TLC251A

ACTIVE

Single, 16-V, 1.7-MHz, 5-mV offset voltage, In to V- op amp with bias-select adjustable bandwidth

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
TLV9101 ACTIVE Single, 16-V, 1.1-MHz, low-power operational amplifier Rail-to-rail I/O, faster slew rate (4.5 V/μs), lower offset voltage (1.5 mV), lower power (0.12 mA), higher output current (80 mA), wider temp range (-40 to 125 °C)
TLV9151 ACTIVE Single, 16-V, 4.5-MHz, low-power operational amplifier Rail-to-rail I/O, higher GBW (4.5 MHz), faster slew rate (21 V/μs), lower offset voltage (0.75 mV), lower power (0.56 mA), lower noise (10.8 nV/√Hz), higher output current (75 mA), wider temp range (-40 to 125 °C)

Product details

Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.4 Rail-to-rail In to V- GBW (typ) (MHz) 2 Slew rate (typ) (V/µs) 4 Vos (offset voltage at 25°C) (max) (mV) 10 Iq per channel (typ) (mA) 0.675 Vn at 1 kHz (typ) (nV√Hz) 25 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 1.8 Input bias current (max) (pA) 60 CMRR (typ) (dB) 80 Iout (typ) (A) 0.01 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.03 Output swing headroom (to positive supply) (typ) (V) -1.2
Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.4 Rail-to-rail In to V- GBW (typ) (MHz) 2 Slew rate (typ) (V/µs) 4 Vos (offset voltage at 25°C) (max) (mV) 10 Iq per channel (typ) (mA) 0.675 Vn at 1 kHz (typ) (nV√Hz) 25 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 1.8 Input bias current (max) (pA) 60 CMRR (typ) (dB) 80 Iout (typ) (A) 0.01 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.03 Output swing headroom (to positive supply) (typ) (V) -1.2
PDIP (P) 8 92.5083 mm² 9.81 x 9.43 SOIC (D) 8 29.4 mm² 4.9 x 6
  • Wide Range of Supply Voltages
  • 1.4-V to 16-V
  • True Single-Supply Operation
  • Common-Mode Input Voltage Range Includes the Negative Rail
  • Low Noise...30 nV/Hz\ Typ at 1-kHz (High Bias)
  • ESD Protection Exceeds 2000 V Per MIL-STD-833C, Method 3015.1

LinCMOS is a trademark of Texas Instruments.

  • Wide Range of Supply Voltages
  • 1.4-V to 16-V
  • True Single-Supply Operation
  • Common-Mode Input Voltage Range Includes the Negative Rail
  • Low Noise...30 nV/Hz\ Typ at 1-kHz (High Bias)
  • ESD Protection Exceeds 2000 V Per MIL-STD-833C, Method 3015.1

LinCMOS is a trademark of Texas Instruments.

The TLC251C, TLC251AC, and TLC251BC are low-cost, low-power programmable operational amplifiers designed to operate with single or dual supplies. Unlike traditional metal-gate CMOS operational amplifiers, these devices utilize Texas Instruments silicon-gate LinCMOSTM process, giving them stable input offset voltages without sacrificing the advantages of metal-gate CMOS.

This series of parts is available in selected grades of input offset voltage and can be nulled with one external potentiometer. Because the input common-mode range extends to the negative rail and the power consumption is extremely low, this family is ideally suited for battery-powered or energy-conserving applications. A bias-select pin can be used to program one of three ac performance and power-dissipation levels to suit the application. The series features operation down to a 1.4-V supply and is stable at unity gain.

These devices have internal electrostatic-discharge (ESD) protection circuits that prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.1. However, care should be exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric performance.

Because of the extremely high input impedance and low input bias and offset currents, applications for the TLC251C series include many areas that have previously been limited to BIFET and NFET product types. Any circuit using high-impedance elements and requiring small offset errors is a good candidate for cost-effective use of these devices. Many features associated with bipolar technology are available with LinCMOSTM operational amplifiers without the power penalties of traditional bipolar devices. Remote and inaccessible equipment applications are possible using the low-voltage and low-power capabilities of the TLC251C series.

In addition, by driving the bias-select input with a logic signal from a microprocessor, these operational amplifiers can have software-controlled performance and power consumption. The TLC251C series is well suited to solve the difficult problems associated with single battery and solar cell-powered applications.

The TLC251C series is characterized for operation from 0°C to 70°C.

The TLC251C, TLC251AC, and TLC251BC are low-cost, low-power programmable operational amplifiers designed to operate with single or dual supplies. Unlike traditional metal-gate CMOS operational amplifiers, these devices utilize Texas Instruments silicon-gate LinCMOSTM process, giving them stable input offset voltages without sacrificing the advantages of metal-gate CMOS.

This series of parts is available in selected grades of input offset voltage and can be nulled with one external potentiometer. Because the input common-mode range extends to the negative rail and the power consumption is extremely low, this family is ideally suited for battery-powered or energy-conserving applications. A bias-select pin can be used to program one of three ac performance and power-dissipation levels to suit the application. The series features operation down to a 1.4-V supply and is stable at unity gain.

These devices have internal electrostatic-discharge (ESD) protection circuits that prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.1. However, care should be exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric performance.

Because of the extremely high input impedance and low input bias and offset currents, applications for the TLC251C series include many areas that have previously been limited to BIFET and NFET product types. Any circuit using high-impedance elements and requiring small offset errors is a good candidate for cost-effective use of these devices. Many features associated with bipolar technology are available with LinCMOSTM operational amplifiers without the power penalties of traditional bipolar devices. Remote and inaccessible equipment applications are possible using the low-voltage and low-power capabilities of the TLC251C series.

In addition, by driving the bias-select input with a logic signal from a microprocessor, these operational amplifiers can have software-controlled performance and power consumption. The TLC251C series is well suited to solve the difficult problems associated with single battery and solar cell-powered applications.

The TLC251C series is characterized for operation from 0°C to 70°C.

Download

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet LinCMOS Programmable Low-Power Operational Amplifiers datasheet (Rev. F) 13 Mar 2001

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​