, I2C

Controller, Length, R/W.

U.B.Status = START

START

I2C length or

R/W Error?

Set Error �ag.

U.B.Status =

Error

I2C Write?

I2C Read?

Wait for full UART RX.

Transfer data to I2C buf.

U.B.Status = I2C Write

U.B.Status =

I2C Read

Reset UART controls.

Clear I2C R/W

I2C Write

Fill I2C TX FIFO

Check if �lling FIFO

covers all data

to be wri�en

Disable TX FIFO

Interrupt

Enable TX FIFO

Interrupt

I2C Status = TX Started

All I2C bytes sent and

I2C Status = Idle?

Break

Reset I2C counts;

U.B.Status = Wai�ng

I2C Read

All I2C Bytes Recieved?

I2C Status = RX Started

U.B.Status = TX UART

TX UART

TX I2C data received;

Reset I2C counts;

U.B.Status = Wai�ng

Error

Error already TX?

U.B.Status = Wai�ng;

Clear UART Start

Detect

Break

Clear UART RX Data

Figure 6-1. Software Flow Diagram for UART_Bridge()

www.ti.com Software Flow Charts

SLAAEN9 – SEPTEMBER 2024
Submit Document Feedback

I2C Expander Through UART Bridge 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN9&partnum=MSPM0L,

MAIN() Error detected?

Uart_Bridge()Sleep

Send error over UART;

Reset error �ag

False

True

UART ISR:

RX Interrupt

UART Start byte

detected?

Exit

Fill UART Receive bu�er.

gUartStartDetected =true
UART Bu�er over�ow?

Set UART

over�ow error

�ag

True

False

True

False

Figure 6-2. Software Flow Diagrams for MAIN Loop and UART ISR

Software Flow Charts www.ti.com

4 I2C Expander Through UART Bridge SLAAEN9 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN9&partnum=MSPM0L,

I2C ISR:

Switch source

Check for bu�er

overrun

TX FIFO Trigger

INT

TX DONE

 INT

RX DONE

 INT

RX FIFO Trigger

INT

I2C NACK

 INT

I2C Status =

TX_IN_PROGRESS

Disable TX_FIFO Interrupt;

I2C Status = TX_COMPLETE

I2C Status =

RX_COMPLETE

I2C Status =

RX_IN_PROGRESS

I2C Status = ERROR;

Set I2C NACK error

�ag

Fill FIFO to

gI2C_Length

Fill data bu�er to

gI2C_Length

Set I2C overrun

error �ag

Break;

Exit

True

False

Figure 6-3. Software Flow Diagram for I2C ISR

7 Required UART Packet
Figure 7-1 shows the required UART packet for proper bridging to the I2C interface. The values shown are the
default header values defined within Figure 1-1.

• Start Byte: The value used by the bridge to indicate a new transaction is starting. UART transmissions are
ignored until this value is acknowledged by the bridge.

• I2C Address: The address of the I2C target the host communicates with.
• I2C Read or Write Indicator: The value that functions the bridge to read or write from the target I2C device.
• Message Length N: The length of data transferred in bytes. This value cannot be larger than the defined I2C

maximum packet length.
• Bridge Index: The I2C controller that the host communicates on.
• D0, D1...., Dn: The data transferred within the bridge.

Start Byte

(0xF8)
Address Byte

I2C W Byte

(0xFB)

Length Byte

N
D0 D1…. DN

UART Header Data

Start Byte

(0xF8)
Address Byte

I2C R Byte

(0xFA)

Length Byte

N

I2C Write

Packet

I2C Read

Packet
I2C Controller

I2C Controller

Figure 7-1. UART Bridge Packet Description

www.ti.com Required UART Packet

SLAAEN9 – SEPTEMBER 2024
Submit Document Feedback

I2C Expander Through UART Bridge 5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN9&partnum=MSPM0L,

8 Device Configuration
This application makes use of TI System Configuration Tool (SysConfig) graphical interface to generate the
configuration code for the COMP and two TIMER modules. Using a graphical interface to configure the device
peripherals streamlines the application prototyping process.

9 Application Code
To change the specific values used by the UART packet or the maximum I2C packet size, modify the following
#defines in the beginning of the code example, as demonstrated in the following code block:

/* Define UART Header and Start Byte*/
#define UART_HEADER_LENGTH 0x04
#define UART_START_BYTE 0xF8
#define UART_READ_I2C_BYTE 0xFA
#define UART_WRITE_I2C_BYTE 0xFB
#define ADDRESS_INDEX 0x00
#define RW_INDEX 0x01
#define LENGTH_INDEX 0x02
#define BRIDGE_INDEX 0x03

/*Define max packet sizes*/
#define I2C_MAX_PACKET_SIZE 16
#define UART_MAX_PACKET_SIZE (I2C_MAX_PACKET_SIZE + UART_HEADER_LENGTH)

10 Additional Resources
• Texas Instruments, I2C Expander Sub-System Code
• Texas Instruments, Download the MSPM0 SDK
• Texas Instruments, Learn more about SysConfig
• Texas Instruments, MSPM0L LaunchPad™

• Texas Instruments, MSPM0G LaunchPad™

• Texas Instruments, MSPM0 UART Academy
• Texas Instruments, MSPM0 I2C Academy

11 E2E
See TI's E2E™ support forums to view discussions and post new threads to get technical support for utilizing
MSPM0 devices in designs.

12 Trademarks
LaunchPad™ and E2E™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

Device Configuration www.ti.com

6 I2C Expander Through UART Bridge SLAAEN9 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/SYSCONFIG
https://dev.ti.com/tirex/global?id=mspm0_sdk_lp_mspm0l1306_msp%20subsystems_i2c_expander_uart_to_i2c_bridge
https://dev.ti.com/tirex/explore/node?node=A__AMztb67RYAJCCVC9dL423Q__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com/tool/LP-MSPM0L1306
https://www.ti.com/tool/LP-MSPM0G3507
https://dev.ti.com/tirex/explore/node?a=a3PaaoK__1.10.01.05&node=A__AVkPxX6hRXRpPST-l6LGfQ__MSPM0-ACADEMY__2f1Egw1__LATEST
https://dev.ti.com/tirex/explore/node?a=a3PaaoK__1.10.01.05&node=A__Adk.xJzQkkC7nuidYK5bXg__MSPM0-ACADEMY__2f1Egw1__LATEST
https://e2e.ti.com/
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN9&partnum=MSPM0L,

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	1 Description
	2 Required Peripherals
	3 Compatible Devices
	4 Design Steps
	5 Design Considerations
	6 Software Flow Charts
	7 Required UART Packet
	8 Device Configuration
	9 Application Code
	10 Additional Resources
	11 E2E
	12 Trademarks

