

Product Overview

Isolating and Detecting AC/DC Voltage in EV Charging

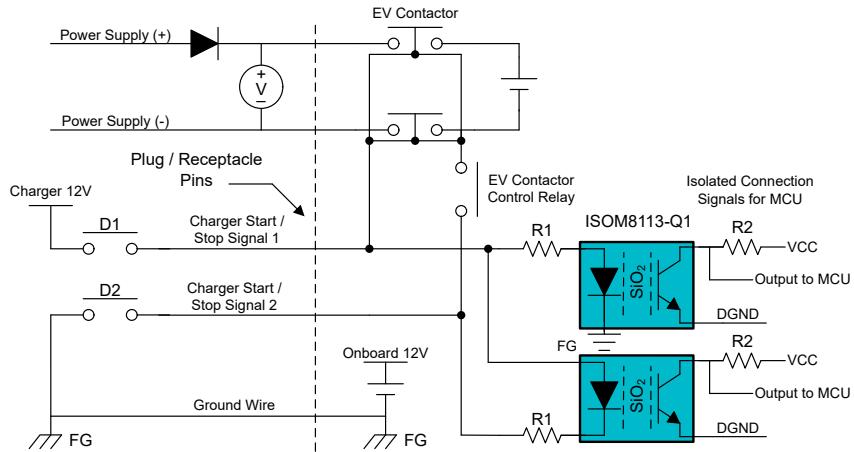


Figure 1. Example Circuit to Use ISOM8113-Q1 to Detect Charging Connections

Design Considerations

- [\[FAQ\] What is an Opto-emulator?](#) | [\[FAQ\] Opto-Emulator FAQ's](#) | [\[FAQ\] What are the benefits?](#)
- Low-cost, Automotive-qualified isolation for charging standards (CHAdeMO, GB/T, COMBO1, COMBO2)
- Drop-in replacement for transistor output opto-emulators
- Performance upgrade from traditional optocouplers; allows tight CTR performance with no LED aging.
- [Introduction to Opto-Emulators](#)
- [Opto-emulators explained: Why you should upgrade your optocoupler technology](#)
- [Upgrade photoMOS, SSR and Push-Pull, Totem-Pole, or Transistor Output Optocouplers With Opto-emulators](#)
- [Taking charge of electric vehicles – both in the vehicle and on the grid](#)
- [TIDA-010939: Electric Vehicle Supply Equipment Front-End Controller Reference Design](#)

Need additional assistance? Ask our engineers a question on the [TI E2E™ Isolation Support Forum](#).

Recommended Parts

Transistor Output Opto-Emulators

Catalog Part Number	Automotive Part Number	Input Type	Output Type	V _F (MAX)	I _F (MIN)	CTR
ISOM8113	ISOM8113-Q1	DC Input	Open-collector / transistor output	1.4V	700µA	375% to 560%
ISOM8118	ISOM8118-Q1	AC Input		1.5V	700µA	375% to 560%

To find a pin-to-pin alternative to the optocouplers in your design, search TI's [cross reference tool](#).

For more opto-emulators, browse through the [online parametric tool](#).

Resistor Selection

R1 is used to limit the amount of current flowing into the input of the opto-emulator. For best results, the high-level input current can be $I_F = 1\text{mA}$ to allow for margin over the $I_F(\text{MIN}) = 700\mu\text{A}$. Therefore, R1 must be selected to satisfy:

$$R_1 < (V_{IN} - V_F) \div I_{F\text{min}} \quad (1)$$

The pull-up resistor R2 is selected to make sure that ISOM8113-Q1 outputs a low level after input the goes high. Select an R2 to limit the collector current below to the desired output current. For best switching performance, R2 is normally between $1\text{k}\Omega$ to $25\text{k}\Omega$ to operate the device in saturation mode. For more details on the application and design considerations, see [\[FAQ\] ISOM8110: How do I design ISOM8110 to have the best timing performance for switching applications?](#)

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025