

DAC8550/51/52 Evaluation Module

This user's guide describes the characteristics, operation, and the use of the DAC8550/51/52 Evaluation Module. It covers all pertinent areas involved to properly use this EVM board along with the devices that it supports. The physical PCB layout, schematic diagram, and circuit descriptions are included.

Contents

1	EVM Overview	1
2	PCB Design and Performance	4
3	EVM Operation	10

List of Figures

1	EVM Block Diagram	4
2	Top Silkscreen	5
3	Layer 1 (Top Signal Plane)	5
4	Layer 2 (Ground Plane)	6
5	Layer 3 (Power Plane)	6
6	Layer 4 (Bottom Signal Plane)	7
7	Bottom Silkscreen	7
8	Drill Drawing	8
9	INL and DNL Characteristic Plot	9
10	DAC8550/51 EVM Default Jumper Configuration	11
11	DAC8552 EVM Default Jumper Configuration	12

List of Tables

1	List of DAC Devices Supported by This EVM	2
2	Parts List	9
3	Factory Default Jumper Setting	11
4	DAC Output Channel Mapping	12
5	Unity Gain Output Jumper Settings	13
6	Gain of Two Output Jumper Settings	13
7	Capacitive Load Drive Output Jumper Settings	14
8	Jumper Setting Function	15

1 EVM Overview

This section gives a general overview of the DAC8550/51/52 evaluation module (EVM) and describes some factors that must be considered in using this module.

1.1 Features

This EVM features the DAC8550/51/52 digital-to-analog converter (DAC). The DAC8550/51/52EVM is a simple evaluation module designed for quickly and easily evaluating the functionality and performance of the high-resolution, single- or dual-channel, and serial input DAC. This EVM features a serial interface to communicate with any host microprocessor or TI DSP-based system.

Although this EVM was specifically designed for the DAC8550/51 (single-channel) and DAC8552 (dual-channel) devices, it can also accommodate the DAC7512, DAC7513, DAC8501, DAC8531, and DAC8532 as they are all pin-compatible devices for the MSOP-8 (DGK) package. The DAC devices that can be installed onto the EVM board are shown in [Table 1](#). The DAC8550/51EVM or DAC8552EVM are the only EVMs that are shipped from the factory. The remaining DAC devices listed in [Table 1](#) have to be installed by the user as an option, if evaluating these devices is desired.

Table 1. List of DAC Devices Supported by This EVM

EVM Version	Device Option	Channel	Installation
12 Bit	DAC7512E	1	Optional
	DAC7513E	1	Optional
16 Bit	DAC8501E	1	Optional
	DAC8531E	1	Optional
	DAC8532IDGK	2	Optional
	DAC8550IDGK	1	Default
	DAC8551IDGK	1	Default
	DAC8552IDGK	2	Default

Although the DAC was designed for single-supply operation, a bipolar output range is also possible by properly configuring the output operational amplifier circuit. This is discussed in detail in Section 3.2.3. In addition, the external operational amplifier is also installed as an option to provide output signal conditioning or boost capacitive load drive and for other output mode requirement desired.

A +5-V precision voltage reference is provided as a default circuit reference for the DAC, but as an option, a connection terminal is also available for external voltage reference, if desired.

Also an option, a 4.096-V precision reference can be added if a REF3240 is installed via U4. Because the REF3240 does not come installed from the factory, the user must install it, if desired.

1.2 Power Requirements

The following sections describe the power requirements of this EVM.

1.2.1 Supply Voltage

The DC power supply (V_{DD}) requirement for this DAC8550/51/52EVM is selectable between +3.3 V and +5 V via W1 jumper header. The +3.3 V comes from J6-8 or J5-1 (if installed), and the +5 V comes from J6-3 or J5-3 (if installed) terminals, when plugged in via 5-6K Interface Board or the HPA449. These power supply voltages are referenced to ground through the J6-6 terminal. The V_{CC} and V_{SS} are only used by the U2 operational amplifier, which ranges from +15 V to -15 V maximum and connects through J1-3 and J1-1, respectively (if installed), or through J6-1 and J6-2 terminals. All the analog power supplies are referenced to analog ground through J1-2 and J6-6 terminals.

CAUTION

To avoid potential damage to the EVM board, ensure that the correct cables are connected to their respective terminals as labeled on the EVM board.

Stresses above the maximum listed voltage ratings may cause permanent damage to the device.

The negative rail of the output operational amplifier, U2, can be selected between VSS and AGND via W5 jumper. The external operational amplifier is installed as an option to provide output signal conditioning or for other output mode requirements desired.

1.2.2 Reference Voltage

The +5-V precision voltage reference is provided as the main source to supply the external voltage reference for the DAC through REF02, U3, via jumper W4 by shorting pins 1 and 2. The reference voltage goes through an adjustable 100-k Ω potentiometer, R11, in series with 20-k Ω R10, to allow the user to adjust the reference voltage to its desired settings. The voltage reference then is buffered through U8A as seen by the device under test. The test points TP1, TP2, and TP5 are also provided, as well as J4-18 and J4-20, to allow the user to connect another external reference source if the onboard reference circuit is not desired. The external voltage reference should not exceed +5 Vdc.

The REF02 precision reference is powered by V_{CC} (+15 V) through J1-3 or J6-1 terminal.

An optional +4.096-V precision voltage reference also is provided to supply the external voltage reference and set the voltage output range of the DAC under test through REF3240, U4, via jumper resistor, R15. When using U4 as a reference source, ensure that pin J4-20 is not energized; otherwise, damage to the EVM and the host board may occur.

The test point TP1 and J4-20 are provided to allow the user to connect to another external reference source if the onboard reference circuit is not desired. The external voltage reference should not exceed the applied power supply, V_{DD}, of the DAC under test.

The REF3240 precision reference is powered by +5 VA through J6-3 or J5-3 terminal (if installed).

CAUTION

When applying an external voltage reference through TP1 or J4-20, ensure that it does not exceed +5 V maximum. Otherwise, this can permanently damage the DAC8550/51/52, U1, device under test.

1.3 EVM Basic Functions

This EVM is designed primarily as a functional evaluation platform to test certain functional characteristics of the DAC8550/51/52 DAC. Functional evaluation of the installed DAC device can be accomplished with the use of any microprocessor, TI DSP, or some sort of a signal/waveform generator.

The headers J2 (top side) and P2 (bottom side) are pass-through connectors provided to allow the control signals and data required to interface a host processor or waveform generator to the DAC8550/51/52EVM using a custom-built cable.

A TI adapter interface board, the 5-6K Interface Board, is also available to fit and mate with TI's C5000 and C6000 DSP Starter Kits (DSK). This eliminates problems involved in building a custom cable. In addition, this EVM can connect to and interface with an MSP430-based platform (HPA449) that uses the MSP430F449 microprocessor. For more details or information regarding the 5-6K Interface Board or the HPA449 platform, call Texas Instruments or send an e-mail to dataconvapps@list.ti.com.

The DAC outputs can be monitored through the selected pins of the J4 header connector. The output(s) can be switched through their respective jumpers W2 and W7 for the purpose of stacking. Stacking allows a total of two (for DAC8550/51) or four (for DAC8552) DAC channels to be used, providing that the frame synchronization signal, SYNC, is unique for each EVM board stacked.

In addition, the option of selecting one DAC output that can be fed to the non-inverting side of the output operational amplifier, U2, is also possible by using a jumper across the selected pins of J4. The output operational amplifier, U2, must first be configured correctly for the desired waveform characteristic (see Section 3 of this user's guide).

Figure 1 shows a block diagram of the DAC8550/51/52EVM.

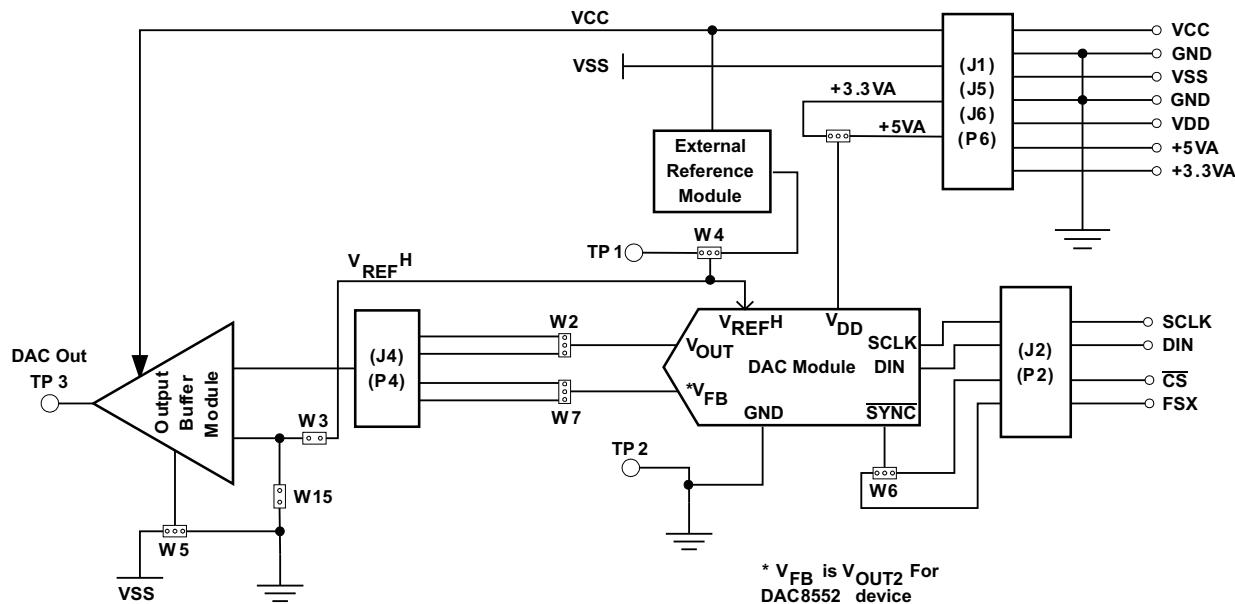


Figure 1. EVM Block Diagram

2 PCB Design and Performance

This section discusses the layout design of the PCB, describing the physical and mechanical characteristics of the EVM, as well as a brief description of the EVM test performance procedure performed. The list of components used on this evaluation module is included in this section.

2.1 PCB Layout

The DAC8550/51/52EVM is designed to preserve the performance quality of the DAC, the device under test (DUT), as specified in the data sheet. To take full advantage of the EVM's capabilities, use care during the schematic design phase to properly select the right components and to build the circuit correctly. The circuit should include adequate bypassing, identifying and managing the analog and digital signals, and understanding the components' electrical and mechanical attributes.

The main design concern during the layout process is the optimal placement of components and the proper routing of signals. Place the bypass capacitors as close as possible to the pins; properly separate the analog and digital signals from each other. In the layout process, carefully consider the power and ground plane because of their importance. A solid plane is ideally preferred, but because of its greater cost, sometimes a split plane can be used satisfactorily. When considering a split plane design, analyze the component placement and carefully split the board into its analog and digital sections starting from the DUT. The ground plane plays an important role in controlling the noise and other effects that otherwise contributes to the error of the DAC output. To ensure that the return currents are handled properly, route the appropriate signals only in their respective sections, meaning that the analog traces should only lay directly above or below the analog section and the digital traces in the digital section. Minimize the length of the traces but use the biggest possible trace width allowable in the design. These design practices are illustrated in [Figure 2](#) through [Figure 8](#).

The DAC8550/51/52EVM board is constructed on a four-layer printed-circuit board (PCB) using a copper-clad FR-4 laminate material. The PCB has a dimension of 43,1800 mm (1.7000 inch) \times 82,5500 mm (3.2500 inch), and the board thickness is 1,5748 mm (0.062 inch). [Figure 2](#) through [Figure 6](#) show the individual artwork layers.

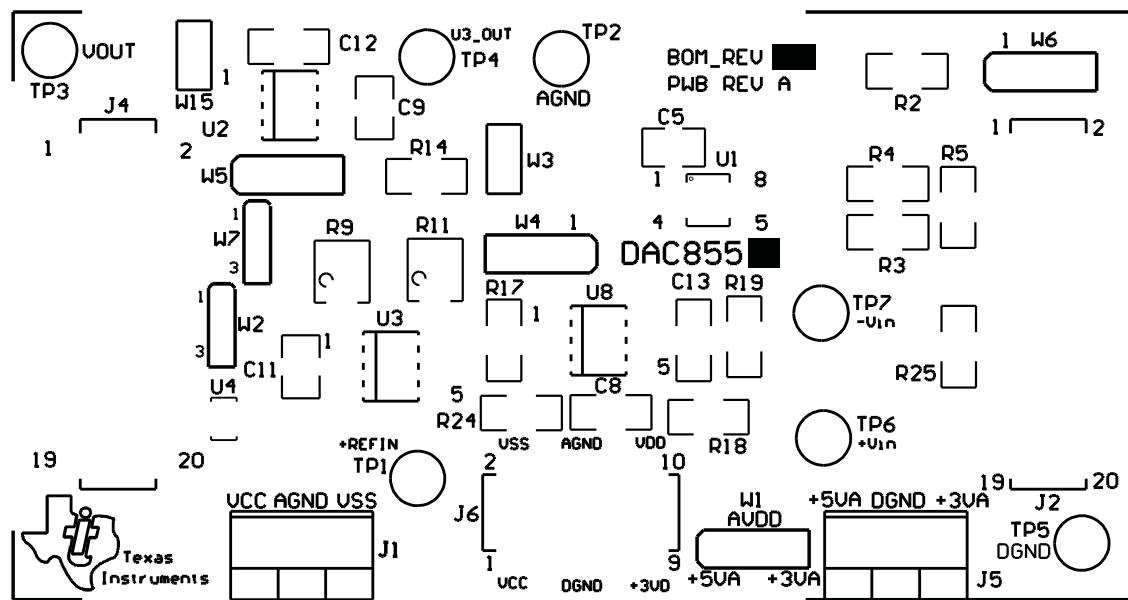


Figure 2. Top Silkscreen

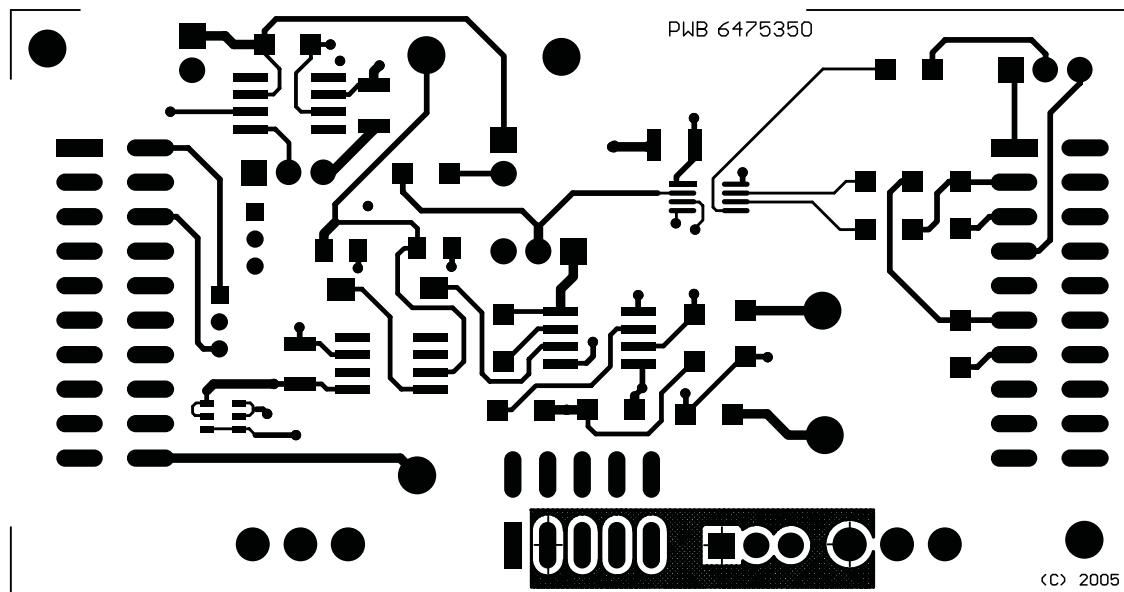


Figure 3. Layer 1 (Top Signal Plane)

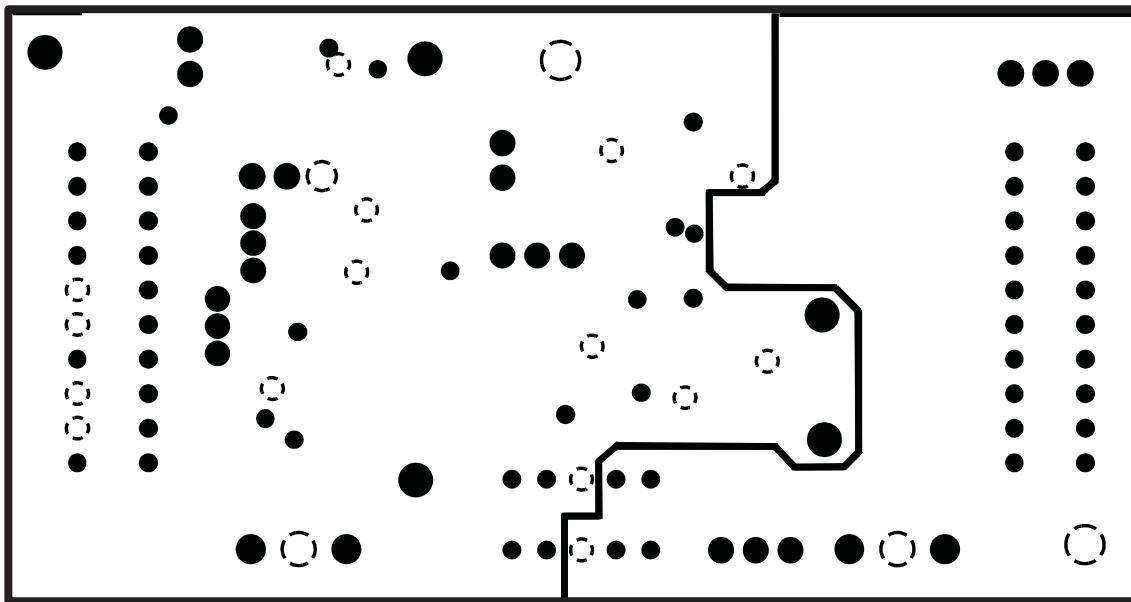


Figure 4. Layer 2 (Ground Plane)

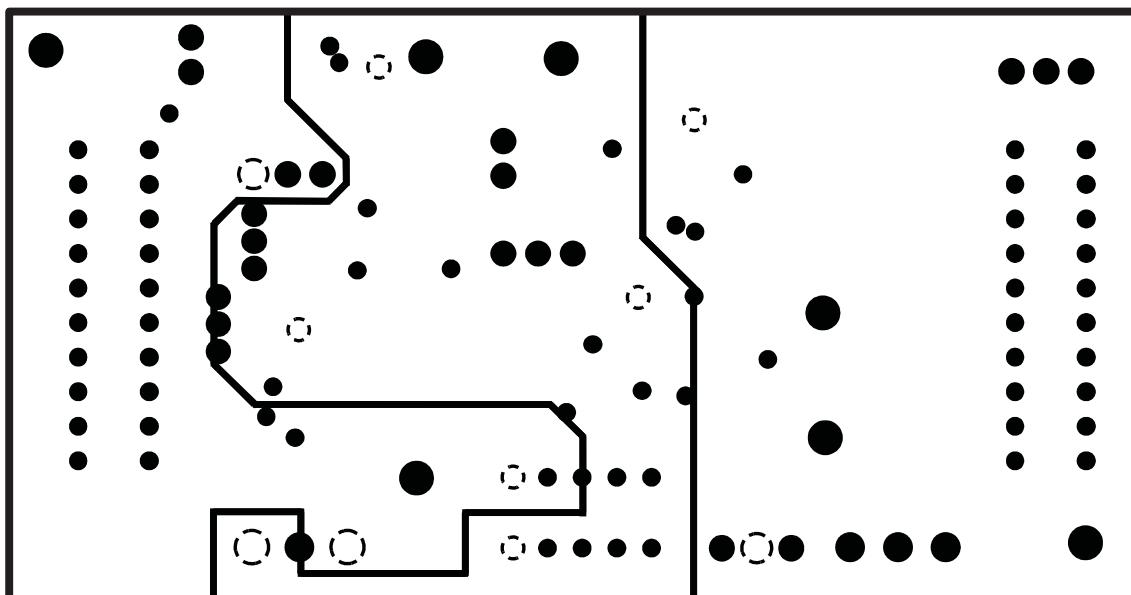


Figure 5. Layer 3 (Power Plane)

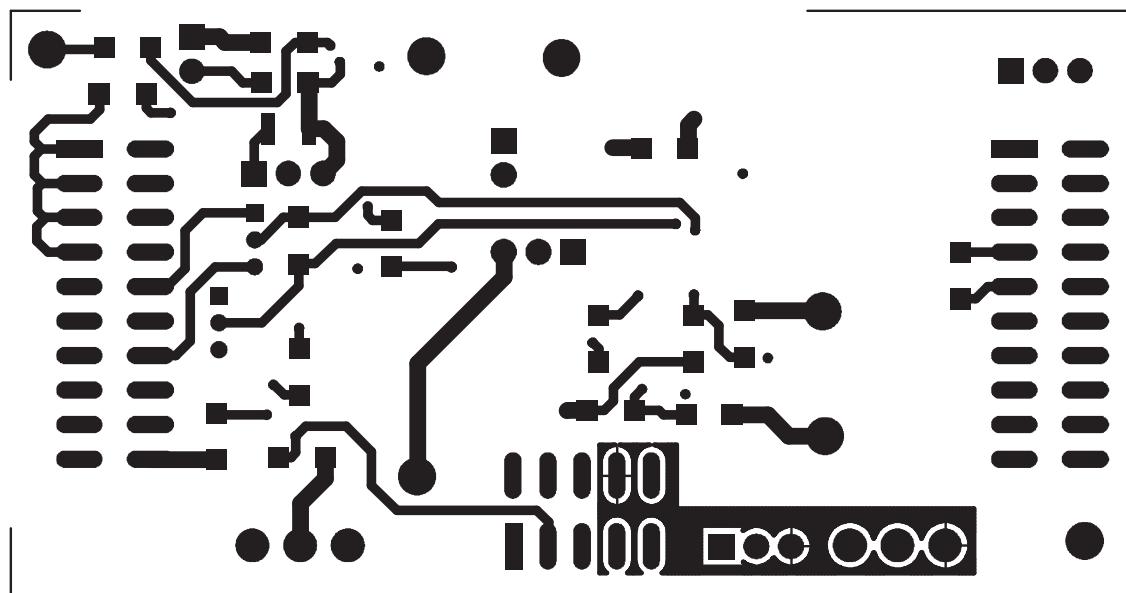


Figure 6. Layer 4 (Bottom Signal Plane)

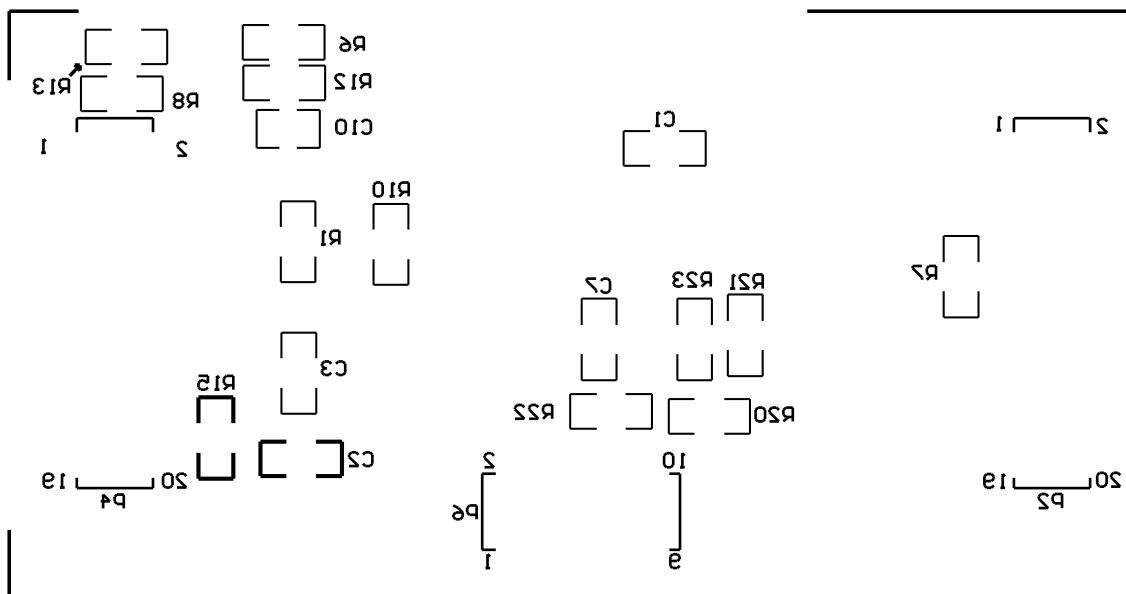
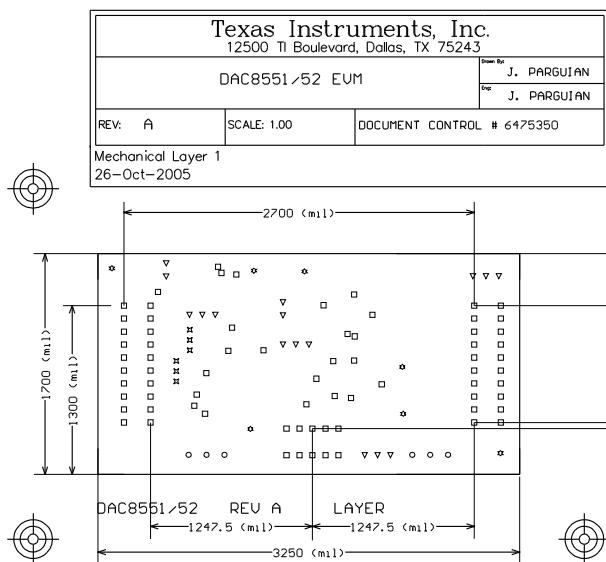



Figure 7. Bottom Silkscreen

Notes:

1. PWB TO BE FABRICATED TO MEET OR EXCEED IPC-6012, CLASS 3 STANDARDS AND WORKMANSHIP SHALL CONFORM TO IPC-A-600, CLASS 3 - CURRENT REVISIONS
2. BOARD MATERIAL AND CONSTRUCTION TO BE UL APPROVED AND MARKED ON THE FINISHED BOARD.
3. LAMINATE MATERIAL: COPPER-CLAD FR-4
4. COPPER WEIGHT: 1oz FINISHED
5. FINISHED THICKNESS: .062 +/- .010
6. MIN PLATING THICKNESS IN THROUGH HOLES: .001"
7. SMOBC / HASL
8. LPI SOLDERMASK BOTH SIDES USING APPROPRIATE LAYER ARTWORK: COLOR = GREEN
9. LPI SILKSCREEN AS REQUIRED: COLOR = WHITE
10. VENDER INFORMATION TO BE INCORPORATED ON BACK SIDE WHENEVER POSSIBLE
11. MINIMUM COPPER CONDUCTOR WIDTH IS: 10 MILS MINIMUM CONDUCTOR SPACING IS: 6 MILS
12. NUMBER OF FINISHED LAYERS: 4

Figure 8. Drill Drawing

2.2 EVM Performance

The EVM performance test is performed using a high-density DAC bench test board, an Agilent 3458A digital multimeter, and a PC running the LabVIEW™ software. The EVM board is tested for all codes of 65535, and the DUT is allowed to settle for 1 ms before the meter is read. This process is repeated for all codes to generate the measurements for INL and DNL.

[Figure 9](#) shows the INL and DNL characteristic plots.

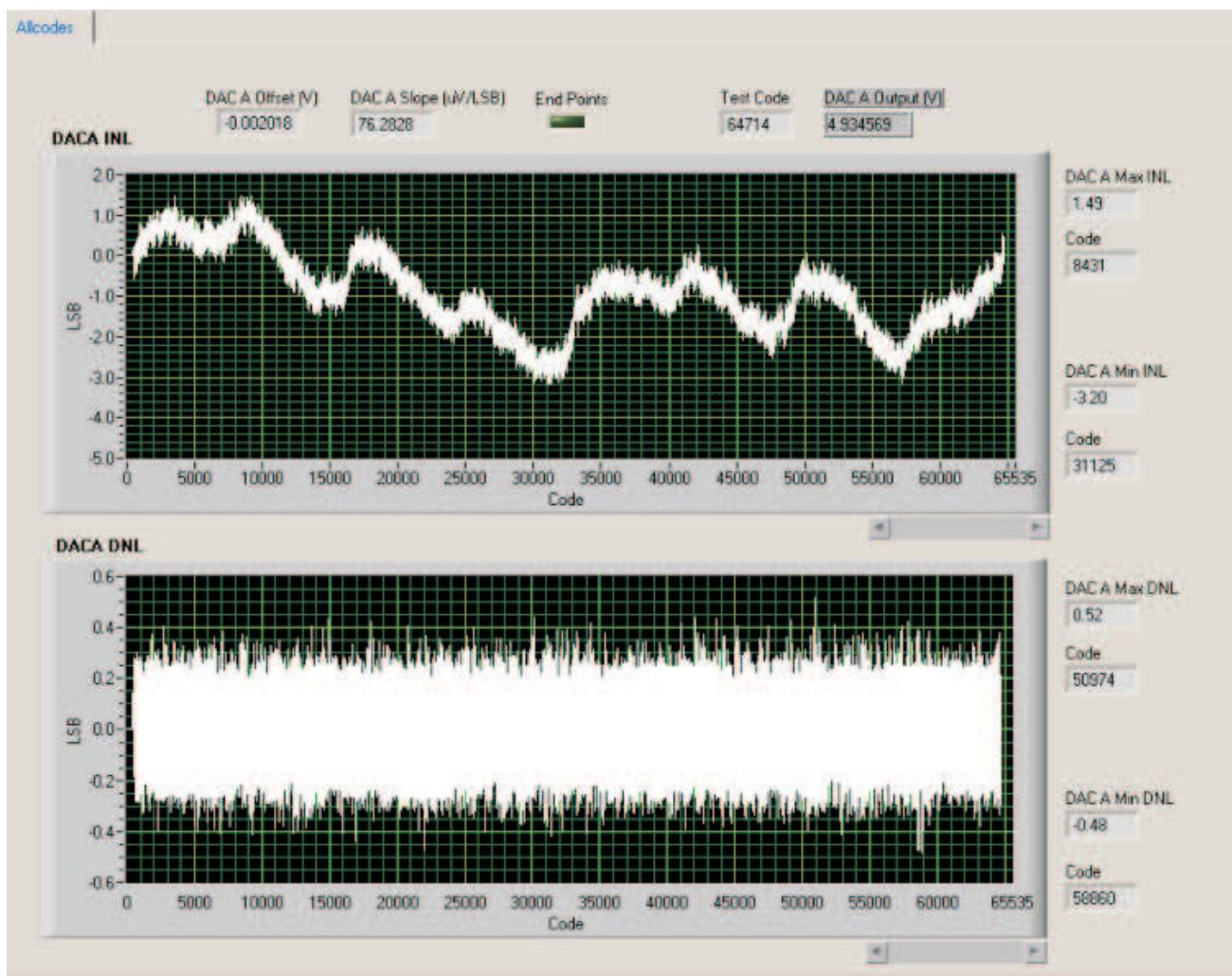


Figure 9. INL and DNL Characteristic Plot

2.3 Bill of Materials

Table 2. Parts List

Item	Qty	Value	Designators	Description	Vendor	Vendor Part Number
1	3	0.1 μF	C1 C3 C7	Multilayer Ceramic Chip Capacitor, 1206 SMD, 25V, ±15% TC, ±10% Tol	TDK	C3216X7R1E104KT
2	2	1 μF	C9 C10	Multilayer Ceramic Chip Capacitor, 1210 SMD, 25V, ±15% TC, ±10% Tol	TDK	C3225X7R1E105KT
3	1	1 nF	C12	Multilayer Ceramic Chip Capacitor, 1206 SMD, 25V, ±15% TC, ±10% Tol	TDK	C3216X7R1H102KT
4	1	0.47 μF	C2	Multilayer Ceramic Chip Capacitor, 1206 SMD, 50V, ±15% TC, ±10% Tol ⁽¹⁾	TDK	C3216X7R1H474KT
5	2	10 μF	C5 C11	Multilayer Ceramic Chip Capacitor, 1210 SMD, 25V, ±15% TC, ±10% Tol	TDK	C3225X7R1E106KT
6	3	10 kΩ	R6 R12 R14	1/8W 1206 Thick Film Chip Resistor, ±1% Tol	Panasonic	ERJ-8ENF1002V

⁽¹⁾ P2, P4, and P6 parts are not shown in the schematic diagram. All the P-designated parts are installed in the bottom side of the PCB opposite the J-designated counterpart. For example, J2 is installed on the top side whereas P2 is installed on the bottom side opposite of J2. The following components are not installed: J1, J5, C2, C8, C13, R5, R7, R15, R18, R19, R20, R21, R22, R23, R24, R25, and U4. The installed U1 device determines the type of EVM.

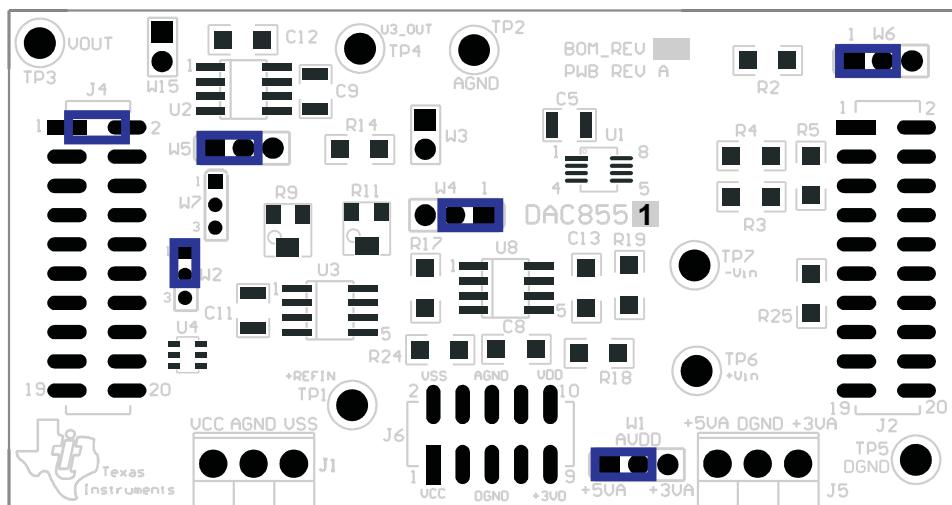
Table 2. Parts List (continued)

Item	Qty	Value	Designators	Description	Vendor	Vendor Part Number
7	1	20 kΩ Trim Pot	R9	5T Potentiometer, 4mm SMD, Cermet	Bourns	3214W-1-203E
8	10	0 Ω	R1 R2 R3 R4 R5 R7 R8 R15 R17 R25	1/4W 1206 Thick Film Chip Resistor, ±5% Tol ⁽¹⁾	Panasonic	ERJ-8GEY0R00V
9	1	100 Ω	R13	1/4W 1206 Thick Film Chip Resistor, ±5% Tol	Panasonic	ERJ-8GEYJ101V
10	1	20 kΩ	R10	1/4W 1206 Thick Film Chip Resistor, ±5% Tol	Panasonic	ERJ-8GEYJ203V
11	1	100 kΩ Trim Pot	R11	Potentiometer, 4mm SMD, Cermet	Bourns	3214W-1-104E
12	2	10 × 2 × 0.1 SMT	J2 J4	20-PIN Terminal Strip	Samtec	TSM-110-01-S-DV-M
13	1	5 × 2 × 0.1 SMT	J6	10-PIN Terminal Strip	Samtec	TSM-105-01-T-DV
14	2	3 × 1 × 0.138 TH	J1 J5	3-Pin Terminal Block ⁽¹⁾	On-Shore Tech	ED555/3DS
15	2	10 × 2 × 0.1 SMT	P2 P4	20-PIN Socket Strip ⁽¹⁾	Samtec	SSW-110-22-S-D-VS-P
16	1	5 × 2 × 0.1 SMT	P6	10-PIN Socket Strip ⁽¹⁾	Samtec	SSW-105-22-F-D-VS-K
17	7	1 × 1 × 0.061D TH	TP1 TP2 TP3 TP4 TP5 TP6 TP7	Turret Terminal Pin	Mill-Max	2348-2-00-01-00-00-07-0
18	1	Bipolar Op-Amp	U8	8-SOP(D) High Precision Low Noise Op-Amp	Texas Instruments	OPA2227UA
19	1	16-Bit String DAC	U1	MSOP-8(DGK), 1-CH, SPI, Low Glitch, Voltage Output DAC ⁽¹⁾	Texas Instruments	DAC8550IDGK
				MSOP-8(DGK), 1-CH, SPI, Low Glitch, Voltage Output DAC ⁽¹⁾		DAC8551IDGK
				MSOP-8(DGK), 2-CH, SPI, Low Glitch, Voltage Output DAC ⁽¹⁾		DAC8552IDGK
20	1	4.096 V Reference	U4	4ppm/°C, 100 μA, SOT23-6 VOLTAGE REFERENCE ⁽¹⁾	Texas Instruments	REF3240AIDBV
21	1	5 V Reference	U3	15ppm/°C, ±0.2% Tol Output, SOIC-8, Voltage Reference	Texas Instruments	REF02AU
22	1	Bipolar Op-Amp	U2	8-SOP(D) High Precision, Low Offset and Drift, Op-Amp	Texas Instruments	OPA277UA
23	2	3 × 1 × 0.7874 TH	W2 W7	3-PIN Terminal Strip	Samtec	TMMH-103-01-T-T
24	2	2 × 1 × 0.1 TH	W3 W15	Modified 0.025" Square Post Header	Samtec	MTSW-102-08-T-S-295
25	4	3 × 1 × 0.1 TH	W1 W4 W5 W6	Modified 0.025" Square Post Header	Samtec	MTSW-103-08-T-S-295
26	9	Not Installed	C8 C13 R18 R19 R20 R21 R22 R23 R24	Do not install these components	To Be Determined	To Be Determine

3 EVM Operation

This section covers in detail the EVM operation to guide the user in evaluating the onboard DAC and how to interface the EVM to a specific host processor.

See the DAC8550 data sheet ([SLAS476](#)), DAC8551 data sheet ([SLAS429](#)), and DAC8552 data sheet ([SLAS430](#)) for information about the serial interface and other related topics.


The EVM board is factory-tested and configured to operate in the unipolar output mode.

3.1 Factory Default Setting

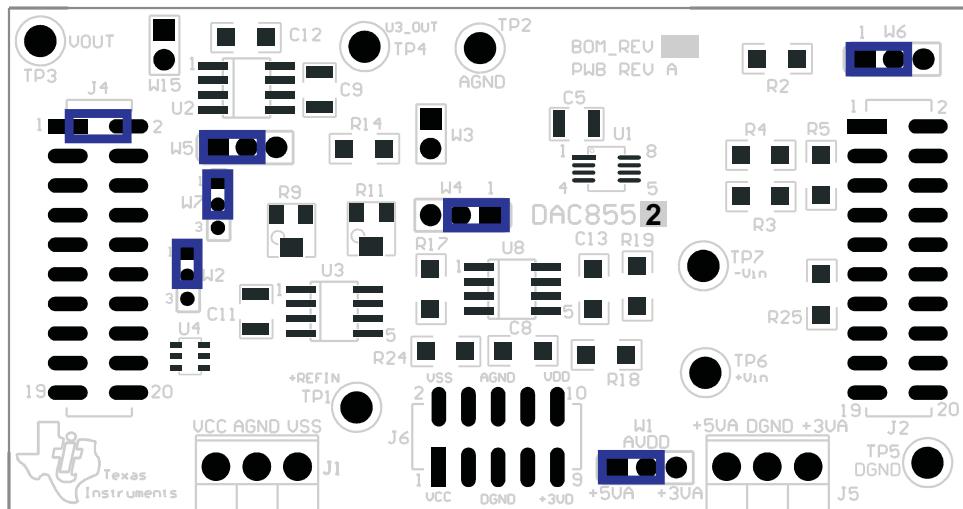

The EVM board is set to its default configuration from the factory as described on [Table 3](#) to operate in unipolar +5-V mode. [Figure 10](#) and [Figure 11](#) show the default jumper configuration as described in the table for the DAC8550/51 and DAC8552, respectively.

Table 3. Factory Default Jumper Setting

Reference	Jumper Position	Function
W1	1-2	Analog supply for the DAC8550/51/52 is +5 VA.
W2	1-2	DAC output A (V_{OUTA}) is routed to J4-2.
W3	OPEN	V_{REFH} is not routed to the inverting input of the operational amplifier for voltage offset with gain of 2 output (for bipolar mode of operation).
W4	1-2	Onboard external buffered reference U3 is routed to V_{REFH} .
W5	1-2	Negative supply rail of U2 operational amplifier is supplied with V_{SS} .
W6	1-2	\overline{CS} signal from J2 is used for frame synchronization, \overline{SYNC} , signal.
W7	OPEN	For DAC8550/51 EVM, the V_{FB} is not routed out unless there is a need to minimize the output error. If using W7, remove R1 and short W7; then connect V_{FB} and V_{OUTA} as close as possible to the load.
	1-2	For DAC8552 EVM, R1 is not installed and W7 is shorted so that V_{OUTB} is routed to J4-10 header terminal.
	2-3	For DAC8552 EVM, R1 is not installed, and W7 is shorted so that V_{OUTB} is routed to J4-14 header terminal.
W15	CLOSE	Output operational amplifier, U2, is configured for a gain of 2.
J4	2-1	DAC output A (V_{OUTA}) is connected to the non-inverting input of the output operational amplifier, U2.

Figure 10. DAC8550/51 EVM Default Jumper Configuration

Figure 11. DAC8552 EVM Default Jumper Configuration

3.2 Host Processor Interface

The host processor basically drives the DAC; therefore, the proper operation of the DAC depends on the successful configuration between the host processor and the EVM board. Additionally, a properly written code is required to operate the DAC.

A custom cable can be made specific to the host interface platform. The EVM allows an interface to the host processor through the J2 header connector for the serial control signals and the serial data input. The output can be monitored through the J4 header connector.

An interface adapter board also is available for a specific TI DSP starter kit as well as an MSP430-based microprocessor as mentioned in Section 1. Using the TI Interface Board alleviates the task of building customized cables and allows easy configuration of a simple evaluation system.

The DAC8550/51/52 interfaces with any host processor capable of handling SPI™ protocols or the TI DSP. For more information regarding the DAC8550/51/52 data interface, see the data sheet.

3.3 EVM Stacking

The stacking of EVMs is possible if users need to evaluate two DAC8550/51/52 devices to yield a total of up to two-channel (for DAC8550/51) or four-channel (for DAC8552) outputs. A maximum of two EVMs are allowed because the output terminal, J4, dictates the number of DAC channels that can be connected without output bus contention. [Table 4](#) shows how the DAC output channels are mapped into the output terminal, J4, with respect to the jumper position of W2 and W7.

Table 4. DAC Output Channel Mapping

Reference	Jumper Position	Function
W2	1-2	DAC output A (V_{OUTA}) is routed to J4-2.
	2-3	DAC output A (V_{OUTA}) is routed to J4-6.
W7	1-2	DAC output B (V_{OUTB}) is routed to J4-10.
	2-3	DAC output B (V_{OUTB}) is routed to J4-14.

In order to allow exclusive control of each EVM that is stacked together, each DAC8550/51/52 must have a separate SYNC signal. This is accomplished in hardware by routing the SYNC signal of the first EVM through CS (P2/J2 pin 1) by shorting pins 1-2 of jumper W6. The second EVM should use the FSX signal (P2/J2 pin 7) to drive the SYNC signal by shorting pins 2-3 of the jumper W6. The output can be mapped as described in [Table 4](#) for each of the EVMs stacked.

3.4 The Output Operational Amplifier

The EVM includes an optional signal-conditioning circuit for the DAC output through an external operational amplifier, U2. Only one DAC output channel can be monitored at any given time for evaluation because the odd-numbered pins (J4-1 to J4-7) are tied together. The output operational amplifier is set to unity gain configuration by default but can be modified by simple jumper settings. Nevertheless, the raw output of the DAC can be probed through the specified pins of the J4 output terminal, which also provides mechanical stability when stacking or plugging into any interface board. In addition, it provides easy access for monitoring up to two (DAC8550/51) or four (DAC8552) DAC channels when stacking two EVMs together (see Section 3.3).

The following sections describe the different configurations of the output amplifier, U2.

3.4.1 Unity Gain Output

The buffered output configuration can be used to prevent loading the DAC8550/51/52, although it may present some slight distortion because of the feedback resistor and capacitor. The user can tailor the feedback circuit to closely match the desired wave shape by simply desoldering R6 and C12 and replacing them with the desired values. It is also possible to simply eliminate R6 and C12 altogether and to solder a 0- Ω resistor in place of R6, if desired.

Table 5 shows the jumper setting for the unity gain configuration of the DAC external output buffer in unipolar or bipolar mode.

Table 5. Unity Gain Output Jumper Settings

Reference	Jumper Position		Function
	Unipolar	Bipolar	
W3	OPEN	OPEN	Disconnect V_{REFH} from the inverting input of the operational amplifier.
W5	2-3	1-2	Supplies V_{SS} to the negative rail of operational amplifier or ties it to AGND.
W15	OPEN	OPEN	Disconnect negative input of the operational amplifier from the gain resistor, R12.

3.4.2 Output Gain of Two

Two types of configurations yield an output gain of 2, depending on the setup of the jumpers W3 and W15. These configurations allow the user to choose whether the DAC output has V_{REFH} as an offset or not.

Table 6 shows the proper jumper settings of the EVM for the 2 \times gain output of the DAC.

Table 6. Gain of Two Output Jumper Settings

Reference	Jumper Position		Function
	Unipolar	Bipolar	
W3	Close	Close	Inverting input of the output operational amplifier, U2, is connected to V_{REFH} for use as its offset voltage with a gain of 2. W15 jumper must be open.
	Open	Open	V_{REFH} is disconnected from the inverting input of the output operational amplifier, U2. W15 jumper must be closed.
W5	2-3	1-2	Supplies power, V_{SS} , to the negative rail of operational amplifier, U2, for bipolar mode, or ties it to AGND for unipolar mode.
W15	Close	Close	Configures operational amplifier, U2, for a gain of 2 output without a voltage offset. W3 jumper must be open.
	Open	Open	Inverting input of the operational amplifier, U2, is disconnected from the gain resistor, R12. W3 jumper must be closed.

3.4.3 Capacitive Load Drive

Another output configuration option is to drive a wide range of capacitive load requirements. However, all operational amplifiers under certain conditions may become unstable, depending on the operational amplifier configuration, gain, and load value. These are just a few of the factors that can affect operational amplifier stability performance and should be considered when implementing.

In unity gain, the OPA627 operational amplifier, U2, performs well with large capacitive loads. Increasing the gain enhances the amplifier's ability to drive even more capacitance, and adding a load resistor further improves the capacitive load drive capability.

[Table 7](#) shows the jumper setting configuration for a capacitive load drive.

Table 7. Capacitive Load Drive Output Jumper Settings

Reference	Jumper Position		Function
	Unipolar	Bipolar	
W3	Open	Open	V_{REFH} is disconnected from the inverting input of the output operational amplifier, U2.
W5	2-3	1-2	Supplies power, V_{SS} , to the negative rail of operational amplifier, U2, for bipolar mode, or ties it to AGND for unipolar mode.
W15	Open	Open	Capacitive load drive output of DAC is routed to pin 1 of W15 jumper and may be used as the output terminal.

3.5 Optional Signal-Conditioning Operational Amplifier (U8B)

One part of the dual-package operational amplifier, OPA2227 (U8), is used for reference buffering (U8A) whereas the other is unused. This unused operational amplifier (U8B) is left for whatever operational amplifier circuit application the user desires to implement. The 1206 footprint for the resistors and capacitors surrounding the U8B operational amplifier are not populated and thus are available for easy configuration. Test points TP6 and TP7 are not installed either; so, the user has the option of how to connect the \pm input signals to this operational amplifier. No test point has been made available for the output due to space restriction, but a wire can simply be soldered to the output of the operational amplifier via the unused component pads that connect to it.

Once the operational amplifier circuit is realized, the configuration becomes easy by simply populating the corresponding components that match the circuit designed and leaving all other unused component footprints unpopulated.

3.6 Jumper Setting

Table 8 shows the function of each specific jumper setting of the EVM.

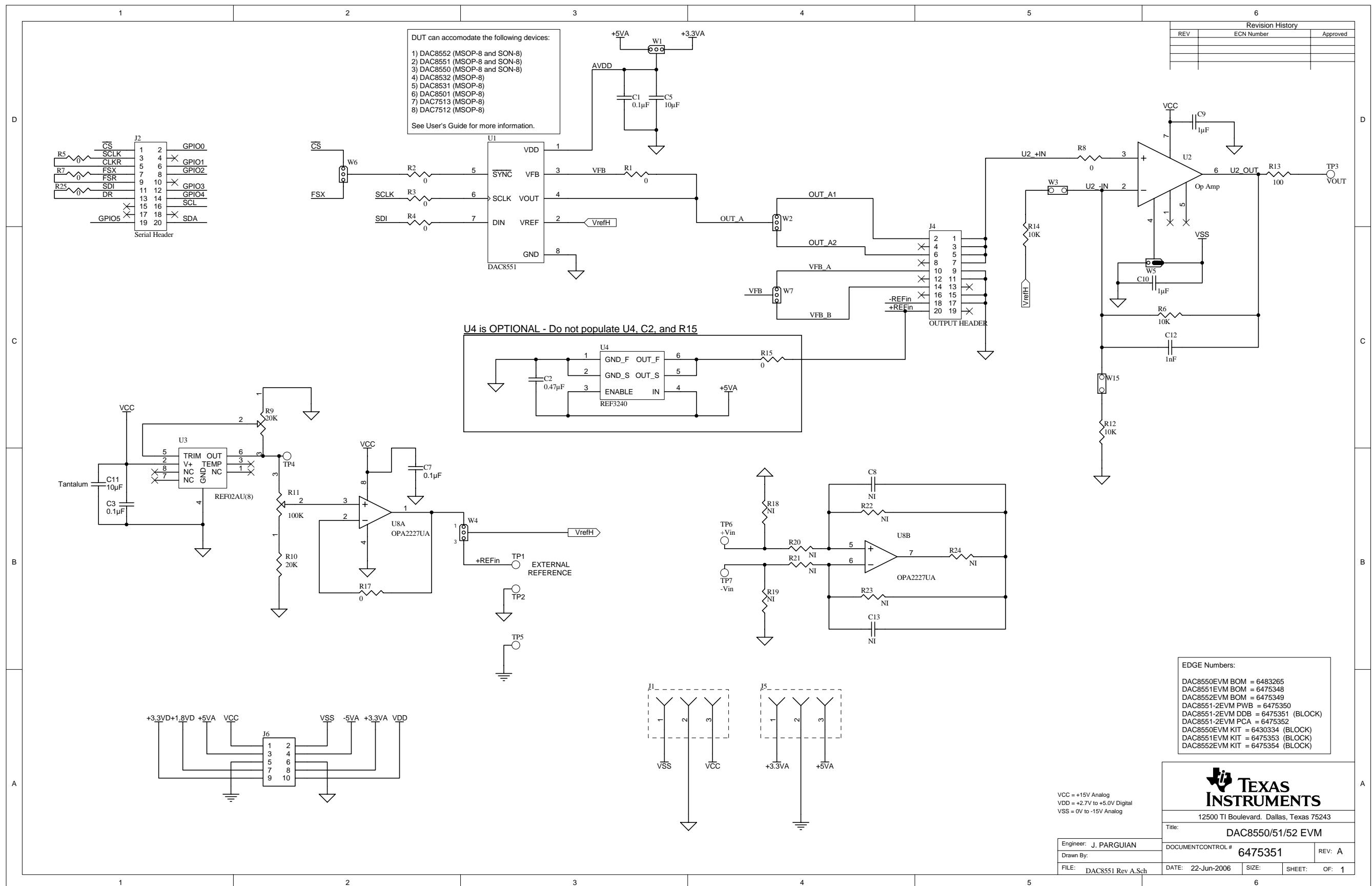
Table 8. Jumper Setting Function

Reference	Jumper Setting	Function
W1		+5-V analog supply is selected for AV_{DD} .
		+3.3-V analog supply is selected for AV_{DD} .
W2		Routes $V_{OUT}A$ to J4-2.
		Routes $V_{OUT}A$ to J4-6.
W3		Disconnects $V_{REF}H$ to the inverting input of the output operational amplifier, U2
		Connects $V_{REF}H$ to the inverting input of the output operational amplifier, U2
W4		Routes the adjustable, buffered, onboard +5-V reference to the $V_{REF}H$ input of the DAC8550/51/52.
		Routes the user-supplied reference from U4 (if installed), TP1 or J4-20 to the $V_{REF}H$ input of the DAC8550/51/52.
W5		Negative supply rail of the output operational amplifier, U2, is powered by V_{SS} for bipolar operation.
		Negative supply rail of the output operational amplifier, U2, is tied to AGND for unipolar operation.
W6		CS signal from J2-1 is routed to drive the \overline{SYNC} signal of the DAC8550/51/52.
		FSX signal from J2-7 is routed to drive the \overline{SYNC} signal of the DAC8550/51/52.
W7		For DAC8550/51EVM, the V_{FB} is routed out to minimize the output error. Remove R1 and short W7 as shown; then connect V_{FB} and $V_{OUT}A$ as close as possible to the load. The V_{FB} signal is then routed to J4-10.
		For DAC8552EVM, R1 is not installed and W7 is shorted as shown so that $V_{OUT}B$ is routed to J4-10 header terminal.
		This is the default jumper position for DAC8550/51EVM when R1 is installed.
		For DAC8550/51EVM, the V_{FB} is routed out to minimize the output error. Remove R1 and short W7 as shown; then connect V_{FB} and $V_{OUT}A$ as close as possible to the load. The V_{FB} signal is then routed to J4-14.
W15		For DAC8552EVM, R1 is not installed, and W7 is shorted as shown so that $V_{OUT}B$ is routed to J4-14 header terminal.
		Disconnects the inverting input of the output operational amplifier, U2, from the gain resistor, R12.
		Connects the inverting input of the output operational amplifier, U2, to the gain resistor, R12, for gain of 2 configuration.

Legend: Indicates the corresponding pins that are shorted or closed.

3.7 Related Texas Instruments Documentation

To obtain a copy of any of the following TI documents, call the Texas Instruments Literature Response Center at (800) 477-8924 or the Product Information Center (PIC) at (972) 644-5580. When ordering, identify the manual by its title and literature number. Updated documents also can be obtained through the TI Web site at www.ti.com.


Data Sheets	Literature Number
DAC8550	SLAS476
DAC8551	SLAS429
DAC8552	SLAS430
DAC8531	SBAS192
DAC8532	SBAS246
DAC8501	SBAS212
DAC7512	SBAS156
DAC7513	SBAS157
REF02	SBVS003
REF3240	SBVS058
OPA627	SBOS165
OPA2227	SBOS110

3.8 Questions About This or Other Data Converter EVMs?

If you have questions about this or other Texas Instruments Data Converter evaluation modules, send an e-mail to the Data Converter Application Team at dataconvapps@list.ti.com. Include in the subject heading the product with which you have questions or concerns.

3.9 Schematic

The schematic appears on the following page.

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. **THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.**

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user **is not exclusive**.

TI assumes **no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein**.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of +2.7 V to +5 V and the output voltage range of -5 V to +5 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 30°C. The EVM is designed to operate properly with certain components above 85°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025