

DAC7573, DAC6573, and DAC5573 Evaluation Module

User's Guide

EVM IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation kit being sold by TI is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not considered by TI to be fit for commercial use. As such, the goods being provided may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product incorporating the goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.

Should this evaluation kit not meet the specifications indicated in the EVM User's Guide, the kit may be returned within 30 days from the date of delivery for a full refund. **THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.**

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user **is not exclusive**.

TI assumes **no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein**.

Please read the EVM User's Guide and, specifically, the EVM Warnings and Restrictions notice in the EVM User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact the TI application engineer.

Persons handling the product must have electronics training and observe good laboratory practice standards.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 0 V - $V_{DD} +0.3$ V and the output voltage range of ± 4.5 V and ± 18 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 100°C. The EVM is designed to operate properly with certain components above 100°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This user's guide describes the characteristics, operation, and the use of the DAC7573, DAC6573, DAC5573 Evaluation Module. It covers all pertinent areas involved to properly use this EVM board along with the devices that it supports. The physical PCB layout, schematic diagram and circuit descriptions are included.

How to Use This Manual

This document contains the following chapters:

Chapter 1 – EVM Overview

Chapter 2 – PCB Design

Chapter 3 – EVM Operation

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially cause harm to you.

The information in a caution or a warning is provided for your protection. Please read each caution and warning carefully.

Related Documentation From Texas Instruments

To obtain a copy of any of the following TI documents, call the Texas Instruments Literature Response Center at (800) 477-8924 or the Product Information Center (PIC) at (972) 644-5580. When ordering, identify this manual by its title and literature number. Updated documents can also be obtained through our Web site at www.ti.com.

Data Sheets:	Literature Number:
DAC7573	SLAS398
DAC6573	SLAS402
DAC5573	SLAS401
REF02	SBVS-003A
OPA627	PDS-998H
OPA2132	PDS-1309B

Questions about this or other Data Converter EVMs?

If you have questions about this or other Texas Instruments Data Converter evaluation modules, feel free to e-mail the Data Converter Application Team at datacnvapps@list.ti.com. Include in the subject heading the product you have questions or concerns with.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

Trademarks

I²C is a trademark of Philips Corporation.

Contents

1	EVM Overview	1-1
1.1	Features	1-2
1.2	Power Requirements	1-2
1.2.1	Supply Voltage	1-2
1.2.2	Reference Voltage	1-3
1.3	EVM Basic Functions	1-3
2	PCB Design	2-1
2.1	PCB Layout	2-2
2.2	Bill of Materials	2-6
3	EVM Operation	3-1
3.1	Factory Default Setting	3-2
3.2	Host Processor Interface	3-2
3.3	EVM Stacking	3-3
3.4	Output Op Amp	3-3
3.4.1	Unity Gain Output	3-4
3.4.2	Output Gain of Two	3-4
3.4.3	Capacitive Load Drive	3-5
3.4.4	Optional Signal Conditioning Op Amp (U8B)	3-5
3.5	Jumper Setting	3-6
3.6	Schematic	3-7

Figures

1-1	EVM Block Diagram	1-4
2-1	Top Silkscreen	2-3
2-2	Layer 1 (Top Signal Plane)	2-3
2-3	Layer 2 (Ground Plane)	2-3
2-4	Layer 3 (Power Plane)	2-4
2-5	Layer 4 (Bottom Signal Plane)	2-4
2-6	Bottom Silkscreen	2-4
2-7	Drill Drawing	2-5

Tables

1-1	Featured DAC Selections	1-2
2-1	Parts List	2-6
3-1	DACx573EVM Factory-Default Jumper Configuration	3-2
3-2	DACx573 Output Channel Mapping	3-3
3-3	Unity Gain Output Jumper Settings	3-4
3-4	Gain of Two Output Jumper Settings	3-4
3-5	Capacitive-Load Drive Jumper Settings	3-5
3-6	Jumper Setting Function	3-6

Chapter 1

EVM Overview

This chapter gives a general overview of the DAC7573, DAC6573, and DAC5573 evaluation module (EVM), and describes some of the factors that must be considered in using this module.

Topic	Page
1.1 Features	1-2
1.2 Power Requirements	1-2
1.3 EVM Basic Functions	1-3

1.1 Features

This EVM features the DAC7573, DAC6573 and DAC5573 family of digital-to-analog converters. In this user's guide, the EVM is referred to as the DACx573 EVM to cover all supported DAC parts. The DACx573 EVM provides a quick and easy way to evaluate the functionality and performance of these 12-bit, 10-bit, and 8-bit resolution, quad-channel, and serial I²C-input DACs. The following table shows the three DAC types this EVM supports. The EVM also provides an I²C serial interface to communicate with any host microprocessor- or TI DSP-based system.

Table 1-1. Featured DAC Selections

EVM Version	Installed Device (DUT)	DAC Channels	Resolution
DAC7573 EVM	DAC7573IPW	4	12-Bit
DAC6573 EVM	DAC6573IPW	4	10-Bit
DAC5573 EVM	DAC5573IPW	4	8-Bit

1.2 Power Requirements

This section describes the power requirements of this EVM.

1.2.1 Supply Voltage

The power supply requirement for the digital section (V_{DD}) of this EVM is typically 5 V, connected via J5-1 or J6-10 when used with another EVM or interface card. It is referenced to ground through the J5-2 and J6-5 terminals. The power supply requirements for the analog section of this EVM are as follows:

V_{CC} and V_{SS} range from 15.75 V to -15.75 V maximum, and connects through J1-3 and J1-1 respectively, or through the J6-1 and J6-2 terminals.

The 5-VA supply connects through J5-3 or J6-3 and the 3.3-VA supply connects through J6-8.

All analog power supplies are referenced to analog ground through the J1-2 and J6-6 terminals.

The analog power supply for the device under test (DUT), U1, can be supplied by either 5 VA or 3.3 VA via jumper W1. This allows the DACx573 analog section to operate from either supply while the I/O and digital section is powered by 5 V, V_{DD} .

The V_{CC} supply is mainly used as the positive rail of the external output operational amplifier (op amp), U2, the reference chip, U3, and the reference buffer, U8. The negative rail of the output op amp, U2, can be selected between V_{SS} and AGND via jumper W5. The external op amp is installed as an option to provide output signal conditioning, to boost capacitive load drive (via W15), and for other output-mode requirements.

Caution

To avoid potential damage to the EVM board, make sure that the correct cables are connected to their respective terminals as labeled on the EVM board.

Stresses above the maximum listed voltage ratings may cause permanent damage to the device.

1.2.2 Reference Voltage

The 5-V precision voltage reference is provided to supply the external voltage reference for the DAC through REF02, U3, via jumper W4 by shorting pins 1 and 2. The reference voltage goes through 100-k Ω potentiometer R11 in series with 20-k Ω R10 to allow the user to adjust the reference voltage to a desired level. The voltage reference is then buffered through U8A to the DUT. Test points TP1, TP2, and TP5 are also provided, as well as J4-18 and J4-20, to allow the user to connect another external reference source if the onboard reference circuit is not used. The external voltage reference must not exceed 5 Vdc.

The REF02 precision reference is powered by V_{CC} (15 V) through the J1-3 or J6-1 terminal.

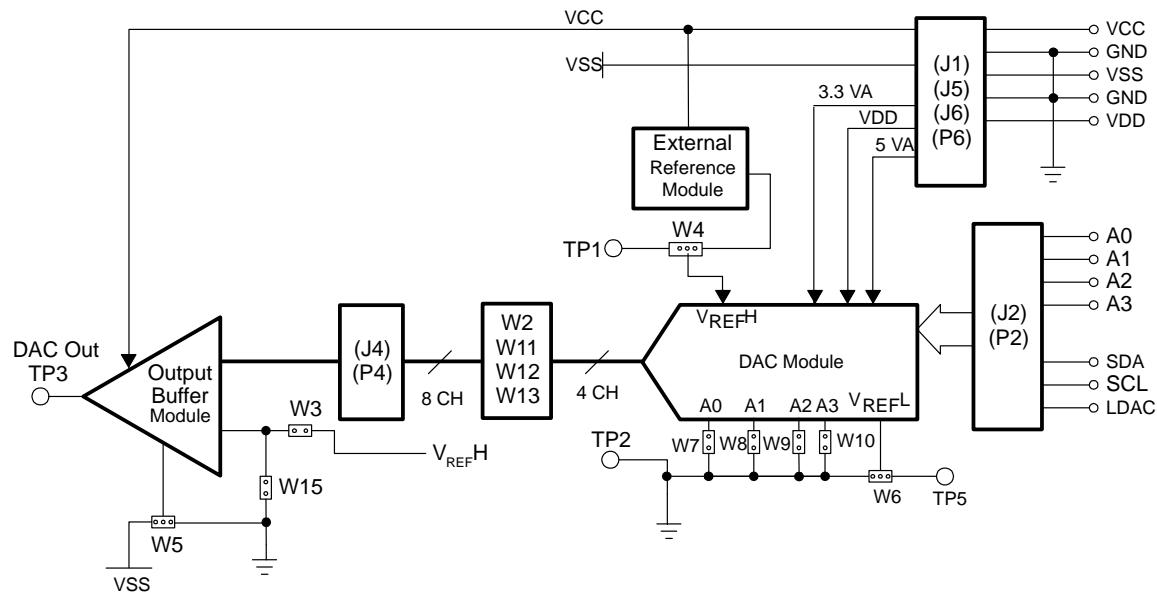
Caution

When applying an external voltage reference through TP1 or J4-20, make sure that it does not exceed 5 V maximum. Otherwise, this can permanently damage the installed device under test (DUT).

1.3 EVM Basic Functions

The DACx573 EVM is a functional-evaluation platform to demonstrate the operation of the DACx573 family of digital-to-analog converters. Functional evaluation of the DAC device can be conducted with any microprocessor, TI DSP, or a waveform generator.

Header connectors J2 and P2 allow control signals and data from a host processor or waveform generator to interface with the DACx573 EVM using a custom-built cable.


Specific adapter interface boards are also available for many TI DSP Starter Kits (DSKs). Specify the correct adapter interface board for the TI DSP Starter Kit to be used. In addition, an MSP430-based platform (HPA449) that uses the MSP430F449 microprocessor is available that directly interfaces with this EVM. For more information regarding the adapter-interface board or the HPA449 platform, please call Texas Instruments or send email to dataconvapps@list.ti.com.

The DAC outputs can be monitored through the J4 header connector. All the outputs can be switched by their respective jumpers W2, W11, W12, and W13 for stacking. Stacking allows eight DAC channels to be used, provided that the I²C address is unique for each EVM board stacked.

In addition, one DAC output can be fed to the noninverting side of output op amp U2 by installing a jumper across the appropriate pins of J4. Output op amp U2 must first be configured correctly for the desired waveform characteristic. Refer to Chapter 3 of this user's guide for more information.

A block diagram of the EVM is shown in Figure 1-1.

Figure 1-1. EVM Block Diagram

Chapter 2

PCB Design

This chapter describes the physical and mechanical characteristics of the EVM. The bill of materials is also included in this chapter.

Topic	Page
2.1 PCB Layout	2-2
2.2 Bill of Materials	2-6

2.1 PCB Layout

The DACx573 EVM demonstrates the performance of the installed DAC device under test, as specified in the data sheet. Careful analysis of the physical restrictions and performance-degrading factors of the EVM is vital to a successful design implementation. The obvious attributes that can cause poor performance of the EVM can be avoided during schematic design by proper component selection and correct circuit-design practices. The circuit must include adequate bypassing, identifying, and managing the analog and digital signals and understanding the mechanical attributes of the components.

The less obvious part of the design lies in the PCB layout. The main concerns are component placement and proper signal routing. The bypass capacitors must be placed as close as possible to the pins and the analog and digital signals must be properly separated from each other. The power and ground planes are very important and require careful consideration. A solid plane is preferred, but sometimes impractical. When solid planes are not possible, a well-designed split plane can suffice. When considering a split-plane design, analyze the component placement and carefully divide the board into its analog and digital sections starting from the device under test. The ground plane plays an important role in controlling noise and other effects that can contribute to DAC output error. To ensure that return currents are handled properly, route the appropriate signals only in their respective sections. Route analog traces only directly above or below the analog section, and the digital traces in the digital section. Minimize trace length, but use the widest possible trace allowable in the design. These design practices are demonstrated in subsequent figures in this section.

The DACx573 EVM board is constructed on a four-layer printed circuit board using a copper-clad FR-4 laminate material. The printed circuit board has a dimension of 43,1800 mm (1.7000 inch) X 82,5500 mm (3.2500 inch), and the board thickness is 1,5748 mm (0.0620 inch). Figure 2-1 through Figure 2-6 show the individual artwork layers.

Figure 2 - 1. Top Silkscreen

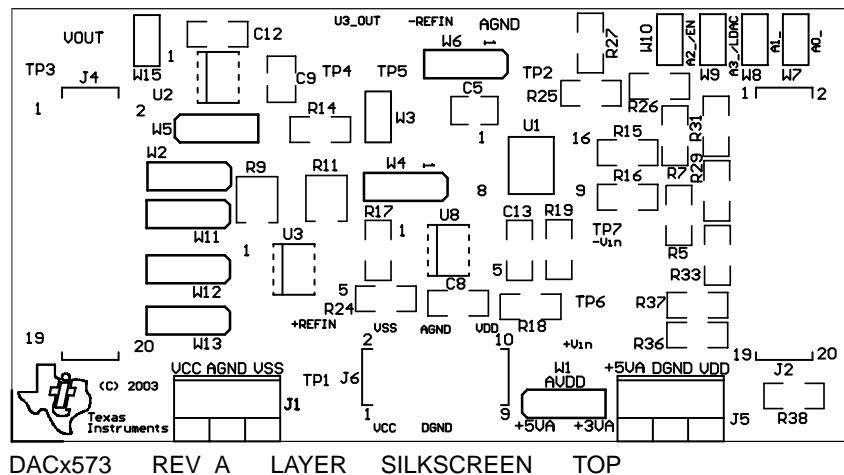


Figure 2 - 2. Layer 1 (Top Signal Plane)

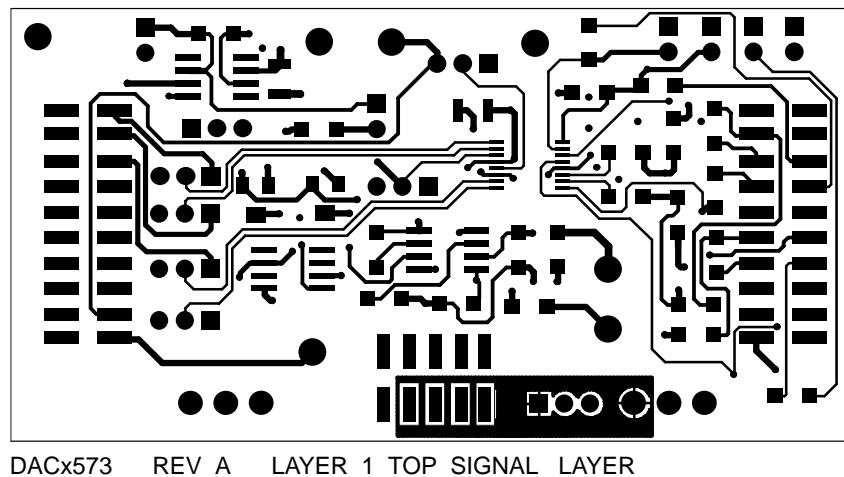


Figure 2 - 3. Layer 2 (Ground Plane)

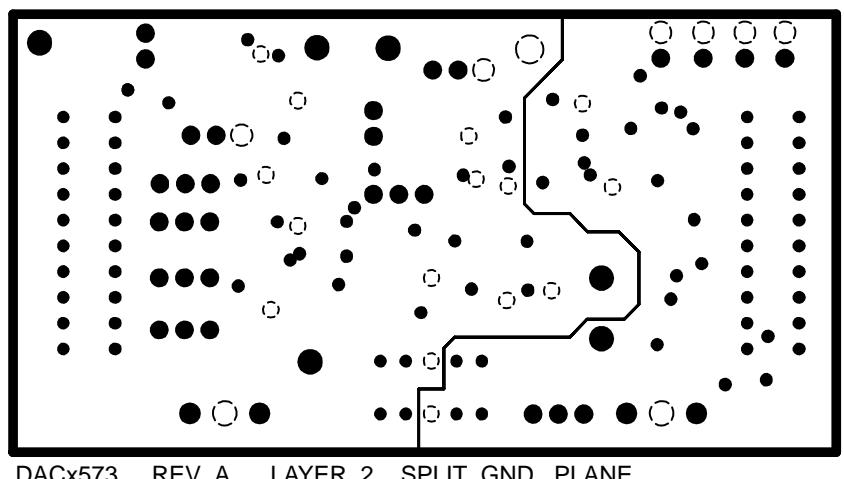


Figure 2-4. Layer 3 (Power Plane)

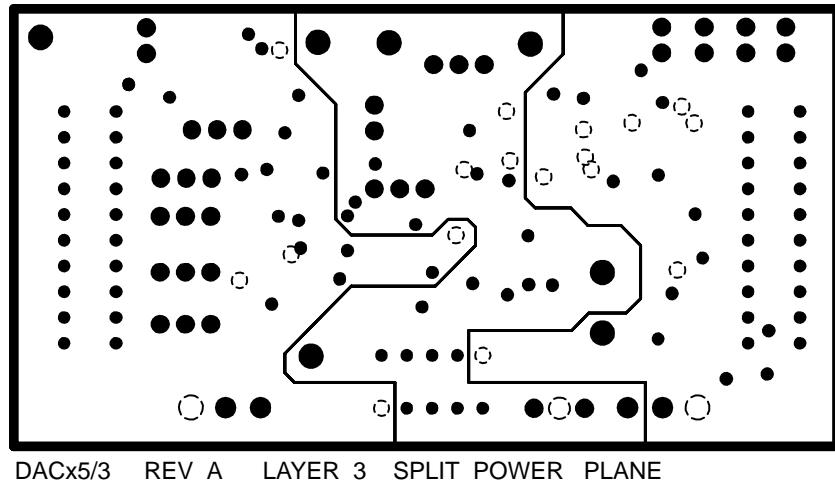


Figure 2-5. Layer 4 (Bottom Signal Plane)

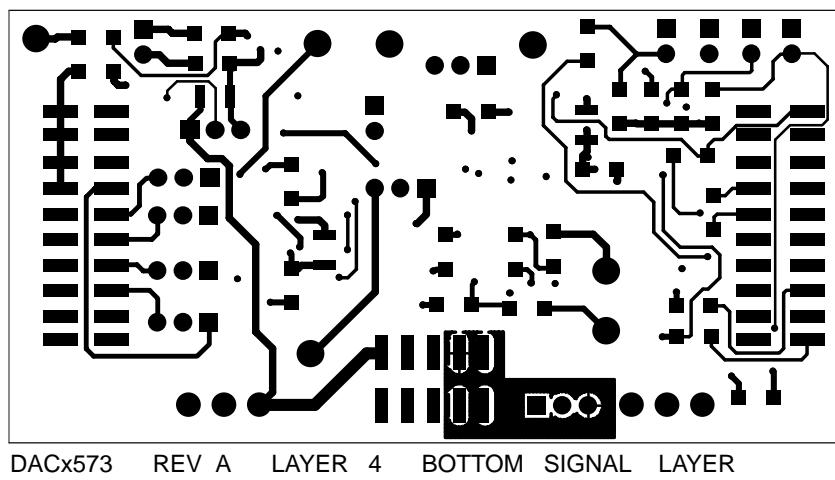


Figure 2-6. Bottom Silkscreen

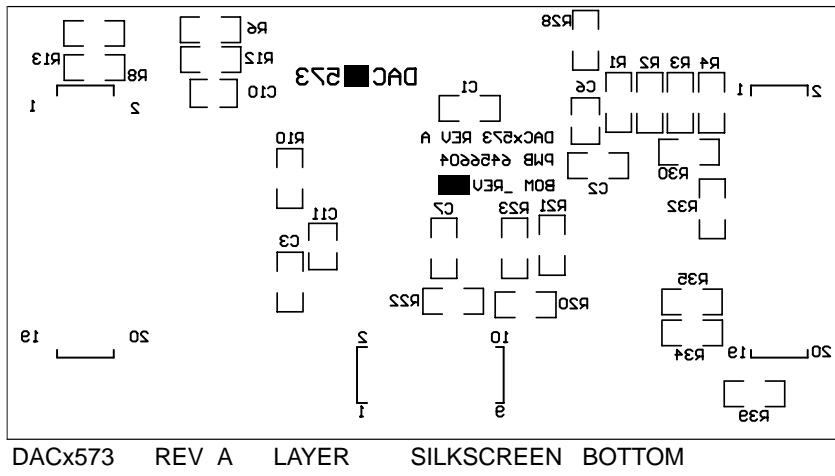
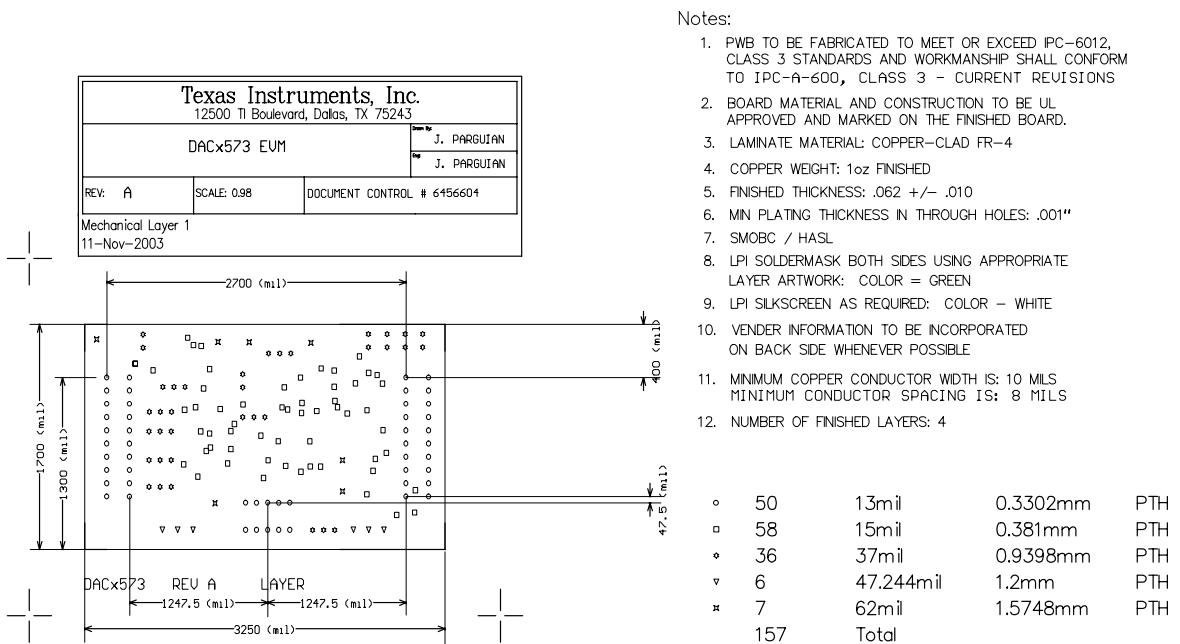



Figure 2-7. Drill Drawing

2.2 Bill of Materials

Table 2 - 1. Parts List

Item #	Qty	Designator	Mfr.	Part Number	Description
1	2	C9 C10	Panasonic	ECUV1H105JCH	1- μ F, 1206 multilayer-ceramic capacitor
2	4	C1 C2 C3 C7	Panasonic	ECJ3VB1C104K	0.1- μ F, 1206 multilayer-ceramic capacitor
3	1	C12	Panasonic	ECUV1H102JCH	1-nF, 1206 multilayer ceramic capacitor
4	3	C5 C6 C11	Kemet	C1210C106K8PAC	10- μ F, 1210 multilayer ceramic X5R capacitor
5	17	R8 R17 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39	Panasonic	ERJ-8GEY0R00V	0- Ω , 1/4-W 1206 chip resistor
6	2	R15 R16	Panasonic	ERJ-8GEYJ431V	430- Ω , 1/4-W 1206 chip resistor
7	1	R13	Panasonic	ERJ-8GEYJ101V	100- Ω , 1/4-W 1206 chip resistor
8	1	R10	Panasonic	ERJ-8ENF2002V	20-k Ω , 1/4-W 1206 chip resistor
9	6	R1 R2 R3 R4 R5 R7	Panasonic	ERJ-8GEYJ302V	3-k Ω , 1/4-W 1206 chip resistor
10	3	R6 R12 R14	Panasonic	ERJ-8ENF1002V	10-k Ω , 1/4-W 1206 chip resistor
11	1	R9	Bourns	3214W-203E	20-k Ω , BOURNS_32X4W series 5T pot
12	1	R11	Bourns	3214W-104E	100-k Ω , BOURNS_32X4W series 5T pot
13	1	J6	Samtec	TSM-105-01-T-DV	5X2X0.1, 10-pin 3 A isolated power socket
14	2	J2 J4	Samtec	TSM-110-01-S-DV-M	10X2X1.1, 20 Pin 0.025" sq SMT socket
15	2	J1 J5	On-Shore Technology	ED555/3DS	3-pin terminal connector
16	1	U1	Texas Instruments	DAC7573IPW	12-bit, quad output, I ² C DAC
				DAC6573IPW	10-bit, quad output, I ² C DAC
				DAC5573IPW	8-bit, quad output, I ² C DAC
17	1	U2	Texas Instruments	OPA627AU	8-SOP(D) precision op amp
18	1	U3	Texas Instruments	REF02AU	5-V, 8-SOP(D) precision voltage reference
19	1	U8	Texas Instruments	OPA2132UA	8-SOP(D) Dual Precision Op Amp
20	7	TP1 TP2 TP3 TP4 TP5 TP6 TP7	Mill-max	2348-2-01-00-00-07-0	Turret terminal test point
21	2	P2 P4 (see Note)	Samtec	SSW-110-22-S-D-VS-P	20-pin 0.025" square SMT terminal strips
22	1	P6 (see Note)	Samtec	SSW-105-F-D-VS-K	3-A isolated 10-pin power header
23	6	W3 W7 W8 W9 W10 W15	Molex	22-03-2021	2 position jumper, 0.1" spacing
24	8	W1 W2 W4 W5 W6 W11 W12 W13	Molex	22-03-2031	3 position jumper, 0.1" spacing

Note: P2, P4, and P6 parts are not shown in the schematic diagram. All the P-designated parts are installed on the bottom side of the PC board opposite the J-designated counterpart. Example, J2 is installed on the top side while P2 is installed in the bottom side opposite of J2. Not all parts listed in the BOM are installed in the EVM as they are specific to the DUT installed.

Chapter 3

EVM Operation

This chapter details the operation of the EVM to guide the user in evaluating the onboard DAC and in interfacing the EVM to a host processor.

Refer to the specific DAC data sheet, as listed in the *Related Documentation From Texas Instruments* section in the *Preface* of this user's guide for more information about the DAC serial interface and other related topics.

The EVM board is factory-configured to operate in the unipolar output mode.

Topic	Page
3.1 Factory Default Setting	3-2
3.2 Host Processor Interface	3-2
3.3 EVM Stacking	3-3
3.4 The Output Op Amp	3-3
3.5 Jumper Setting	3-6
3.6 Schematic Diagram	3-7

3.1 Factory Default Setting

The EVM board is factory-configured to operate in unipolar 5-V output mode.

Table 3-1. DACx573EVM Factory-Default Jumper Configuration

DACx573 EVM CONFIGURATION		
Reference	Jumper Position	Function
W1	1-2	Analog supply for the DACx573 is 5 VA.
W2	1-2	DAC output A (V_{OUTA}) is routed to J4-2.
W3	Open	V_{REFH} is not routed to the inverting input of the op amp.
W4	1-2	Onboard external buffered reference U3 is routed to V_{REFH} .
W5	1-2	Negative supply rail of U2 op amp is supplied by V_{SS} .
W6	1-2	V_{REFL} is tied to AGND.
W7	Closed	A0 pin is tied to DGND.
W8	Closed	A1 pin is tied to DGND.
W9	Closed	A3 pin is tied to DGND.
W10	Closed	A2 pin is tied to DGND.
W11	1-2	DAC output B (V_{OUTB}) is routed to J4-4.
W12	1-2	DAC output C (V_{OUTC}) is routed to J4-6.
W13	1-2	DAC output D (V_{OUTD}) is routed to J4-8.
W15	Closed	Output op amp U2 is configured for a gain of 2.
J4	1-2	DAC output A (V_{OUTA}) is connected to the noninverting input of output op amp U2.

3.2 Host Processor Interface

Because the host processor controls the DAC, proper operation depends on the correct interface of the host processor and the EVM board. Properly written code is also required to operate the DAC.

A host-platform-specific cable assembly can be made to connect the EVM to the host processor through J2 for the I²C serial control and data signals. The output is monitored through J4.

An interface adapter board is available for specific TI DSP starter kits as well as for an MSP430-based microprocessor as mentioned in section 1.3. Using the interface board alleviates the tedious task of building custom cables and allows easy configuration of a simple evaluation system.

This DACx573 EVM interfaces with any host processor capable of I²C protocols or the popular TI DSP. For more information regarding the serial interface of the particular DAC installed, refer to the specific DAC data sheet, as listed in the *Related Documentation From Texas Instruments* section in the *Preface* of this user's guide.

3.3 EVM Stacking

EVM stacking enables the designer to evaluate two DACx573s in tandem to yield an eight-channel output. A maximum of two DACx573 EVMs are allowed because the output terminal, J4, dictates the number of DAC channels that can be connected without colliding. Table 3-2 shows how the DAC output channels are mapped to the output terminal, J4, with respect to the jumper positions of W2, W11, W12, and W13.

Table 3-2. DACx573 Output Channel Mapping

Reference	Jumper Position	Function
W2	1-2	DAC output A (V_{OUTA}) is routed to J4-2.
	2-3	DAC output A (V_{OUTA}) is routed to J4-10.
W11	1-2	DAC output B (V_{OUTB}) is routed to J4-4.
	2-3	DAC output B (V_{OUTB}) is routed to J4-12.
W12	1-2	DAC output C (V_{OUTC}) is routed to J4-6.
	2-3	DAC output C (V_{OUTC}) is routed to J4-14.
W13	1-2	DAC output D (V_{OUTD}) is routed to J4-8.
	2-3	DAC output D (V_{OUTD}) is routed to J4-16.

Each DAC EVM in a stacked configuration must have a unique I²C address. This is accomplished by configuring address jumpers W7 and W8 (refer to the data sheet for I²C addressing).

The LDAC signal can be shared to have a synchronous DAC-output update and can be hardware-driven by GPIO0. If software control of the LDAC is desired, the GPIO0 signal must be set low through software or J2-pin 2 can be strapped to DGND.

3.4 Output Op Amp

The EVM includes an optional signal conditioning circuit for the DAC output through an external operational amplifier, U2. Only one DAC output channel can be monitored at any given time because the odd numbered pins (J4-1 to J4-7) are tied together. The output op amp gain is configured at two by default. The unbuffered outputs of the DAC can be probed through the even pins of J4, the output terminal, which also provides mechanical stability when stacking or plugging into an interface board. J4 also provides easy access for monitoring up to eight DAC channels when stacking two EVMs together, as described in section 3.3.

The following sections describe various configurations of the output amplifier, U2.

3.4.1 Unity Gain Output

The buffered output configuration can be used to prevent loading the DAC. However, it may present some slight distortion because of the feedback resistor and capacitor. The user can tailor the feedback circuit to closely match the desired wave shape by simply removing R7 and C11 and replacing them with the desired values. R7 can be replaced with a zero-ohm resistor and C11 can be left open, if desired.

Table 3-3 shows the jumper settings for the unity gain configuration of the output buffer in unipolar or bipolar supply mode.

Table 3-3. Unity Gain Output Jumper Settings

Reference	Jumper Setting		Function
	Unipolar	Bipolar	
W3	Open	Open	Disconnects TP2 input or AGND from the inverting input of the op amp
W5	2-3	1-2	Supplies V_{SS} to the negative rail of the op amp or ties it to AGND
W15	Open	Open	Disconnects negative input of the op amp from AGND

3.4.2 Output Gain of Two

Table 3-4 shows the proper jumper settings of the EVM for the $2\times$ gain output of the DAC.

Table 3-4. Gain of Two Output Jumper Settings

Reference	Jumper Setting		Function
	Unipolar	Bipolar	
W3	Closed	Closed	Inverting input of output op amp U2 is connected to V_{REFH} for use as its offset voltage with a gain of 2. Jumper W15 must be open.
	Open	Open	V_{REFH} is disconnected from the inverting input of output op amp U2. Jumper W15 must be closed.
W5	2-3	1-2	Supplies power, V_{SS} , to the negative rail of op amp U2 for bipolar supply mode, or ties it to AGND for unipolar supply mode
W15	Closed	Closed	Configures op amp U2 for a gain of 2 output without an offset voltage. Jumper W3 must be open.
	Open	Open	Inverting input of op amp U2 is disconnected from AGND. Jumper W3 must be closed.

3.4.3 Capacitive Load Drive

Another output configuration option is to drive a wide range of capacitive loads. All op amps under certain conditions may become unstable depending on configuration, gain, and load value. In unity gain, the OPA627 op amp performs well with large capacitive loads. Increasing the gain and adding a load resistor further improves the capacitive load drive capability.

Table 3-5 shows the proper jumper settings of the EVM for the 2X gain output of the DAC.

Table 3-5. Capacitive-Load Drive Jumper Settings

Reference	Jumper Setting		Function
	Unipolar	Bipolar	
W3	Open	Open	V_{REFH} is disconnected from the inverting input of output op amp U2.
W5	2-3	1-2	Supplies power, V_{SS} , to the negative rail of op amp U2 for bipolar supply, or ties it to AGND for unipolar supply.
W15	Open	Open	Capacitive load drive output of DAC is routed to jumper-W15 pin 1, and this pin can be used as the output terminal.

3.4.4 Optional Signal Conditioning Op Amp (U8B)

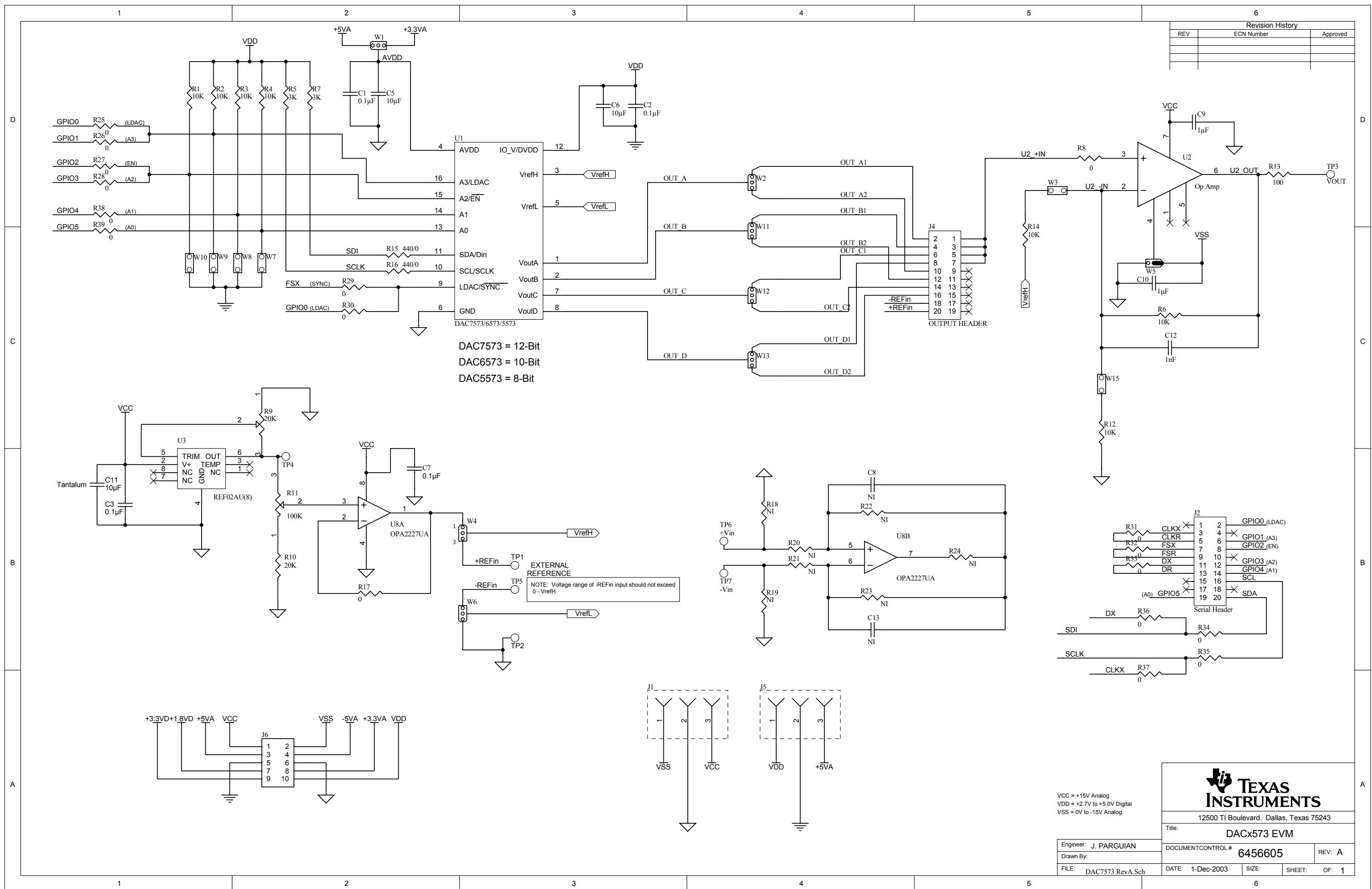
One device of the dual-op amp OPA2132 (U8) is used for reference buffering (U8A), while the other is unused. This unused op amp (U8B) is available for user-configured circuitry. The 1206-package resistor and capacitor footprints associated with the U8B op amp are unpopulated and available for easy configuration. TP6 and TP7 test points are not installed for maximum flexibility of input-signal configuration. No test point is available for the output due to space restrictions, but a wire can be simply soldered to the output of the op amp via the unused component pads connected to it.

Once the op amp circuit design is determined, it is easily implemented by simply populating the desired components and leaving unused component footprints unpopulated.

3.5 Jumper Setting

Table 3-6 shows the function of each specific jumper setting of the EVM.

Table 3-6. Jumper Setting Function


Reference	Jumper Setting	Function
W1		5-V analog supply is selected for AV _{DD} .
		+3.3-V analog supply is selected for AV _{DD} .
W2		Routes V _{OUT} A to J4-2
		Routes V _{OUT} A to J4-10
W3		Disconnects V _{REFH} to the inverting input of output op amp U2.
		Connects V _{REFH} to the inverting input of output op amp U2.
W4		Routes the adjustable, buffered, onboard 5-V reference to the V _{REFH} input of the DACx573.
		Routes the user supplied reference from TP1 or J4-20 to the V _{REFH} input of the DACx573.
W5		Negative supply rail of the output op amp U2 is powered by V _{SS} for bipolar operation.
		Negative supply rail of the output op amp U2 is tied to AGND for unipolar operation.
W6		V _{REFL} is tied to AGND.
		Routes the user-supplied negative reference from TP2 or J4-18 to the V _{REFL} input of the DACx573. This voltage must be within the range of 0V to V _{REFH} .
W7		A0 is set high through pullup-resistor R4. A0 can be driven by GPIO5.
		A0 is set low.
W8		A1 is set high through pullup-resistor R3. A1 can be driven by GPIO4.
		A1 is set low.
W9		A3 is set high through pullup-resistor R2. A3 can be driven by GPIO1.
		LDAC pin is set low and DAC update is accomplished via software.
W10		A2 is set high through pullup-resistor R1. A2 can be driven by GPIO3.
		A2 pin is set low.
W11		Routes V _{OUT} B to J4-4
		Routes V _{OUT} B to J4-12

Reference	Jumper Setting	Function
W12		Routes V_{OUTC} to J4-6
		Routes V_{OUTC} to J4-14
W13		Routes V_{OUTD} to J4-8
		Routes V_{OUTD} to J4-16
W15		Disconnects the inverting input of output op amp U2 from AGND.
		Connects the inverting input of output op amp U2 to AGND for gain of 2.

Legend: Indicates the corresponding pins that are shorted or closed.

3.6 Schematic

The schematic is on the following page.

STANDARD TERMS FOR EVALUATION MODULES

1. *Delivery:* TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 *Limited Warranty and Related Remedies/Disclaimers:*
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.
 - 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGRADATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

3.3.1 *Notice for EVMs delivered in Japan:* Please see http://www.tij.co.jp/lsts/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。

<https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-delivered-in-japan.html>

3.3.2 *Notice for Users of EVMs Considered "Radio Frequency Products" in Japan:* EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】開発キットの中には技術基準適合証明を受けていないものがあります。技術適合証明を受けていないものご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。日本テキサス・インスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

3.3.3 *Notice for EVMs for Power Line Communication:* Please see http://www.tij.co.jp/lsts/ti_ja/general/eStore/notice_02.page
電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。<https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-for-power-line-communication.html>

3.4 European Union

3.4.1 *For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):*

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

4 *EVM Use Restrictions and Warnings:*

4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 *Safety-Related Warnings and Restrictions:*

4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. *Accuracy of Information:* To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. *Disclaimers:*

6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.

7. *USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS.* USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

8. *Limitations on Damages and Liability:*

8.1 *General Limitations.* IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.

8.2 *Specific Limitations.* IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMNITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

9. *Return Policy.* Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.

10. *Governing Law:* These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025