SLVAFE0 February   2023 TPS62441-Q1 , TPS62442-Q1 , TPS62810-Q1 , TPS62811-Q1 , TPS62812-Q1 , TPS62813-Q1 , TPS628501-Q1 , TPS628502-Q1 , TPS628503-Q1 , TPS62870 , TPS62870-Q1 , TPS62871 , TPS62871-Q1 , TPS62872 , TPS62872-Q1 , TPS62873 , TPS62873-Q1 , TPS62874-Q1 , TPS62875-Q1 , TPS62876-Q1 , TPS62877-Q1 , TPSM8287A06 , TPSM8287A10 , TPSM8287A12 , TPSM8287A15

 

  1.   Abstract
  2.   Trademarks
  3. 1Overview
  4. 2Detailed Description
    1. 2.1 Input Filter Design
    2. 2.2 Output Filter Design (Second Stage)
  5. 3Measurement and Analysis
  6. 4Damping of the Filters
  7. 5Further Analysis with Damped Filters
  8. 6Conclusion
  9. 7Reference

Abstract

The efficient design of a power delivery network PDN is a challenging task because all the segments of PDN are linked with each other. Changes in one component can have a significant influence on all the other components. This application note focuses on designing of filters and also discusses the stability problems caused by adding the input filter or the second stage of output LC filter if they are not designed properly by keeping a look on certain important parameters. Furthermore, the application note also explains the damping methods for resolving the stability issues caused by the addition of filters with step-down converter.