
Subsystem Design
Digital to Analog Converter to Piezo Buzzer

1 Description
This subsystem demonstrates how to create musical tones on a Piezo buzzer through the use of the digital to
analog converter (DAC) of the MSPM0. This process uses predefined frequencies being output to a Piezo to
create a tune or jingle, being useful in applications such as home appliance, industrial machinery, or personal
electronics.

Figure 1-1. DAC to Buzzer Subsystem Block Diagram

2 Required Peripherals
Table 2-1. Required Peripherals

Sub-block Functionality Peripheral Use Notes
Tone Generator DAC (DAC0) 12-bit DAC outputs sine wave samples from 64 point lookup table, generating

melodic tones using phase accumulator with 24 fractional bits for frequency
generation.

Timing and Sample Rate
Control

TimerG (TIMER_0_INST) Timer triggers DAC based on sample rate (16.39 in the example code to
accommodate for 61us period). Timer events trigger DAC FIFO updates.

Melody Sequencing DAC ISR
(FIFO_1_2_EMPTY)

State machine ran through the ISR advances through user-defined melody.

Power Management SYSCTL Sleep-on-exit enabled for low power operation. Device is only in RUN during
startup and ISR execution.

www.ti.com Description

SSDA011 – NOVEMBER 2025
Submit Document Feedback

Digital to Analog Converter to Piezo Buzzer 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SSDA011
https://www.ti.com/feedbackform/techdocfeedback?litnum=SSDA011&partnum=

3 Compatible Devices
This subsystem was designed using the LP-MSPM0G3507. All MSPM0 devices which meet the features as
described by the required peripherals sections are compatible, albeit with changes to the timers, pin selection,
and frequency.

Notably, depending on the device used, the API wrapper for DAC_12 can differ, and as such requires slight edits
to the ISR, although the functionality won't change.

4 Design Steps
1. Based on the piezo buzzer being implemented, determine the audio parameters, including the sample rate,

waveform type, lookup table resolution, and DAC resolution.
2. Define the frequency of which notes are to be played (for example, NOTE_C4 = 262Hz), organize them into

a melody, and define the duration of each note in milliseconds.
3. Calculate the timer period to generate the desired sample rate trigger events. For a 10kHz sample rate, the

timer must trigger at a frequency of 20kHz.
4. Generate a sine wave lookup table by pre-computing 256 sine values scaled to the onboard DAC 12 bit

range (0-4095), with the midpoint at 2048 for proper AC coupling to the buzzer.
5. In SysConfig, configure the timer as an event publisher to trigger the DAC12 module, set the DAC to operate

in FIFO mode with interrupts enabled for half-empty events, and route the DAC output to the appropriate
GPIO pin connected to the buzzer as displayed in Figure 1-1.

6. Write application code to initialize the sine table, implement the melody state machine which tracks the
current note and remaining notes to be played, implement the DAC interrupt handler that outputs sine values
and advances the melody sequence, and finally enable sleep-on-exit mode for low-power operation between
samples.

5 Design Considerations
• Piezo and Tone Frequency Selection: The code must be edited to cater to the attributes of the piezo

buzzer attached to the circuit. The piezo buzzer used to design and configure the provided code is the
PS1230P02BT. The sample rate, as well as the frequency of the tones themselves must be altered to the
frequency characteristics of any piezo.

• Sine Table Generation: In the example code, a basic 64 entry sine table is used for creating the output
on the DAC. However this creates a lower quality output, and thus can be scaled to a higher resolution to
have a clearer output. The recommendation is that the sine table is either a predefined array of constants, or
generated once upon startup using the MathACL module.

• Sample Rate and Timer: The sample rate of this subsystem, declared in the code as gSampleRate, must
be equivalent to the period of the timer module. For example, if the desired gSampleRate is 20kHz, the timer
period must be 0.05ms. Increasing the sample rate can provide better audio quality and smoother sine wave
reproduction.

Compatible Devices www.ti.com

2 Digital to Analog Converter to Piezo Buzzer SSDA011 – NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://product.tdk.com/en/system/files/dam/doc/product/sw_piezo/sw_piezo/piezo-buzzer/catalog/piezoelectronic_buzzer_ps_en.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SSDA011
https://www.ti.com/feedbackform/techdocfeedback?litnum=SSDA011&partnum=

6 Software Flowchart

Figure 6-1. Software Flowchart

www.ti.com Software Flowchart

SSDA011 – NOVEMBER 2025
Submit Document Feedback

Digital to Analog Converter to Piezo Buzzer 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SSDA011
https://www.ti.com/feedbackform/techdocfeedback?litnum=SSDA011&partnum=

7 Application Code
#include "ti_msp_dl_config.h"

/* musical notes frequencies in Hz - 6th octave */
#define NOTE_C 1047 // C6
#define NOTE_D 1175 // D6
#define NOTE_E 1319 // E6
#define NOTE_F 1397 // F6
#define NOTE_G 1568 // G6
#define NOTE_A 1760 // A6
#define NOTE_B 1976 // B6

/* sine wave lookup table for DAC output */
#define SINE_POINTS 64
const uint16_t gSineTable[] = {2048, 2248, 2447, 2642, 2831, 3013,
 3185, 3347, 3496, 3631, 3750, 3854, 3940, 4007, 4056, 4086, 4095, 4086,
 4056, 4007, 3940, 3854, 3750, 3631, 3496, 3347, 3185, 3013, 2831, 2642,
 2447, 2248, 2048, 1847, 1648, 1453, 1264, 1082, 910, 748, 599, 464, 345,
 241, 155, 88, 39, 9, 0, 9, 39, 88, 155, 241, 345, 464, 599, 748, 910, 1082,
 1264, 1453, 1648, 1847};

/* Variables for tone generation */
#define PHASE_FRAC_BITS 24
uint32_t gPhaseAccumulator = 0;
uint32_t gPhaseIncrement = 0;
/* 16.39kHz sample rate (61us timer period). May require some shifts depending on the piezo used */
uint32_t gSampleRate = 16393;

/* Melody sequence: "BAG BAG GGGGAAAA BAG", "Hot crossed buns" */
/* 0u represents a rest, or a tone of "0" */
static const uint32_t gMelodyFreqs[] = {
 NOTE_B, 0u, NOTE_A, 0u, NOTE_G, 0u, 0u,
 NOTE_B, 0u, NOTE_A, 0u, NOTE_G, 0u, 0u,
 NOTE_G, 0u, NOTE_G, 0u, NOTE_G, 0u, NOTE_G, 0u,
 NOTE_A, 0u, NOTE_A, 0u, NOTE_A, 0u, NOTE_A, 0u,
 NOTE_B, 0u, NOTE_A, 0u, NOTE_G, 0u
};

/* durations in milliseconds for each entry above:
 full note -> 500ms, half note -> 250ms, short rest -> 80ms, phrase separator rest -> 250ms */
static const uint16_t gMelodyDurMs[] = {
 /* One phrase per line */
 500, 80, 500, 80, 500, 80, 250,
 500, 80, 500, 80, 500, 80, 250,
 250, 80, 250, 80, 250, 80, 250, 80,
 250, 80, 250, 80, 250, 80, 250, 80,
 500, 80, 500, 80, 500, 2000
};

/* defines for melody state machine*/
#define MELODY_LENGTH (sizeof(gMelodyFreqs)/sizeof(gMelodyFreqs[0]))
static uint16_t gCurrentMelodyIndex = 0;
static uint32_t gNoteSamplesRemaining = 0;

/* set the phase increment for a given frequency */
void setToneFrequency(uint32_t frequency) {
 if (frequency == 0) {
 gPhaseIncrement = 0;
 return;
 }
 /* compute increment with 24 fractional bits: inc = freq * SINE_POINTS * 2^PHASE_FRAC_BITS /
sampleRate */
 /* allows for smooth frequency shifting */
 uint64_t inc = (uint64_t)frequency * (uint64_t)SINE_POINTS * ((uint64_t)1 << PHASE_FRAC_BITS);
 inc /= gSampleRate;
 gPhaseIncrement = (uint32_t)inc;
}

/* play each note from the melody based on index (updated by isr) */
static void startMelodyNote(uint16_t idx)
{
 if (idx >= MELODY_LENGTH) {
 idx = 0;
 }

 gCurrentMelodyIndex = idx;
 uint32_t freq = gMelodyFreqs[idx];

Application Code www.ti.com

4 Digital to Analog Converter to Piezo Buzzer SSDA011 – NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SSDA011
https://www.ti.com/feedbackform/techdocfeedback?litnum=SSDA011&partnum=

 setToneFrequency(freq);

 /* compute note duration */
 uint32_t durMs = gMelodyDurMs[idx];
 gNoteSamplesRemaining = (durMs * gSampleRate) / 1000u;

 /* if duration is zero, click note for one sample*/
 if (gNoteSamplesRemaining == 0) {
 gNoteSamplesRemaining = 1;
 }
}

int main(void)
{
 SYSCFG_DL_init();
 /* Start the first note of the melody */
 startMelodyNote(0);
 /* Start timer to trigger DAC */
 DL_TimerG_startCounter(TIMER_0_INST);
 /* Enable DAC interrupt to update output */
 NVIC_EnableIRQ(DAC12_INT_IRQN);

 /* Calling WFI after calling DL_SYSCTL_enableSleepOnExit will result in
 * only ISR code to be executed. This is done to showcase the device's
 * low power consumption when sleeping.
 */
 DL_SYSCTL_enableSleepOnExit();
 while (1) {
 __WFI();
 }
}

void DAC12_IRQHandler(void)
{
 switch (DL_DAC12_getPendingInterrupt(DAC0)) {
 case DL_DAC12_IIDX_FIFO_1_2_EMPTY:
 {
 /* code for rest */
 if (gPhaseIncrement == 0) {
 DL_DAC12_output12(DAC0, 2048);
 } else { /*code for tone, walk through phase table */
 uint32_t tableIndex = (gPhaseAccumulator >> PHASE_FRAC_BITS) & (SINE_POINTS -
1);
 DL_DAC12_output12(DAC0, gSineTable[tableIndex]);
 gPhaseAccumulator += gPhaseIncrement;
 }

 /* state machine forward */
 if (gNoteSamplesRemaining > 0) {
 gNoteSamplesRemaining--;
 }

 if (gNoteSamplesRemaining == 0) {
 /* move to next note, wrap around */
 uint16_t next = gCurrentMelodyIndex + 1;

 /* causes song to loop*/
 if (next >= MELODY_LENGTH) {
 next = 0;
 }
 startMelodyNote(next);
 }
 }
 break;
 /* unused */
 case DL_DAC12_IIDX_FIFO_3_4_EMPTY:
 case DL_DAC12_IIDX_NO_INT:
 case DL_DAC12_IIDX_MODULE_READY:
 case DL_DAC12_IIDX_FIFO_FULL:
 case DL_DAC12_IIDX_FIFO_1_4_EMPTY:
 case DL_DAC12_IIDX_FIFO_EMPTY:
 case DL_DAC12_IIDX_FIFO_UNDERRUN:
 case DL_DAC12_IIDX_DMA_DONE:
 break;
 }
}

www.ti.com Application Code

SSDA011 – NOVEMBER 2025
Submit Document Feedback

Digital to Analog Converter to Piezo Buzzer 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SSDA011
https://www.ti.com/feedbackform/techdocfeedback?litnum=SSDA011&partnum=

8 Additional Resources
• Texas Instruments, MSPM0 G-Series 80MHz Microcontrollers, technical reference manual.
• Texas Instruments, MSPM0G350x Mixed-Signal Microcontrollers with CAN-FD Interface, datasheet.

9 E2E
See TI's E2E™ support forums to view discussions and post new threads to get technical support for using
MSPM0 devices in designs.

10 Trademarks
All trademarks are the property of their respective owners.

Additional Resources www.ti.com

6 Digital to Analog Converter to Piezo Buzzer SSDA011 – NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slau846
https://www.ti.com/lit/pdf/slasex6
https://e2e.ti.com/
https://www.ti.com
https://www.ti.com/lit/pdf/SSDA011
https://www.ti.com/feedbackform/techdocfeedback?litnum=SSDA011&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully
indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale, TI’s General Quality Guidelines, or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products
are standard, catalog, general purpose devices.
TI objects to and rejects any additional or different terms you may propose.
IMPORTANT NOTICE

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com/lit/pdf/SZZQ076
https://www.ti.com

	1 Description
	2 Required Peripherals
	3 Compatible Devices
	4 Design Steps
	5 Design Considerations
	6 Software Flowchart
	7 Application Code
	8 Additional Resources
	9 E2E
	10 Trademarks

